Smooth S^{1}-action and bordism

By Akio Hattori and Hajime Taniguchi

(Received Feb. 14, 1972)

§ 1. Introduction.

In this paper we study smooth actions of the circle group S^{1} on smooth manifolds from the view point of bordism theory.

Let G be a fixed compact Lie group and \mathscr{F}^{\prime} and \mathscr{F} be families of subgroups of G such that $\mathscr{F}^{\prime} \subset \mathscr{F}$. We assume that both families are closed under inner automorphisms of G. An action of G on a manifold M will be called ($\mathscr{F}, \mathscr{F}^{\prime}$)-free provided that it is effective on each component of M and the isotropy subgroup G_{x} at each point $x \in M$ belongs to \mathscr{F} and, if $x \in \partial M$, G_{x} belongs to \mathscr{F}^{\prime}. When $\mathscr{F}^{\prime}=\emptyset$ then necessarily $\partial M=\emptyset$. In this case we call the action \mathscr{F}-free. The n-dimensional bordism group $\Omega_{n}\left(G ; \mathscr{F}, \mathscr{F}^{\prime}\right)$ of all orientation preserving ($\left.\mathscr{F}, \mathscr{F}^{\prime}\right)$-free smooth G-actions on compact oriented smooth n-manifolds is defined in the obvious way. See [3] ${ }^{1)}$. If $\mathscr{F}^{\prime}=\emptyset$ then we denote $\Omega_{n}(G ; \mathscr{F}, \emptyset)$ simply by $\Omega_{n}(G ; \mathscr{F})$. These groups are connected by an exact sequence

$$
\cdots \longrightarrow \Omega_{n}\left(G ; \mathscr{F}^{\prime}\right) \xrightarrow{i_{*}} \Omega_{n}(G ; \mathscr{F}) \xrightarrow{j_{*}} \Omega_{n}\left(G ; \mathscr{F}, \mathscr{F}^{\prime}\right) \xrightarrow{\partial_{*}} \Omega_{n-1}\left(G ; \mathscr{F}^{\prime}\right) \longrightarrow \cdots .
$$

In an entirely similar way the U-bordism group $\Omega_{n}^{U}\left(G ; \mathscr{F}, \mathscr{F}^{\prime}\right)$ of all U structure preserving ($\mathscr{F}^{\prime}, \mathscr{F}^{\prime}$)-free smooth G-actions on compact n-dimensional U-manifolds (weakly complex manifolds) are defined together with natural homomorphisms induced by the inclusion $\mathscr{F}^{\prime} \subset \mathscr{F}^{\prime}$.

In this paper we consider the case in which $G=S^{1}$ and $\mathscr{F}=\mathscr{F}_{\imath}^{+}$where we set

$$
\mathscr{F}_{l}=\left\{\boldsymbol{Z}_{k} \mid k \leqq l\right\}
$$

and

$$
\mathscr{F}_{l}^{+}=\mathscr{F}_{\iota} \cup\left\{S^{1}\right\} .
$$

Here \boldsymbol{Z}_{k} denotes the subgroup of S^{1} consisting of k-th roots of unity. Thus $\mathscr{F}_{\infty}=\cup \mathscr{F}_{l}$ is the set of all finite subgroups of S^{1} and $\mathscr{F}_{\infty}^{+}=\cup \mathscr{F}_{l}^{+}$is the set of all closed subgroups of S^{1}.

Our main results are the following.

[^0]Theorems (2.22) and (2.29). For each integer $l, 1<l$, the sequences

$$
0 \longrightarrow \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{\imath-1}^{+}\right) \xrightarrow{i_{*}} \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{\imath}^{+}\right) \xrightarrow{j_{*}} \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{\imath-1}^{+}\right) \longrightarrow 0
$$

and

$$
0 \longrightarrow \Omega_{n}\left(S^{1} ; \mathscr{F}_{l-1}^{+}\right) \xrightarrow{i_{*}} \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \xrightarrow{j_{*}} \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) \longrightarrow 0
$$

are split exact.
In Section 2 we shall construct splittings

$$
{ }^{t} \boldsymbol{P}: \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) \longrightarrow \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)
$$

and

$$
{ }^{t} \boldsymbol{P}: \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) \longrightarrow \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)
$$

which we call "twisted complex projective space bundle construction". Setting

$$
{ }^{t} P_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)={ }^{t} \boldsymbol{P} \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right)
$$

and

$$
{ }^{t} P_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)={ }^{t} \boldsymbol{P} \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right)
$$

we have immediate corollaries.
Corollaries (2.24) and (2.30). There are canonical isomorphisms

$$
\begin{aligned}
& \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \cong \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{1}^{+}\right) \oplus \sum_{1<k \leq l}{ }^{t} P_{n}^{U}\left(S^{1} ; \mathscr{F}_{k}^{+}\right) \\
& \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{\infty}^{+}\right) \cong \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{1}^{+}\right) \bigoplus_{1<k}{ }^{t} P_{n}^{U}\left(S^{1} ; \mathscr{F}_{k}^{+}\right) \\
& \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \cong \Omega_{n}\left(S^{1} ; \mathscr{F}_{1}^{+}\right) \oplus \sum_{1<k \leq l}{ }^{t} P_{n}\left(S^{1} ; \mathscr{F}_{k}^{+}\right)
\end{aligned}
$$

and

$$
\Omega_{n}\left(S^{1} ; \mathscr{F}_{\infty}^{+}\right) \cong \Omega_{n}\left(S^{1} ; \mathscr{F}_{1}^{+}\right) \oplus \sum_{1<k}^{t} P_{n}\left(S^{1} ; \mathscr{F}_{k}^{+}\right) .
$$

As was shown in [8] the group $\Omega_{n}\left(S^{1} ; \mathscr{F}_{1}^{+}\right)$is generated by complex projective space bundles. Analogous fact holds for $\Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$. We can say that twisted complex projective space bundles are as simple as complex projective space bundles. Thus these corollaries exhibit generators for $\Omega_{\mathcal{W}}^{U}\left(S^{1} ; \mathscr{F}_{i}^{+}\right)$and $\Omega_{*}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$which are geometrically very simple.

We note here that our methods are applicable to the case of stationary point free actions, i. e. the case of \mathscr{F}_{l}-free actions, with minor modifications in the real case. However that case was already treated by Ossa [7] and indeed our methods are quite similar to his.

In Sections 3 and 4 we shall give an elementary proof of the Kosniowski formula [6] and the Atiyah-Singer formula [1, p. 594] in the framework of bordism theory. These formulae were originally proved by using the AtiyahSinger G-signature theorem. In the case of semi-free actions proofs in the
framework of bordism theory were given by Kawakubo and Uchida [5] for the Atiyah-Singer formula and by Takao Matumoto (unpublished) for the Kosniowski formula. Another proof of Atiyah-Singer's formula which uses generalized manifolds was given by Kawakubo and Raymond [4].

Thanks are due to F. Uchida for stimulating conversations.

$\S 2$. Twisted complex projective space bundles.

Let $V \rightarrow X$ be a vector bundle (real or complex) and let

$$
\psi: S^{1} \times V \longrightarrow V
$$

be an effective continuous S^{1}-action by vector bundle isomorphisms of V. Then ψ defines an injective homomorphism $S^{1} \rightarrow \operatorname{Isom}(V)$ which we shall also denote by the same letter ψ where Isom (V) denotes the group of all vector bundle isomorphisms of V onto itself. Thus, by this convention, we write $\phi(g) v$ for $\psi(g, v)$ for any $g \in S^{1}$ and $v \in V$. We always indentify X with the zero cross-section image of the bundle V. Set

$$
H=\left\{g \mid g \in S^{1}, \psi(g) x=x \text { for all } x \in X\right\}
$$

Then H is a closed subgroup of S^{1}. H equals the whole group S^{1} if and only if each $\psi(g)$ is an automorphism of the bundle V. If $H \neq S^{1}$, then H equals Z_{l}, the l-th roots of unity, for some $l \geqq 1$ and it is easy to see that there is a unique S^{1}-action φ on X such that

$$
\psi(g) x=\varphi(g)^{2} x
$$

for all $g \in S^{1}$ and $x \in X$. In this case we say that the action ψ is of order l.
Definition (2.1). Let l be an integer, $1<l$. An S^{1}-action ψ on V is said to be strictly \mathscr{F}_{i}^{+}-free if the following three conditions are satisfied:

1) ψ is of order l,
2) the action φ (defined as above) on X is semi-free, i.e. \mathscr{T}_{1}^{+}-free and
3) the action ψ restricted on $V-X$ is \mathscr{F}_{l-1}-free.

Note that if the action ψ is strictly \mathscr{F}_{i}-free then the fixed point set of ψ is contained in X as a proper subset. Here by the fixed point set of an action we mean the set of points which are fixed by all elements of the group.

Now let X be a compact U-manifold and V a smooth complex vector bundle on X. Then V, regarded as a smooth manifold, has the obvious induced U-structure. A smooth S^{1}-action $\psi: S^{1} \rightarrow \operatorname{Isom}(V)$ is called to be U-structure preserving if each $\psi(g)$ preserves the U-structure on the base X. Note that, in that case, each $\psi(g)$ also preserves the induced U-structure on V. Let l be an integer, $1<l$, and let $\mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$denote the totality of
triples (X, V, ψ) where $V \rightarrow X$ is a smooth complex k-vector bundle on a compact m-dimensional U-manifold without boundary X and ψ is an effective U-structure preserving smooth S^{1}-action on V which is strictly \mathscr{F}_{l}^{+}-free. Two triples (X, V, ψ) and $\left(X^{\prime}, V^{\prime}, \psi^{\prime}\right)$ in $\mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$are called bordant if there is a compact $(m+1)$-dimensional U-manifold Y, a smooth complex k-vector bundle W on Y and a U-structure preserving, strictly \mathscr{F}_{i}^{+}-free, smooth S^{1} action Ψ on W such that

$$
\begin{gathered}
\partial Y=X \cup-X^{\prime} \\
W|X=V, \quad W| X^{\prime}=V^{\prime}
\end{gathered}
$$

and

$$
\Psi|V=\psi, \quad \Psi| V^{\prime}=\psi^{\prime}
$$

where $-X^{\prime}$ denotes the U-manifold X^{\prime} with the opposite U-structure as usual. This is clearly an equivalence relation. The set of all equivalence classes of $\mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{i}^{+}\right)$will be denoted by $B_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{i}^{+}\right)$and the class of (X, V, ψ) will be denoted by $[X, V, \psi]$. $B_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$becomes an abelian group where the addition is induced by disjoint union. The verification of the fact is quite routine and is omitted.

Next let X be a compact smooth manifold and V a smooth real vector bundle on X such that $w_{1}(X)$ equals the first Stiefel-Whitney class of the vector bundle $V \rightarrow X$. Then V, regarded as a manifold, is orientable. A triple (X, V, ψ) in which $V \rightarrow X$ is a real vector bundle with the above property and $\psi: S^{1} \rightarrow$ Isom (V) is an effective smooth action will be called oriented if V, regarded as a manifold, is oriented. For an integer l greater than 1 , we shall denote by $\mathscr{B}_{m, k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$the totality of oriented triples (X, V, ψ) in which $\operatorname{dim} X=m$, fiber- $\operatorname{dim} V=k$ and ψ is strictly \mathscr{F}_{l}^{+}-free. The bordism relation between oriented triples and the resulting bordism group $B_{m, k}\left(S^{1} ; \mathscr{I}_{\imath}^{+}\right)$ are defined in a similar way as the unitary case.

Remark (2.2). We shall show later that $\mathscr{B}_{m, k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)=\emptyset$ and consequently $B_{m, k}\left(S^{1} ; \mathscr{T}_{i}^{+}\right)=0$ for odd k.

Now suppose that a pair (M, ψ) of a compact smooth manifold M and an $\left(\mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right)$-free smooth S^{1}-action ψ on M is given. A connected component X of the fiy: 冫d point set of $\psi\left(\boldsymbol{Z}_{l}\right)$ will be called to be of the first kind if it contains a point x whose isotropy subgroup equals precisely \boldsymbol{Z}_{l}.

Lemma (2.3). Let ψ be an $\left(\mathscr{F}_{t}^{+}, \mathscr{F}_{t-1}^{+}\right)$-free smooth action on a compact smooth manifold M. If X is a connected component of the first kind of the fixed point set of $\psi\left(\boldsymbol{Z}_{l}\right)$, then X is contained in the interior of M. Consequently X has no boundary. Moreover if V is the normal bundle of X in M then the induced action ψ on V is strictly \mathscr{F}_{l}^{+}-free.

Proof. Assume that $X \cap \partial M \neq \emptyset$. Then, by the equivariant collar neigh-
borhood theorem, $X \cap \partial M=\partial X$ and the fixed point set F of $\psi\left(S^{1}\right)$ in X contains a neighborbood of ∂X in X. But $F-\partial X$ is a manifold without boundary. Therefore F must coincide with the whole X which is a contradiction. Thus $X \cap \partial M=\emptyset$. The rest of the statement is clear.

LEMMA (2.4). Let ψ be an $\left(\mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right)$-free smooth S^{1}-action on a compact smooth n-manifold M. Let $\left\{X_{i}\right\}$ be the totality of connected components of the first kind of the fixed point set of $\psi\left(\boldsymbol{Z}_{l}\right)$ and let D_{i} be the ψ-invariant closed tubular neighborhood of X_{i} with respect to a ψ-invariant Riemannian metric on M. Then we have

$$
\Sigma\left[D_{i}, \psi\right]=[M, \psi]
$$

in $\Omega_{n}\left(S^{1} ; \mathscr{I}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right)$.
Proof. Since the action ψ restricted on $M-\cup D_{i}$ is \mathscr{F}_{i-1}^{+}-free, the statement follows from [3, (5.2)]. Similarly we have

LEMMA (2.5). Let ψ be a U-structure preserving $\left(\mathscr{F}_{l}^{+}, \mathscr{F}_{i-1}^{+}\right)$-free smooth S^{1} action on a compact U-manifold M and let X_{i} and V_{i} have similar meanings as in (2.4). Then

$$
\Sigma\left[D_{i}, \psi\right]=[M, \psi]
$$

in $\Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right)$.
We consider the homomorphisms

$$
\nu: \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) \longrightarrow \sum_{m+2 k=n} B_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)
$$

:and
-defined by

$$
\nu: \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) \longrightarrow \sum_{m+k=n} B_{m, k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)
$$

$$
\nu[M, \psi]=\Sigma\left[X_{i}, V_{i}, \psi\right]
$$

where the summation is taken over the connected components of the first kind of the fixed point set of $\psi\left(\boldsymbol{Z}_{l}\right)$ and V_{i} is the normal bundle of X_{i} in M. In the real case we orient V_{i} concordantly with M. In the complex case X_{i} has the natural U-structure and V_{i} becomes a complex vector bundle on which ψ acts by U-structure preserving isomorphisms of complex vector bundle. By (2.3) $\left[X_{i}, V_{i}, \psi\right]$ belongs to $B_{m, 2 k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$or $B_{m, k}\left(S^{1} ; \mathscr{F}_{i}^{+}\right)$as the case may be.

Proposition (2.6). The homomorphisms
-and

$$
\nu: \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) \longrightarrow \sum_{m+2 k=n} B_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)
$$

are isomorphisms.
Proof. Given a triple (X, V, ψ) in $\mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$or $\mathscr{B}_{m, k}\left(S^{1} ; \mathscr{F}_{i}^{+}\right)$, let $D(V)$ me the disk bundle of V with respect to a ψ-invariant metric on the vector
bundle V. Then it is a routine matter to verify that the assignment

$$
[X, V, \psi] \longmapsto[D(V), \psi]
$$

gives a well-defined homomorphism

$$
\delta: B_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \longrightarrow \Omega_{m+2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right)
$$

or

$$
\delta: B_{m, k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \longrightarrow \Omega_{m+k}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) .
$$

Then clearly we have

$$
\nu \circ \delta=\text { identity. }
$$

By (2.5) and (2.4) we also have

$$
\delta \circ \nu=\text { identity }
$$

This proves that ν is an isomorphism and $\nu^{-1}=\delta$.
To define twisted complex projective space bundle we need some preliminaries. First we consider the complex case. If (X, V, ψ) is a triple in $\mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$then the subgroup $Z_{l} \subset S^{1}$ acts on V by automorphisms. We assume that X is connected. This will not destroy the generality of arguments which follow. Then, as is well known, there is a unique eigen-value decomposition of V into a direct sum

$$
\begin{equation*}
V=\sum_{0<l_{i}<l} V\left(l_{i}\right) \tag{2.7}
\end{equation*}
$$

such that, for all $g \in \boldsymbol{Z}_{l}$ and $v \in V\left(l_{i}\right)$,

$$
\begin{equation*}
\psi(g) v=g^{l_{i}} v \tag{2.8}
\end{equation*}
$$

Note that the eigen-values of $\psi(g)$ on V are of the form $g^{l_{i}}, 0 \leqq l_{i}<l$. But. by the condition 3) of (2.1), $1=g^{0}$ does not occur in our case. To avoid confusion we denote by $\psi^{\prime}(g)$ the scalar multiplication by $g \in S^{1} \subset C$ in the complex vector bundle V. Thus

$$
\psi^{\prime}(g) v=g v
$$

for $g \in S^{1}$ and $v \in V$. With this notation we have, for $g \in \boldsymbol{Z}_{l}$,

$$
\begin{equation*}
\psi(g)=\psi^{\prime}(g)^{l_{i}} \quad \text { on } V\left(l_{i}\right) \tag{2.8}
\end{equation*}
$$

Let F be the fixed point set of the action φ on X (see (2.1)). F is a proper submanifold of X. Let $\left\{F_{j}\right\}$ be the totality of connected components. of F. Then the group S^{1} acts on $V \mid F_{j}$ by automorphisms via ψ and each $V\left(l_{i}\right) \mid F_{j}$ is clearly S^{1}-invariant. Therefore we have eigen-value decomposition.

$$
V\left(l_{i}\right) \mid F_{j}=\sum_{r \in \boldsymbol{Z}} V\left(l_{i}, r\right)
$$

where

$$
\psi(g)=\phi^{\prime}(g)^{r} \quad \text { on } V\left(l_{i}, r\right) .
$$

Note that the integers r must satisfy the relation

$$
r \equiv l_{i} \quad \bmod l .
$$

Moreover the isotropy subgroup at any point $v \neq 0$ in $V\left(l_{i}, r\right)$ is $\boldsymbol{Z}_{|r|}$. Therefore, in view of the condition 3) in (2.1), the possible ones for which $V\left(l_{i}, r\right)$ $\neq 0$ are l_{i} and $l_{i}-l$. (Recall that $0<l_{i}<l$.) Setting

$$
\begin{aligned}
& V_{j}^{+}\left(l_{i}\right)=V\left(l_{i}, l_{i}\right), \\
& V_{\bar{j}}^{-}\left(l_{i}\right)=V\left(l_{i}, l_{i}-l\right),
\end{aligned}
$$

we have a ψ-invariant decomposition

$$
\begin{equation*}
V\left(l_{i}\right) \mid F_{j}=V_{j}^{\dagger}\left(l_{i}\right) \oplus V_{\bar{j}}^{-}\left(l_{i}\right) \tag{2.9}
\end{equation*}
$$

where $\psi(g)=\psi^{\prime}(g)^{l_{i}}$ on $V_{j}^{\dagger}\left(l_{i}\right)$ and $\psi(g)=\psi^{\prime}(g)^{l_{i}-l}$ on $V_{j}^{-}\left(l_{i}\right)$.
Next consider the S^{1}-action on $V\left(l_{i}\right)$ defined by

$$
g \longmapsto \psi(g) \psi^{\prime}(g)^{-l_{i}} .
$$

Since ψ and ψ^{\prime} commute with each other this defines an action of S^{1}. Moreover since $\psi(g) \phi^{\prime}(g)^{-l_{i}}=1$ for $g \in \boldsymbol{Z}_{l}$ on $V\left(l_{i}\right)$ by (2.8), there exists a unique S^{1}-action $\psi_{i}^{\prime \prime}$ on $V\left(l_{i}\right)$ such that

$$
\begin{equation*}
\psi_{i}^{\prime \prime}(g)^{l}=\psi(g) \phi^{\prime}(g)^{-l_{i}} . \tag{2.10}
\end{equation*}
$$

Then $\psi_{i}^{\prime \prime}$ is an action which covers φ. Thus we can form the direct sum action

$$
\psi^{\prime \prime}(g)=\Sigma \phi_{i}^{\prime \prime}(g)
$$

on $V=\Sigma V\left(l_{i}\right)$. It is clear that $\psi^{\prime \prime}$ commutes with ψ and ψ^{\prime}. Furthermore from (2.9) and (2.10) it follows that

$$
\psi^{\prime \prime}(g)= \begin{cases}1 & \text { on } V_{j}^{+}\left(l_{i}\right), \tag{2.11}\\ \psi^{\prime}(g)^{-1} & \text { on } V_{\bar{j}}^{-}\left(l_{i}\right) .\end{cases}
$$

Finally we define ψ_{1} by

$$
\begin{equation*}
\psi_{1}(g)=\psi^{\prime \prime}(g)^{2} \psi^{\prime}(g) \tag{2.12}
\end{equation*}
$$

Since $\psi^{\prime \prime}$ commutes with ψ^{\prime} this defines an S^{1}-action $\psi_{1}: S^{1} \rightarrow$ Isom (V) which commutes with ψ, ψ^{\prime}, and $\psi^{\prime \prime}$. Note that the action ψ_{1} restricted on X equals φ^{2}. The behavior of ψ_{1} on $V_{j}^{ \pm}\left(l_{i}\right)$ is given by

$$
\psi_{1}(g)= \begin{cases}\psi^{\prime}(g) & \text { on } V_{j}^{+}\left(l_{i}\right), \tag{2.13}\\ \psi^{\prime}(g)^{-1} & \text { on } V_{\bar{j}}^{-}\left(l_{i}\right),\end{cases}
$$

as is easily seen from (2.9) and (2.11).
We extend the actions ψ and ψ_{1} over $V \times \boldsymbol{C}$, Whitney sum of V and the
trivial complex line bundle, by putting

$$
\begin{equation*}
\psi(g)(v, \alpha)=(\psi(g) v, \alpha) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{1}(g)(v, \alpha)=\left(\psi_{1}(g) v, g \alpha\right) . \tag{2.15}
\end{equation*}
$$

From the above data we readily obtain the following
Proposition (2.16). Let $(X, V, \psi) \in \mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$where X is connected. The action ψ_{1} on V and $V \times C$ is strictly \mathscr{F}_{2}^{+}-free. In particular it is free (i.e., \mathscr{F}_{1}-free) on $V-X$ and $V \times \boldsymbol{C}-X$.

Now choose a ψ-invariant hermitian metric on V and extend it in the: obvious way over $V \times \boldsymbol{C}$. Note that the metric is also $\psi^{\prime \prime}$ - and ψ_{1}-invariant. Let $S(V)$ and $S(V \times C)$ be the corresponding unit sphere bundles. The action. ψ_{1} keeps $S(V)$ and $S(V \times C)$ invariant and it acts freely on them by (2.16).. Hence the quotient spaces

$$
\boldsymbol{P}_{\psi}(V)=. S(V) / \psi_{1}
$$

and

$$
\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})=S(V \times \boldsymbol{C}) / \psi_{1}
$$

are smooth manifolds. We shall call them twisted projective space bundles of the pairs (V, ψ) and ($V \times \boldsymbol{C}, \psi$) respectively, although they are by no means. bundles in the usual sense. We denote by $[v] \in \boldsymbol{P}_{\psi}(V)$ and $[v, \alpha] \in \boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$. the images of $v \in S(V)$ and $(v, \alpha) \in S(V \times C)$ respectively. Since the action ψ. keeps $S(V)$ and $S(V \times \boldsymbol{C})$ invariant and it commutes with ψ_{1}, it induces an action on $\boldsymbol{P}_{\psi}(V)$ and $\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$ which we shall denote by the same letter ψ.

Let $W_{\psi}=W_{\psi}(V)$ denote the 2 -disk bundle associated to the S^{1}-fibering $S(V) \rightarrow \boldsymbol{P}_{\psi}(V) . \quad W_{\psi}$ is identified with the quotient space of $S(V) \times D^{2}$ by the: S^{1}-action ψ_{1} defined by the same formula as (2.15). The class of (v, α) in. W_{ρ}, is denoted by $[v, \alpha]$. We define the map

$$
f: W_{\psi} \longrightarrow \boldsymbol{P}_{\psi}(V \times \boldsymbol{C})
$$

by

$$
f[v, \alpha]=\left[v / \sqrt{1+}|\bar{\alpha}|^{2}, \alpha / \sqrt{ } \bar{\mp}|\bar{\alpha}|^{2}\right] .
$$

We also define the map

$$
g: D(V) \longrightarrow \boldsymbol{P}_{\psi}(V \times \boldsymbol{C})
$$

by

$$
g(v)=\left[v / \sqrt{2}, \sqrt{1-|v|^{2} / 2}\right] .
$$

Then the following lemma is immediate.
Lemma (2.17). f and g are ψ-equivariant smooth embeddings. f and g : coincide on $S(V)$. Moreover we have

$$
g(D(V)) \cup f\left(W_{\psi}\right)=\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})
$$

and

$$
g(D(V)) \cap f\left(W_{\psi}\right)=g(S(V))
$$

Lemma (2.17) shows that $\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$ is diffeomorphic to the smooth manifold $D(V) \cup W_{\psi}$ obtained by glueing together $D(V)$ and W_{ψ} along their common boundary $S(V)$ by the identity automorphism. Henceforth we shall identify $\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$ with $D(V) \cup W_{\varphi}$. Then, since the S^{1}-action ψ_{1} preserves the U-structure on V and hence on $S(V)$, it is easy to see that the U-structure can be extended over W_{ϕ} giving a U-structure on $\boldsymbol{P}_{\varphi}(V \times \boldsymbol{C})$. The action ψ clearly preserves this U-structure on $\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$.

The manifold $\boldsymbol{P}_{\psi}(V)$ is contained in the U-manifold W_{ψ} as a U-submanifold. Namely its normal bundle has the obvious structure of complex line bundle, the one associated to the S^{1}-bundle $S(V) \rightarrow \boldsymbol{P}_{\psi}(V)$. Thus $\boldsymbol{P}_{\psi}(V)$ is also a U-manifold.

Proposition (2.18). Let (X, V, ψ) be in $\mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right), 1<l$. Suppose that X is connected. Then the action ψ on $\boldsymbol{P}_{\psi}(V)$ is \mathscr{F}_{i-1}^{+}free. The action ψ on $P_{\varphi}(V \times C)$ is \mathscr{F}_{l}^{+}-free and the fixed point set of the first kind of $\psi\left(\boldsymbol{Z}_{l}\right)$ equals precisely X. The normal bundle of X in $\boldsymbol{P}_{\varphi}(V \times \boldsymbol{C})$ is ϕ-equivariantly equivalent to V.

Proof. Let $v \in S(V)$ and $[v]$ be the image of v in $\boldsymbol{P}_{\psi}(V)$. Then we have

$$
\psi(g)[v]=[v]
$$

if and only if

$$
\begin{equation*}
\psi(g) v=\psi_{1}(h) v \quad \text { for some } h \in S^{1} . \tag{2.19}
\end{equation*}
$$

Let $v \in V_{x}$, the fiber of V over $x \in X$, and suppose first that $x \notin F$, where F denote the fixed point set of the action φ on X. Write v as

$$
v=\Sigma v_{i_{s}}, \quad v_{i_{s}} \neq 0 \in V\left(l_{i_{s}}\right)
$$

according to the decomposition (2.7). Then

$$
\phi(g) v=\Sigma \psi^{\prime \prime}(g)^{l} \psi^{\prime}(g)^{i_{s}} v_{i_{s}} \quad \text { by (2.10) }
$$

and

$$
\psi_{1}(h) v=\Sigma \psi^{\prime \prime}(h)^{2} \psi^{\prime}(h) v_{i_{s}} \quad \text { by (2.12). }
$$

Since $\psi^{\prime \prime}$ covers φ which is free on $X-F$ and ψ^{\prime} preserves V_{x}, the condition (2.19) is equivalent to

$$
g^{l}=h^{2} \quad \text { and } \quad g^{l_{s}}=h
$$

Such an element h exists if and only if

$$
\begin{equation*}
g^{1-2 l_{s}}=1 \quad \text { for all } s . \tag{2.20}
\end{equation*}
$$

Let H be the subgroup of S^{1} consisting of all elements satisfying (2.20), H is equal to S^{1} if we have only one s and $l_{i_{s}}=l / 2$. Otherwise $H=\boldsymbol{Z}_{d}$ where d is the greatest common divisor of $\left\{\left|l-2 l_{i_{s}}\right|\right\}$. Since $0<l_{i_{s}}<l$, we have $\left|l-2 l_{i_{s}}\right|<l$. Hence $d<l$. Thus we have proved that the isotropy subgroup at v belongs to \mathscr{F}_{i-1}^{+}and $\boldsymbol{P}_{\varphi}(V(l / 2))$ is a component of the fixed point set of ψ.

Next suppose that $x \in F_{j}$, a component of F, and $v \in V_{x}$. Write v as

$$
v=\Sigma v_{i_{s}}^{+}+\sum v_{\bar{k}_{t}}^{-}
$$

where $v_{i_{s}}^{+} \in V_{j}^{+}\left(l_{i_{s}}\right)$ and $v_{\bar{k}_{t}}^{-} \in V_{\bar{j}}\left(l_{k_{t}}\right)$. Then the same reasoning as above using (2.11) and (2.13) shows that (2.19) is equivalent to

$$
g^{l_{i s}}=h \quad \text { and } \quad g^{l-l_{k t}}=h
$$

for all s and t. Hence the isotropy subgroup H of ψ at $[v]$ is \boldsymbol{Z}_{d} when different values occur among $l_{i_{s}}$ and $l-l_{k_{t}}$ in which case d is the greatest common divisor of $\left|l_{i_{s}}-l_{i_{s^{\prime}}}\right|,\left|l_{i_{s}}-\left(l-l_{k_{t}}\right)\right|$ and $\left|l_{k_{t}}-l_{k_{t^{\prime}}}\right|$. Since $0<l_{i}<l$, these numbers are smaller than l. Hence $d<l$ and $H \in \mathscr{F}_{l-1}$.

If there is only one value among $l_{i_{s}}$ and $l-l_{k_{t}}$ then H equals S^{1}. This implies that $\boldsymbol{P}_{\psi}\left(V_{J}^{\prime}\left(l_{i}\right)\right)$ is a component of the fixed point set of ψ, where $V_{j}^{\prime}\left(l_{i}\right)=V_{j}^{+}\left(l_{i}\right) \oplus V_{j}^{-}\left(l-l_{i}\right)$.

Thus we have proved that ψ is \mathscr{F}_{l-1}^{+}free on $\boldsymbol{P}_{\psi}(V)$. Since the open submanifold $\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})-\boldsymbol{P}_{\psi}(V)$ is ψ-equivariantly diffeomorphic to V the rest of the statement is clear.

Remark (2.21). In the above proof we have shown that the fixed point set of the action ψ on $\boldsymbol{P}_{\psi}(V)$ is the disjoint union of $\boldsymbol{P}_{\psi}(V(l / 2))=S(V(l / 2)) / \psi_{1}$ (when l is even) and $\boldsymbol{P}_{\psi}\left(V^{\prime}\left(l_{i}\right)\right)=S\left(V^{\prime}\left(l_{i}\right)\right) / \psi_{1}$ for $l_{i} \neq l / 2$. In particular, if $l=2$ then any element in $\boldsymbol{P}_{\psi}(V)$ is fixed by ψ. Indeed in this case the actions ψ and ψ_{1} coincide, whence ψ is trivial on $\boldsymbol{P}_{\phi}(V)$.

It is again a routine matter to verify that the assignment

$$
\mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \ni(X, V, \psi) \longmapsto\left[\boldsymbol{P}_{\psi}(V \times \boldsymbol{C}), \psi\right] \in \Omega_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)
$$

induces a well-defined homomorphism

$$
{ }^{t} \boldsymbol{P}: B_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \longrightarrow \Omega_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) .
$$

Theorem (2.22). Let l be an integer, $1<l$. The homomorphism

$$
{ }^{\iota} \boldsymbol{P} \circ \nu: \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) \longrightarrow \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)
$$

is a splitting for

$$
j_{*}: \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \longrightarrow \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) .
$$

Proof. Consider the composition $\nu \circ j_{*} \circ^{t} \boldsymbol{P}$. Then, for any (X, V, ψ) with connected X, we have

$$
\nu \circ j_{*} \circ^{t} \boldsymbol{P}[X, V, \psi]=[X, V, \psi]
$$

by (2.18). Since such $[X, V, \psi]$ generate $\sum_{m+2 k=n} B_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$, we have

$$
\nu \circ j_{*} \circ{ }^{t} \boldsymbol{P}=\text { identity }
$$

By (2.6), ν is an isomorphism. Hence it follows that

$$
j_{*} \circ{ }^{t} \boldsymbol{P}_{\circ \nu}=\text { identity }
$$

REMARK (2.23). It can be shown easily that, for any $[M, \psi] \in \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$, the element

$$
[M, \psi]-{ }^{t} \boldsymbol{P} \circ \nu \circ j^{*}[M, \psi] \in i_{*} \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l-1}^{+}\right)
$$

is represented by $\left[M_{1}, \psi\right]$ where

$$
M_{1}=\left(M-\bigcup_{X_{i}} \text { int } D\left(V_{i}\right)\right) \cup \bigcup_{X_{i}}-W_{\psi}\left(V_{i}\right)
$$

glued along $\bigcup_{X_{i}} S\left(V_{i}\right)$.
Here $\left\{X_{i}\right\}$ is the totality of the connected components of the first kind of the fixed point set of $\psi\left(\boldsymbol{Z}_{l}\right)$ and V_{i} is the normal bundle of X_{i} in M. $-W_{\psi}$ denotes the U-manifold W_{ψ} with the opposite structure. We may call M_{1} twisted blowing up of M along $\cup X_{i}$.

Corollary (2.24). There are canonical isomorphisms

$$
\Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \cong \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{1}^{+}\right) \bigoplus \sum_{1<k \leqq l}{ }^{t} P_{n}^{U}\left(S^{1} ; \mathscr{F}_{k}^{+}\right)
$$

and

$$
\Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{\infty}^{+}\right) \cong \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{1}^{+}\right) \oplus \sum_{1<k}{ }^{t} P_{n}^{U}\left(S^{1} ; \mathscr{F}_{k}^{+}\right)
$$

where

$$
{ }^{t} P_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)={ }^{t} \boldsymbol{P}\left(\sum_{m+2 k=n} B_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)\right)
$$

Proof. For \mathscr{F}_{l}^{+}it is immediate from (2.23). Since

$$
\Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{\infty}^{+}\right)=\underset{l}{\lim _{l}} \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)
$$

the case for \mathscr{F}_{∞}^{+}follows from the former.
We turn to the real case. Let $(X, V, \psi) \in \mathscr{B}_{m, k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$and suppose that X is connected. Z_{l} acts on V and hence on V^{c}, the complexification of V, by automorphisms. Decompose V^{c} into the direct sum of eigensubbundles

$$
V^{\boldsymbol{c}}=\sum_{0<l_{i}<l} V^{\boldsymbol{c}}\left(l_{i}\right)
$$

where $\psi(g) v=g^{l_{i}} v$ for $g \in Z_{l}$ and $v \in V^{c}\left(l_{i}\right)$. For $0<l_{i}<l / 2$ we set

$$
U\left(l_{i}\right)=V \cap\left(V^{c}\left(l_{i}\right) \oplus V^{\boldsymbol{c}}\left(l-l_{i}\right)\right)
$$

$U\left(l_{i}\right)$ can be given a structure of ϕ-invariant complex vector bundle with a decomposition

$$
U\left(l_{i}\right)=V\left(l_{i}\right) \oplus V\left(l-l_{i}\right)
$$

such that, for any $g \in \boldsymbol{Z}_{l}$, we have

$$
\psi(g) v=\psi^{\prime}(g)^{l_{i}} v \quad \text { for } v \in V\left(l_{i}\right)
$$

and

$$
\psi(g) v=\psi^{\prime}(g)^{l-l_{i}} \quad \text { for } v \in V\left(l-l_{i}\right),
$$

where $\phi^{\prime}(g)$ denotes the scalar multiplication in the complex vector bundle $U\left(l_{i}\right)$. For example, the map $\rho: V^{c}\left(l_{i}\right) \rightarrow U\left(l_{i}\right)$ given by

$$
\begin{equation*}
\rho(v)=(v+\bar{v}) / 2 \tag{2.25}
\end{equation*}
$$

is a real isomorphism for $l_{i} \neq l / 2$ so that it transports the complex structure of $V^{c}\left(l_{i}\right)$ onto $U\left(l_{i}\right)$. With this structure we have $U\left(l_{i}\right)=V\left(l_{i}\right)$ and $V\left(l-l_{i}\right)=0$. If l is even, we set

$$
V(l / 2)=V \cap V^{c}(l / 2) .
$$

Z_{l} acts on $V(l / 2)$ by

$$
\psi(g) v=g^{l / 2} v, \quad g \in \boldsymbol{Z}_{l}, \quad v \in V(l / 2),
$$

where it should be noticed that $g^{l / 2}= \pm 1$ for $g \in Z_{l}$. $V(l / 2)$ does not have complex vector bundle structure in general. Here we digress to give a proof of Remark (2.2). It clearly suffices to prove that the fiber dimension of $V(l / 2)$. is even when l is even. Consider the transformation $\psi(\zeta)$ on $V(l / 2)$ where $\zeta=e^{2 \pi \sqrt{-1} / l}$. Since it is connected to the identity in $\psi\left(S^{1}\right)$, it preserves the orientation. Since it keeps the base pointwise fixed, it acts on each fiber of $V(l / 2)$ preserving orientation. But $\psi(\zeta)=-1$ on each fiber. This implies the dimension of the fiber is even. This proves (2.2).

Now consider the S^{1}-action on $V\left(l_{i}\right), 0<l_{i}<l, l_{i} \neq l / 2$, defined by

$$
g \longmapsto \psi(g) \psi^{\prime}(g)^{-l_{i}} .
$$

Since $\psi(g) \psi^{\prime}(g)^{-l_{i}}=1$ for $g \in \boldsymbol{Z}_{l}$ on $V\left(l_{i}\right)$ there exists a unique action $\psi_{i}^{\prime \prime}$ on $V\left(l_{i}\right)$ such that

$$
\begin{equation*}
\psi_{i}^{\prime \prime}(g)^{l}=\psi(g) \psi^{\prime}(g)^{-l_{i}} \tag{2.26}
\end{equation*}
$$

The action $\psi_{i}^{\prime \prime}$ covers φ. Let $\psi^{\prime \prime}$ be the S^{1}-action on $\sum_{0<l_{i}<l, l_{i} \neq l / 2} V\left(l_{i}\right)$ given by

$$
\psi^{\prime \prime}(g)=\Sigma \phi_{i}^{\prime \prime}(g)
$$

We define the S^{1}-action ψ_{1} on $\sum_{0<l_{i}<l, l_{i} \neq l / 2} V\left(l_{i}\right)$ by

$$
\begin{equation*}
\psi_{1}(g)=\psi^{\prime \prime}(g)^{2} \psi^{\prime}(g) \tag{2.27}
\end{equation*}
$$

This action covers φ^{2}. Next observe that, when l is even, there is a unique S^{1}-action ψ_{1} on $V(l / 2)$ such that

$$
\begin{equation*}
\psi_{1}(g)^{l / 2}=\psi(g) \tag{2.28}
\end{equation*}
$$

This also covers φ^{2}. Thus we can form the direct sum action ψ_{1} on V from (2.26) and (2.27).

Lemma (2.29). The S^{1}-action ψ_{1} on V is independent of the choice of ψ invariant complex vector bundle structures on $U\left(l_{i}\right), l_{i} \neq l / 2$.

Proof. Let $\psi^{\prime}(g)$ be the scalar multiplication of a ψ-invariant complex vector bundle structure on $U\left(l_{i}\right)$ and let $\bar{\psi}^{\prime}(g)$ be the one which is transported by ρ from $V^{c}\left(l_{i}\right)$ as in (2.25). It is not difficult to see that

$$
\psi^{\prime}(g)=\bar{\phi}^{\prime}(g) \quad \text { on } V\left(l_{i}\right)
$$

and

$$
\psi^{\prime}(g)=\bar{\psi}^{\prime}(g)^{-1} \quad \text { on } \quad V\left(l-l_{i}\right) .
$$

According to (2.26) we define $\bar{\psi}^{\prime \prime}$ by

$$
\bar{\psi}^{\prime \prime}(g)^{l}=\psi(g) \bar{\psi}^{\prime}(g)^{-l_{i}} \quad \text { on } U\left(l_{i}\right)
$$

Then we have

$$
\bar{\phi}^{\prime \prime}(g)^{l}=\psi(g) \psi^{\prime}(g)^{-l_{i}}=\psi^{\prime \prime}(g)^{l} \quad \text { on } V\left(l_{i}\right),
$$

and

$$
\begin{array}{rlr}
\bar{\psi}^{\prime \prime}(g)^{l} & =\psi(g) \psi^{\prime}(g)^{l_{i}} \\
& =\psi(g) \psi^{\prime}(g)^{-\left(l-l_{i}\right)} \psi^{\prime}(g)^{l} \\
& =\psi^{\prime \prime}(g)^{l} \psi^{\prime}(g)^{l} \quad \text { on } V\left(l-l_{i}\right)
\end{array}
$$

where $0<l_{i}<l / 2$. Hence it follows that

$$
\bar{\psi}^{\prime \prime}(g)= \begin{cases}\psi^{\prime \prime}(g) & \text { on } V\left(l_{i}\right) \\ \psi^{\prime \prime}(g) \psi^{\prime}(g) & \text { on } V\left(l-l_{i}\right)\end{cases}
$$

Then

$$
\begin{aligned}
\bar{\phi}_{1}(g) & =\bar{\psi}^{\prime \prime}(g)^{2} \bar{\psi}^{\prime}(g) \\
& = \begin{cases}\psi_{1}(g) & \text { on } V\left(l_{i}\right) \\
\psi^{\prime \prime}(g)^{2} \psi^{\prime}(g)^{2} \psi^{\prime}(g)^{-1}=\psi^{\prime \prime}(g)^{2} \psi^{\prime}(g)=\psi_{1}(g) & \text { on } V\left(l-l_{i}\right) .\end{cases}
\end{aligned}
$$

This proves $\bar{\psi}_{1}=\psi_{1}$ on $U\left(l_{i}\right), 0<l_{i}<l / 2$. Thus $\bar{\psi}_{1}=\psi_{1}$ everywhere.
With this ψ_{1} defined we can proceed in an entirely similar way as in the complex case. Note that, in the complex case, $\psi_{1}(g)$ on $V(l / 2)$ satisfied (2.28) too. In particular (2.16) holds for $\mathscr{B}_{m, k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$instead of $\mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$and we can form the smooth manifolds $\boldsymbol{P}_{\psi}(V)=S(V) / \psi_{1}$ and $\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})=S(V \times \boldsymbol{C}) / \psi_{\mathrm{k}}$ which we shall also call twisted complex projective space bundles. We orient. $\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$ concordantly with $D(V) \subset \boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$ as in the complex case. The normal bundle of $\boldsymbol{P}_{\phi}(V)$ in $\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$ is oriented by its complex line bundle structure associated to $S(V) \rightarrow \boldsymbol{P}_{\varphi}(V)$. Then the above orientations of $\boldsymbol{P}_{\varphi}(V \times \boldsymbol{C})$
and the normal bundle determine the orientation of $\boldsymbol{P}_{\phi}(V)$. Proposition (2.18) holds also for $\mathscr{B}_{m, k}\left(S^{1} ; \mathscr{I}_{\imath}^{+}\right)$. We define the homomorphism

$$
{ }^{t} \boldsymbol{P}: B_{m, k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \longrightarrow \Omega_{m+k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)
$$

by

$$
{ }^{t} \boldsymbol{P}[X, V, \psi]=\left[\boldsymbol{P}_{\varphi}(V \times \boldsymbol{C}), \psi\right] .
$$

Then we obtain
Theorem (2.29). Let l be an integer, $1<l$. The homomorphism

$$
{ }^{t} \boldsymbol{P} \circ \nu: \Omega_{n}\left(S^{1}, \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) \longrightarrow \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)
$$

is a splitting for

$$
j_{*}: \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \longrightarrow \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}, \mathscr{F}_{l-1}^{+}\right) .
$$

Corollary (2.30). There are canonical isomorphisms

$$
\Omega_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}\right) \cong \Omega_{n}\left(S^{1} ; \mathscr{F}_{1}^{+}\right) \bigoplus_{1 \leqslant k \leq l} \sum_{n} P_{n}\left(S^{1} ; \mathscr{F}_{k}^{+}\right)
$$

and

$$
\Omega_{n}\left(S^{1} ; \mathscr{F}_{\infty}^{+}\right) \cong \Omega_{n}\left(S^{1} ; \mathscr{F}_{1}^{+}\right) \oplus \sum_{1<k}^{t} P_{n}\left(S^{1} ; \mathscr{F}_{k}^{+}\right)
$$

where

$$
{ }^{t} P_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)={ }^{t} \boldsymbol{P}_{n}\left(\sum_{m+k=n} B_{m, k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)\right)
$$

Remark. Let $(X, V, \psi) \in \mathscr{G}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$and suppose that the action φ induced on X (see (2.1)) is free which implies in particular that the action ψ on V is \mathscr{F}_{l}-free. Even under this assumption the fixed point set of the action ψ on $\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$ is not empty in general. For example when $l=2$ the submanifold $\boldsymbol{P}_{\phi}(V)$ is the fixed point set by (2.21). However in this case, i. e. when the fixed point set F of the action φ on X is empty, the action $\psi^{\prime \prime}$ is free so that $S(V \times \boldsymbol{C}) / \psi^{\prime \prime}$ is a smooth manifold. Moreover the action ψ on $S(V \times \boldsymbol{C}) / \psi^{\prime \prime}$ is \mathscr{F}_{l-1}-free. This can be used to give a splitting for

$$
j_{*}: \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}\right) \longrightarrow \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{l}, \mathscr{F}_{l-1}\right)
$$

Similarly let $(X, V, \psi) \in \mathcal{B}_{m, k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$and assume that the fixed point set F of φ is empty and V has a structure of ψ-invariant complex vector bundle. Then we can form $\psi^{\prime \prime}$ and smooth manifold $S(V \times \boldsymbol{C}) / \psi^{\prime \prime}$ in this case too (but not canonically). This can be used to show that

$$
j_{*}: \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}\right) \otimes \boldsymbol{Z}[1 / 2] \longrightarrow \Omega_{n}\left(S^{1} ; \mathscr{F}_{l}, \mathscr{F}_{l-1}\right) \otimes \boldsymbol{Z}[1 / 2]
$$

is onto. These constructions were used by Ossa [7].
Finally we remark that in the above constructions we may replace $\psi^{\prime \prime}(g)$ by $\psi^{\prime \prime}(g) \psi^{\prime}(g)$ which will give another splitting for j_{*}.

§ 3. The Kosniowski Formula.

Let M be a closed U-manifold with a smooth S^{1}-action ψ preserving the given U-structure. Then each component F_{j} of the fixed point set F is a U-manifold in a natural way. Moreover the normal bundle V_{j} of F_{j} in M decomposes as a direct sum

$$
V_{j}=\sum_{s} V_{j s}
$$

of complex vector bundles $V_{j s}$ on which the given S^{1}-action ψ is expressed by ${ }^{-}$

$$
\psi(g) v=g^{k_{j s}} v, \quad k_{j s} \in \boldsymbol{Z}, k_{j s} \neq 0,
$$

for $v \in V_{j s}$, where $g^{k_{j s}} v$ denotes the scalar multiplication in the complex vector bundle $V_{j s}$. We define the integers $d^{+}\left(F_{j}\right)$ and $d^{-}\left(F_{j}\right)$ by

$$
\begin{aligned}
& d^{+}\left(F_{j}\right)=\sum_{s, k_{j s}>0} \operatorname{dim}_{c} V_{j s}, \\
& d^{-}\left(F_{j}\right)=\sum_{s, k_{j s}<0} \operatorname{dim}_{c} V_{j s} .
\end{aligned}
$$

We shall call $d^{+}\left(F_{j}\right)\left(d^{-}\left(F_{j}\right)\right)$ positive (negative) type number of F_{j}. With these understood, the Kosniowski formula reads as follows.

The Kosniowski Formula [6]. Let M be a closed U-manifold with a smooth S^{1}-action preserving the U-structure. Then the following relation between the T_{y}-genera of M and the components of the fixed point set holds.

$$
\begin{aligned}
T_{y}(M) & =\sum_{j}(-y)^{d+\left(F_{j}\right)} T_{y}\left(F_{j}\right) \\
& =\sum_{j}(-y)^{d-\left(F_{j}\right)} T_{y}\left(F_{j}\right),
\end{aligned}
$$

where T_{y} is the genus associated to the formal power series in t

$$
\underset{e^{t(1+y)}-1}{t(1+y)}+t
$$

$c f$. [2].
In this section we shall give an elementary proof of this formula. In view of Corollary (2.24) it is clearly sufficient to prove the formula for $[M, \psi] \in \Omega_{n}^{U}\left(S^{1} ; \mathscr{F}_{1}^{+}\right)$and $(M, \psi)=\left(\boldsymbol{P}_{\psi}(V \times \boldsymbol{C}), \psi\right)$ where $(X, V, \psi) \in \mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$.
I. Semi-free case. The proof given here is due to Takao Matumoto. We thank him for communicating us his proof.

Let $\psi_{p, q}$ be the S^{1}-action on $S^{2(p+q)-1}$ defined by

$$
\psi_{p, q}(g)\left(z_{1}, \cdots, z_{p}, w_{1}, \cdots, w_{q}\right)=\left(g z_{1}, \cdots, g z_{p}, g^{-1} w_{1}, \cdots, g^{-1} w_{q}\right)
$$

where $z_{i}, w_{j} \in \boldsymbol{C}$. The action is free so that the quotient space $\boldsymbol{C} P_{p, q}=$ $S^{2(p+q)-1} / \psi_{p, q}$ is a closed smooth manifold. $\boldsymbol{C} P_{p, q}$ is made almost complex manifold by local charts

$$
\left(\begin{array}{ccc}
z_{1} \\
z_{i}
\end{array}, \cdots,-z_{p}, \begin{array}{c}
w_{1} \\
z_{i}
\end{array}, \cdots, \begin{array}{c}
w_{q} \\
\bar{z}_{i}
\end{array}, \quad \text { where } z_{i} \neq 0\right.
$$

and

$$
\left(\begin{array}{c}
z_{1} \\
\bar{w}_{j}^{--}, \cdots, \\
z_{p} \\
\bar{w}_{j}
\end{array}, \begin{array}{c}
w_{1} \\
w_{j}
\end{array}, \cdots, \begin{array}{c}
w_{q} \\
w_{j}
\end{array}\right) \quad \text { where } w_{j} \neq 0
$$

LEMMA (3.1). With the above almost complex structure, we have

$$
T_{y}\left(\boldsymbol{C} P_{p, q}\right)=\stackrel{1}{1-(-y)}\left((-y)^{q}-(-y)^{p}\right)
$$

Proof. Consider the diffeomorphism

$$
f: \boldsymbol{C} P_{p, q} \longrightarrow \boldsymbol{C} P^{p+q-1}
$$

induced by $f: S^{2(p \cdot q q)-1} \rightarrow S^{2(p \cdot \vartheta q)-1}$ given by

$$
f\left(z_{1}, \cdots, z_{p}, w_{1}, \cdots, w_{q}\right)=\left(z_{1}, \cdots, z_{p}, \bar{w}_{1}, \cdots, \bar{w}_{q}\right)
$$

Let $\boldsymbol{C} P^{\prime}$ denote $\boldsymbol{C} P^{p \cdot q-1}$ with the almost complex structure transported by f. Then it is not difficult to see that

$$
\tau\left(\boldsymbol{C} P^{\prime}\right) \oplus 1=p \xi \oplus q \xi^{*}
$$

where $\tau, 1, \xi$ and ξ^{*} denote the complex tangent bundle, the trivial complex line bundle, the canonical line bundle and its dual respectively. It is also clear that the orientation of $C P^{\prime}$ is $(-1)^{q}$ times the usual orientation of -C P^{p+q-1}. It follows that

$$
T_{y}\left(\boldsymbol{C} P_{p, q}\right)=T_{y}\left(\boldsymbol{C} P^{\prime}\right)=\text { coefficient of }(-1)^{q} x^{n} \text { in } h(x)
$$

where $n=p+q-1$ and

$$
h(x)=\left(\begin{array}{c}
x(y+1) \\
e^{x(y+1)}-1
\end{array}+x\right)^{p}\left(\begin{array}{c}
-x(y+1) \\
e^{-x(y+1)}-1
\end{array}-x\right)^{q}
$$

By the Cauchy integral formula

$$
T_{y}\left(\boldsymbol{C} P_{p, q}\right)=\frac{(-1)^{q}}{2 \pi i} \oint_{x^{n+1}}^{h(x)} d x
$$

The substitution $u=e^{x(y+1)}-1$ gives

$$
T_{y}\left(\boldsymbol{C} P_{p, q}\right)=\begin{array}{ccc}
1 & (-y)^{q} \\
2 \pi i & y+1 & \oint \frac{(1+u+y)^{p}\left(1+u+y^{-}\right)^{q}}{u^{n+1}(1+u)} d u . . d u l
\end{array}
$$

Hence

$$
\begin{aligned}
& T_{y}\left(C P_{p, q}\right)=(-y)^{q} /(y+1) \\
& \quad \times\left(\text { coefficient of } u^{n} \text { in }(1+u+y)^{p}(1+u+1 / y)^{q} /(1+u)\right)
\end{aligned}
$$

But $(1+u+y)^{p}(1+u+1 / y)^{q}$ is of the form

$$
\sum_{t=0}^{n+1} a_{t}(1+u)^{t}
$$

with $a_{0}=y^{p} / y^{q}$ and $a_{n+1}=1$. Therefore

$$
\text { coefficient of } u^{n} \text { in }(1+u+y)^{p}(1+u+1 / y)^{q} /(1+u)=(-1)^{n} y^{p} / y^{q}+1
$$

Hence we obtain

$$
T_{y}\left(\boldsymbol{C} P_{p, q}\right)=\frac{1}{1-(-y)}\left((-y)^{q}-(-y)^{p}\right) .
$$

Now suppose that the S^{1}-action ψ is semi-free (i.e. \mathscr{F}_{1}^{+}-free) on M. We define the S^{1}-actions ψ and ψ_{1} on $V_{i} \times \boldsymbol{C}$ by

$$
\psi(g)(v, \alpha)=(\psi(g) v, \alpha)
$$

and

$$
\psi_{1}(g)(v, \alpha)=(\psi(g) v, g \alpha) .
$$

Choose a ψ-invariant hermitian metric on the complex vector bundle V_{j}. Let $D\left(V_{j} \times \boldsymbol{C}\right)$ and $D\left(V_{j}\right)$ be the associated unit disk bundles and $S\left(V_{j} \times \boldsymbol{C}\right)$ and $S\left(V_{j}\right)$ the associated sphere bundles. Since the action ψ_{1} is free on $S\left(V_{j} \times \boldsymbol{C}\right)$, the quotient space $\boldsymbol{P}_{\psi}\left(V_{j} \times \boldsymbol{C}\right)=S\left(V_{j} \times \boldsymbol{C}\right) / \psi_{1}$ and $S\left(V_{j}\right) / \psi_{1}$ are smooth manifolds. Just as in (2.17), $\boldsymbol{P}_{\psi}\left(V_{j} \times \boldsymbol{C}\right)$ is identified with $D\left(V_{j}\right) \cup W_{\psi}\left(V_{j}\right)$ where $W_{\psi}\left(V_{j}\right)$ is the disk bundle associated to the S^{1}-bundle $S\left(V_{j}\right) \rightarrow \boldsymbol{P}_{\varphi}\left(V_{j}\right)$. In particular $\boldsymbol{P}_{\varphi}\left(V_{j} \times \boldsymbol{C}\right)$ is endowed with a ϕ-invariant U-structure which extends that of $D\left(V_{j}\right)$. Moreover since ψ_{1} acts on V_{j} by automorphisms, $\boldsymbol{P}_{\varphi}\left(V_{j} \times \boldsymbol{C}\right)$ is fibered over F_{j} with fiber $\boldsymbol{C} P_{d_{j}^{+}+1, \sigma_{j}^{-}}$where $d_{j}^{ \pm}=d^{ \pm}\left(F_{j}\right)$. Then the U-structure of $\boldsymbol{P}_{\phi}\left(V_{j} \times \boldsymbol{C}\right)$ given above is compatible in the sense of [2, (21.8)]. Similarly $\boldsymbol{P}_{\psi}\left(V_{j}\right)$ has a ψ-invariant U-structure and is fibered over F_{j} with fiber $\boldsymbol{C} P_{a_{j}^{+}, a_{j}^{-}}$. With these understood,

LEMMA (3.2). Let ψ be a U-structure preserving semi-free S^{1}-action on a closed U-manifold M. Then we have

$$
\sum_{j}\left[\boldsymbol{P}_{\psi}\left(V_{j} \times \boldsymbol{C}\right), \psi\right]=[M, \psi] \quad \text { in } \Omega_{*}^{U}\left(S^{1} ; \mathscr{I}_{1}^{+}\right)
$$

and

$$
\sum_{j}\left[\boldsymbol{P}_{\psi}\left(V_{j}\right)\right]=0 \quad \text { in } \Omega_{*}^{U} .
$$

Proof. Let M_{1} be the manifold obtained by glueing together $M-\cup \operatorname{int} D\left(V_{j}\right)$ and $\cup-W_{\phi}\left(V_{j}\right)$ along their common boundary $\cup S\left(V_{j}\right)$. Then, as in (2.23) we have

$$
\begin{equation*}
\Sigma\left[\boldsymbol{P}_{\psi}\left(V_{j} \times \boldsymbol{C}\right), \psi\right]+\left[M_{1}, \psi\right]=[M, \psi] \tag{3.3}
\end{equation*}
$$

in $\Omega_{*}^{U}\left(S^{1} ; \mathscr{F}_{1}^{+}\right)$. But the action ψ restricted on $M_{0}=M-\cup$ int $D\left(V_{j}\right)$ is free so that $M_{0} / \psi=Y$ is a U-manifold. Let N be the 2 -disk bundle associated to the S^{1}-fibering $M_{0} \rightarrow Y$. Then clearly we have

$$
\partial N=M_{1} \quad \text { and } \quad \partial Y=\cup \boldsymbol{P}_{\psi}\left(V_{j}\right) .
$$

Therefore

$$
\left[M_{1}, \psi\right]=0 \quad \text { in } \Omega_{*}^{U}\left(S^{1} ; \mathscr{F}_{1}^{+}\right)
$$

and

$$
\Sigma\left[\boldsymbol{P}_{\psi}\left(V_{j}\right)\right]=0 \quad \text { in } \Omega_{*}^{U}
$$

This together with (3.3) proves Lemma.
Proof of the Kosniowski formula for $[M, \psi] \in \Omega_{*}^{U}\left(S^{1} ; \mathscr{F}_{1}^{+}\right)$. We first remark that the bundle $\boldsymbol{P}_{\psi}\left(V_{j} \times \boldsymbol{C}\right) \rightarrow F_{j}$ has $U\left(d_{j}+1\right), d_{j}=d_{j}^{+}+d_{j}$, as structure group and the almost complex structure on the fiber $C P_{d_{j}^{+}+1, d_{j}^{-}}$is invariant under the action of $U\left(d_{j}+1\right)$. Therefore, by the strictly multiplicative property of the T_{y}-genus [2, (22.8)] we get

$$
T_{y}\left(\boldsymbol{P}_{\psi}\left(V_{j} \times \boldsymbol{C}\right)\right)=T_{y}\left(F_{j}\right) T_{y}\left(\boldsymbol{C} P_{d_{j}^{+}+1, d_{j}^{-}}\right) .
$$

Then by (3.1)

$$
T_{y}\left(\boldsymbol{P}_{\varphi}\left(V_{j} \times \boldsymbol{C}\right)\right)=\frac{1}{1-(-y)}-\left((-y)^{d_{j}^{-}}-(-y)^{d_{j}^{+}+1}\right) T_{y}\left(F_{j}\right) .
$$

Combining this with (3.2) we obtain

$$
\begin{equation*}
T_{y}(M)=\frac{1}{1-(-y)} \sum_{j}\left((-y)^{d_{j}^{-}}-(-y)^{d_{j}^{+}+1}\right) T_{y}\left(F_{j}\right) . \tag{3.4}
\end{equation*}
$$

Similarly from the second equality in (3.2) we get

$$
\begin{equation*}
0=\frac{1}{(1-(-y))} \sum_{j}\left((-y)^{d_{j}^{-}}-(-y)^{d_{j}^{+}}\right) T_{y}\left(F_{j}\right) . \tag{3.5}
\end{equation*}
$$

Subtracting (3.5) from (3.4) yields

$$
T_{y}(M)=\Sigma(-y)^{d_{j}^{+}} T_{y}\left(F_{j}\right)
$$

This together with (3.5) yields

$$
T_{y}(M)=\Sigma(-y)^{d_{j}^{-}} T_{y}\left(F_{j}\right)
$$

II. Case of $\left[\boldsymbol{P}_{\psi}(V \times \boldsymbol{C}), \psi\right] \in{ }^{t} P_{*}^{U}\left(S^{1} ; \mathscr{F}_{i}^{+}\right)$. Given $(X, V, \psi) \in \mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{i}^{+}\right)$, let F be the fixed point set of φ in X and let $\left\{F_{j}\right\}$ be the connected components of F. Let U_{j} be the normal bundle of F_{j} in X. The action φ decomposes U_{j} into the direct sum $U_{j}=\Sigma U_{j t}$ so that

$$
\varphi(g) u=g^{k_{j t}} u \quad \text { for } g \in S^{1} \text { and } u \in U_{j t}
$$

where $k_{j t} \in \boldsymbol{Z}$. Set

$$
U_{j}^{+}=\sum_{k_{j t>0}} U_{j t}
$$

and

$$
U_{j}=\sum_{k_{j t}<0} U_{j t} .
$$

We also set

$$
\begin{aligned}
V_{j}^{+} & =\sum_{l_{i}} V_{j}^{\dagger}\left(l_{i}\right), \\
V_{\bar{j}}^{-} & =\sum_{l_{i}} V_{\bar{j}}^{-}\left(l_{i}\right)
\end{aligned}
$$

where $V_{j}^{ \pm}\left(l_{i}\right)$ are as in (2.9), Note that $\left\{F_{j}\right\}$ is a part of connected components of the fixed point set of the action ψ in $\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$ and we have

$$
\begin{align*}
& d^{+}\left(F_{j}\right)=\operatorname{dim} U_{j}^{+}+\operatorname{dim} V_{j}^{+}, \tag{3.6}\\
& d^{-}\left(F_{j}\right)=\operatorname{dim} U_{\bar{j}}+\operatorname{dim} V_{j}^{-} .
\end{align*}
$$

Here and throughout this Section dim means the complex dimension.
We consider the action $\psi^{\prime \prime}$ defined in (2.10). Since $\psi^{\prime \prime}$ commutes with ψ_{1} it can be extended to the S^{1}-action $\psi^{\prime \prime}$ on $\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$ by the formula

$$
\psi^{\prime \prime}(g)[v, \alpha]=\left[\psi^{\prime \prime}(g) v, \alpha\right] .
$$

Lemma (3.7). Let $(X, V, \psi) \in \mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$and suppose that X is connected. The action $\psi^{\prime \prime}$ on $\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$ is semi-free. Its fixed point set consists of components $\boldsymbol{P}_{\phi}\left(V_{j}^{+} \times \boldsymbol{C}\right)$ and $\boldsymbol{P}_{\phi}\left(V_{j}^{-}\right)$. Their type numbers are given by

$$
\begin{aligned}
& d^{+}\left(\boldsymbol{P}_{\psi}\left(V_{j}^{+} \times \boldsymbol{C}\right)\right)=\operatorname{dim} U_{j}^{+}, \\
& d^{-}\left(\boldsymbol{P}_{\phi}\left(V_{j}^{+} \times \boldsymbol{C}\right)\right)=\operatorname{dim} U_{\bar{j}}^{-}+\operatorname{dim} V_{j}^{-}, \\
& d^{+}\left(\boldsymbol{P}_{\psi}\left(V_{j}^{-}\right)\right)=\operatorname{dim} U_{\bar{j}}^{-}, \\
& d^{-}\left(\boldsymbol{P}_{\varphi}\left(V_{j}^{-}\right)\right)=\operatorname{dim} U_{j}^{+}+\operatorname{dim} V_{j}^{+}+1 .
\end{aligned}
$$

Proof. Since $\psi^{\prime \prime}$ covers φ, its fixed point set is contained in $\cup \boldsymbol{P}_{\phi}\left(V \mid F_{j} \times \boldsymbol{C}\right)$. Then, using (2.11), we see that the fixed point set is as stated. As to the type numbers of $\boldsymbol{P}_{\psi}\left(V_{j}^{+} \times \boldsymbol{C}\right)$, since it contains F_{j} around which the action $\psi^{\prime \prime}$ is equivalent to the given action $\psi^{\prime \prime}$ on V the statement follows from the definition of $U_{j}^{ \pm}$and $V_{j}^{ \pm}$.

Next consider $\boldsymbol{P}_{\psi}\left(V_{\bar{j}}\right)$. Let $D^{D}\left(U_{j}\right)$ be a small φ-invariant open tubular neighborhood of F_{j} in X. Then the bundle $V \mid \dot{D}\left(U_{j}\right)$ can be ψ-equivariantly identified with the complex vector bundle $V \oplus U_{j}$. With this in mind, given a point $\left(v_{0}, 0\right) \in S\left(V_{\bar{j}}\right) \subset S\left(V_{\bar{j}}^{-} \times \boldsymbol{C}\right)$ any point in $S\left(V_{\bar{j}}^{-} \times \boldsymbol{C}\right)$ near ($v_{0}, 0$) can be expressed in the form $\left(v_{0}+v, \alpha\right), v \in V \oplus U_{j}, \alpha \in \boldsymbol{C}$. Note that the normal vectors to $\boldsymbol{P}_{\phi}\left(V_{j}^{-}\right)$in $\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$ at $\left[v_{0}, 0\right]$ are spanned by $\left[v_{0}, \alpha\right]$, $\left[v_{0}+v, 0\right]$ with $v \in V_{j}^{+}$and $\left[v_{0}+u, 0\right]$ with $u \in U_{j}^{ \pm}$. We compute the effect of $\phi^{\prime \prime}(g)$ on these generators.

$$
\begin{aligned}
\psi^{\prime \prime}(g)\left[v_{0}, \alpha\right] & =\left[\psi^{\prime \prime}(g) v_{0}, \alpha\right] \\
& =\left[\psi^{\prime}(g)^{-1} v_{0}, \alpha\right] \\
& =\left[\psi_{1}(g) v_{0}, \alpha\right] \\
& =\left[v_{0}, g^{-1} \alpha\right] .
\end{aligned}
$$

$$
=\left[\psi^{\prime}(g)^{-1} v_{0}, \alpha\right] \quad \text { by (2.11) }
$$

$$
=\left[\psi_{1}(g) v_{0}, \alpha\right] \quad \text { by (2.13) }
$$

$$
\begin{aligned}
\psi^{\prime \prime}(g)\left[v_{0}+v, 0\right] & =\left[\psi^{\prime}(g)^{-1} v_{0}+v, 0\right] \quad \text { for } v \in V_{j}^{+} \text {by (2.11) } \\
& =\left[\psi_{1}(g) v_{0}+v, 0\right] \quad \text { by }(2.13) \\
& =\left[v_{0}+\psi_{1}^{-1}(g) v, 0\right] \\
& =\left[v_{0}+\psi^{\prime}(g)^{-1} v, 0\right] . \\
\psi^{\prime \prime}(g)\left[v_{0}+u, 0\right] & =\left[\psi^{\prime}(g)^{-1} v_{0}+\varphi(g) u, 0\right] \quad \text { for } u \in U_{j} \text { by (2.11) } \\
& =\left[\psi_{1}(g) v_{0}+\varphi(g) u, 0\right] \\
& =\left[v_{0}+\varphi(g)^{-2} \varphi(g) u, 0\right] \quad \text { since } \psi_{1}(g)=\varphi^{2}(g) \text { on } U_{j} \\
& =\left[v_{0}+\varphi(g)^{-1} u, 0\right] .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& d^{+}\left(\boldsymbol{P}_{\psi}\left(V_{j}^{-}\right)\right)=\operatorname{dim} U_{j}^{-} \\
& d^{-}\left(\boldsymbol{P}_{\psi}\left(V_{j}^{-}\right)\right)=\operatorname{dim} U_{j}^{+}+\operatorname{dim} V_{j}^{+}+1 .
\end{aligned}
$$

In an entirely similar way we obtain
Lemma (3.8). Under the same assumption as in (3.7), the fixed point set of $\psi^{\prime \prime}$ in $\boldsymbol{P}_{\psi}(V)$ consists of components $\boldsymbol{P}_{\psi}\left(V_{j}^{+}\right)$and $\boldsymbol{P}_{\psi}\left(V_{j}^{-}\right)$for which the type numbers are given by

$$
\begin{aligned}
& d^{+}\left(\boldsymbol{P}_{\psi}\left(V_{j}^{+}\right)\right)=\operatorname{dim} U_{j}^{+}, \\
& d^{-}\left(\boldsymbol{P}_{\psi}\left(V_{j}^{+}\right)\right)=\operatorname{dim} U_{j}^{-}+\operatorname{dim} V_{j}^{-}, \\
& d^{+}\left(\boldsymbol{P}_{\varphi}\left(V_{j}^{-}\right)\right)=\operatorname{dim} U_{j}^{-}, \\
& d^{-}\left(\boldsymbol{P}_{\psi}\left(V_{j}^{-}\right)\right)=\operatorname{dim} U_{j}^{+}+\operatorname{dim} V_{j}^{+} .
\end{aligned}
$$

The following Corollary (3.10) is a variant of the Kosniowski formula for $\left(\boldsymbol{P}_{\psi}(V \times \boldsymbol{C}), \psi\right)$.

Proposition (3.9). Let $(X, V, \psi) \in \mathscr{B}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{t}^{+}\right)$. Let $\left\{F_{j}\right\}$ be the components of the fixed point set of φ in X, and let $U_{j}^{ \pm}$and $V_{j}^{ \pm}$be defined as above. We have

$$
T_{y}\left(\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})\right)=\frac{1}{1-(-y)} \sum_{j}\left\{(-y)^{\operatorname{dim} U_{j}^{-}+\operatorname{dim} V_{j}^{-}}-(-y)^{\operatorname{dim} U_{j}^{+}+\operatorname{dim} v_{j}^{+}+1}\right\} T_{y}\left(F_{j}\right)
$$

and

$$
T_{y}\left(\boldsymbol{P}_{\psi}(V)\right)=\frac{1}{1-(-y)} \sum_{j}\left\{(-y)^{\operatorname{dim} U_{j}^{-}+\operatorname{dim} v_{j}^{-}}-(-y)^{\operatorname{dim} U_{j}^{+}+\operatorname{dim} v_{j}^{+}}\right\} T_{y}\left(F_{j}\right) .
$$

Corollary (3.10). Under the same assumption as in (3.9) the following relations hold.

$$
\begin{aligned}
T_{y}\left(\boldsymbol{P}_{\varphi}(V \times \boldsymbol{C})\right) & =T_{y}\left(\boldsymbol{P}_{\psi}(V)\right)+\sum_{j}(-y)^{\operatorname{dim} v_{j}^{+}+\operatorname{dim} v_{j}^{+}} T_{y}\left(F_{j}\right) \\
& =(-y) T_{y}\left(\boldsymbol{P}_{\varphi}(V)\right)+\sum_{j}(-y)^{\operatorname{dim} v_{j}^{-}+\operatorname{dim} v_{j}^{-}} T_{y}\left(F_{j}\right),
\end{aligned}
$$

$$
0=\sum_{j}\left((-y)^{\operatorname{dim} U_{j}^{+}}-(-y)^{\operatorname{dim} U_{j}^{-}}\right) T_{y}\left(F_{j}\right)
$$

Proof of (3.9) AND (3.10). The action φ on X is semi-free so that we can apply the Kosniowski formula proved in I to get the last relation of (3.10). The action $\phi^{\prime \prime}$ on $\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$ is semi-free. Hence we can apply the Kosniowski formula to this action. By the strictly multiplicative property of T_{y}-genus and (3.1),

$$
\begin{aligned}
& T_{y}\left(\boldsymbol{P}_{\varphi}\left(V_{j}^{+} \times \boldsymbol{C}\right)\right)=\frac{1}{1-(-y)}\left(1-(-y)^{\operatorname{dim} v_{j}^{+}+1}\right) T_{y}\left(F_{j}\right), \\
& T_{y}\left(\boldsymbol{P}_{\varphi}\left(V_{j}^{-}\right)\right)=\frac{1}{1-(-y)}\left((-y)^{\operatorname{dim} V_{j}^{-}}-1\right) T_{y}\left(F_{j}\right) .
\end{aligned}
$$

Using the data in (3.7) we obtain

$$
\begin{aligned}
T_{y}\left(\boldsymbol{P}_{\varphi}(V \times \boldsymbol{C})\right)= & \frac{1}{1-(-y)} \sum_{j}\left\{(-y)^{\operatorname{dim} U_{j}^{+}}\left(1-(-y)^{\operatorname{dim} v_{j}^{+}+1}\right)\right. \\
& \left.+(-y)^{\operatorname{dim} v_{j}^{-}}\left((-y)^{\operatorname{dim} V_{j}^{-}}-1\right)\right\} T_{y}\left(F_{j}\right)
\end{aligned}
$$

Using the last relation in (3.10) we obtain

$$
T_{y}\left(\boldsymbol{P}_{\varphi}(V \times \boldsymbol{C})\right)=\frac{1}{1-(-y)} \sum_{j}\left\{(-y)^{\operatorname{dim} v_{j}^{-}+\operatorname{dim} V_{j}^{-}}-(-y)^{\operatorname{dim} U_{j}^{+}+\operatorname{dim} V_{j}^{+}+1}\right\} T_{y}\left(F_{j}\right)
$$

The formula for $T_{y}\left(\boldsymbol{P}_{\psi}(V)\right)$ is proved similarly using (3.8). This proves (3.9). The rest of the statement in (3.10) is immediate from (3.9).

Now we shall deduce the Kosniowski formula for $\left(\boldsymbol{P}_{\psi}(V \times \boldsymbol{C}), \phi\right)$ from (3.10). We proceed by induction on l where $(X, V, \psi) \in \mathscr{S}_{m, 2 k}^{U}\left(S^{1} ; \mathscr{F}_{l}^{+}\right), 1<l$. Let $\left\{F_{j}\right\}$ Be the components of the fixed point set of φ in X. First suppose $l=2$. Then by (2.21) the fixed point set of ψ is the union of F_{j} and $\boldsymbol{P}_{\psi}(V)$. As in the proof of (3.7) we see that the type number of $\boldsymbol{P}_{\psi}(V)$ is given by

$$
d^{+}\left(\boldsymbol{P}_{\psi}(V)\right)=0 \quad \text { and } \quad d^{-}\left(\boldsymbol{P}_{\psi}(V)\right)=1
$$

"Thus with this and (3.6) the formulae in (3.10) are nothing but Kosniowski's one in this case.

Next suppose $l>2$. Then the components of the fixed point set consists of $\left\{F_{j}\right\}$ and $\left\{F_{s}^{\prime}\right\}$ where $F_{s}^{\prime} \subset \boldsymbol{P}_{\psi}(V)$. See (2.21). Let $d^{ \pm}\left(F_{s}^{\prime}\right)$ be the type numbers of F_{s}^{\prime}, and let $d^{\prime \pm}\left(F_{s}^{\prime}\right)$ denote the type numbers of F_{s}^{\prime} with respect to the action ψ restricted on $\boldsymbol{P}_{\psi}(V)$. As in the proof of (3.7) we have

$$
\begin{equation*}
d^{\prime} \cdot\left(F_{s}^{\prime}\right)=d^{\prime+}\left(F_{s}^{\prime}\right) \quad \text { and } \quad d^{-}\left(F_{s}^{\prime}\right)=d^{\prime-}\left(F_{s}^{\prime}\right)+1 \tag{3.11}
\end{equation*}
$$

By (2.18) the action ψ on $\boldsymbol{P}_{\varphi}(V)$ is \mathscr{F}_{l-1}^{+}-free. Hence by the induction assumption we can apply the Kosniowski formula to this action to get

$$
\begin{aligned}
T_{y}\left(\boldsymbol{P}_{\varphi}(V)\right) & =\sum_{s}(-y)^{d^{\prime+}\left(F_{s}^{\prime}\right)} T_{y}\left(F_{s}^{\prime}\right) \\
& =\sum_{s}(-y)^{d^{\prime}-\left(F_{s}^{\prime}\right)} T_{y}\left(F_{s}^{\prime}\right)
\end{aligned}
$$

Substitute this in the formula (3.10) and use (3.6) and (3.11). We obtain

$$
\begin{aligned}
T_{y}\left(\boldsymbol{P}_{\zeta}^{\prime}(V \times \boldsymbol{C})\right) & =\sum_{s}(-y)^{d^{+}\left(F_{s}^{\prime}\right)} T_{y}\left(F_{s}^{\prime}\right)+\sum_{j}(-y)^{d^{+}\left(F_{j}\right)} T_{y}\left(F_{j}\right) \\
& =\sum_{s}(-y)^{d-\left(F_{s}^{\prime}\right)} T_{y}\left(F_{s}^{\prime}\right)+\sum_{j}(-y)^{d^{-\left(F_{j}\right)}} T_{y}\left(F_{j}\right) .
\end{aligned}
$$

This proves the Kosniowski formula in its full generality.

§4. The Atiyah-Singer Formula.

In the case of oriented manifold with a smooth S^{1}-action, the normal bundle V_{j} of each component F_{j} of the fixed point set has still an S^{1}-invariant: complex vector bundle structure with a direct sum decomposition

$$
V_{j}=\sum_{s} V_{j s}
$$

such that

$$
\varphi(g) v=g^{k_{j s} v}
$$

for $v \in V_{j s}$. Here the complex structure on $V_{j s}$ is determined up to sign of $k_{j s}$. We fix it by requiring $k_{j s}>0$. Then the normal bundle V_{j} and themanifold F_{j} are canonically oriented. We set $d\left(F_{j}\right)=\operatorname{dim}_{c} V_{j}$. With the aboveorientation convention we have

The Atiyah-Singer Formula [1, p. 594]. Let M be an oriented closed smooth manifold with a smooth S^{1}-action. Then

$$
\begin{array}{r}
\operatorname{sign} M=\sum_{F_{j}, d\left(F_{j}\right) \text { even }} \operatorname{sign}\left(F_{j}\right), \\
0=\sum_{F_{j}, d\left(F_{j}\right) \text { odd }} \operatorname{sign}\left(F_{j}\right) .
\end{array}
$$

An elementary proof of this formula will be given in the sequel. By (2.30) it is sufficient to prove it for $[M, \psi] \in \Omega_{*}\left(S^{1} ; \mathscr{F}_{1}^{+}\right)$, and $[M, \psi]=$ $\left[\boldsymbol{P}_{\varphi}(V \times \boldsymbol{C}), \psi\right] \in{ }^{t} P_{n}\left(S^{1} ; \mathscr{T}_{i}^{+}\right), 1<l$. As to the case of $\Omega_{*}\left(S^{1} ; \mathscr{F}_{1}^{+}\right)$we refer to [5] where a proof similar to that of I in Section 3 is given. Thus we confine our attention to the case of ${ }^{t} P_{n}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$. Given $(X, V, \psi) \in \mathscr{B}_{m, 2 k}\left(S^{1} ; \mathscr{F}_{i}^{+}\right)$the real vector bundle V does not necessarily have a structure of complex vector bundle. Consequently we can not in general use auxiliary action $\psi^{\prime \prime}$ as in the complex case. To remedy this point we first make some cohomological considerations for a special type of (X, V, ψ). Let $\left\{F_{j}\right\}$ be the components of the fixed point set F of φ on X as before.
I. We first assume that each F_{j} has real codimension 2 in X.

We shall prove
Proposition (4.1). Suppose that $(X, V, \psi) \in \mathscr{B}_{m, 2 k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$and each F_{j} has real codimension 2 in X. Then

$$
\begin{aligned}
& \operatorname{sign} \boldsymbol{P}_{\varphi}(V \times \boldsymbol{C})= \begin{cases}\sum_{j} \operatorname{sign} F_{j} & \text { if } k \text { is odd }, \\
0 & \text { if } k \text { is even } .\end{cases} \\
& \operatorname{sign} \boldsymbol{P}_{\varphi}(V)= \begin{cases}0 & \text { if } k \text { is odd }, \\
\sum_{j} \operatorname{sign} F_{j} & \text { if } k \text { is even. } .\end{cases}
\end{aligned}
$$

REMARK. In (4.1), assume moreover that the manifold X (and hence the vector bundle V too) is orientable. Then the Atiyah-Singer formula applied to the semi-free action φ on X yields $\sum_{j} \operatorname{sign} F_{j}=0$. Therefore $\operatorname{sign} \boldsymbol{P}_{\phi}(V \times \boldsymbol{C})=$ $\operatorname{sign} \boldsymbol{P}_{\psi}(V)=0$ in this case.

The proof of (4.1) is preceded by several lemmas. We shall only give proof for $\boldsymbol{P}_{\psi}(V)$, the case for $\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$ being entirely similar.

We use the following notations. $P=\boldsymbol{P}_{\psi}(V), P_{0}=\boldsymbol{P}_{\varphi}(V \mid F)=S(V \mid F) / \psi_{1}$, $Y=X / \varphi$. Let $i: P_{0} \subset P, j: P \subset\left(P, P_{0}\right), i^{\prime}: F \subset Y$ and $j^{\prime}: Y \subset(Y, F)$ be inclusions. Since the projection $S(V) \rightarrow X$ is equivariant with respect to ψ_{1} and .φ^{2} it induces a map $\pi: P \rightarrow Y$. Let $\pi_{0}: P_{0} \rightarrow F$ be the restriction of π and set $\pi_{1}=\left(\pi, \pi_{0}\right):\left(P, P_{0}\right) \rightarrow(Y, F)$. It is easy to see that $\pi: P-P_{0} \rightarrow Y-F$ is a fiber .bundle which has ($2 k-1$)-dimensional real projective space $\boldsymbol{R} P^{2 k-1}$ as fiber and $\pi_{0}: P_{0} \rightarrow F$ is a fiber bundle with fiber $\boldsymbol{C} P^{k-1}$ associated to the vector bundle V with the complex structure determined by our orientation convention. Moreover, since each F_{j} has real codimension 2 in X, the quotient space $Y=X / \varphi$ is a .compact manifold with boundary F. Take a collar neighborhood $F \times[0,1]$ of $F=\partial Y$ in Y and set $Y_{1}=Y-F \times[0,1), Q_{0}=\pi^{-1}(F \times[0,1])$ and $Q_{1}=\pi^{-1}\left(Y_{1}\right)$. Note that Q_{0} is a tubular neighborhood of P_{0} in P.

We shall consider the following commutative diagram.

Here H^{*} denotes the usual rational cohomology and \hat{H}^{*} denotes the cohomology with coefficients in the rational orientation sheaf of the manifold Y. $\pi_{!}$and $\pi_{1!}$ are Gysin homomorphisms; i. e. $\pi_{!}=\vartheta^{-1} \pi_{*} \vartheta$ where ϑ denotes the-Poincaré-Lefschetz duality and π_{11} is the transform (via excision) of $\vartheta^{-1} \pi_{*} \vartheta$: $H^{q}\left(Q_{1}, \partial Q_{1}\right) \rightarrow \hat{H}^{q-(2 k-1)}\left(Y_{1}, \partial Y_{1}\right)$. The homomorphism ρ_{1} is given by $\rho_{1}(y)=y \cdot \bar{\chi}$ where $\bar{\chi} \in \hat{H}^{2 k}(Y)$ is the rational characteristic class of $\boldsymbol{R} P^{2 k-1}$-bundle π :: $Q_{1} \rightarrow Y_{1} \cong Y$, and $\rho=j^{\prime *} \circ \rho_{1}$.

Let $i_{1}: H^{*}\left(P_{0}\right) \rightarrow H^{*}(P)$ be the Gysin homomorphism of i. As is wellknown, the element $\chi=i^{*} i_{1}(1)$ of $H^{2}\left(P_{0}\right)$ is the Euler class of the normal' bundle ν_{i} of the embedding i. Let $e \in H^{2}\left(P_{0}\right)$ denote the first Chern class of the canonical line bundle ξ of the complex projective space bundle P_{0}. Let. $c_{1} \in H^{2}(F)$ denote the first Chern class of the normal bundle μ of F in X with. the complex structure determined by our orientation convention.

Lemma (4.3). With the above notations, we have

$$
\chi=2 e+\pi_{0}^{*}\left(c_{1}\right) .
$$

Proof. We claim that

$$
\nu_{i}=\xi^{2} \otimes \pi_{0}^{*}(\mu),
$$

which implies Lemma (4.3). For the additivity of the first Chern class with respect to the tensor product of complex line bundle yields

$$
\begin{aligned}
\chi=c_{1}\left(\nu_{i}\right) & =2 c_{1}(\xi)+\pi_{0}^{*} c_{1}(\mu) \\
& =2 e+\pi_{0}^{*} c_{1} .
\end{aligned}
$$

To prove the claim, note that the normal bundle $\tilde{\nu}$ of $S(V \mid F)$ in $S(V)$ is. equivalent to $\tilde{\pi}^{*} \mu$ where $\tilde{\pi}: S(V \mid F) \rightarrow F$ is the projection. Moreover we can. choose an equivalence equivariantly with respect to ψ_{1}. Thus we may assume: that $\tilde{\nu}=S(V \mid F) \underset{F}{\times} \mu$ (fiber product) with the action given by

$$
\psi_{1}(g)(v, u)=\left(\psi^{\prime}(g) v, \varphi(g)^{2} u\right) .
$$

$S(V \mid F)$ is contained in the Hopf bundle $\vec{\xi}$, the conjugate bundle of ξ, as the sphere bundle. With this understanding, it is easy to see that the assignment.

$$
[v, u] \longmapsto \bar{v} \otimes \bar{v} \otimes u
$$

gives a well-defined equivalence

$$
\nu_{i}=\tilde{\nu} / \psi_{1} \longrightarrow \tilde{\xi}^{2} \otimes \pi_{0}^{*}(\mu)
$$

where \bar{v} is the conjugation of $v \in \bar{\xi}$ in ξ. This proves (4.3).
To proceed further we recall some fundamental properties of the Gysim homomorphism which we shall use later.

$$
\begin{equation*}
i^{*} i_{1}\left(\pi_{0}^{*}(y) \chi^{j}\right)=\pi_{0}^{*}(y) \chi^{j+1} \quad \text { for } y \in H^{*}(F) . \tag{4.4}
\end{equation*}
$$

$$
\begin{gather*}
\pi_{1} i_{1}= \pm \delta^{*} \pi_{01} \tag{4.5}\\
\pi_{!}\left(\pi^{*}(y) x\right)=y \pi_{1}(x) \quad \text { for } y \in H^{*}(Y) \text { and } x \in H^{*}(P) . \tag{4.6}
\end{gather*}
$$

Now since P_{0} is a complex projective space bundle, $H^{*}\left(P_{0}\right)$ is a free $H^{*}(F)$ module (via π_{0}^{*}) on generators $1, e, \cdots, e^{k-1}$. In virtue of (4.3) $1, \chi, \cdots, \chi^{k-1}$ also form a system of free $H^{*}(F)$-module generators.

Lemma (4.7). The Gysin homomorphism

$$
\pi_{01}: H^{*}\left(P_{0}\right) \longrightarrow H^{*}(F)
$$

is onto. Its kernel equals

$$
A=\sum_{j=0}^{k-2} H^{*}(F) \chi^{j} .
$$

Proof. π_{01} lowers degree by $2(k-1)$. Hence $\pi_{01}\left(\chi^{j}\right)=0$ for $j<k-1$. Then

$$
\pi_{01}\left(\pi_{0}^{*}(y) \chi^{j}\right)=y \pi_{01}\left(\chi^{j}\right)=0 \quad \text { for } j<k-1 .
$$

Thus $\pi_{0!}(A)=0$. If we assume $\pi_{01}\left(\chi^{k-1}\right)=0$, then π_{01} would be trivial. But the Gysin homomorphism maps the top dimensional classes of P_{0} into the top dimensional classes of F non-trivially. Hence $\pi_{01}\left(\chi^{k-1}\right) \neq 0$ and $\pi_{01}\left(H^{*}(F) \chi^{k-1}\right)$ $=H^{*}(F)$.

Lemma (4.8). Let $A=\sum_{j=0}^{k-2} H^{*}(F) \cdot \chi^{j}$ as above. Then $i_{1} \mid A$ and $i^{*} \mid i_{1}(A)$ are injective.

Proof. This follows immediately from (4.4).
Lemma (4.9). The rows of (4.2) are exact. The columns of (4.2) are exact except for the part

$$
H^{q}(Y) \xrightarrow{\pi^{*}} H^{q}(P) \xrightarrow{\pi_{1}} H^{q-(2 k-1)}(Y, F) .
$$

Proof. The rows are part of exact sequences of pairs and hence exact. The first column is exact as part of the Gysin exact sequence in the rational cohomology of the $\boldsymbol{R} P^{2 k-1}$-bundle $\pi_{1}:\left(Q_{1}, \partial Q_{1}\right) \rightarrow\left(Y_{1}, \partial Y_{1}\right)$.

To prove the exactness of

$$
\begin{equation*}
H^{q}(P) \xrightarrow{\pi_{1}} \hat{H}^{q-(2 k-1)}(Y, F) \xrightarrow{\rho} H^{q+1}(Y) \tag{4.10}
\end{equation*}
$$

we consider the following commutative diagram

where $\pi_{0!}^{\prime}$ and $\pi_{!}^{\prime}$ are Gysin homomorphisms and $\rho^{\prime}(y)=y \bar{\chi}$. Let

$$
\phi: H^{*}\left(P_{0}\right) \longrightarrow H^{*}\left(Q_{0}, \partial Q_{0}\right)
$$

be the Thom isomorphism. Then we have

$$
\pi_{01}^{\prime}=\pi_{0!} \circ \phi^{-1} \quad \text { and } \quad j_{1}^{*} \circ \phi=i_{1} .
$$

Therefore from (4.7) and (4.8) it follows that π_{01}^{\prime} is surjective and $\delta_{1}^{*}\left(H^{q}\left(Q_{1}\right)\right)$ \cap Kernel $\pi_{01}^{\prime}=0$. Then the exactness of (4.10) follows from a diagram chasing using the exactness of the third column of the above diagram.

Proposition (4.11). Let $(X, V, \psi) \in \mathscr{B}_{m, 2 k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$and assume that $\operatorname{codim}_{R} F_{j}=2$ for all F_{j}. Then

$$
\begin{aligned}
& \text { Kernel of } \pi_{!}: H^{q}(P) \longrightarrow \hat{H}^{q-(2 k-1)}(Y, F) \\
& \quad=\pi^{*} H^{q}(Y) \oplus i_{!}\left(A^{q-2}\right) \quad(\text { direct sum })
\end{aligned}
$$

where

$$
A^{q-2}=\sum_{j=0}^{k-2} H^{q-2-2 j}(F) \chi^{j}
$$

Proof. Since π_{1} lowers degree by $2 k-1$ we have $\pi_{!}(1)=0$. Then, by (4.6),

$$
\pi^{*} H^{q}(Y) \subset \text { Kernel of } \pi_{1}
$$

By (4.5) and (4.7) we have, for $j \leqq k-2$,

$$
\pi_{1} i_{1}\left(\pi_{0}^{*}(y) \chi^{j}\right)= \pm \delta^{*} \pi_{01}\left(\pi_{0}^{*}(y) \chi^{j}\right)=0
$$

Thus $i_{4}(A) \subset$ Kernel of $\pi_{!}$.
Next, using (4.4) we obtain

$$
i^{*}\left(\pi^{*} H^{q}(Y) \cap i_{\mathrm{t}}\left(A^{q-2}\right)\right) \subset \pi_{0}^{*} H^{q}(F) \cap A^{q-2} \cdot \chi=0 .
$$

But i^{*} is injective on $i_{!}\left(A^{q-2}\right)$ by (4.8). Hence $\pi^{*} H^{q}(Y) \cap i_{!}\left(A^{q-2}\right)=0$. We have proved that

$$
\pi^{*} H^{q}(Y) \oplus i_{1}\left(A^{q-2}\right) \subset \text { Kernel } \pi_{!}
$$

To prove the equality it is therefore sufficient to show that

$$
\operatorname{dim} \pi^{*} H^{q}(Y)+\operatorname{dim} A^{q-2}=\operatorname{dim} \text { Kernel } \pi_{1},
$$

or

$$
\operatorname{dim} \pi^{*} H^{q}(Y)+\operatorname{dim} A^{q-2}+\operatorname{dim} \pi!H^{q}(P)=\operatorname{dim} H^{q}(P)
$$

This follows from a diagram chasing of (4.2) using (4.9). We leave the details to the reader. We only note that

$$
i^{*} H^{q}(P)=A^{q-2} \cdot \chi \oplus \pi_{0}^{*}\left(\delta^{\prime *-1}\left(\rho_{1} \hat{H}^{q-(2 k-1)}(Y, F)\right)\right)
$$

as follows easily from (4.4).
Lemma (4.12). Suppose that $(X, V, \psi) \in \mathscr{B}_{2 m, 2 k}\left(S^{1} ; \mathscr{F}_{i}^{+}\right)$and $\operatorname{codim}_{R} F_{j}=2$
for all F_{j}. Then the pairing

$$
\pi^{*} H^{m+k-1}(Y) \times \pi!H^{m \leftarrow k-1}(P) \longrightarrow \boldsymbol{R}
$$

defined by

$$
\pi^{*} y \cdot \pi_{!}(x)=\left(\pi^{*} y \cdot x\right)[P]
$$

is a dual pairing. In particular

$$
\operatorname{dim} \pi^{*} H^{m * k-1}(Y)=\operatorname{dim} \pi!H^{m \leftarrow k-1}(P) .
$$

Proof. If $\pi^{*} y \cdot \pi_{!}(x)=0$ for any x, then by Poincaré duality in $P, \pi^{*} y=0$. Suppose that $\pi^{*} y \cdot \pi_{!}(x)=0$ for any $y \in H^{m+k-1}(Y)$. Then

$$
0=\pi_{\mathrm{t}}\left(\pi^{*} y \cdot x\right)[Y, F]=\left(y \cdot \pi_{\mathrm{t}}(x)\right)[Y, F]
$$

for all y by (4.6). Hence $\pi_{1}(x)=0$. This proves (4.12).
We are now ready to prove Proposition (4.1). In the case of $\boldsymbol{P}_{\varphi}(V)$ we may clearly assume that $(X, V, \psi) \in \mathscr{B}_{2 m, 2 k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$and $m+k-1$ is even. We set

$$
B_{1}=i_{1}\left(A^{m+k-3}\right), \quad B_{2}=\pi^{*} H^{m+k-1}(Y)
$$

and

$$
B_{3}=\mathrm{a} \text { complement of } B_{1} \oplus B_{2} \text { in } H^{m+k-1}(P) .
$$

Then by (4.6), (4.11) and (4.12) the matrix of the cup product

$$
H^{m+k-1}(P) \times H^{m+k-1}(P) \longrightarrow \boldsymbol{R}
$$

with respect to the decomposition $H^{m \downarrow k-1}(P)=B_{1} \oplus B_{2} \oplus B_{3}$ is of the following form.

B_{1}	M_{11}	0	$*$
B_{2}	0	0	M_{23}
B_{3}	$*$	${ }^{t} M_{23}$	$*$

It follows easily that

$$
\operatorname{sign} \boldsymbol{P}_{\varphi}(V)=\operatorname{sign} M_{11} .
$$

But using (4.4) we get

$$
i_{1}\left(y_{1} \chi^{j_{1}}\right) i_{1}\left(y_{2} \chi^{j_{2}}\right)=i_{1}\left(y_{1} y_{2} \chi^{j_{1}+j_{2}+1}\right)
$$

and hence

$$
i_{1}\left(y_{1} \chi^{j_{1}}\right) i_{1}\left(y_{2} \chi^{j_{2}}\right)[P]=y_{1} y_{2} \chi^{j_{1}+j_{2}+1}\left[P_{0}\right] .
$$

Therefore $\operatorname{sign} M_{11}$ is equal to the signature of the bilinear form Q on $A^{m+k-3}=\sum_{j=0}^{k-2} H^{m+k-3-2 j}(F) \chi^{j}$ defined by

$$
Q\left(y_{1} \chi^{j_{1}}, y_{2} \chi^{j_{2}}\right)=y_{1} y_{2} \chi^{j_{1}+j_{2}+1}\left[P_{0}\right] .
$$

We set

$$
C_{j}=H^{m+k-3-2 j}(F) \chi^{j} .
$$

Since the fundamental cohomology class of P_{0} is $\mu \chi^{k-1}$ where μ is that of F, we get

$$
Q\left(C_{j_{1}}, C_{j_{2}}\right)=0 \quad \text { for } j_{1}+j_{2}+1<k-1
$$

and

$$
Q\left(y_{1} \chi^{j_{1}}, y_{2} \chi^{j_{2}}\right)=y_{1} y_{2}[F] \quad \text { for } j_{1}+j_{2}+1=k-1
$$

Therefore the matrix of Q with respect to the decomposition $A^{m+k-3}=C_{1} \oplus$ $\cdots \oplus C_{k-2}$ is of the form

where $N_{j, k-2-j}$ is the matrix of the cup product $H^{m+k-3-2 j}(F) \times H^{m-k+1+2 j}(F)$, $\rightarrow \boldsymbol{R}$. From this it follows easily that

$$
\begin{aligned}
\operatorname{sign} \boldsymbol{P}_{\varphi}(V) & =\operatorname{sign} M_{11} \\
& =\operatorname{sign} Q=\left\{\begin{array}{l}
0, \quad \text { if } k \text { is odd }, \\
\operatorname{sign} F, \quad \text { if } k \text { is even } .
\end{array}\right.
\end{aligned}
$$

This completes the proof of (4.1) for $\boldsymbol{P}_{\varphi}(V)$. The case of $\boldsymbol{P}_{\boldsymbol{\varphi}}(V \times \boldsymbol{C})$ is similarly proved.
II. General case. First we shall prove the following proposition which is a variant of the Atiyah-Singer formula. Cf. (3.9) and (3.10).

Proposition (4.13). Let $(X, V, \psi) \in \mathcal{B}_{m, 2 k}\left(S^{1} ; \mathscr{F}_{i}^{+}\right)$. Let $\left\{F_{j}\right\}$ be the components of the fixed point set F of φ in X. Then

$$
\operatorname{sign} P_{\psi}(V \times C)=\sum_{\text {codim }} \sum_{F_{j} \text { even }} \operatorname{sign} F_{j},
$$

$$
\operatorname{sign} \boldsymbol{P}_{\psi}(V)=\sum_{\operatorname{codim} C F_{j} \text { odd }} \operatorname{sign} F_{j},
$$

where codim_{c} means the complex codimension in V.
Proof. First we shall decompose $[X, V, \psi]$ into a sum of elements with certain simple properties. Take a φ-invariant tubular neighborhood $D\left(U_{j}\right)$, around F_{j} and let $p_{j}: D\left(U_{j}\right) \rightarrow F_{j}$ be the projection of the normal bundle. Then there is a ϕ-equivariant bundle equivalence

$$
\theta_{j}: V\left|D\left(U_{j}\right) \longrightarrow p^{*}\left(V \mid F_{j}\right)=D\left(U_{j}\right) \times V\right| F_{j}
$$

where the action ψ on $p^{*}\left(V \mid F_{j}\right)$ is given by

$$
\begin{aligned}
\psi(g)(u, v) & =(\psi(g) u, \phi(g) v) \\
& =\left(\varphi(g)^{l} u, \phi(g) v\right)
\end{aligned}
$$

We identify both bundles through θ_{j} and consider the S^{1}-action $\psi^{\prime \prime}$ defined by

$$
\phi^{\prime \prime}(g)(u, v)=(\varphi(g) u, v) .
$$

Clearly $\psi^{\prime \prime}$ commutes with ψ. Moreover it is semi-free outside of $V \mid F_{j-}$ Therefore the mapping cylinder W_{j} of the projection $V\left|S\left(U_{j}\right) \rightarrow V\right| S\left(U_{j}\right) / \psi^{\prime \prime}$ is a vector bundle over the mapping cylinder Y_{j} of the projection $S\left(U_{j}\right) \rightarrow$ $S\left(U_{j}\right) / \varphi$ where $S\left(U_{j}\right)=\partial D\left(U_{j}\right)$. Thus we can form a vector bundle

$$
V_{j}=V \mid D\left(U_{j}\right) \cup W_{j}
$$

on the complex projective space bundle $X_{j}=\boldsymbol{P}\left(U_{j} \times \boldsymbol{C}\right)=D\left(U_{j}\right) \cup Y_{j}$. The orientation of the manifold V_{j} is given concordantly with that of $V \mid D\left(U_{j}\right)$ The actions ψ and $\psi^{\prime \prime}$ are extended over V_{j} in the obvious way. Define

$$
V^{\prime}=\left(V-\cup \operatorname{int} V \mid D\left(U_{j}\right)\right) \cup \cup W_{j}
$$

glued along $\cup V \mid S\left(V_{j}\right)$, and

$$
X^{\prime}=\left(X-\cup \text { int } D\left(U_{j}\right)\right) \cup \cup Y_{j}
$$

glued along $\cup S\left(U_{j}\right)$. The action ψ is also extended on V^{\prime}. We have

$$
[X, V, \psi]=\left[X^{\prime}, V^{\prime}, \psi\right]+\Sigma\left[X_{j}, V_{j}, \psi\right]
$$

It is therefore sufficient to prove (4.13) for ($X^{\prime}, V^{\prime}, \psi$) and (X_{j}, V_{j}, ψ) separately. The fixed point set of φ in X^{\prime} is the union of $L_{j}=\boldsymbol{P}\left(U_{j}\right)$. Since each L_{j} has real codimension 2 in X^{\prime} we can apply (4.1) which is a special case of (4.13).

The fixed point set of φ in X_{j} is the union of F_{j} and $-L_{j}$, where $-L_{j}$, is $\boldsymbol{P}\left(U_{j}\right)$ with the opposite orientation. The action $\psi^{\prime \prime}$ on $\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$ is semi-
free and its fixed point set is the union of $\boldsymbol{P}\left(V_{j} \mid F_{j} \times \boldsymbol{C}\right)$ and $-\boldsymbol{P}\left(V_{j} \mid L_{j} \times \boldsymbol{C}\right)$. Applying the Atiyah-Singer formula in the semi-free case we obtain

$$
\begin{aligned}
\operatorname{sign} \boldsymbol{P}_{\varphi}\left(V_{j} \times \boldsymbol{C}\right) & = \begin{cases}\operatorname{sign} \boldsymbol{P}\left(V_{j} \mid F_{j} \times \boldsymbol{C}\right), & \text { if } \operatorname{dim}_{\boldsymbol{c}} U_{j} \text { is even } \\
0, & \text { if } \operatorname{dim}_{\boldsymbol{c}} U_{j} \text { is odd },\end{cases} \\
& = \begin{cases}\operatorname{sign} F_{j}, & \text { if } \operatorname{dim}_{c} U_{j} \text { and } k \text { are both even }, \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

When k is even this proves the formula in (4.13) for $\operatorname{sign} \boldsymbol{P}_{\varphi}(V \times \boldsymbol{C})$. When k is odd then

$$
\operatorname{sign} F_{j}-\operatorname{sign} L_{j}=0
$$

since $L_{j}=\boldsymbol{P}\left(U_{j}\right)$. Thus the formula holds in this case too.
The proof for $\operatorname{sign} \boldsymbol{P}_{\psi}(V)$ is entirely similar and is left to the reader.
Now the Atiyah-Singer formula for $\boldsymbol{P}_{\varphi}(V \times C)$ takes the following form.
Proposition (4.14). Let $(X, V, \psi) \in \mathcal{B}_{m, 2 k}\left(S^{1} ; \mathscr{F}_{l}^{+}\right)$. Let $\left\{F_{j}\right\}$ be the components of the fixed point set of φ in X and $\left\{F_{s}^{\prime}\right\}$ be the components of the fixed point set of ψ in $\boldsymbol{P}_{\psi}(V \times \boldsymbol{C})$ which are contained in $\boldsymbol{P}_{\psi}(V)$, cf. (2.21). We orient F_{j} and F_{s}^{\prime} in accordance with the orientation convention with respect to the action ψ on $\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$. Then we have

$$
\begin{aligned}
\operatorname{sign} \boldsymbol{P}_{\varphi}(V \times \boldsymbol{C}) & =\sum_{\operatorname{codim} F_{j} \text { even }} \operatorname{sign} F_{j}, \\
0 & =\sum_{\operatorname{codim} F_{s}^{\prime} \operatorname{even}} \operatorname{sign} F_{s}^{\prime}
\end{aligned}
$$

and

$$
\sum_{\operatorname{codim} F_{j} \text { odd }} \operatorname{sign} F_{j}+\sum_{\operatorname{codim} F_{s}^{\prime} \text { odd }} \operatorname{sign} F_{s}^{\prime}=0
$$

where codim means the complex codimension in $\boldsymbol{P}_{\phi}(V \times \boldsymbol{C})$.
The deduction of (4.14) from (4.13) is quite similar to that of the Kosniowski formula from (3.10) and is left to the reader. This finishes our proof of the Atiyah-Singer formula.

> University of Tokyo
> and
> Sophia University

References

[1] M. F. Atiyah and I. M. Singer, The index of elliptic operators: III, Ann. of Math., 87 (1968), 546-603.
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, II, Amer. J. Math., 81 (1959), 315-382.
[3] P. E. Conner and E. E. Floyd, Maps of odd period, Ann. of Math., 84 (1966), 132-156.
[4] K. Kawakubo and F. Raymond, The index of manifolds with toral actions and geometric interpretations of the $\sigma\left(\infty,\left(S^{1}, M^{n}\right)\right.$) invariant of Atiyah and Singer Invent. Math., 15 (1972), 53-66.
[5] K. Kawakubo and F. Uchida, On the index of a semi-free S^{1}-action, J. Math. Soc. Japan, 23 (1971), 351-355.
[6] C. Kosniowski, Applications of the holomorphic Lefschetz formula, Bull. London Math. Soc., 2 (1970), 43-48.
[7] E. Ossa, Fixpunktfreie S^{1}-Aktionen, Math. Ann., 186 (1970), 45-52.
[8] F. Uchida, Cobordism groups of semi-free S^{1-} and S^{3}-actions, Osaka J. Math., 7 (1970), 345-351.

[^0]: 1) In [3] the assumption of effectiveness in the definition of (FF, \mathscr{F}^{\prime})-free action was not imposed. We add that assumption to simplify the resulting bordism group.
