# Smooth $S^1$ -action and bordism

## By Akio HATTORI and Hajime TANIGUCHI

(Received Feb. 14, 1972)

### §1. Introduction.

In this paper we study smooth actions of the circle group  $S^1$  on smooth manifolds from the view point of bordism theory.

Let G be a fixed compact Lie group and  $\mathcal{F}'$  and  $\mathcal{F}$  be families of subgroups of G such that  $\mathcal{F}' \subset \mathcal{F}$ . We assume that both families are closed under inner automorphisms of G. An action of G on a manifold M will be called  $(\mathcal{F}, \mathcal{F}')$ -free provided that it is effective on each component of M and the isotropy subgroup  $G_x$  at each point  $x \in M$  belongs to  $\mathcal{F}$  and, if  $x \in \partial M$ ,  $G_x$  belongs to  $\mathcal{F}'$ . When  $\mathcal{F}' = \emptyset$  then necessarily  $\partial M = \emptyset$ . In this case we call the action  $\mathcal{F}$ -free. The *n*-dimensional bordism group  $\Omega_n(G; \mathcal{F}, \mathcal{F}')$  of all orientation preserving  $(\mathcal{F}, \mathcal{F}')$ -free smooth G-actions on compact oriented smooth *n*-manifolds is defined in the obvious way. See  $[3]^{10}$ . If  $\mathcal{F}' = \emptyset$  then we denote  $\Omega_n(G; \mathcal{F}, \emptyset)$  simply by  $\Omega_n(G; \mathcal{F})$ . These groups are connected by an exact sequence

$$\cdots \longrightarrow \mathcal{Q}_n(G; \mathcal{F}') \xrightarrow{i_*} \mathcal{Q}_n(G; \mathcal{F}) \xrightarrow{j_*} \mathcal{Q}_n(G; \mathcal{F}, \mathcal{F}') \xrightarrow{\partial_*} \mathcal{Q}_{n-1}(G; \mathcal{F}') \longrightarrow \cdots.$$

In an entirely similar way the U-bordism group  $\Omega_n^U(G; \mathcal{F}, \mathcal{F}')$  of all Ustructure preserving  $(\mathcal{F}, \mathcal{F}')$ -free smooth G-actions on compact *n*-dimensional U-manifolds (weakly complex manifolds) are defined together with natural homomorphisms induced by the inclusion  $\mathcal{F}' \subset \mathcal{F}$ .

In this paper we consider the case in which  $G = S^1$  and  $\mathcal{F} = \mathcal{F}_i^+$  where we set

$$\mathcal{F}_l = \{ \boldsymbol{Z}_k | k \leq l \}$$

and

$$\mathcal{F}_l^+ = \mathcal{F}_l \cup \{S^1\}$$
.

Here  $Z_k$  denotes the subgroup of  $S^1$  consisting of k-th roots of unity. Thus  $\mathscr{F}_{\infty} = \bigcup \mathscr{F}_l$  is the set of all finite subgroups of  $S^1$  and  $\mathscr{F}_{\infty}^+ = \bigcup \mathscr{F}_l^+$  is the set of all closed subgroups of  $S^1$ .

Our main results are the following.

<sup>1)</sup> In [3] the assumption of effectiveness in the definition of  $(\mathcal{F}, \mathcal{F}')$ -free action was not imposed. We add that assumption to simplify the resulting bordism group.

THEOREMS (2.22) and (2.29). For each integer l, 1 < l, the sequences

$$0 \longrightarrow \mathcal{Q}_{n}^{U}(S^{1}; \mathcal{F}_{l-1}^{+}) \xrightarrow{i_{*}} \mathcal{Q}_{n}^{U}(S^{1}; \mathcal{F}_{l}^{+}) \xrightarrow{j_{*}} \mathcal{Q}_{n}^{U}(S^{1}; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+}) \longrightarrow 0$$

and

$$0 \longrightarrow \mathcal{Q}_n(S^1; \mathcal{F}_{l-1}^+) \xrightarrow{l_*} \mathcal{Q}_n(S^1; \mathcal{F}_l^+) \xrightarrow{j_*} \mathcal{Q}_n(S^1; \mathcal{F}_l^+, \mathcal{F}_{l-1}^+) \longrightarrow 0$$

are split exact.

In Section 2 we shall construct splittings

$${}^{t}\boldsymbol{P}\colon\,\mathcal{Q}_{n}^{U}(S^{1}\,;\,\mathcal{F}_{l}^{+},\,\mathcal{F}_{l-1}^{+})\longrightarrow\,\mathcal{Q}_{n}^{U}(S^{1}\,;\,\mathcal{F}_{l}^{+})$$

and

$$\mathcal{P}\boldsymbol{P}\colon \,\mathcal{Q}_n(S^1\,;\,\mathcal{F}_l^+,\,\mathcal{F}_{l-1}^+) \longrightarrow \mathcal{Q}_n(S^1\,;\,\mathcal{F}_l^+)$$

which we call "twisted complex projective space bundle construction". Setting

$${}^{t}P_{n}^{U}(S^{1}; \mathcal{F}_{l}^{+}) = {}^{t}P\Omega_{n}^{U}(S^{1}; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$$

and

$${}^{t}P_{n}(S^{1}; \mathcal{F}_{l}^{+}) = {}^{t}P\mathcal{Q}_{n}(S^{1}; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$$

we have immediate corollaries.

COROLLARIES (2.24) and (2.30). There are canonical isomorphisms

$$\mathcal{Q}_{n}^{U}(S^{1}; \mathcal{F}_{l}^{+}) \cong \mathcal{Q}_{n}^{U}(S^{1}; \mathcal{F}_{1}^{+}) \bigoplus_{1 \leq k \leq l} {}^{t}P_{n}^{U}(S^{1}; \mathcal{F}_{k}^{+}) 
\mathcal{Q}_{n}^{U}(S^{1}; \mathcal{F}_{\infty}^{+}) \cong \mathcal{Q}_{n}^{U}(S^{1}; \mathcal{F}_{1}^{+}) \bigoplus_{1 \leq k} {}^{t}P_{n}^{U}(S^{1}; \mathcal{F}_{k}^{+}) 
\mathcal{Q}_{n}(S^{1}; \mathcal{F}_{l}^{+}) \cong \mathcal{Q}_{n}(S^{1}; \mathcal{F}_{1}^{+}) \bigoplus_{1 \leq k \leq l} {}^{t}P_{n}(S^{1}; \mathcal{F}_{k}^{+})$$

and

$$\mathcal{Q}_n(S^1; \mathcal{F}_{\infty}^+) \cong \mathcal{Q}_n(S^1; \mathcal{F}_1^+) \bigoplus \sum_{1 \le k} {}^t P_n(S^1; \mathcal{F}_k^+).$$

As was shown in [8] the group  $\Omega_n(S^1; \mathcal{F}_1^+)$  is generated by complex projective space bundles. Analogous fact holds for  $\Omega_n^U(S^1; \mathcal{F}_l^+)$ . We can say that twisted complex projective space bundles are as simple as complex projective space bundles. Thus these corollaries exhibit generators for  $\Omega_*^U(S^1; \mathcal{F}_l^+)$  and  $\Omega_*(S^1; \mathcal{F}_l^+)$  which are geometrically very simple.

We note here that our methods are applicable to the case of stationary point free actions, i.e. the case of  $\mathcal{F}_l$ -free actions, with minor modifications in the real case. However that case was already treated by Ossa [7] and indeed our methods are quite similar to his.

In Sections 3 and 4 we shall give an elementary proof of the Kosniowski formula [6] and the Atiyah-Singer formula [1, p. 594] in the framework of bordism theory. These formulae were originally proved by using the Atiyah-Singer G-signature theorem. In the case of semi-free actions proofs in the

framework of bordism theory were given by Kawakubo and Uchida [5] for the Atiyah-Singer formula and by Takao Matumoto (unpublished) for the Kosniowski formula. Another proof of Atiyah-Singer's formula which uses generalized manifolds was given by Kawakubo and Raymond [4].

Thanks are due to F. Uchida for stimulating conversations.

#### $\S 2$ . Twisted complex projective space bundles.

Let  $V \rightarrow X$  be a vector bundle (real or complex) and let

$$\psi \colon S^1 \! \times \! V \longrightarrow V$$

be an effective continuous  $S^1$ -action by vector bundle isomorphisms of V. Then  $\psi$  defines an injective homomorphism  $S^1 \rightarrow \text{Isom}(V)$  which we shall also denote by the same letter  $\psi$  where Isom(V) denotes the group of all vector bundle isomorphisms of V onto itself. Thus, by this convention, we write  $\psi(g)v$  for  $\psi(g, v)$  for any  $g \in S^1$  and  $v \in V$ . We always indentify X with the zero cross-section image of the bundle V. Set

$$H = \{g \mid g \in S^1, \ \phi(g)x = x \text{ for all } x \in X\}.$$

Then H is a closed subgroup of  $S^1$ . H equals the whole group  $S^1$  if and only if each  $\psi(g)$  is an automorphism of the bundle V. If  $H \neq S^1$ , then Hequals  $Z_l$ , the *l*-th roots of unity, for some  $l \ge 1$  and it is easy to see that there is a unique  $S^1$ -action  $\varphi$  on X such that

$$\psi(g)x = \varphi(g)^l x$$

for all  $g \in S^1$  and  $x \in X$ . In this case we say that the action  $\psi$  is of order l. DEFINITION (2.1). Let l be an integer, 1 < l. An  $S^1$ -action  $\psi$  on V is said

to be strictly  $\mathcal{F}_{l}^{+}$ -free if the following three conditions are satisfied:

- 1)  $\psi$  is of order l,
- 2) the action  $\varphi$  (defined as above) on X is semi-free, i.e.  $\mathcal{F}_1^+$ -free and
- 3) the action  $\psi$  restricted on V-X is  $\mathcal{F}_{l-1}$ -free.

Note that if the action  $\phi$  is strictly  $\mathcal{F}_i^+$ -free then the fixed point set of  $\phi$  is contained in X as a proper subset. Here by the fixed point set of an action we mean the set of points which are fixed by all elements of the group.

Now let X be a compact U-manifold and V a smooth complex vector bundle on X. Then V, regarded as a smooth manifold, has the obvious induced U-structure. A smooth  $S^1$ -action  $\psi: S^1 \rightarrow \text{Isom}(V)$  is called to be U-structure preserving if each  $\psi(g)$  preserves the U-structure on the base X. Note that, in that case, each  $\psi(g)$  also preserves the induced U-structure on V. Let l be an integer, 1 < l, and let  $\mathscr{B}^U_{m,2k}(S^1; \mathscr{F}^+_l)$  denote the totality of triples  $(X, V, \phi)$  where  $V \to X$  is a smooth complex k-vector bundle on a compact m-dimensional U-manifold without boundary X and  $\phi$  is an effective U-structure preserving smooth S<sup>1</sup>-action on V which is strictly  $\mathcal{F}_l^+$ -free. Two triples  $(X, V, \phi)$  and  $(X', V', \phi')$  in  $\mathcal{B}_{m,2k}^U(S^1; \mathcal{F}_l^+)$  are called bordant if there is a compact (m+1)-dimensional U-manifold Y, a smooth complex k-vector bundle W on Y and a U-structure preserving, strictly  $\mathcal{F}_l^+$ -free, smooth S<sup>1</sup>-action  $\Psi$  on W such that

$$\partial Y = X \cup -X'$$

$$W \mid X = V, \qquad W \mid X' = V'$$

$$\Psi \mid V = \psi, \qquad \Psi \mid V' = \psi'$$

and

where -X' denotes the U-manifold X' with the opposite U-structure as usual. This is clearly an equivalence relation. The set of all equivalence classes of  $\mathscr{B}_{m,2k}^{U}(S^1; \mathscr{F}_{l}^{+})$  will be denoted by  $B_{m,2k}^{U}(S^1; \mathscr{F}_{l}^{+})$  and the class of  $(X, V, \phi)$  will be denoted by  $[X, V, \phi]$ .  $B_{m,2k}^{U}(S^1; \mathscr{F}_{l}^{+})$  becomes an abelian group where the addition is induced by disjoint union. The verification of the fact is quite routine and is omitted.

Next let X be a compact smooth manifold and V a smooth real vector bundle on X such that  $w_1(X)$  equals the first Stiefel-Whitney class of the vector bundle  $V \to X$ . Then V, regarded as a manifold, is orientable. A triple  $(X, V, \phi)$  in which  $V \to X$  is a real vector bundle with the above property and  $\phi: S^1 \to \text{Isom}(V)$  is an effective smooth action will be called *oriented* if V, regarded as a manifold, is oriented. For an integer l greater than 1, we shall denote by  $\mathcal{B}_{m,k}(S^1; \mathcal{F}_l^+)$  the totality of oriented triples  $(X, V, \phi)$  in which dim X = m, fiber-dim V = k and  $\phi$  is strictly  $\mathcal{F}_l^+$ -free. The bordism relation between oriented triples and the resulting bordism group  $B_{m,k}(S^1; \mathcal{F}_l^+)$ are defined in a similar way as the unitary case.

REMARK (2.2). We shall show later that  $\mathscr{B}_{m,k}(S^1; \mathscr{F}_l^+) = \emptyset$  and consequently  $B_{m,k}(S^1; \mathscr{F}_l^+) = 0$  for odd k.

Now suppose that a pair  $(M, \phi)$  of a compact smooth manifold M and an  $(\mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$ -free smooth  $S^{1}$ -action  $\phi$  on M is given. A connected component X of the fixed point set of  $\phi(\mathbb{Z}_{l})$  will be called to be *of the first kind* if it contains a point x whose isotropy subgroup equals precisely  $\mathbb{Z}_{l}$ .

LEMMA (2.3). Let  $\psi$  be an  $(\mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$ -free smooth action on a compact smooth manifold M. If X is a connected component of the first kind of the fixed point set of  $\psi(\mathbf{Z}_{l})$ , then X is contained in the interior of M. Consequently X has no boundary. Moreover if V is the normal bundle of X in M then the induced action  $\psi$  on V is strictly  $\mathcal{F}_{l}^{+}$ -free.

**PROOF.** Assume that  $X \cap \partial M \neq \emptyset$ . Then, by the equivariant collar neigh-

borhood theorem,  $X \cap \partial M = \partial X$  and the fixed point set F of  $\psi(S^1)$  in X contains a neighborhood of  $\partial X$  in X. But  $F - \partial X$  is a manifold without boundary. Therefore F must coincide with the whole X which is a contradiction. Thus  $X \cap \partial M = \emptyset$ . The rest of the statement is clear.

LEMMA (2.4). Let  $\psi$  be an  $(\mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$ -free smooth  $S^{1}$ -action on a compact smooth n-manifold M. Let  $\{X_i\}$  be the totality of connected components of the first kind of the fixed point set of  $\psi(\mathbf{Z}_l)$  and let  $D_i$  be the  $\psi$ -invariant closed tubular neighborhood of  $X_i$  with respect to a  $\psi$ -invariant Riemannian metric on M. Then we have

$$\Sigma [D_i, \phi] = [M, \phi]$$

in  $\Omega_n(S^1; \mathcal{F}_l^+, \mathcal{F}_{l-1}^+)$ .

**PROOF.** Since the action  $\psi$  restricted on  $M - \bigcup D_i$  is  $\mathcal{F}_{l-1}^+$ -free, the statement follows from [3, (5.2)]. Similarly we have

LEMMA (2.5). Let  $\psi$  be a U-structure preserving  $(\mathcal{F}_i^+, \mathcal{F}_{i-1}^+)$ -free smooth  $S^1$ -action on a compact U-manifold M and let  $X_i$  and  $V_i$  have similar meanings as in (2.4). Then

$$\Sigma [D_i, \phi] = [M, \phi]$$

 $\sin \Omega_n^U(S^1; \mathcal{F}_l^+, \mathcal{F}_{l-1}^+).$ 

We consider the homomorphisms

$$\nu: \ \mathcal{Q}^{U}_{n}(S^{1} \ ; \ \mathcal{F}^{+}_{l}, \ \mathcal{F}^{+}_{l-1}) \longrightarrow \sum_{m+2k=n} B^{U}_{m,2k}(S^{1} \ ; \ \mathcal{F}^{+}_{l})$$

rand

$$\nu: \, \mathcal{Q}_n(S^1; \, \mathcal{F}_l^+, \, \mathcal{F}_{l-1}^+) \longrightarrow \sum_{m+k=n} B_{m,k}(S^1; \, \mathcal{F}_l^+)$$

defined by

 $\nu[M, \phi] = \sum [X_i, V_i, \phi]$ 

where the summation is taken over the connected components of the first kind of the fixed point set of  $\psi(\mathbf{Z}_i)$  and  $V_i$  is the normal bundle of  $X_i$  in M. In the real case we orient  $V_i$  concordantly with M. In the complex case  $X_i$ has the natural U-structure and  $V_i$  becomes a complex vector bundle on which  $\psi$  acts by U-structure preserving isomorphisms of complex vector bundle. By (2.3)  $[X_i, V_i, \psi]$  belongs to  $B_{m,2k}(S^1; \mathcal{F}_i^+)$  or  $B_{m,k}(S^1; \mathcal{F}_i^+)$  as the case may be.

**PROPOSITION** (2.6). The homomorphisms

$$\nu: \mathcal{Q}_n^{\mathcal{U}}(S^1; \mathcal{F}_l^+, \mathcal{F}_{l-1}^+) \longrightarrow \sum_{m+2k=n} B_{m,2k}^{\mathcal{U}}(S^1; \mathcal{F}_l^+)$$

and

$$\nu: \ \mathcal{Q}_n(S^1; \mathcal{F}_l^+, \mathcal{F}_{l-1}^+) \longrightarrow \sum_{m+k=n} B_{m,k}(S^1; \mathcal{F}_l^+)$$

are isomorphisms.

**PROOF.** Given a triple  $(X, V, \phi)$  in  $\mathscr{B}_{m,2k}^{U}(S^{1}; \mathscr{F}_{l}^{+})$  or  $\mathscr{B}_{m,k}(S^{1}; \mathscr{F}_{l}^{+})$ , let D(V)We the disk bundle of V with respect to a  $\phi$ -invariant metric on the vector bundle V. Then it is a routine matter to verify that the assignment

 $[X, V, \psi] \longmapsto [D(V), \psi]$ 

gives a well-defined homomorphism

$$\delta: B^{U}_{m,2k}(S^{1}; \mathcal{F}^{+}_{l}) \longrightarrow \mathcal{Q}^{U}_{m+2k}(S^{1}; \mathcal{F}^{+}_{l}, \mathcal{F}^{+}_{l-1})$$

or

$$\delta: B_{m,k}(S^{1}; \mathcal{F}_{l}^{+}) \longrightarrow \mathcal{Q}_{m+k}(S^{1}; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+}).$$

Then clearly we have

 $\nu \circ \delta =$ identity.

By (2.5) and (2.4) we also have

 $\delta \circ \nu =$ identity.

This proves that  $\nu$  is an isomorphism and  $\nu^{-1} = \delta$ .

To define twisted complex projective space bundle we need some preliminaries. First we consider the complex case. If  $(X, V, \phi)$  is a triple in  $\mathscr{B}_{m,2k}^{U}(S^1; \mathscr{F}_l^+)$  then the subgroup  $\mathbb{Z}_l \subset S^1$  acts on V by automorphisms. We assume that X is connected. This will not destroy the generality of arguments which follow. Then, as is well known, there is a unique eigen-value decomposition of V into a direct sum

(2.7) 
$$V = \sum_{0 < l_i < l} V(l_i)$$

such that, for all  $g \in \mathbb{Z}_l$  and  $v \in V(l_i)$ ,

(2.8) 
$$\psi(g)v = g^{l_i}v.$$

Note that the eigen-values of  $\psi(g)$  on V are of the form  $g^{l_i}$ ,  $0 \leq l_i < l$ . But by the condition 3) of (2.1),  $1 = g^0$  does not occur in our case. To avoid confusion we denote by  $\psi'(g)$  the scalar multiplication by  $g \in S^1 \subset C$  in the complex vector bundle V. Thus

$$\psi'(g)v = gv$$

for  $g \in S^1$  and  $v \in V$ . With this notation we have, for  $g \in \mathbb{Z}_l$ ,

(2.8)' 
$$\psi(g) = \psi'(g)^{l_i} \quad \text{on } V(l_i).$$

Let F be the fixed point set of the action  $\varphi$  on X (see (2.1)). F is a proper submanifold of X. Let  $\{F_j\}$  be the totality of connected components of F. Then the group  $S^1$  acts on  $V|F_j$  by automorphisms via  $\varphi$  and each  $V(l_i)|F_j$  is clearly  $S^1$ -invariant. Therefore we have eigen-value decomposition.

$$V(l_i) | F_j = \sum_{r \in \mathbf{Z}} V(l_i, r)$$

where

Smooth  $S^{1}$ -action and bordism

$$\psi(g) = \psi'(g)^r$$
 on  $V(l_i, r)$ .

Note that the integers r must satisfy the relation

 $r \equiv l_i \mod l$ .

Moreover the isotropy subgroup at any point  $v \neq 0$  in  $V(l_i, r)$  is  $\mathbb{Z}_{|r|}$ . Therefore, in view of the condition 3) in (2.1), the possible ones for which  $V(l_i, r) \neq 0$  are  $l_i$  and  $l_i - l$ . (Recall that  $0 < l_i < l$ .) Setting

$$V_{j}^{+}(l_{i}) = V(l_{i}, l_{i}),$$
$$V_{j}^{-}(l_{i}) = V(l_{i}, l_{i}-l),$$

we have a  $\psi$ -invariant decomposition

$$V(l_i) | F_j = V_j^{\dagger}(l_i) \oplus V_j^{-}(l_i)$$

where  $\psi(g) = \psi'(g)^{l_i}$  on  $V_j^+(l_i)$  and  $\psi(g) = \psi'(g)^{l_i-l}$  on  $V_j^-(l_i)$ .

Next consider the  $S^1$ -action on  $V(l_i)$  defined by

$$g \longmapsto \psi(g) \psi'(g)^{-l_i}$$
.

Since  $\phi$  and  $\phi'$  commute with each other this defines an action of  $S^1$ . Moreover since  $\phi(g)\phi'(g)^{-l_i}=1$  for  $g \in \mathbb{Z}_l$  on  $V(l_i)$  by (2.8)', there exists a unique  $S^1$ -action  $\phi''_i$  on  $V(l_i)$  such that

(2.10) 
$$\psi_i''(g)^l = \psi(g)\psi'(g)^{-l_i}.$$

Then  $\psi_i''$  is an action which covers  $\varphi$ . Thus we can form the direct sum faction

$$\psi''(g) = \sum \psi''_i(g)$$

on  $V = \sum V(l_i)$ . It is clear that  $\psi''$  commutes with  $\psi$  and  $\psi'$ . Furthermore from (2.9) and (2.10) it follows that

(2.11) 
$$\phi''(g) = \begin{cases} 1 & \text{on } V_j^+(l_i), \\ \phi'(g)^{-1} & \text{on } V_j^-(l_i). \end{cases}$$

Finally we define  $\phi_1$  by

(2.12) 
$$\psi_1(g) = \psi''(g)^2 \psi'(g)$$
.

Since  $\phi''$  commutes with  $\phi'$  this defines an  $S^1$ -action  $\phi_1: S^1 \to \text{Isom}(V)$  which commutes with  $\phi$ ,  $\phi'$ , and  $\phi''$ . Note that the action  $\phi_1$  restricted on X equals  $\phi^2$ . The behavior of  $\phi_1$  on  $V_j^{\pm}(l_i)$  is given by

(2.13) 
$$\psi_1(g) = \begin{cases} \psi'(g) & \text{on } V_j^+(l_i), \\ \psi'(g)^{-1} & \text{on } V_j^-(l_i), \end{cases}$$

cas is easily seen from (2.9) and (2.11).

We extend the actions  $\psi$  and  $\psi_1$  over  $V \times C$ , Whitney sum of V and the

trivial complex line bundle, by putting

(2.14) 
$$\psi(g)(v, \alpha) = (\psi(g)v, \alpha)$$

and

(2.15) 
$$\psi_1(g)(v, \alpha) = (\psi_1(g)v, g\alpha).$$

From the above data we readily obtain the following

PROPOSITION (2.16). Let  $(X, V, \psi) \in \mathcal{B}^{U}_{m,2k}(S^{1}; \mathcal{F}^{+}_{l})$  where X is connected. The action  $\psi_{1}$  on V and  $V \times C$  is strictly  $\mathcal{F}^{+}_{2}$ -free. In particular it is free (i.e.,  $\mathcal{F}_{1}$ -free) on V-X and  $V \times C-X$ .

Now choose a  $\psi$ -invariant hermitian metric on V and extend it in the obvious way over  $V \times C$ . Note that the metric is also  $\psi''$ - and  $\psi_1$ -invariant. Let S(V) and  $S(V \times C)$  be the corresponding unit sphere bundles. The action  $\psi_1$  keeps S(V) and  $S(V \times C)$  invariant and it acts freely on them by (2.16). Hence the quotient spaces

$$\boldsymbol{P}_{\boldsymbol{\psi}}(V) = S(V)/\psi_1$$

and

$$\boldsymbol{P}_{\boldsymbol{\psi}}(V \times \boldsymbol{C}) = S(V \times \boldsymbol{C})/\psi_{1}$$

are smooth manifolds. We shall call them twisted projective space bundles of the pairs  $(V, \phi)$  and  $(V \times C, \phi)$  respectively, although they are by no means bundles in the usual sense. We denote by  $[v] \in P_{\phi}(V)$  and  $[v, \alpha] \in P_{\phi}(V \times C)$ the images of  $v \in S(V)$  and  $(v, \alpha) \in S(V \times C)$  respectively. Since the action  $\phi$ keeps S(V) and  $S(V \times C)$  invariant and it commutes with  $\phi_1$ , it induces an action on  $P_{\phi}(V)$  and  $P_{\phi}(V \times C)$  which we shall denote by the same letter  $\phi$ .

Let  $W_{\phi} = W_{\phi}(V)$  denote the 2-disk bundle associated to the  $S^1$ -fibering  $S(V) \rightarrow P_{\phi}(V)$ .  $W_{\phi}$  is identified with the quotient space of  $S(V) \times D^2$  by the  $S^1$ -action  $\phi_1$  defined by the same formula as (2.15). The class of  $(v, \alpha)$  in  $W_{\phi}$  is denoted by  $[v, \alpha]$ . We define the map

$$f: W_{\psi} \longrightarrow \boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$$

by

$$f[v, \alpha] = [v/\sqrt{1+|\alpha|^2}, \alpha/\sqrt{1+|\alpha|^2}].$$

We also define the map

$$g: D(V) \longrightarrow \boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$$

by

$$g(v) = [v/\sqrt{2}, \sqrt{1-|v|^2/2}].$$

Then the following lemma is immediate.

LEMMA (2.17). f and g are  $\psi$ -equivariant smooth embeddings. f and g: coincide on S(V). Moreover we have

Smooth S<sup>1</sup>-action and bordism

$$g(D(V)) \cup f(W_{\phi}) = \boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$$

$$g(D(V)) \cap f(W_{\phi}) = g(S(V))$$
.

Lemma (2.17) shows that  $P_{\phi}(V \times C)$  is diffeomorphic to the smooth manifold  $D(V) \cup W_{\phi}$  obtained by glueing together D(V) and  $W_{\phi}$  along their common boundary S(V) by the identity automorphism. Henceforth we shall identify  $P_{\phi}(V \times C)$  with  $D(V) \cup W_{\phi}$ . Then, since the S<sup>1</sup>-action  $\phi_1$  preserves the U-structure on V and hence on S(V), it is easy to see that the U-structure can be extended over  $W_{\phi}$  giving a U-structure on  $P_{\phi}(V \times C)$ . The action  $\phi$  clearly preserves this U-structure on  $P_{\phi}(V \times C)$ .

The manifold  $P_{\phi}(V)$  is contained in the U-manifold  $W_{\phi}$  as a U-submanifold. Namely its normal bundle has the obvious structure of complex line bundle, the one associated to the S<sup>1</sup>-bundle  $S(V) \rightarrow P_{\phi}(V)$ . Thus  $P_{\phi}(V)$  is also a U-manifold.

PROPOSITION (2.18). Let  $(X, V, \psi)$  be in  $\mathscr{B}_{m,2k}^{\sigma}(S^1; \mathscr{F}_{t}^+)$ , 1 < l. Suppose that X is connected. Then the action  $\psi$  on  $P_{\psi}(V)$  is  $\mathscr{F}_{t-1}^+$ -free. The action  $\psi$  on  $P_{\psi}(V \times C)$  is  $\mathscr{F}_{t}^+$ -free and the fixed point set of the first kind of  $\psi(\mathbf{Z}_{t})$  equals precisely X. The normal bundle of X in  $P_{\psi}(V \times C)$  is  $\psi$ -equivariantly equivalent to V.

**PROOF.** Let  $v \in S(V)$  and [v] be the image of v in  $P_{\phi}(V)$ . Then we have

if and only if

(2.19) 
$$\psi(g)v = \psi_1(h)v \quad \text{for some } h \in S^1.$$

Let  $v \in V_x$ , the fiber of V over  $x \in X$ , and suppose first that  $x \notin F$ , where F denote the fixed point set of the action  $\varphi$  on X. Write v as

 $\psi(g)[v] = [v]$ 

$$v = \sum v_{i_s}, \quad v_{i_s} \neq 0 \in V(l_{i_s})$$

according to the decomposition (2.7). Then

$$\psi(g)v = \sum \psi''(g)^{i} \psi'(g)^{i_{s}} v_{i_{s}}$$
 by (2.10)

and

$$\psi_1(h)v = \sum \psi''(h)^2 \psi'(h)v_{i_s}$$
 by (2.12).

Since  $\psi''$  covers  $\varphi$  which is free on X-F and  $\psi'$  preserves  $V_x$ , the condition (2.19) is equivalent to

$$g^{l} = h^{2}$$
 and  $g^{l_{is}} = h$ .

Such an element h exists if and only if

(2.20) 
$$g^{l-2l}{}_{is} = 1$$
 for all s.

and

Let H be the subgroup of  $S^1$  consisting of all elements satisfying (2.20). H is equal to  $S^1$  if we have only one s and  $l_{i_s} = l/2$ . Otherwise  $H = \mathbb{Z}_d$  where d is the greatest common divisor of  $\{|l-2l_{i_s}|\}$ . Since  $0 < l_{i_s} < l$ , we have  $|l-2l_{i_s}| < l$ . Hence d < l. Thus we have proved that the isotropy subgroup at v belongs to  $\mathcal{F}_{l-1}^+$  and  $\mathbb{P}_{\phi}(V(l/2))$  is a component of the fixed point set of  $\phi$ .

Next suppose that  $x \in F_j$ , a component of F, and  $v \in V_x$ . Write v as

$$v = \sum v_{is}^{+} + \sum v_{k_t}^{-}$$

where  $v_{i_s}^+ \in V_j^+(l_{i_s})$  and  $v_{k_t} \in V_j^-(l_{k_t})$ . Then the same reasoning as above using (2.11) and (2.13) shows that (2.19) is equivalent to

$$g^{l_{i_s}} = h$$
 and  $g^{l_{-l_{k_t}}} = h$ 

for all s and t. Hence the isotropy subgroup H of  $\psi$  at [v] is  $\mathbb{Z}_d$  when different values occur among  $l_{i_s}$  and  $l-l_{k_t}$  in which case d is the greatest common divisor of  $|l_{i_s}-l_{i_{s'}}|$ ,  $|l_{i_s}-(l-l_{k_t})|$  and  $|l_{k_t}-l_{k_{t'}}|$ . Since  $0 < l_i < l$ , these numbers are smaller than l. Hence d < l and  $H \in \mathcal{F}_{l-1}$ .

If there is only one value among  $l_{i_s}$  and  $l-l_{k_l}$  then H equals  $S^1$ . This implies that  $P_{\phi}(V'_{\mathcal{F}}(l_i))$  is a component of the fixed point set of  $\phi$ , where  $V'_j(l_i) = V^+_j(l_i) \oplus V^-_j(l-l_i)$ .

Thus we have proved that  $\phi$  is  $\mathscr{F}_{l-1}^+$ -free on  $P_{\phi}(V)$ . Since the open submanifold  $P_{\phi}(V \times C) - P_{\phi}(V)$  is  $\phi$ -equivariantly diffeomorphic to V the rest of the statement is clear.

REMARK (2.21). In the above proof we have shown that the fixed point set of the action  $\psi$  on  $P_{\psi}(V)$  is the disjoint union of  $P_{\psi}(V(l/2)) = S(V(l/2))/\psi_1$ (when l is even) and  $P_{\psi}(V'(l_i)) = S(V'(l_i))/\psi_1$  for  $l_i \neq l/2$ . In particular, if l=2then any element in  $P_{\psi}(V)$  is fixed by  $\psi$ . Indeed in this case the actions  $\psi$  and  $\psi_1$  coincide, whence  $\psi$  is trivial on  $P_{\psi}(V)$ .

It is again a routine matter to verify that the assignment

$$\mathscr{B}^{U}_{m,2k}(S^{1}; \mathscr{F}^{+}_{l}) \ni (X, V, \psi) \longmapsto [\mathbf{P}_{\psi}(V \times \mathbf{C}), \psi] \in \mathscr{Q}^{U}_{m,2k}(S^{1}; \mathscr{F}^{+}_{l})$$

induces a well-defined homomorphism

$${}^{t}\boldsymbol{P}\colon B^{\boldsymbol{U}}_{m,2k}(S^{1}; \mathcal{F}^{+}_{l}) \longrightarrow \mathcal{Q}^{\boldsymbol{U}}_{m,2k}(S^{1}; \mathcal{F}^{+}_{l}).$$

THEOREM (2.22). Let l be an integer, 1 < l. The homomorphism

$${}^{\iota}\boldsymbol{P}\circ\boldsymbol{\nu}:\ \mathcal{Q}_{n}^{U}(S^{1}\,;\,\mathcal{F}_{l}^{+},\,\mathcal{F}_{l-1}^{+})\longrightarrow\mathcal{Q}_{n}^{U}(S^{1}\,;\,\mathcal{F}_{l}^{+})$$

is a splitting for

$$j_*: \Omega_n^{U}(S^1; \mathcal{F}_l^+) \longrightarrow \Omega_n^{U}(S^1; \mathcal{F}_l^+, \mathcal{F}_{l-1}^+).$$

PROOF. Consider the composition  $\nu \circ j_* \circ {}^t P$ . Then, for any  $(X, V, \psi)$  with connected X, we have

$$\boldsymbol{\nu} \circ \boldsymbol{j}_* \circ \boldsymbol{P}[X, V, \boldsymbol{\psi}] = [X, V, \boldsymbol{\psi}]$$

by (2.18). Since such  $[X, V, \psi]$  generate  $\sum_{m+2k=n} B^{U}_{m,2k}(S^1; \mathcal{F}^+_l)$ , we have

 $\boldsymbol{\nu} \circ \boldsymbol{j_*} \circ \boldsymbol{IP} = \text{identity}.$ 

By (2.6),  $\nu$  is an isomorphism. Hence it follows that

$$j_* \circ {}^t \boldsymbol{P} \circ \boldsymbol{\nu} = \text{identity}$$
.

REMARK (2.23). It can be shown easily that, for any  $[M, \psi] \in \Omega_n^U(S^1; \mathcal{F}_l^+)$ , the element

$$[M, \psi] - {}^t P \circ \nu \circ j^* [M, \psi] \in i_* \Omega_n^U(S^1; \mathcal{F}_{l-1}^+)$$

is represented by  $[M_1, \phi]$  where

$$M_1 = (M - \bigcup_{X_i} \text{ int } D(V_i)) \cup \bigcup_{X_i} - W_{\phi}(V_i)$$

glued along  $\bigcup_{X_i} S(V_i)$ .

Here  $\{X_i\}$  is the totality of the connected components of the first kind of the fixed point set of  $\psi(\mathbf{Z}_l)$  and  $V_i$  is the normal bundle of  $X_i$  in M.  $-W_{\phi}$ denotes the U-manifold  $W_{\phi}$  with the opposite structure. We may call  $M_1$ twisted blowing up of M along  $\cup X_i$ .

COROLLARY (2.24). There are canonical isomorphisms

$$\mathcal{Q}_n^{\mathcal{U}}(S^1; \mathcal{F}_l^+) \cong \mathcal{Q}_n^{\mathcal{U}}(S^1; \mathcal{F}_l^+) \bigoplus \sum_{1 \le k \le l} {}^t P_n^{\mathcal{U}}(S^1; \mathcal{F}_k^+)$$

and

$$\mathcal{Q}_n^{\mathcal{U}}(S^1; \mathcal{F}_{\infty}^+) \cong \mathcal{Q}_n^{\mathcal{U}}(S^1; \mathcal{F}_1^+) \bigoplus_{1 \le k} {}^t P_n^{\mathcal{U}}(S^1; \mathcal{F}_k^+),$$

where

$${}^{t}P_{n}^{U}(S^{1}; \mathcal{F}_{l}^{+}) = {}^{t}\boldsymbol{P}(\sum_{m+2k=n} B_{m,2k}^{U}(S^{1}; \mathcal{F}_{l}^{+})).$$

**PROOF.** For  $\mathcal{F}_{i}^{+}$  it is immediate from (2.23). Since

$$\Omega_n^{U}(S^1; \mathcal{F}_{\infty}^+) = \lim_{l} \Omega_n^{U}(S^1; \mathcal{F}_l^+)$$

the case for  $\mathscr{F}^+_{\infty}$  follows from the former.

We turn to the real case. Let  $(X, V, \psi) \in \mathcal{B}_{m,k}(S^1; \mathcal{F}_l^+)$  and suppose that X is connected.  $\mathbb{Z}_l$  acts on V and hence on  $V^c$ , the complexification of V, by automorphisms. Decompose  $V^c$  into the direct sum of eigensubbundles

$$V^{c} = \sum_{0 \leq l_{i} \leq l} V^{c}(l_{i})$$

where  $\psi(g)v = g^{l_i}v$  for  $g \in \mathbb{Z}_l$  and  $v \in V^c(l_i)$ . For  $0 < l_i < l/2$  we set

$$U(l_i) = V \cap (V^c(l_i) \oplus V^c(l-l_i)).$$

 $U(l_i)$  can be given a structure of  $\phi$ -invariant complex vector bundle with a decomposition

A. HATTORI and H. TANIGUCHI

$$U(l_i) = V(l_i) \oplus V(l - l_i)$$

such that, for any  $g \in Z_l$ , we have

$$\psi(g)v = \psi'(g)^{l_i}v$$
 for  $v \in V(l_i)$ 

and

$$\psi(g)v = \psi'(g)^{l-l_i}$$
 for  $v \in V(l-l_i)$ ,

where  $\phi'(g)$  denotes the scalar multiplication in the complex vector bundle  $U(l_i)$ . For example, the map  $\rho: V^c(l_i) \rightarrow U(l_i)$  given by

(2.25) 
$$\rho(v) = (v + \bar{v})/2$$

is a real isomorphism for  $l_i \neq l/2$  so that it transports the complex structure of  $V^c(l_i)$  onto  $U(l_i)$ . With this structure we have  $U(l_i) = V(l_i)$  and  $V(l-l_i) = 0$ .

If l is even, we set

$$V(l/2) = V \cap V^{c}(l/2).$$

 $Z_l$  acts on V(l/2) by

$$\psi(g)v=g^{l/2}v$$
,  $g\in Z_l$ ,  $v\in V(l/2)$ ,

where it should be noticed that  $g^{l/2} = \pm 1$  for  $g \in \mathbb{Z}_l$ . V(l/2) does not have complex vector bundle structure in general. Here we digress to give a proof of Remark (2.2). It clearly suffices to prove that the fiber dimension of V(l/2)is even when l is even. Consider the transformation  $\psi(\zeta)$  on V(l/2) where  $\zeta = e^{2\pi\sqrt{-1}/l}$ . Since it is connected to the identity in  $\psi(S^1)$ , it preserves the orientation. Since it keeps the base pointwise fixed, it acts on each fiber of V(l/2) preserving orientation. But  $\psi(\zeta) = -1$  on each fiber. This implies the dimension of the fiber is even. This proves (2.2).

Now consider the S<sup>1</sup>-action on  $V(l_i)$ ,  $0 < l_i < l$ ,  $l_i \neq l/2$ , defined by

$$g \longmapsto \psi(g) \psi'(g)^{-l_i}$$
.

Since  $\psi(g)\psi'(g)^{-l_i}=1$  for  $g\in \mathbb{Z}_l$  on  $V(l_i)$  there exists a unique action  $\psi''_i$  on  $V(l_i)$  such that

(2.26) 
$$\psi_i''(g)^l = \psi(g)\psi'(g)^{-l_i}.$$

The action  $\psi_i''$  covers  $\varphi$ . Let  $\psi''$  be the S<sup>1</sup>-action on  $\sum_{0 \le l_i \le l, l_i \ne l/2} V(l_i)$  given by

$$\psi''(g) = \sum \psi''_i(g)$$

We define the S<sup>1</sup>-action  $\psi_1$  on  $\sum_{0 < l_i < l, \, l_i \neq l/2} V(l_i)$  by

(2.27) 
$$\psi_1(g) = \psi''(g)^2 \psi'(g)$$

This action covers  $\varphi^2$ . Next observe that, when *l* is even, there is a unique  $S^1$ -action  $\psi_1$  on V(l/2) such that

Smooth S<sup>1</sup>-action and bordism

(2.28) 
$$\psi_1(g)^{l/2} = \psi(g)$$

This also covers  $\varphi^2$ . Thus we can form the direct sum action  $\psi_1$  on V from (2.26) and (2.27).

LEMMA (2.29). The S<sup>1</sup>-action  $\psi_1$  on V is independent of the choice of  $\psi_$ invariant complex vector bundle structures on  $U(l_i)$ ,  $l_i \neq l/2$ .

PROOF. Let  $\psi'(g)$  be the scalar multiplication of a  $\psi$ -invariant complex. vector bundle structure on  $U(l_i)$  and let  $\bar{\psi}'(g)$  be the one which is transported by  $\rho$  from  $V^{c}(l_{i})$  as in (2.25). It is not difficult to see that

and

$$\psi'(g) = \bar{\psi}'(g) \quad \text{on } V(l_i)$$
$$\psi'(g) = \bar{\psi}'(g)^{-1} \quad \text{on } V(l-l_i).$$

$$\psi'(g) = \psi'(g)^{-1} \quad \text{on } V(l-l_i)$$

According to (2.26) we define  $\bar{\phi}''$  by

 $\bar{\psi}''(g)^l = \psi(g)\bar{\psi}'(g)^{-l_i}$  on  $U(l_i)$ .

Then we have

$$\bar{\phi}''(g)^l = \phi(g)\phi'(g)^{-l_i} = \phi''(g)^l$$
 on  $V(l_i)$ ,

and

$$\begin{split} \bar{\psi}''(g)^l &= \psi(g)\psi'(g)^{l_i} \\ &= \psi(g)\psi'(g)^{-(l-l_i)}\psi'(g)^l \\ &= \psi''(g)^l\psi'(g)^l \quad \text{on } V(l-l_i) \end{split}$$

where  $0 < l_i < l/2$ . Hence it follows that

$$\bar{\phi}''(g) = \begin{cases} \psi''(g) & \text{on } V(l_i), \\ \\ \psi''(g)\psi'(g) & \text{on } V(l-l_i). \end{cases}$$

Then

$$\begin{split} \bar{\psi}_{1}(g) &= \bar{\psi}''(g)^{2} \bar{\psi}'(g) \\ &= \begin{cases} \psi_{1}(g) & \text{on } V(l_{i}), \\ \\ \psi''(g)^{2} \psi'(g)^{2} \psi'(g)^{-1} &= \psi''(g)^{2} \psi'(g) &= \psi_{1}(g) & \text{on } V(l-l_{i}). \end{cases}$$

This proves  $\bar{\psi}_1 = \psi_1$  on  $U(l_i)$ ,  $0 < l_i < l/2$ . Thus  $\bar{\psi}_1 = \psi_1$  everywhere.

With this  $\psi_1$  defined we can proceed in an entirely similar way as in the complex case. Note that, in the complex case,  $\psi_1(g)$  on V(l/2) satisfied (2.28) too. In particular (2.16) holds for  $\mathscr{B}_{m,k}(S^1; \mathscr{F}_l^+)$  instead of  $\mathscr{B}_{m,2k}^U(S^1; \mathscr{F}_l^+)$  and we can form the smooth manifolds  $P_{\psi}(V) = S(V)/\psi_1$  and  $P_{\psi}(V \times C) = S(V \times C)/\psi_1$ which we shall also call twisted complex projective space bundles. We orient  $P_{\phi}(V \times C)$  concordantly with  $D(V) \subset P_{\phi}(V \times C)$  as in the complex case. The normal bundle of  $P_{\phi}(V)$  in  $P_{\phi}(V \times C)$  is oriented by its complex line bundle structure associated to  $S(V) \rightarrow P_{\phi}(V)$ . Then the above orientations of  $P_{\phi}(V \times C)$ 

and the normal bundle determine the orientation of  $P_{\psi}(V)$ . Proposition (2.18) holds also for  $\mathcal{B}_{m,k}(S^1; \mathcal{F}_i^+)$ . We define the homomorphism

 ${}^{t}\boldsymbol{P} \colon B_{m,k}(S^{1}; \mathcal{F}_{l}^{+}) \longrightarrow \mathcal{Q}_{m+k}(S^{1}; \mathcal{F}_{l}^{+})$ 

by

$${}^{t}\boldsymbol{P}[X, V, \psi] = [\boldsymbol{P}_{\phi}(V \times \boldsymbol{C}), \psi].$$

Then we obtain

THEOREM (2.29). Let l be an integer, 1 < l. The homomorphism

 ${}^{\iota}P \circ \nu : \Omega_n(S^1, \mathcal{F}_l^+, \mathcal{F}_{l-1}^+) \longrightarrow \Omega_n(S^1; \mathcal{F}_l^+)$ 

is a splitting for

$$j_*: \Omega_n(S^1; \mathcal{F}_l^+) \longrightarrow \Omega_n(S^1; \mathcal{F}_l^+, \mathcal{F}_{l-1}^+).$$

COROLLARY (2.30). There are canonical isomorphisms

$$\mathcal{Q}_n(S^1; \mathcal{F}_l^+) \cong \mathcal{Q}_n(S^1; \mathcal{F}_l^+) \bigoplus \sum_{1 < k \leq l} {}^t P_n(S^1; \mathcal{F}_k^+)$$

and

$$\mathcal{Q}_n(S^1; \mathcal{F}_{\infty}^+) \cong \mathcal{Q}_n(S^1; \mathcal{F}_1^+) \bigoplus_{1 \le k} {}^t P_n(S^1; \mathcal{F}_k^+)$$

where

$${}^{t}P_{n}(S^{1}; \mathcal{F}_{l}^{+}) = {}^{t}\boldsymbol{P}_{n}(\sum_{m+k=n} B_{m,k}(S^{1}; \mathcal{F}_{l}^{+})).$$

REMARK. Let  $(X, V, \psi) \in \mathcal{B}_{m,2k}^{U}(S^1; \mathcal{F}_l^+)$  and suppose that the action  $\varphi$ induced on X (see (2.1)) is free which implies in particular that the action  $\psi$ on V is  $\mathcal{F}_l$ -free. Even under this assumption the fixed point set of the action  $\psi$  on  $P_{\psi}(V \times C)$  is not empty in general. For example when l=2 the submanifold  $P_{\psi}(V)$  is the fixed point set by (2.21). However in this case, i.e. when the fixed point set F of the action  $\varphi$  on X is empty, the action  $\psi''$  is free so that  $S(V \times C)/\psi''$  is a smooth manifold. Moreover the action  $\psi$  on  $S(V \times C)/\psi''$ is  $\mathcal{F}_{l-1}$ -free. This can be used to give a splitting for

$$j_*: \Omega_n^U(S^1; \mathcal{F}_l) \longrightarrow \Omega_n^U(S^1; \mathcal{F}_l, \mathcal{F}_{l-1})$$

Similarly let  $(X, V, \psi) \in \mathcal{B}_{m,k}(S^1; \mathcal{F}_l^+)$  and assume that the fixed point set F of  $\varphi$  is empty and V has a structure of  $\psi$ -invariant complex vector bundle. Then we can form  $\psi''$  and smooth manifold  $S(V \times C)/\psi''$  in this case too (but not canonically). This can be used to show that

$$j_*: \Omega_n(S^1; \mathcal{F}_l) \otimes \mathbb{Z}[1/2] \longrightarrow \Omega_n(S^1; \mathcal{F}_l, \mathcal{F}_{l-1}) \otimes \mathbb{Z}[1/2]$$

is onto. These constructions were used by Ossa [7].

Finally we remark that in the above constructions we may replace  $\psi''(g)$ by  $\psi''(g)\psi'(g)$  which will give another splitting for  $j_*$ .

#### §3. The Kosniowski Formula.

Let M be a closed U-manifold with a smooth  $S^1$ -action  $\phi$  preserving the given U-structure. Then each component  $F_j$  of the fixed point set F is a U-manifold in a natural way. Moreover the normal bundle  $V_j$  of  $F_j$  in M decomposes as a direct sum

$$V_j = \sum_{s} V_{js}$$

of complex vector bundles  $V_{js}$  on which the given  $S^1$ -action  $\psi$  is expressed by

$$\psi(g)v = g^{k_{js}}v, \qquad k_{js} \in \mathbb{Z}, \ k_{js} \neq 0,$$

for  $v \in V_{js}$ , where  $g^{k_{js}}v$  denotes the scalar multiplication in the complex vector bundle  $V_{js}$ . We define the integers  $d^+(F_j)$  and  $d^-(F_j)$  by

$$d^+(F_j) = \sum_{s, k_{js} > 0} \dim_{\mathcal{C}} V_{js},$$
$$d^-(F_j) = \sum_{s, k_{js} < 0} \dim_{\mathcal{C}} V_{js}.$$

We shall call  $d^+(F_j)$   $(d^-(F_j))$  positive (negative) type number of  $F_j$ . With these understood, the Kosniowski formula reads as follows.

THE KOSNIOWSKI FORMULA [6]. Let M be a closed U-manifold with a smooth  $S^1$ -action preserving the U-structure. Then the following relation between the  $T_y$ -genera of M and the components of the fixed point set holds.

$$T_{y}(M) = \sum_{j} (-y)^{d^{+}(F_{j})} T_{y}(F_{j})$$
  
=  $\sum_{j} (-y)^{d^{-}(F_{j})} T_{y}(F_{j}),$ 

where  $T_y$  is the genus associated to the formal power series in t

$$t(1+y) = t(1+y) + t$$
,

cf. [2].

In this section we shall give an elementary proof of this formula. In view of Corollary (2.24) it is clearly sufficient to prove the formula for  $[M, \phi] \in \Omega_n^U(S^1; \mathcal{F}_1^+)$  and  $(M, \phi) = (\mathbf{P}_{\phi}(V \times \mathbf{C}), \phi)$  where  $(X, V, \phi) \in \mathcal{B}_{m,2k}^U(S^1; \mathcal{F}_1^+)$ .

I. Semi-free case. The proof given here is due to Takao Matumoto. We thank him for communicating us his proof.

Let  $\psi_{p,q}$  be the  $S^1$ -action on  $S^{2(p+q)-1}$  defined by

$$\psi_{p,q}(g)(z_1, \dots, z_p, w_1, \dots, w_q) = (gz_1, \dots, gz_p, g^{-1}w_1, \dots, g^{-1}w_q)$$

where  $z_i$ ,  $w_j \in C$ . The action is free so that the quotient space  $CP_{p,q} = S^{2(p+q)-1}/\psi_{p,q}$  is a closed smooth manifold.  $CP_{p,q}$  is made almost complex manifold by local charts

$$\begin{pmatrix} z_1 \\ z_i \end{pmatrix}, \cdots, \frac{z_p}{z_i}, \frac{w_1}{\bar{z}_i}, \cdots, \frac{w_q}{\bar{z}_i} \end{pmatrix}$$
 where  $z_i \neq 0$ 

and

$$\left(\frac{z_1}{\overline{w}_j}, \cdots, \frac{z_p}{\overline{w}_j}, \frac{w_1}{w_j}, \cdots, \frac{w_q}{w_j}\right)$$
 where  $w_j \neq 0$ .

LEMMA (3.1). With the above almost complex structure, we have

$$T_{y}(CP_{p,q}) = \frac{1}{1-(-y)} \left( (-y)^{q} - (-y)^{p} \right).$$

PROOF. Consider the diffeomorphism

$$f: CP_{p,q} \longrightarrow CP^{p+q-1}$$

induced by  $f: S^{2(p+q)-1} \rightarrow S^{2(p+q)-1}$  given by

$$f(\boldsymbol{z}_1, \cdots, \boldsymbol{z}_p, w_1, \cdots, w_q) = (\boldsymbol{z}_1, \cdots, \boldsymbol{z}_p, \overline{w}_1, \cdots, \overline{w}_q).$$

Let CP' denote  $CP^{p+q-1}$  with the almost complex structure transported by f. Then it is not difficult to see that

$$\tau(CP') \oplus 1 = p\xi \oplus q\xi^*$$

where  $\tau$ , 1,  $\xi$  and  $\xi^*$  denote the complex tangent bundle, the trivial complex line bundle, the canonical line bundle and its dual respectively. It is also clear that the orientation of CP' is  $(-1)^q$  times the usual orientation of  $\cdot CP^{p+q-1}$ . It follows that

$$T_y(CP_{p,q}) = T_y(CP') = \text{coefficient of } (-1)^q x^n \text{ in } h(x)$$

where n = p + q - 1 and

$$h(x) = \left( \frac{x(y+1)}{e^{x(y+1)}-1} + x \right)^{p} \left( \frac{-x(y+1)}{e^{-x(y+1)}-1} - x \right)^{q}.$$

By the Cauchy integral formula

$$T_{y}(CP_{p,q}) = \frac{(-1)^{q}}{2\pi i} \oint -\frac{h(x)}{x^{n+1}} dx$$

The substitution  $u = e^{x(y+1)} - 1$  gives

$$T_{y}(CP_{p,q}) = \frac{1}{2\pi i} \frac{(-y)^{q}}{y+1} \oint \frac{(1+u+y)^{p} \left(1+u+\frac{1}{y}\right)^{q}}{u^{n+1}(1+u)} du.$$

Hence

$$T_{y}(CP_{p,q}) = (-y)^{q}/(y+1)$$

×(coefficient of 
$$u^n$$
 in  $(1+u+y)^p(1+u+1/y)^q/(1+u)$ ).

But  $(1+u+y)^p(1+u+1/y)^q$  is of the form

$$\sum_{t=0}^{n+1} a_t (1+u)^t$$

with  $a_0 = y^p / y^q$  and  $a_{n+1} = 1$ . Therefore

coefficient of  $u^n$  in  $(1+u+y)^p(1+u+1/y)^q/(1+u) = (-1)^n y^p/y^q+1$ .

Hence we obtain

$$T_{y}(CP_{p,q}) = \frac{1}{1 - (-y)} ((-y)^{q} - (-y)^{p}).$$

Now suppose that the  $S^1$ -action  $\psi$  is semi-free (i.e.  $\mathcal{F}_1^+$ -free) on M. We define the  $S^1$ -actions  $\psi$  and  $\psi_1$  on  $V_i \times C$  by

and

$$\psi(g)(v, \alpha) = (\psi(g)v, \alpha)$$

$$\psi_1(g)(v, \alpha) = (\psi(g)v, g\alpha).$$

Choose a  $\psi$ -invariant hermitian metric on the complex vector bundle  $V_j$ . Let  $D(V_j \times C)$  and  $D(V_j)$  be the associated unit disk bundles and  $S(V_j \times C)$  and  $S(V_j)$  the associated sphere bundles. Since the action  $\psi_1$  is free on  $S(V_j \times C)$ , the quotient space  $P_{\phi}(V_j \times C) = S(V_j \times C)/\psi_1$  and  $S(V_j)/\psi_1$  are smooth manifolds. Just as in (2.17),  $P_{\phi}(V_j \times C)$  is identified with  $D(V_j) \cup W_{\phi}(V_j)$  where  $W_{\phi}(V_j)$  is the disk bundle associated to the  $S^1$ -bundle  $S(V_j) \to P_{\phi}(V_j)$ . In particular  $P_{\phi}(V_j \times C)$  is endowed with a  $\psi$ -invariant U-structure which extends that of  $D(V_j)$ . Moreover since  $\psi_1$  acts on  $V_j$  by automorphisms,  $P_{\phi}(V_j \times C)$  is fibered over  $F_j$  with fiber  $CP_{d_j^++1,d_j^-}$  where  $d_j^{\pm} = d^{\pm}(F_j)$ . Then the U-structure of  $P_{\phi}(V_j \times C)$  given above is compatible in the sense of [2, (21.8)]. Similarly  $P_{\phi}(V_j)$  has a  $\psi$ -invariant U-structure and is fibered over  $F_j$  with fiber  $CP_{d_j^+,d_j^-}$ .

LEMMA (3.2). Let  $\psi$  be a U-structure preserving semi-free S<sup>1</sup>-action on a closed U-manifold M. Then we have

$$\sum_{j} [\mathbf{P}_{\psi}(V_{j} \times \mathbf{C}), \psi] = [M, \psi] \quad in \ \mathcal{Q}_{*}^{U}(S^{1}; \mathcal{F}_{1}^{+})$$

and

$$\sum [\boldsymbol{P}_{\phi}(\boldsymbol{V}_{j})] = 0 \quad in \ \mathcal{Q}_{*}^{\boldsymbol{v}}.$$

PROOF. Let  $M_1$  be the manifold obtained by glueing together  $M - \bigcup$  int  $D(V_j)$  and  $\bigcup - W_{\phi}(V_j)$  along their common boundary  $\bigcup S(V_j)$ . Then, as in (2.23) we have

(3.3) 
$$\sum \left[ \boldsymbol{P}_{\boldsymbol{\psi}}(\boldsymbol{V}_{j} \times \boldsymbol{C}), \, \boldsymbol{\psi} \right] + \left[ \boldsymbol{M}_{1}, \, \boldsymbol{\psi} \right] = \left[ \boldsymbol{M}, \, \boldsymbol{\psi} \right]$$

in  $\Omega_{*}^{V}(S^{1}; \mathcal{F}_{1}^{+})$ . But the action  $\psi$  restricted on  $M_{0} = M - \bigcup$  int  $D(V_{j})$  is free so that  $M_{0}/\psi = Y$  is a U-manifold. Let N be the 2-disk bundle associated to the S<sup>1</sup>-fibering  $M_{0} \rightarrow Y$ . Then clearly we have

$$\partial N = M_1$$
 and  $\partial Y = \bigcup P_{\phi}(V_j)$ .

Therefore

$$[M_1, \psi] = 0$$
 in  $\Omega^U_*(S^1; \mathcal{F}^+_1)$ 

and

 $\sum [\boldsymbol{P}_{\phi}(\boldsymbol{V}_{j})] = 0$  in  $\Omega^{\boldsymbol{V}}_{\boldsymbol{*}}$ .

This together with (3.3) proves Lemma.

PROOF OF THE KOSNIOWSKI FORMULA FOR  $[M, \psi] \in \Omega^{\psi}_{*}(S^{1}; \mathcal{F}_{1}^{+})$ . We first remark that the bundle  $P_{\psi}(V_{j} \times C) \to F_{j}$  has  $U(d_{j}+1), d_{j} = d_{j}^{+} + d_{j}^{-}$ , as structure group and the almost complex structure on the fiber  $CP_{d_{j}^{+}+1,d_{j}^{-}}$  is invariant under the action of  $U(d_{j}+1)$ . Therefore, by the strictly multiplicative property of the  $T_{y}$ -genus [2, (22.8)] we get

$$T_{y}(\boldsymbol{P}_{\phi}(\boldsymbol{V}_{j}\times\boldsymbol{C})) = T_{y}(F_{j})T_{y}(\boldsymbol{C}\boldsymbol{P}_{d_{i}^{+}+1,d_{i}^{-}}).$$

Then by (3.1)

$$T_{y}(P_{\psi}(V_{j} \times C)) = \frac{1}{1 - (-y)} ((-y)^{a_{j}^{-}} - (-y)^{a_{j}^{++1}}) T_{y}(F_{j}).$$

Combining this with (3.2) we obtain

(3.4) 
$$T_{y}(M) = \frac{1}{1 - (-y)} \sum_{j} ((-y)^{a_{j}^{-}} - (-y)^{a_{j}^{++1}}) T_{y}(F_{j}).$$

Similarly from the second equality in (3.2) we get

(3.5) 
$$0 = -\frac{1}{(1-(-y))} \sum_{j} ((-y)^{d_{j}} - (-y)^{d_{j}}) T_{y}(F_{j}).$$

Subtracting (3.5) from (3.4) yields

$$T_{\mathbf{y}}(M) = \sum (-\mathbf{y})^{d_{\mathbf{j}}^{\top}} T_{\mathbf{y}}(F_{\mathbf{j}}) \,.$$

This together with (3.5) yields

$$T_{y}(M) = \sum (-y)^{d_{j}} T_{y}(F_{j}).$$

II. Case of  $[P_{\phi}(V \times C), \phi] \in {}^{t}P_{*}^{\sigma}(S^{1}; \mathcal{F}_{l}^{+})$ . Given  $(X, V, \phi) \in \mathcal{B}_{m,2k}^{\sigma}(S^{1}; \mathcal{F}_{l}^{+})$ , let F be the fixed point set of  $\varphi$  in X and let  $\{F_{j}\}$  be the connected components of F. Let  $U_{j}$  be the normal bundle of  $F_{j}$  in X. The action  $\varphi$  decomposes  $U_{j}$  into the direct sum  $U_{j} = \sum U_{jl}$  so that

$$\varphi(g)u = g^{k_{jt}}u$$
 for  $g \in S^1$  and  $u \in U_{jt}$ 

where  $k_{jt} \in \mathbb{Z}$ . Set

 $U_j^+ = \sum_{k_{jt} > 0} U_{jt}$ 

and

$$U_{\bar{j}} = \sum_{k_{jt} < 0} U_{jt}$$

We also set

Smooth  $S^{1}$ -action and bordism

$$V_j^+ = \sum_{l_i} V_j^+(l_i),$$
$$V_j^- = \sum_{l_i} V_j^-(l_i)$$

where  $V_j^{\pm}(l_i)$  are as in (2.9). Note that  $\{F_j\}$  is a part of connected components of the fixed point set of the action  $\psi$  in  $P_{\psi}(V \times C)$  and we have

(3.6)  
$$d^+(F_j) = \dim U_j^+ + \dim V_j^+,$$
$$d^-(F_j) = \dim U_j^- + \dim V_j^-.$$

Here and throughout this Section dim means the complex dimension.

We consider the action  $\phi''$  defined in (2.10). Since  $\phi''$  commutes with  $\psi_1$  it can be extended to the S<sup>1</sup>-action  $\phi''$  on  $P_{\phi}(V \times C)$  by the formula

$$\psi''(g)[v, \alpha] = [\psi''(g)v, \alpha].$$

LEMMA (3.7). Let  $(X, V, \psi) \in \mathcal{B}_{m,2k}^{U}(S^1; \mathcal{F}_l^+)$  and suppose that X is connected. The action  $\psi''$  on  $P_{\psi}(V \times C)$  is semi-free. Its fixed point set consists of components  $P_{\psi}(V_j^+ \times C)$  and  $P_{\psi}(V_j^-)$ . Their type numbers are given by

$$\begin{aligned} d^+(\boldsymbol{P}_{\phi}(\boldsymbol{V}_j^+\times\boldsymbol{C})) &= \dim U_j^+, \\ d^-(\boldsymbol{P}_{\phi}(\boldsymbol{V}_j^+\times\boldsymbol{C})) &= \dim U_j^- + \dim V_j^-, \\ d^+(\boldsymbol{P}_{\phi}(\boldsymbol{V}_j^-)) &= \dim U_j^-, \\ d^-(\boldsymbol{P}_{\phi}(\boldsymbol{V}_j^-)) &= \dim U_j^+ + \dim V_j^+ + 1. \end{aligned}$$

PROOF. Since  $\phi''$  covers  $\varphi$ , its fixed point set is contained in  $\bigcup P_{\phi}(V|F_j \times C)$ . Then, using (2.11), we see that the fixed point set is as stated. As to the type numbers of  $P_{\phi}(V_j^+ \times C)$ , since it contains  $F_j$  around which the action  $\phi''$  is equivalent to the given action  $\phi''$  on V the statement follows from the definition of  $U_j^{\pm}$  and  $V_j^{\pm}$ .

Next consider  $P_{\phi}(V_{\overline{j}})$ . Let  $\mathring{D}(U_j)$  be a small  $\varphi$ -invariant open tubular neighborhood of  $F_j$  in X. Then the bundle  $V | \mathring{D}(U_j)$  can be  $\psi$ -equivariantly identified with the complex vector bundle  $V \oplus U_j$ . With this in mind, given a point  $(v_0, 0) \in S(V_{\overline{j}}) \subset S(V_{\overline{j}} \times C)$  any point in  $S(V_{\overline{j}} \times C)$  near  $(v_0, 0)$  can be expressed in the form  $(v_0+v, \alpha), v \in V \oplus U_j, \alpha \in C$ . Note that the normal vectors to  $P_{\phi}(V_{\overline{j}})$  in  $P_{\phi}(V \times C)$  at  $[v_0, 0]$  are spanned by  $[v_0, \alpha], [v_0+v, 0]$ with  $v \in V_j^+$  and  $[v_0+u, 0]$  with  $u \in U_j^\pm$ . We compute the effect of  $\psi''(g)$  on these generators.

$$\begin{split} \psi''(g)[v_0, \alpha] &= [\psi''(g)v_0, \alpha] \\ &= [\psi'(g)^{-1}v_0, \alpha] \qquad \text{by (2.11)} \\ &= [\psi_1(g)v_0, \alpha] \qquad \text{by (2.13)} \\ &= [v_0, g^{-1}\alpha]. \end{split}$$

A. HATTORI and H. TANIGUCHI

$$\begin{split} \psi''(g)[v_0+v, 0] &= [\psi'(g)^{-1}v_0+v, 0] \quad \text{for } v \in V_j^+ \text{ by } (2.11) \\ &= [\psi_1(g)v_0+v, 0] \quad \text{by } (2.13) \\ &= [v_0+\psi_1^{-1}(g)v, 0] \\ &= [v_0+\psi'(g)^{-1}v, 0] \,. \end{split}$$
$$\\ \psi''(g)[v_0+u, 0] &= [\psi'(g)^{-1}v_0+\varphi(g)u, 0] \quad \text{for } u \in U_j \text{ by } (2.11) \\ &= [\psi_1(g)v_0+\varphi(g)u, 0] \\ &= [v_0+\varphi(g)^{-2}\varphi(g)u, 0] \quad \text{since } \psi_1(g) = \varphi^2(g) \text{ on } U_j \\ &= [v_0+\varphi(g)^{-1}u, 0] \,. \end{split}$$

Therefore we have

$$d^{+}(\boldsymbol{P}_{\psi}(V_{\bar{j}})) = \dim U_{\bar{j}}$$
$$d^{-}(\boldsymbol{P}_{\psi}(V_{\bar{j}})) = \dim U_{\bar{j}}^{+} + \dim V_{\bar{j}}^{+} + 1.$$

In an entirely similar way we obtain

LEMMA (3.8). Under the same assumption as in (3.7), the fixed point set of  $\psi''$  in  $P_{\phi}(V)$  consists of components  $P_{\phi}(V_{j}^{+})$  and  $P_{\phi}(V_{j}^{-})$  for which the type numbers are given by

$$\begin{split} d^+(\boldsymbol{P}_{\phi}(V_{j}^+)) &= \dim U_{j}^+, \\ d^-(\boldsymbol{P}_{\phi}(V_{j}^+)) &= \dim U_{j}^- + \dim V_{j}^-, \\ d^+(\boldsymbol{P}_{\phi}(V_{j}^-)) &= \dim U_{j}^-, \\ d^-(\boldsymbol{P}_{\phi}(V_{j}^-)) &= \dim U_{j}^+ + \dim V_{j}^+. \end{split}$$

The following Corollary (3.10) is a variant of the Kosniowski formula for  $(\mathbf{P}_{\psi}(V \times \mathbf{C}), \psi)$ .

**PROPOSITION** (3.9). Let  $(X, V, \psi) \in \mathscr{B}^{U}_{m,2k}(S^1; \mathscr{F}^+_l)$ . Let  $\{F_j\}$  be the components of the fixed point set of  $\varphi$  in X, and let  $U_j^{\pm}$  and  $V_j^{\pm}$  be defined as above. We have

$$T_{y}(P_{\psi}(V \times C)) = \frac{1}{1 - (-y)} \sum_{j} \{(-y)^{\dim U_{j}^{-} + \dim V_{j}^{-}} - (-y)^{\dim U_{j}^{+} + \dim V_{j}^{+} + 1}\} T_{y}(F_{j})$$

and

$$T_{\mathbf{y}}(\mathbf{P}_{\phi}(V)) = -\frac{1}{1 - (-y)} \sum_{j} \{(-y)^{\dim U_{j}^{-} + \dim V_{j}^{-}} - (-y)^{\dim U_{j}^{+} + \dim V_{j}^{+}}\} T_{\mathbf{y}}(F_{j}).$$

COROLLARY (3.10). Under the same assumption as in (3.9) the following relations hold.

$$\begin{split} T_{y}(P_{\phi}(V \times C)) &= T_{y}(P_{\phi}(V)) + \sum_{j} (-y)^{\dim U_{j}^{+} + \dim V_{j}^{+}} T_{y}(F_{j}) \\ &= (-y)T_{y}(P_{\phi}(V)) + \sum_{j} (-y)^{\dim U_{j}^{-} + \dim V_{j}^{-}} T_{y}(F_{j}) , \end{split}$$

Smooth  $S^1$ -action and bordism

$$0 = \sum_{j} \left( (-y)^{\dim U_{j}^{+}} - (-y)^{\dim U_{j}^{-}} \right) T_{y}(F_{j}) \,.$$

PROOF OF (3.9) AND (3.10). The action  $\varphi$  on X is semi-free so that we can apply the Kosniowski formula proved in I to get the last relation of (3.10). The action  $\psi''$  on  $P_{\varphi}(V \times C)$  is semi-free. Hence we can apply the Kosniowski formula to this action. By the strictly multiplicative property of  $T_y$ -genus and (3.1),

$$\begin{split} T_{y}(\boldsymbol{P}_{\phi}(V_{j}^{+}\times\boldsymbol{C})) &= \frac{1}{1-(-y)} \left(1-(-y)^{\dim V_{j}^{+}+1}\right) T_{y}(F_{j}), \\ T_{y}(\boldsymbol{P}_{\phi}(V_{j}^{-})) &= \frac{1}{1-(-y)} \left((-y)^{\dim V_{j}^{-}}-1\right) T_{y}(F_{j}). \end{split}$$

Using the data in (3.7) we obtain

$$\begin{split} T_{y}(\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})) &= \frac{1}{1 - (-y)} \sum_{j} \left\{ (-y)^{\dim U_{j}^{+}} (1 - (-y)^{\dim V_{j}^{+}+1}) \right. \\ &+ (-y)^{\dim U_{j}^{-}} ((-y)^{\dim V_{j}^{-}} - 1) \right\} T_{y}(F_{j}) \,. \end{split}$$

Using the last relation in (3.10) we obtain

$$T_{y}(P_{\psi}(V \times C)) = -\frac{1}{1 - (-y)} \sum_{j} \{(-y)^{\dim V_{j}^{-} + \dim V_{j}^{-}} - (-y)^{\dim V_{j}^{+} + \dim V_{j}^{+} + 1}\} T_{y}(F_{j}).$$

The formula for  $T_y(\mathbf{P}_{\phi}(V))$  is proved similarly using (3.8). This proves (3.9). The rest of the statement in (3.10) is immediate from (3.9).

Now we shall deduce the Kosniowski formula for  $(\mathbf{P}_{\phi}(V \times \mathbf{C}), \psi)$  from (3.10). We proceed by induction on l where  $(X, V, \psi) \in \mathcal{B}_{m,2k}^{U}(S^{1}; \mathcal{F}_{l}^{+}), 1 < l$ . Let  $\{F_{j}\}$  be the components of the fixed point set of  $\varphi$  in X. First suppose l=2. Then by (2.21) the fixed point set of  $\psi$  is the union of  $F_{j}$  and  $\mathbf{P}_{\phi}(V)$ . As in the proof of (3.7) we see that the type number of  $\mathbf{P}_{\phi}(V)$  is given by

$$d^+(P_{\phi}(V)) = 0$$
 and  $d^-(P_{\phi}(V)) = 1$ .

Thus with this and (3.6) the formulae in (3.10) are nothing but Kosniowski's one in this case.

Next suppose l > 2. Then the components of the fixed point set consists of  $\{F_j\}$  and  $\{F'_s\}$  where  $F'_s \subset P_{\phi}(V)$ . See (2.21). Let  $d^{\pm}(F'_s)$  be the type numibers of  $F'_s$ , and let  $d'^{\pm}(F'_s)$  denote the type numbers of  $F'_s$  with respect to the action  $\psi$  restricted on  $P_{\phi}(V)$ . As in the proof of (3.7) we have

$$d^{+}(F'_{s}) = d'^{+}(F'_{s}) \quad \text{and} \quad d^{-}(F'_{s}) = d'^{-}(F'_{s}) + 1.$$

By (2.18) the action  $\psi$  on  $P_{\psi}(V)$  is  $\mathcal{F}_{l-1}^+$ -free. Hence by the induction assumption we can apply the Kosniowski formula to this action to get

A. HATTORI and H. TANIGUCHI

$$T_{y}(\boldsymbol{P}_{\psi}(V)) = \sum_{s} (-y)^{d'^{+}(F'_{s})} T_{y}(F'_{s})$$
$$= \sum_{s} (-y)^{d'^{-}(F'_{s})} T_{y}(F'_{s}).$$

Substitute this in the formula (3.10) and use (3.6) and (3.11). We obtain

$$T_{y}(\boldsymbol{P}_{\varsigma'}(V \times \boldsymbol{C})) = \sum_{s} (-y)^{d^{+}(F'_{s})} T_{y}(F'_{s}) + \sum_{j} (-y)^{d^{+}(F_{j})} T_{y}(F_{j})$$
$$= \sum_{s} (-y)^{d^{-}(F'_{s})} T_{y}(F'_{s}) + \sum_{j} (-y)^{d^{-}(F_{j})} T_{y}(F_{j}).$$

This proves the Kosniowski formula in its full generality.

#### §4. The Atiyah-Singer Formula.

In the case of oriented manifold with a smooth  $S^1$ -action, the normally bundle  $V_j$  of each component  $F_j$  of the fixed point set has still an  $S^1$ -invariant; complex vector bundle structure with a direct sum decomposition

such that

$$V_{j} = \sum_{s} V_{js}$$
$$\varphi(g)v = g^{k_{js}}v$$

for  $v \in V_{js}$ . Here the complex structure on  $V_{js}$  is determined up to sign of  $k_{js}$ . We fix it by requiring  $k_{js} > 0$ . Then the normal bundle  $V_j$  and the manifold  $F_j$  are canonically oriented. We set  $d(F_j) = \dim_c V_j$ . With the above orientation convention we have

THE ATIYAH-SINGER FORMULA [1, p. 594]. Let M be an oriented closed' smooth manifold with a smooth  $S^1$ -action. Then

$$\operatorname{sign} M = \sum_{F_j, d(F_j) \text{ even}} \operatorname{sign} (F_j),$$
$$0 = \sum_{F_j, d(F_j) \text{ odd}} \operatorname{sign} (F_j).$$

An elementary proof of this formula will be given in the sequel. By (2.30) it is sufficient to prove it for  $[M, \phi] \in \Omega_*(S^1; \mathcal{F}_1^+)$ , and  $[M, \phi] = [P_{\phi}(V \times C), \phi] \in {}^tP_n(S^1; \mathcal{F}_1^+)$ , 1 < l. As to the case of  $\Omega_*(S^1; \mathcal{F}_1^+)$  we refer to [5] where a proof similar to that of I in Section 3 is given. Thus we confine our attention to the case of  ${}^tP_n(S^1; \mathcal{F}_l^+)$ . Given  $(X, V, \phi) \in \mathcal{B}_{m,2k}(S^1; \mathcal{F}_l^+)$  the real vector bundle V does not necessarily have a structure of complex vector bundle. Consequently we can not in general use auxiliary action  $\phi''$  as in the complex case. To remedy this point we first make some cohomological considerations for a special type of  $(X, V, \phi)$ . Let  $\{F_j\}$  be the components of the fixed point set F of  $\varphi$  on X as before.

I. We first assume that each  $F_j$  has real codimension 2 in X.

We shall prove

PROPOSITION (4.1). Suppose that  $(X, V, \psi) \in \mathcal{B}_{m,2k}(S^1; \mathcal{F}_l^+)$  and each  $F_j$  has real codimension 2 in X. Then

$$\operatorname{sign} \boldsymbol{P}_{\phi}(V \times \boldsymbol{C}) = \begin{cases} \sum_{j} \operatorname{sign} F_{j} & \text{if } k \text{ is odd}, \\ 0 & \text{if } k \text{ is even}. \end{cases}$$
$$\operatorname{sign} \boldsymbol{P}_{\phi}(V) = \begin{cases} 0 & \text{if } k \text{ is odd}, \\ \sum_{j} \operatorname{sign} F_{j} & \text{if } k \text{ is even}. \end{cases}$$

REMARK. In (4.1), assume moreover that the manifold X (and hence the vector bundle V too) is orientable. Then the Atiyah-Singer formula applied to the semi-free action  $\varphi$  on X yields  $\sum_{j} \operatorname{sign} F_{j} = 0$ . Therefore  $\operatorname{sign} P_{\phi}(V \times C) = \operatorname{sign} P_{\phi}(V) = 0$  in this case.

The proof of (4.1) is preceded by several lemmas. We shall only give proof for  $P_{\phi}(V)$ , the case for  $P_{\phi}(V \times C)$  being entirely similar.

We use the following notations.  $P = P_{\phi}(V)$ ,  $P_0 = P_{\phi}(V|F) = S(V|F)/\psi_1$ ,  $Y = X/\varphi$ . Let  $i: P_0 \subset P$ ,  $j: P \subset (P, P_0)$ ,  $i': F \subset Y$  and  $j': Y \subset (Y, F)$  be inclusions. Since the projection  $S(V) \to X$  is equivariant with respect to  $\psi_1$  and  $\varphi^2$  it induces a map  $\pi: P \to Y$ . Let  $\pi_0: P_0 \to F$  be the restriction of  $\pi$  and set  $\pi_1 = (\pi, \pi_0): (P, P_0) \to (Y, F)$ . It is easy to see that  $\pi: P - P_0 \to Y - F$  is a fiber bundle which has (2k-1)-dimensional real projective space  $\mathbb{R}P^{2k-1}$  as fiber and  $\pi_0: P_0 \to F$  is a fiber bundle with fiber  $\mathbb{C}P^{k-1}$  associated to the vector bundle V with the complex structure determined by our orientation convention. Moreover, since each  $F_j$  has real codimension 2 in X, the quotient space  $Y = X/\varphi$  is a compact manifold with boundary F. Take a collar neighborhood  $F \times [0, 1]$  of  $F = \partial Y$  in Y and set  $Y_1 = Y - F \times [0, 1)$ ,  $Q_0 = \pi^{-1}(F \times [0, 1])$  and  $Q_1 = \pi^{-1}(Y_1)$ . Note that  $Q_0$  is a tubular neighborhood of  $P_0$  in P.

We shall consider the following commutative diagram.

Here  $H^*$  denotes the usual rational cohomology and  $\hat{H}^*$  denotes the cohomology with coefficients in the rational orientation sheaf of the manifold Y.  $\pi_1$  and  $\pi_{1!}$  are Gysin homomorphisms; i. e.  $\pi_1 = \vartheta^{-1}\pi_*\vartheta$  where  $\vartheta$  denotes the Poincaré-Lefschetz duality and  $\pi_{1!}$  is the transform (via excision) of  $\vartheta^{-1}\pi_*\vartheta$ :  $H^q(Q_1, \partial Q_1) \rightarrow \hat{H}^{q-(2k-1)}(Y_1, \partial Y_1)$ . The homomorphism  $\rho_1$  is given by  $\rho_1(y) = y \cdot \bar{\chi}$ where  $\bar{\chi} \in \hat{H}^{2k}(Y)$  is the rational characteristic class of  $\mathbb{R}P^{2k-1}$ -bundle  $\pi$ ::  $Q_1 \rightarrow Y_1 \cong Y$ , and  $\rho = j'^* \circ \rho_1$ .

Let  $i_1: H^*(P_0) \to H^*(P)$  be the Gysin homomorphism of *i*. As is wellknown, the element  $\chi = i^*i_1(1)$  of  $H^2(P_0)$  is the Euler class of the normal' bundle  $\nu_i$  of the embedding *i*. Let  $e \in H^2(P_0)$  denote the first Chern class of the canonical line bundle  $\xi$  of the complex projective space bundle  $P_0$ . Let  $c_1 \in H^2(F)$  denote the first Chern class of the normal bundle  $\mu$  of F in X with the complex structure determined by our orientation convention.

LEMMA (4.3). With the above notations, we have

$$\chi = 2e + \pi_0^*(c_1) .$$

PROOF. We claim that

$$\nu_i = \xi^2 \otimes \pi_0^*(\mu)$$
,

which implies Lemma (4.3). For the additivity of the first Chern class with respect to the tensor product of complex line bundle yields

$$\begin{aligned} \chi &= c_1(\nu_i) = 2c_1(\xi) + \pi_0^* c_1(\mu) \\ &= 2e + \pi_0^* c_1 \,. \end{aligned}$$

To prove the claim, note that the normal bundle  $\tilde{\nu}$  of S(V|F) in S(V) is. equivalent to  $\tilde{\pi}^*\mu$  where  $\tilde{\pi}: S(V|F) \to F$  is the projection. Moreover we can choose an equivalence equivariantly with respect to  $\phi_1$ . Thus we may assume: that  $\tilde{\nu} = S(V|F) \times \mu$  (fiber product) with the action given by

$$\psi_1(g)(v, u) = (\psi'(g)v, \varphi(g)^2 u).$$

S(V|F) is contained in the Hopf bundle  $\xi$ , the conjugate bundle of  $\xi$ , as the sphere bundle. With this understanding, it is easy to see that the assignment.

$$[v, u] \longmapsto \bar{v} \otimes \bar{v} \otimes u$$

gives a well-defined equivalence

$$\nu_i = \tilde{\nu}/\psi_1 \longrightarrow \xi^2 \otimes \pi_0^*(\mu)$$

where  $\bar{v}$  is the conjugation of  $v \in \bar{\xi}$  in  $\xi$ . This proves (4.3).

To proceed further we recall some fundamental properties of the Gysim homomorphism which we shall use later.

(4.4) 
$$i*i_{1}(\pi_{0}^{*}(y)\chi^{j}) = \pi_{0}^{*}(y)\chi^{j+1}$$
 for  $y \in H^{*}(F)$ .

Smooth S<sup>1</sup>-action and bordism

(4.5) 
$$\pi_1 i_1 = \pm \delta^* \pi_{01}$$
.

(4.6) 
$$\pi_1(\pi^*(y)x) = y\pi_1(x)$$
 for  $y \in H^*(Y)$  and  $x \in H^*(P)$ .

Now since  $P_0$  is a complex projective space bundle,  $H^*(P_0)$  is a free  $H^*(F)$ module (via  $\pi_0^*$ ) on generators 1,  $e, \dots, e^{k-1}$ . In virtue of (4.3) 1,  $\chi, \dots, \chi^{k-1}$ also form a system of free  $H^*(F)$ -module generators.

LEMMA (4.7). The Gysin homomorphism

$$\pi_{0!}: H^*(P_0) \longrightarrow H^*(F)$$

is onto. Its kernel equals

$$A = \sum_{j=0}^{k-2} H^*(F) \chi^j.$$

PROOF.  $\pi_{0!}$  lowers degree by 2(k-1). Hence  $\pi_{0!}(\chi^{j}) = 0$  for j < k-1. Then

$$\pi_{0!}(\pi_0^*(y)\chi^j) = y\pi_{0!}(\chi^j) = 0$$
 for  $j < k-1$ .

Thus  $\pi_{0!}(A) = 0$ . If we assume  $\pi_{0!}(\chi^{k-1}) = 0$ , then  $\pi_{0!}$  would be trivial. But the Gysin homomorphism maps the top dimensional classes of  $P_0$  into the top dimensional classes of F non-trivially. Hence  $\pi_{0!}(\chi^{k-1}) \neq 0$  and  $\pi_{0!}(H^*(F)\chi^{k-1}) = H^*(F)$ .

LEMMA (4.8). Let  $A = \sum_{j=0}^{k-2} H^*(F) \cdot \chi^j$  as above. Then  $i_1 | A$  and  $i^* | i_1(A)$  are injective.

**PROOF.** This follows immediately from (4.4).

LEMMA (4.9). The rows of (4.2) are exact. The columns of (4.2) are exact except for the part

$$H^{q}(Y) \xrightarrow{\pi^{*}} H^{q}(P) \xrightarrow{\pi_{1}} H^{q-(2k-1)}(Y, F).$$

PROOF. The rows are part of exact sequences of pairs and hence exact. The first column is exact as part of the Gysin exact sequence in the rational cohomology of the  $\mathbb{R}P^{2k-1}$ -bundle  $\pi_1: (Q_1, \partial Q_1) \rightarrow (Y_1, \partial Y_1)$ .

To prove the exactness of

(4.10) 
$$H^{q}(P) \xrightarrow{\pi_{1}} \hat{H}^{q-(2k-1)}(Y, F) \xrightarrow{\rho} H^{q+1}(Y)$$

we consider the following commutative diagram

$$\longrightarrow H^{q}(P, Q_{1}) \xrightarrow{j_{1}^{*}} H^{q}(P) \longrightarrow H^{q}(Q_{1}) \xrightarrow{\delta_{1}^{*}} H^{q+1}(P, Q_{1}) \xrightarrow{j_{1}^{*}} H^{q}(Q_{0}, \partial Q_{0}) \xrightarrow{\downarrow \pi_{0}} H^{q}(Q_{0}, \partial Q_{0}) \xrightarrow{\downarrow \pi_{0}} H^{q}(Q_{0}, \partial Q_{0}) \xrightarrow{\downarrow \pi_{0}} H^{q-2k}(F) \longrightarrow \hat{H}^{q-(2k-1)}(Y, F) \longrightarrow \hat{H}^{q-(2k-1)}(Y) \longrightarrow H^{q+1-2k}(F) \longrightarrow \xrightarrow{\downarrow \rho} H^{q+1}(Y) = H^{q+1}(Y)$$

where  $\pi'_{0!}$  and  $\pi'_{1}$  are Gysin homomorphisms and  $\rho'(y) = y\bar{\chi}$ . Let

$$\phi: H^*(P_0) \longrightarrow H^*(Q_0, \partial Q_0)$$

be the Thom isomorphism. Then we have

$$\pi'_{0!} = \pi_{0!} \circ \phi^{-1}$$
 and  $j_1^* \circ \phi = i_1$ .

Therefore from (4.7) and (4.8) it follows that  $\pi'_{0!}$  is surjective and  $\delta_1^*(H^q(Q_1)) \cap \operatorname{Kernel} \pi'_{0!} = 0$ . Then the exactness of (4.10) follows from a diagram chasing using the exactness of the third column of the above diagram.

PROPOSITION (4.11). Let  $(X, V, \psi) \in \mathcal{B}_{m,2k}(S^1; \mathcal{F}_l^+)$  and assume that  $\operatorname{codim}_{R} F_j = 2$  for all  $F_j$ . Then

Kernel of 
$$\pi_1: H^q(P) \longrightarrow \hat{H}^{q-(2k-1)}(Y, F)$$
  
=  $\pi^* H^q(Y) \oplus i_1(A^{q-2})$  (direct sum)

where

$$A^{q-2} = \sum_{j=0}^{k-2} H^{q-2-2j}(F) \chi^{j}.$$

PROOF. Since  $\pi_1$  lowers degree by 2k-1 we have  $\pi_1(1) = 0$ . Then, by (4.6),

 $\pi^* H^q(Y) \subset \text{Kernel of } \pi_1$ .

By (4.5) and (4.7) we have, for  $j \leq k-2$ ,

$$\pi_1 i_1(\pi_0^*(y) \chi^j) = \pm \delta^* \pi_{0!}(\pi_0^*(y) \chi^j) = 0.$$

Thus  $i_!(A) \subset$  Kernel of  $\pi_!$ .

Next, using (4.4) we obtain

$$i^*(\pi^*H^q(Y) \cap i_!(A^{q-2})) \subset \pi_0^*H^q(F) \cap A^{q-2} \cdot \chi = 0$$
.

But  $i^*$  is injective on  $i_1(A^{q-2})$  by (4.8). Hence  $\pi^*H^q(Y) \cap i_1(A^{q-2}) = 0$ . We have proved that

 $\pi^* H^q(Y) \oplus i_!(A^{q-2}) \subset \text{Kernel } \pi_!$ .

To prove the equality it is therefore sufficient to show that

dim  $\pi^* H^q(Y)$ +dim  $A^{q-2}$ =dim Kernel  $\pi_1$ ,

or

$$\dim \pi^* H^q(Y) + \dim A^{q-2} + \dim \pi_1 H^q(P) = \dim H^q(P).$$

This follows from a diagram chasing of (4.2) using (4.9). We leave the details to the reader. We only note that

$$i^{*}H^{q}(P) = A^{q-2} \cdot \chi \oplus \pi_{0}^{*}(\delta'^{*-1}(\rho_{1}\hat{H}^{q-(2k-1)}(Y, F)))$$

as follows easily from (4.4).

LEMMA (4.12). Suppose that  $(X, V, \phi) \in \mathcal{B}_{2m,2k}(S^1; \mathcal{F}_l^+)$  and  $\operatorname{codim}_{R} F_j = 2$ 

for all  $F_{j}$ . Then the pairing

$$\pi^*H^{m+k-1}(Y) \times \pi_! H^{m+k-1}(P) \longrightarrow \mathbf{R}$$

defined by

$$\pi^* y \cdot \pi_!(x) = (\pi^* y \cdot x) [P]$$

is a dual pairing. In particular

$$\dim \pi^* H^{m \cdot k^{-1}}(Y) = \dim \pi_1 H^{m \cdot k^{-1}}(P).$$

PROOF. If  $\pi^* y \cdot \pi_1(x) = 0$  for any x, then by Poincaré duality in  $P, \pi^* y = 0$ . Suppose that  $\pi^* y \cdot \pi_1(x) = 0$  for any  $y \in H^{m+k-1}(Y)$ . Then

$$0 = \pi_1(\pi^* y \cdot x) [Y, F] = (y \cdot \pi_1(x)) [Y, F]$$

for all y by (4.6). Hence  $\pi_1(x) = 0$ . This proves (4.12).

We are now ready to prove Proposition (4.1). In the case of  $P_{\phi}(V)$  we may clearly assume that  $(X, V, \phi) \in \mathcal{B}_{2m,2k}(S^1; \mathcal{F}_{i}^+)$  and m+k-1 is even. We set

$$B_1 = i_! (A^{m+k-3}), \qquad B_2 = \pi^* H^{m+k-1}(Y)$$

and

$$B_3 =$$
 a complement of  $B_1 \oplus B_2$  in  $H^{m+k-1}(P)$ .

Then by (4.6), (4.11) and (4.12) the matrix of the cup product

$$H^{m+k-1}(P) \times H^{m+k-1}(P) \longrightarrow \mathbf{R}$$

with respect to the decomposition  $H^{m+k-1}(P) = B_1 \bigoplus B_2 \bigoplus B_3$  is of the following form.

| $B_1$ | <i>M</i> <sub>11</sub> | 0              | *        |
|-------|------------------------|----------------|----------|
| $B_2$ | 0                      | 0              | $M_{23}$ |
| $B_3$ | *                      | ${}^{t}M_{23}$ | *        |

It follows easily that

$$\operatorname{sign} \boldsymbol{P}_{\phi}(V) = \operatorname{sign} M_{11}.$$

But using (4.4) we get

$$i_1(y_1\chi^{j_1})i_1(y_2\chi^{j_2}) = i_1(y_1y_2\chi^{j_1+j_2+1})$$

and hence

$$i_1(y_1\chi^{j_1})i_1(y_2\chi^{j_2})[P] = y_1y_2\chi^{j_1+j_2+1}[P_0].$$

Therefore sign  $M_{11}$  is equal to the signature of the bilinear form Q on  $A^{m+k-3} = \sum_{j=0}^{k-2} H^{m+k-3-2j}(F) \chi^j$  defined by

A. HATTORI and H. TANIGUCHI

$$Q(y_1\chi^{j_1}, y_2\chi^{j_2}) = y_1y_2\chi^{j_1+j_2+1}[P_0].$$

We set

$$C_j = H^{m+k-3-2j}(F)\chi^j.$$

Since the fundamental cohomology class of  $P_0$  is  $\mu \chi^{k-1}$  where  $\mu$  is that of F, we get

and

$$Q(y_1 \chi^{j_1}, y_2 \chi^{j_2}) = y_1 y_2 [F]$$
 for  $j_1 + j_2 + 1 = k - 1$ .

 $Q(C_{j_1}, C_{j_2}) = 0$  for  $j_1 + j_2 + 1 < k - 1$ 

Therefore the matrix of Q with respect to the decomposition  $A^{m+k-3} = C_1 \bigoplus \cdots \bigoplus C_{k-2}$  is of the form



where  $N_{j,k-2-j}$  is the matrix of the cup product  $H^{m+k-3-2j}(F) \times H^{m-k+1+2j}(F) \to \mathbf{R}$ . From this it follows easily that

 $\operatorname{sign} \boldsymbol{P}_{\phi}(V) = \operatorname{sign} M_{11}$  $= \operatorname{sign} Q = \begin{cases} 0, & \text{if } k \text{ is odd }, \\ & \text{sign } F, & \text{if } k \text{ is even }. \end{cases}$ 

This completes the proof of (4.1) for  $P_{\phi}(V)$ . The case of  $P_{\phi}(V \times C)$  is similarly proved.

II. General case. First we shall prove the following proposition which is a variant of the Atiyah-Singer formula. Cf. (3.9) and (3.10).

PROPOSITION (4.13). Let  $(X, V, \psi) \in \mathcal{B}_{m,2k}(S^1; \mathcal{F}_l^+)$ . Let  $\{F_j\}$  be the components of the fixed point set F of  $\varphi$  in X. Then

sign 
$$P_{\psi}(V \times C) = \sum_{\operatorname{codim}_{C} F_{j} \text{ even}} \operatorname{sign} F_{j}$$
,

Smooth S<sup>1</sup>-action and bordism

sign 
$$P_{\phi}(V) = \sum_{\operatorname{codim}_{C} F_{j} \text{ odd}} \operatorname{sign} F_{j}$$
,

where  $\operatorname{codim}_{c}$  means the complex codimension in V.

PROOF. First we shall decompose  $[X, V, \psi]$  into a sum of elements with certain simple properties. Take a  $\varphi$ -invariant tubular neighborhood  $D(U_j)$ , around  $F_j$  and let  $p_j: D(U_j) \to F_j$  be the projection of the normal bundle. Then there is a  $\psi$ -equivariant bundle equivalence

$$\theta_j: V | D(U_j) \longrightarrow p^*(V | F_j) = D(U_j) \underset{F_j}{\times} V | F_j$$

where the action  $\psi$  on  $p^*(V|F_j)$  is given by

$$\psi(g)(u, v) = (\psi(g)u, \ \psi(g)v)$$
$$= (\varphi(g)^{l}u, \ \psi(g)v).$$

We identify both bundles through  $\theta_j$  and consider the S<sup>1</sup>-action  $\psi''$  defined by

$$\psi''(g)(u, v) = (\varphi(g)u, v).$$

Clearly  $\psi''$  commutes with  $\psi$ . Moreover it is semi-free outside of  $V|F_{j}$ . Therefore the mapping cylinder  $W_j$  of the projection  $V|S(U_j) \rightarrow V|S(U_j)/\psi''$ is a vector bundle over the mapping cylinder  $Y_j$  of the projection  $S(U_j) \rightarrow S(U_j)/\varphi$  where  $S(U_j) = \partial D(U_j)$ . Thus we can form a vector bundle

$$V_j = V | D(U_j) \cup W_j$$

on the complex projective space bundle  $X_j = \mathbf{P}(U_j \times \mathbf{C}) = D(U_j) \cup Y_j$ . The orientation of the manifold  $V_j$  is given concordantly with that of  $V | D(U_j)$ . The actions  $\psi$  and  $\psi''$  are extended over  $V_j$  in the obvious way. Define

$$V' = (V - \bigcup \text{ int } V | D(U_j)) \cup \bigcup W_j$$

glued along  $\bigcup V | S(V_j)$ , and

$$X' = (X - \bigcup \text{ int } D(U_j)) \cup \bigcup Y_j$$

glued along  $\bigcup S(U_j)$ . The action  $\psi$  is also extended on V'. We have

$$[X, V, \phi] = [X', V', \phi] + \sum [X_j, V_j, \phi].$$

It is therefore sufficient to prove (4.13) for  $(X', V', \psi)$  and  $(X_j, V_j, \psi)$  separately. The fixed point set of  $\varphi$  in X' is the union of  $L_j = \mathbf{P}(U_j)$ . Since each  $L_{j'}$  has real codimension 2 in X' we can apply (4.1) which is a special case of (4.13).

The fixed point set of  $\varphi$  in  $X_j$  is the union of  $F_j$  and  $-L_j$ , where  $-L_j$ , is  $P(U_j)$  with the opposite orientation. The action  $\psi''$  on  $P_{\psi}(V \times C)$  is semifree and its fixed point set is the union of  $P(V_j|F_j \times C)$  and  $-P(V_j|L_j \times C)$ . Applying the Atiyah-Singer formula in the semi-free case we obtain

$$\operatorname{sign} \boldsymbol{P}_{\phi}(\boldsymbol{V}_{j} \times \boldsymbol{C}) = \begin{cases} \operatorname{sign} \boldsymbol{P}(\boldsymbol{V}_{j} | F_{j} \times \boldsymbol{C}), & \text{if } \dim_{\boldsymbol{C}} U_{j} \text{ is even,} \\ 0, & \text{if } \dim_{\boldsymbol{C}} U_{j} \text{ is } \operatorname{odd,} \end{cases}$$
$$= \begin{cases} \operatorname{sign} F_{j}, & \text{if } \dim_{\boldsymbol{C}} U_{j} \text{ and } k \text{ are both even,} \\ 0, & \text{otherwise.} \end{cases}$$

When k is even this proves the formula in (4.13) for sign  $P_{\phi}(V \times C)$ . When k is odd then

$$\operatorname{sign} F_j - \operatorname{sign} L_j = 0$$

since  $L_j = \mathbf{P}(U_j)$ . Thus the formula holds in this case too.

The proof for sign  $P_{\phi}(V)$  is entirely similar and is left to the reader.

Now the Atiyah-Singer formula for  $P_{\phi}(V \times C)$  takes the following form.

PROPOSITION (4.14). Let  $(X, V, \psi) \in \mathcal{B}_{m,2k}(S^1; \mathcal{F}_l^+)$ . Let  $\{F_j\}$  be the components of the fixed point set of  $\varphi$  in X and  $\{F'_s\}$  be the components of the fixed point set of  $\psi$  in  $P_{\phi}(V \times C)$  which are contained in  $P_{\phi}(V)$ , cf. (2.21). We orient  $F_j$  and  $F'_s$  in accordance with the orientation convention with respect to the action  $\psi$  on  $P_{\phi}(V \times C)$ . Then we have

$$\operatorname{sign} \boldsymbol{P}_{\phi}(V \times \boldsymbol{C}) = \sum_{\operatorname{codim} \boldsymbol{F}_{j} \text{ even}} \operatorname{sign} \boldsymbol{F}_{j},$$
$$0 = \sum_{\operatorname{codim} \boldsymbol{F}'_{s} \text{ even}} \operatorname{sign} \boldsymbol{F}'_{s}$$

and

$$\sum_{\operatorname{codim} F_j \text{ odd}} \operatorname{sign} F_j + \sum_{\operatorname{codim} F'_s \text{ odd}} \operatorname{sign} F'_s = 0$$

where codim means the complex codimension in  $P_{\phi}(V \times C)$ .

The deduction of (4.14) from (4.13) is quite similar to that of the Kosniowski formula from (3.10) and is left to the reader. This finishes our proof of the Atiyah-Singer formula.

> University of Tokyo and Sophia University

# References

- [1] M. F. Atiyah and I. M. Singer, The index of elliptic operators: III, Ann. of Math., 87 (1968), 546-603.
- [2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, II, Amer. J. Math., 81 (1959), 315-382.

- [3] P.E. Conner and E.E. Floyd, Maps of odd period, Ann. of Math., 84 (1966), 132-156.
- [4] K. Kawakubo and F. Raymond, The index of manifolds with toral actions and geometric interpretations of the  $\sigma(\infty, (S^1, M^n))$  invariant of Atiyah and Singer, Invent. Math., 15 (1972), 53-66.
- [5] K. Kawakubo and F. Uchida, On the index of a semi-free S<sup>1</sup>-action, J. Math. Soc. Japan, 23 (1971), 351-355.
- [6] C. Kosniowski, Applications of the holomorphic Lefschetz formula, Bull. London Math. Soc., 2 (1970), 43-48.
- [7] E. Ossa, Fixpunktfreie S<sup>1</sup>-Aktionen, Math. Ann., 186 (1970), 45-52.
- [8] F. Uchida, Cobordism groups of semi-free S<sup>1</sup>- and S<sup>3</sup>-actions, Osaka J. Math., 7 (1970), 345-351.