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\S 1. Introduction.

In this paper we study smooth actions of the circle group $S^{1}$ on smooth
manifolds from the view point of bordism theory.

Let $G$ be a fixed compact Lie group and $\mathcal{F}^{\prime}$ and $\mathcal{F}$ be families of sub-
groups of $G$ such that $\mathcal{F}^{\prime}\subset \mathcal{F}$ . We assume that both families are closed
under inner automorphisms of $G$ . An action of $G$ on a manifold $M$ will be
called $(\mathcal{F}, \mathcal{F}^{\prime})$ -free provided that it is effective on each component of $M$ and
the isotropy subgroup $G_{x}$ at each point $x\in M$ belongs to $\mathcal{F}$ and, if $x\in\partial M$,
$G_{x}$ belongs to $\mathcal{F}^{\prime}$ . When $\mathcal{F}^{\prime}=\emptyset$ then necessarily $\partial M=\emptyset$ . In this case we
call the action $\mathcal{F}$ -free. The n-dimensional bordism group $\Omega_{n}(G;\mathcal{F}, \mathcal{F}^{\prime})$ of all
orientation preserving $(\mathcal{F}, \mathcal{F}^{\prime})$ -free smooth G-actions on compact oriented
smooth n-manifolds is defined in the obvious way. See $[3]^{1)}$ . If $\mathcal{F}^{\prime}=\emptyset$ then
we denote $\Omega_{n}(G;\mathcal{F}, \emptyset)$ simply by $\Omega_{n}(G;\mathcal{F})$ . These groups are connected by

an exact sequence
$i_{*}$ $j_{*}$ $\partial_{*}$

$...\rightarrow\Omega_{n}(G;\mathcal{F}^{\prime})\rightarrow\Omega_{n}(G;\mathcal{F})\rightarrow\Omega_{n}(G;\mathcal{F}, \mathcal{F}^{\prime})\rightarrow\Omega_{n- 1}(G;\mathcal{F}^{\prime})\rightarrow\ldots$

In an entirely similar way the U-bordism group $\Omega_{n}^{U}(G;\mathcal{F}, \mathcal{F}^{\prime})$ of all U-
structure preserving $(\mathcal{F}, \mathcal{F}^{\prime})$ -free smooth G-actions on compact n-dimensional
U-manifolds (weakly complex manifolds) are defined together with natural
homomorphisms induced by the inclusion $\mathcal{F}^{\prime}\subset \mathcal{F}$ .

In this paper we consider the case in which $G=S^{1}$ and $\mathcal{F}=\mathcal{F}_{l}^{+}$ where
we set

$\mathcal{F}_{\iota}=\{Z_{k}|k\leqq l\}$

and
$\mathcal{F}_{l}^{+}=\mathcal{F}_{\iota}\cup\{S^{1}\}$ .

Here $Z_{k}$ denotes the subgroup of $S^{1}$ consisting of k-th roots of unity. Thus
$g_{\infty}=\cup \mathcal{F}_{\iota}$ is the set of all finite subgroups of $S^{1}$ and $\mathcal{F}_{\infty}^{+}=\cup \mathcal{F}_{\iota}^{+}$ is the set
of all closed subgroups of $S^{1}$ .

Our main results are the following.

1) In [3] the assumption of effectiveness in the definition of $(\mathcal{F}, \mathcal{F}^{\prime})$ -free action
was not imposed. We add that assumption to simplify the resulting bordism group.
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THEOREMS (2.22) and (2.29). For each integer 1, $1<l$ , the sequences

$0\rightarrow\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l-1}^{+})\rightarrow^{i_{*}}\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+})\rightarrow^{j_{*}}\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})\rightarrow 0$

and
$i_{*}$ $j_{*}$

$0\rightarrow\Omega_{n}(S^{1} ; \mathcal{F}_{l-1}^{+})\rightarrow\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+})\rightarrow\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})\rightarrow 0$

are split exact.
In Section 2 we shall construct splittings

${}^{t}P:\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})\rightarrow\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$

and
${}^{t}P:\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})\rightarrow\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+})$

which we call ” twisted complex projective space bundle construction ”.
Setting

${}^{t}P_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+})={}^{t}P\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$

and
${}^{t}P_{n}(S^{1} ; \mathcal{F}_{l}^{+})={}^{t}P\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$

we have immediate corollaries.
COROLLARIES (2.24) and (2.30). There are canonical isomorphisms

$\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+})\cong\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{1}^{+})\oplus\sum_{1<k\leq\ell}{}^{t}P_{n}^{U}(S^{1} ; \mathcal{F}_{k}^{+})$

$\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{\infty}^{+})\cong\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{1}^{+})\oplus\sum_{1<k}{}^{t}P_{n}^{U}(S^{1} ; \mathcal{F}_{k}^{+})$

$\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+})\cong\Omega_{n}(S^{1} ; \mathcal{F}_{1}^{+})\oplus\sum_{1<k\xi l}{}^{t}P_{n}(S^{1} ; \mathcal{F}_{k}^{+})$

and
$\Omega_{n}(S^{1} ; \mathcal{F}_{\infty}^{\vdash})\cong\Omega_{n}(S^{1} ; \mathcal{F}_{1}^{+})\oplus\sum_{1\nwarrow k}{}^{t}P_{n}(S^{1} ; \mathcal{F}_{k}^{+})$ .

As was shown in [8] the group $\Omega_{n}(S^{1} ; \mathcal{F}_{1}^{+})$ is generated by complex projec-
tive space bundles. Analogous fact holds for $\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ . We can say that
twisted complex projective space bundles are as simple as complex projective
space bundles. Thus these corollaries exhibit generators for $\Omega_{*}^{\sigma}(S^{1} ; \mathcal{F}_{l}^{+})$ and
$\Omega_{*}(S^{1} ; \mathcal{F}_{l}^{+})$ which are geometrically very simple.

We note here that our methods are applicable to the case of stationary
point free actions, $i$ . $e$ . the case of $\mathcal{F}_{\iota}$ -free actions, with minor modifications
in the real case. However that case was already treated by Ossa [7] and
indeed our methods are quite similar to his.

In Sections 3 and 4 we shall give an elementary proof of the Kosniowski
formula [6] and the Atiyah-Singer formula [1, p. 594] in the framework of
bordism theory. These formulae were originally proved by using the Atiyah-
Singer G-signature theorem. In the case of semi-free actions proofs in the
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framework of bordism theory were given by Kawakubo and Uchida [5] for
the Atiyah-Singer formula and by Takao Matumoto (unpublished) for the
Kosniowski formula. Another proof of Atiyah-Singer’s formula which uses
generalized manifolds was given by Kawakubo and Raymond [4].

Thanks are due to F. Uchida for stimulating conversations.

\S 2. Twisted complex projective space bundles.

Let $V\rightarrow X$ be a vector bundle (real or complex) and let

$\psi:S^{1}\times V\rightarrow V$

be an effective continuous $S^{1}$ -action by vector bundle isomorphisms of $V$ .
Then $\psi$ defines an injective homomorphism $S^{1}\rightarrow Isom(V)$ which we shall also
denote by the same letter $\psi$ where Isom (V) denotes the group of all vector
bundle isomorphisms of $V$ onto itself. Thus, by this convention, we write
$\psi(g)v$ for $\psi(g, v)$ for any $g\in S^{1}$ and $v\in V$ . We always indentify $X$ with the
zero cross-section image of the bundle $V$ . Set

$H=$ {$g|g\in S^{1},$ $\psi(g)x=x$ for all $x\in X$ }.

Then $H$ is a closed subgroup of $S^{1}$ . $H$ equals the whole group $S^{1}$ if and
only if each $\psi(g)$ is an automorphism of the bundle $V$ . If $H\neq S^{1}$ , then $H$

equals $Z_{l}$ , the l-th roots of unity, for some $l\geqq 1$ and it is easy to see that
there is a unique $S^{1}$ -action $\varphi$ on $X$ such that

$\psi(g)x=\varphi(g)^{t_{X}}$

for all $g\in S^{1}$ and $x\in X$. In this case we say that the action $\psi$ is of order $l$.
DEFINITION (2.1). Let 1 be an integer, $1<1$ . An $S^{1}$ -action $\psi$ on $V$ is said

to be strictly $\mathcal{F}_{l}^{+}$ -free if the following three conditions are satisfied:
1) $\psi$ is of order $l$ ,
2) the action $\varphi$ (defined as above) on $X$ is semi-free, $i$ . $e$ . $\mathcal{F}_{1}^{+}$ -free and
3) the action $\psi$ restricted on $V-X$ is $\mathcal{F}_{l-1}$ -free.
Note that if the action $\psi$ is strictly $\mathcal{F}_{l}^{+}$ -free then the fixed point set of

$\psi$ is contained in $X$ as a proper subset. Here by the fixed point set of an
action we mean the set of points which are fixed by all elements of the
group.

Now let $X$ be a compact U-manifold and $V$ a smooth complex vector
bundle on $X$. Then $V$ , regarded as a smooth manifold, has the obvious
induced U-structure. A smooth $S^{1}$ -action $\psi:S^{1}\rightarrow Isom(V)$ is called to be
U-structure preserving if each $\psi(g)$ preserves the U-structure on the base $X$.
Note that, in that case, each $\psi(g)$ also preserves the induced U-structure on
V. Let $l$ be an integer, $1<l$ , and let $\mathcal{B}_{m.2k}^{\sigma}(S^{1} ; \mathcal{F}_{l}^{+})$ denote the totality of
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triples (X, $V,$ $\psi$) where $V\rightarrow X$ is a smooth complex k-vector bundle on a
compact m-dimensional U-manifold without boundary $X$ and $\psi$ is an effective
U-structure preserving smooth $S^{1}$ -action on $V$ which is strictly $\mathcal{F}_{l}^{+}$ -free. Two
triples (X, $V,$ $\psi$) and $(X^{\prime}, V^{\prime}, \psi^{\prime})$ in $\mathcal{B}_{m,2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ are called bordant if there
is a compact $(m+1)$ -dimensional U-manifold $Y$, a smooth complex k-vector
bundle $W$ on $Y$ and a U-structure preserving, strictly $\mathcal{F}_{l}^{+}$ -free, smooth $S^{1}-$

action $\Psi$ on $W$ such that

$\partial Y=X\cup-X^{\gamma}$

$W|X=V$ , $W|X^{\prime}=V^{\prime}$

and
$\Psi|V=\psi$ , $\Psi|V^{\prime}=\psi^{\prime}$

where -X’ denotes the U-manifold $X$‘ with the opposite U-structure as usual.
This is clearly an equivalence relation. The set of all equivalence classes of
$\mathcal{B}_{m.2k}^{U}(S^{1}, \mathcal{F}_{l}^{+})$ will be denoted by $B_{m2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ and the class of (X, $V,$ $\psi$) will
be denoted by [X, $V,$ $\psi$]. $B_{m,2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ becomes an abelian group where the
addition is induced by disjoint union. The verification of the fact is quite
routine and is omitted.

Next let $X$ be a compact smooth manifold and $V$ a smooth real vector
bundle on $X$ such that $w_{1}(X)$ equals the first Stiefel-Whitney class of the
vector bundle $V\rightarrow X$. Then $V$ , regarded as a manifold, is orientable. A
triple (X, $V,$ $\psi$) in which $V\rightarrow X$ is a real vector bundle with the above pro-
perty and $\psi:S^{1}\rightarrow Isom(V)$ is an effective smooth action will be called oriented
if $V$ , regarded as a manifold, is oriented. For an integer $l$ greater than 1,

we shall denote by $\mathcal{B}_{m,k}(S$
‘ ; $\mathcal{F}_{l}^{+})$ the totality of oriented triples (X, $V,$ $\psi$) in

which $\dim X=m$ , fiber-dim $V=k$ and $\psi$ is strictly $\mathcal{F}_{l}^{\neq}$ -free. The bordism
relation between oriented triples and the resulting bordism group $B_{m,k}(S^{1} ; \mathcal{F}_{\iota}^{+})$

are defined in a similar way as the unitary case.
REMARK (2.2). We shall show later that $\mathcal{B}_{m,k}(S^{1} ; \mathcal{F}_{l}^{+})=\emptyset$ and consequently

$B_{m,k}(S^{1} ; \mathcal{F}_{l}^{\perp})=0$ for odd $k$ .
Now suppose that a pair $(M, \psi)$ of a compact smooth manifold $M$ and an

$(\mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$ -free smooth $S^{1}$ -action $\psi$ on $M$ is given. A connected component $X$

of the $fi>:\neg,d$ point set of $\psi(Z_{l})$ will be called to be of the first kind if it con-
tains a point $x$ whose isotropy subgroup equals precisely $Z_{l}$ .

LEMMA (2.3). Let $\psi$ be an $(\mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$ -free smooth action on a compact
smooth manifold M. If $X$ is a connected component of the first kind of the

fixed point set of $\psi(Z_{l})$ , then $X$ is contained in the interior of M. Consequently
$X$ has no boundary. Moreover if $V$ is the normal bundle of $X$ in $M$ then the

induced action $\psi$ on $V$ is strictly $\mathcal{F}_{l}^{+}$ -free.
PROOF. Assume that $ X\cap\partial M\neq\emptyset$ . Then, by the equivariant collar neigh-
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“borhood theorem, $X\cap\partial M=\partial X$ and the fixed point set $F$ of $\psi(S^{1})$ in $X$ con-
-tains a neighborbood of $\partial X$ in $X$. But $F-\partial X$ is a manifold without boundary.
Therefore $F$ must coincide with the whole $X$ which is a contradiction. Thus
$ X_{\cap}\partial M=\emptyset$ . The rest of the statement is clear.

LEMMA (2.4). Let $\psi$ be an $(\mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$ -free smooth $S^{1}$ -action on a compact
smooth n-manifold M. Let $\{X_{i}\}$ be the totality of connected components of the

-first kind of the fixed point set of $\psi(Z_{l})$ and let $D_{i}$ be the $\psi$ -invariant closed
tubular neighborhood of $X_{i}$ with respect to a $\psi$ -invariant Riemannian metric
on M. Then we have

$\Sigma[D_{i}, \psi]=[M, \psi]$

.in $\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$ .
PROOF. Since the action $\psi$ restricted on $M-\cup D_{i}$ is $\mathcal{F}_{l-1}^{+}$ -free, the state-

ment follows from [3, (5.2)]. Similarly we have
LEMMA (2.5). Let $\psi$ be a U-structure preserving $(\mathcal{F}_{t}^{+}, \mathcal{F}_{\iota-1}^{+})$ -free smooth $S^{1}-$

action on a compact U-manifold $M$ and let $X_{i}$ and $V_{i}$ have similar meanings
.as in (2.4). Then

$\sum[D_{i}, \psi]=[M, \psi]$

.in $\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$ .
We consider the homomorphisms

$\nu;\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{\iota}^{+}, \mathcal{F}_{l-1}^{+})\rightarrow\sum_{m+2k=n}B_{m2k}^{U}(S^{1} ; \mathcal{F}_{\iota}^{\perp})$

:and
$\nu;\Omega_{n}(S^{1} ; \mathcal{F}_{\iota}^{+}, \mathcal{F}_{\iota-1}^{+})\rightarrow\sum_{m+k=n}B_{m,k}(S^{1} ; \mathcal{F}_{l}^{+})$

defined by
$\nu[M, \psi]=\sum[X_{i}, V_{i}, \psi]$

where the summation is taken over the connected components of the first
‘kind of the fixed point set of $\psi(Z_{l})$ and $V_{i}$ is the normal bundle of $X_{i}$ in $M$.
In the real case we orient $V_{i}$ concordantly with $M$. In the complex case $X_{i}$

has the natural U-structure and $V_{i}$ becomes a complex vector bundle on
which $\psi$ acts by U-structure preserving isomorphisms of complex vector
bundle. By (2.3) $[X_{i}, V_{i}, \psi]$ belongs to $B_{m,2k}(S^{1} ; \mathcal{F}_{l}^{+})$ or $B_{m,k}(S^{1} ; \mathcal{F}_{\iota}^{+})$ as the
case may be.

PROPOSITION (2.6). The homomorphisms

$\nu;\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})\rightarrow\sum_{m+2k=n}B_{m,2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$

.and
$\nu$ ;

$\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})\rightarrow\sum_{m+k=n}B_{m,k}(S^{1} ; \mathcal{F}_{l}^{+})$

are isomorphisms.
PROOF. Given a triple (X, $V,$ $\psi$ ) in $\mathcal{B}_{m.2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ or $\mathcal{B}_{m,k}(S^{1} ; \mathcal{F}_{v}^{+})$ , let $D(V)$

be the disk bundle of $V$ with $re3p^{a\cap}.t$ to a $\psi$ -invariant metric on the vector
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bundle $V$ . Then it is a routine matter to verify that the assignment

[X, $V,$ $\psi$] $-[D(V), \psi]$

gives a well-defined homomorphism

$\delta:B_{m,2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})-\Omega_{m+2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$

or
$\delta:B_{m,k}(S^{1}. \mathcal{F}_{l}^{+})\rightarrow\Omega_{m+k}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{\iota-1}^{+})$ .

Then clearly we have
$\nu\circ\delta=identity$ .

By (2.5) and (2.4) we also have

$\delta\circ\nu=identity$ .
This proves that $\nu$ is an isomorphism and $\nu^{-1}=\delta$ .

To define twisted complex projective space bundle we need some pre-
liminaries. First we consider the complex case. If (X, $V,$ $\psi$) is a triple in
$\mathcal{B}_{m.2k}^{U}(S$

‘ ; $\mathcal{F}_{l}^{+})$ then the subgroup $Z_{l}\subset S^{1}$ acts on $V$ by automorphisms. We
assume that $X$ is connected. This will not destroy the generality of argu-
ments which follow. Then, as is well known, there is a unique eigen-value
decomposition of $V$ into a direct sum

(2.7)
$V=\sum_{0_{\backslash }\iota_{i<}\iota}V(l_{i})$

such that, for all $g\in Z_{l}$ and $v\in V(l_{i})$ ,

(2.8) $\psi(g)v=g^{\iota_{i}}v$ .
Note that the eigen-values of $\psi(g)$ on $V$ are of the form $g^{\iota_{i}},$ $0\leqq l_{i}<l$ . But
by the condition 3) of (2.1), $1=g^{0}$ does not occur in our case. To avoid
confusion we denote by $\psi^{\prime}(g)$ the scalar multiplication by $g\in S^{1}\subset C$ in the
complex vector bundle $V$ . Thus

$\psi^{\prime}(g)v=gv$

for $g\in S^{1}$ and $v\in V$ . With this notation we have, for $g\in Z_{l}$ ,

(2.8) $\psi(g)=\psi^{\prime}(g)^{\iota_{i}}$ on $V(l_{i})$ .
Let $F$ be the fixed point set of the action $\varphi$ on $X$ (see (2.1)). $F$ is a

proper submanifold of $X$. Let $\{F_{j}\}$ be the totality of connected components.
of $F$. Then the group $S^{1}$ acts on $V|F_{j}$ by automorphisms via $\psi$ and each
$V(l_{i})|F_{j}$ is clearly $S^{1}$ -invariant. Therefore we have eigen-value decomposition-

$V(l_{i})|F_{j}=\sum_{r\in Z}V(l_{i}, r)$

where
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$\psi(g)=\psi^{\prime}(g)^{r}$ on $V(l_{i}, r)$ .
Note that the integers $r$ must satisfy the relation

$r\equiv l_{i}$ $mod l$ .
-Moreover the isotropy subgroup at any point $v\neq 0$ in $V(l_{i}, r)$ is $Z_{1rI}$ . There-
fore, in view of the condition 3) in (2.1), the possible ones for which $V(l_{i}, r)$

$\neq 0$ are $l_{i}$ and $l_{i}-l$ . (Recall that $0<l_{i}<l.$) Setting

$V_{j}^{+}(l_{i})=V(l_{i}, l_{i})$ ,

$V_{j}^{-}(l_{i})=V(l_{i}, l_{i}-l)$ ,

we have a $\psi$ -invariant decomposition

(2.9) $V(l_{i})|F_{j}=V_{f}^{+}(l_{i})\oplus V_{j}^{-}(l_{i})$

where $\psi(g)=\psi^{\prime}(g)^{l_{i}}$ on $V_{j}^{+}(l_{i})$ and $\psi(g)=\psi^{\prime}(g)^{l_{i}-l}$ on $V_{j}^{-}(l_{i})$ .
Next consider the $S^{1}$ -action on $V(l_{i})$ defined by

$g\leftrightarrow\psi(g)\psi^{\prime}(g)^{-\iota_{i}}$ .
Since $\psi$ and $\psi^{\prime}$ commute with each other this defines an action of $S^{1}$ . More-
over since $\psi(g)\psi^{\prime}(g)^{-\iota_{i}}=1$ for $g\in Z_{l}$ on $V(l_{i})$ by (2.8), there exists a unique
$S^{1}$ -action $\psi_{i}^{\prime\prime}$ on $V(l_{i})$ such that
$|(2.10)$ $\psi_{i}^{\prime\prime}(g)^{l}=\psi(g)\psi^{\prime}(g)^{-\iota_{i}}$ .
Then $\psi_{i^{\prime}}$ is an action which covers $\varphi$ . Thus we can form the direct sum
.action

$\psi^{\prime\prime}(g)=\sum\psi_{i^{\prime\prime}}(g)$

$\ovalbox{\tt\small REJECT} onV=\sum V(l_{i})$ . It is clear that $\psi$ “ commutes with $\psi$ and $\psi^{\prime}$ . Furthermore
from (2.9) and (2.10) it follows that

$’(2.11)$ $\psi^{\prime\prime}(g)=\dagger\psi^{\prime}(g)^{-1}1$

on $V_{j}^{+}(l_{i})$ ,

on $V_{j}^{-}(l_{i})$ .
Finally we define $\psi_{1}$ by

(2.12) $\psi_{1}(g)=\psi^{\prime\prime}(g)^{2}\psi^{\prime}(g)$ .
Since $\psi^{\prime\prime}$ commutes with $\psi^{\prime}$ this defines an $S^{1}$ -action $\psi_{1}$ : $S^{1}\rightarrow lsom(V)$ which
commutes with $\psi,$ $\psi$ ‘, and $\psi^{\prime\prime}$ . Note that the action $\psi_{1}$ restricted on $X$ equals

$’\varphi^{2}$ . The behavior of $\psi_{1}$ on $V_{j}^{\pm}(l_{i})$ is given by

$’(2.13)$ $\psi_{1}(g)=\{\psi^{\prime}(g)^{-1}\psi(g)$

on $V_{j}^{+}(l_{i})$ ,

on $V_{j}^{-}(l_{i})$ ,

ias is easily seen from (2.9) and (2.11).

We extend the actions $\psi$ and $\psi_{1}$ over $V\times C$, Whitney sum of $V$ and the
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trivial complex:line bundle, by putting

(2.14) $\psi(g)(v, \alpha)=(\psi(g)v, \alpha)$

and

(2.15) $\psi_{1}(g)(v, \alpha)=(\psi_{1}(g)v, g\alpha)$ .

From the above data we readily obtain the following
PROPOSITION (2.16). Let (X, $V,$ $\psi$) $\in \mathcal{B}_{m.2h}^{U}(S^{1} ; \mathcal{T}_{l}^{+})$ where $X$ is $connected_{\leftrightarrow}$

The action $\psi_{1}$ on $V$ and $V\times C$ is strictly $\mathcal{F}_{2}^{+}$ -free. In particular it is free $(i$ . $e_{\succ}$

$\mathcal{F}_{1}$ -free) on $V-X$ and $V\times C-X$.
Now choose a $\psi$ -invariant hermitian metric on $V$ and extend it in the $\cdot$

obvious way over $V\times C$. Note that the metric is also $\psi^{\prime\prime}-$ and $\psi_{1}$ -invariant.
Let $S(V)$ and $S(V\times C)$ be the corresponding unit sphere bundles. The action
$\psi_{1}$ keeps $S(V)$ and $S(V\times C)$ invariant and it acts freely on them by (2.16)..

Hence the quotient spaces
$P_{\psi}(V)=.\backslash \backslash (V)/\psi_{1}$

and
$P_{\psi}(V\times C)=S(V\times C)/\psi_{1}$

are smooth manifolds. We shall call them twisted projective space bundles of
the pairs (V, $\psi$) and $(V\times C, \psi)$ respectively, although they are by no means.
bundles in the usual sense. We denote by $[v]\in P_{\psi}(V)$ and $[v, \alpha]\in P_{\psi}(V\times C)$

the images of $v\in S(V)$ and $(v, a)\in S(V\times C)$ respectively. Since the action $\psi$

keeps $S(V)$ and $S(V\times C)$ invariant and it commutes with $\psi_{1}$ , it induces an
action on $P_{\psi}(V)$ and $P_{\psi}(V\times C)$ which we shall denote by the same letter $\psi$ .

Let $W_{\psi}=W_{\psi}(V)$ denote the 2-disk bundle associated to the $S^{1}- fibering$

$S(V)\rightarrow P_{\psi}(V)$ . $W_{\psi}$ is identified with the quotient space of $S(V)\times D^{2}$ by $the\backslash $

$S^{1}$ -action $\psi_{1}$ defined by the same formula as (2.15). The class of $(v, \alpha)$ $i_{Ik}$

$W_{C^{\prime}J}$ is denoted by $[\iota, \alpha]$ . We define the map

$f:W_{\psi}\rightarrow P_{\psi}(V\times C)$

by
$f[v, a]=[v/\sqrt{1+}|\overline{a}|^{2}, \alpha/\sqrt 1\mp|\overline{\alpha}|^{2}]$ .

We also define the map
$g:D(V)\rightarrow P_{\psi}(V\times C)$

by
$g(v)=[v/\sqrt{2}, \sqrt{1-|v|^{2}/2}]$ .

Then the following lemma is immediate.
LEMMA (2.17). $f$ and $g$ are $\psi$ -equivariant smooth embeddings. $f$ and $g$

coincide on $S(V)$ . Moreover we have
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$g(D(V))\cup f(W_{\psi})=P_{\psi}(V\times C)$

and
$g(D(V))\cap f(W_{\psi})=g(S(V))$ .

Lemma (2.17) shows that $P_{\psi}(V\times C)$ is diffeomorphic to the smooth mani-
fold $D(V)\cup W_{\psi}$ obtained by glueing together $D(V)$ and $W_{\psi}$ along their com-
mon boundary $S(V)$ by the identity automorphism. Henceforth we shall
identify $P_{\psi}(V\times C)$ with $D(V)\cup W_{\psi}$ . Then, since the $S^{1}$ -action $\psi_{1}$ preserves
the U-structure on $V$ and hence on $S(V)$ , it is easy to see that the U-struc-
ture can be extended over $W_{\psi}$ giving a U-structure on $P_{\psi}(V\times C)$ . The action
$\psi$ clearly preserves this U-structure on $P_{\psi}(V\times C)$ .

The manifold $P_{\psi}(V)$ is contained in the U-manifold $W_{\psi}$ as a U-submani-
fold. Namely its normal bundle has the obvious structure of complex line
bundle, the one associated to the $S^{1}$ -bundle $S(V)\rightarrow P_{\psi}(V)$ . Thus $P_{\psi}(V)$ is
also a U-manifold.

PROPOSITION (2.18). Let (X, $V,$ $\psi$) be in $\mathcal{B}_{m.2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+}),$ $1<1$ . Suppose that
$X$ is connected. Then the action $\psi$ on $P_{\psi}(V)$ is $\mathcal{F}_{l-1}^{+}$ -free. The action $\psi$ on
$P_{\psi}(V\times C)$ is $\mathcal{F}_{l}^{+}$ -free and the fixed point set of the first kind of $\psi(Z_{l})$ equals
precisely X. The normal bundle of $X$ in $P_{\psi}(V\times C)$ is $\psi$ -equivariantly equivalent
to $V$ .

PROOF. Let $v\in S(V)$ and $[v]$ be the image of $v$ in $P_{\psi}(V)$ . Then we have

$\psi(g)[v]=[v]$

if and only if

(2.19) $\psi(g)v=\psi_{1}(h)v$ for some $h\in S^{1}$ .
Let $v\in V_{x}$ , the fiber of $V$ over $x\in X$, and suppose first that $x\not\in F$, where $F$

denote the fixed point set of the action $\varphi$ on $X$. Write $v$ as

$v=\Sigma v_{i_{s}}$ , $v_{i_{S}}\neq 0\in V(l_{i_{s}})$

according to the decomposition (2.7). Then

$\psi(g)v=\Sigma\psi^{\prime\prime}(g)^{l}\psi^{\prime}(g)^{l_{i_{S}}}v_{i\epsilon}$ by (2.10)

and
$\psi_{1}(h)v=\sum\psi^{\prime\prime}(h)^{2}\psi^{\prime}(h)v_{t_{s}}$ by (2.12).

Since $\psi^{\prime\prime}$ covers $\varphi$ which is free on $X-F$ and $\psi^{\prime}$ preserves $V_{x}$ , the condition
(2.19) is equivalent to

$g^{\iota}=h^{2}$ and $g^{\iota_{i_{S}}}=h$ .
Such an element $h$ exists if and only if

(2.20) $g^{l- 2l_{i_{S}}}=1$ for all $s$ .
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Let $H$ be the subgroup of $S^{1}$ consisting of all elements satisfying (2.20). $H$

is equal to $S^{1}$ if we have only one $s$ and $l_{\iota_{s}}=l/2$ . Otherwise $H=Z_{d}$ where
$d$ is the greatest common divisor of $\{|l-2l_{\iota_{\iota}}|\}$ . Since $0<l_{\iota_{s}}<l$ , we have
$|l-2l_{i\epsilon}|<l$ . Hence $d<l$ . Thus we have proved that the isotropy subgroup
at $v$ belongs to $\mathcal{F}_{l-1}^{+}$ and $P_{\psi}(V(l/2))$ is a component of the fixed point set of $\psi$ .

Next suppose that $x\in F_{j}$ , a component of $F$, and $v\in V_{x}$ . Write $v$ as
$v=\sum v_{\ell_{\epsilon}}^{+}+\Sigma v_{k_{t}}^{-}$

where $v_{i_{s}^{+}}\in V_{j}^{+}(l_{i_{\$}})$ and $v_{k_{t}}^{-}\in V_{j}^{-}(l_{k_{t}})$ . Then the same reasoning as above using
(2.11) and (2.13) shows that (2.19) is equivalent to

$g^{\iota_{i\epsilon}}=h$ and $g^{l- l_{k_{t}}}=h$

for all $s$ and $t$ . Hence the isotropy subgroup $H$ of $\psi$ at $[v]$ is $Z_{d}$ when
different values occur among $l_{\iota_{s}}$ and $1-l_{k_{t}}$ in which case $d$ is the greatest
common divisor of $|l_{i_{s}}-l_{i_{s^{\prime}}}$ , $|l_{i_{\epsilon}}-(l-l_{k_{t}})|$ and $|l_{k_{t}}-l_{k_{t^{\prime}}}$ . Since $0<l_{i}<l$ , these
numbers are smaller than 1. Hence $d<l$ and $H\in \mathcal{F}_{\iota- 1}$ .

If there is only one value among $l_{t_{s}}$ and $l-l_{k_{t}}$ then $H$ equals $S^{1}$ . This
implies that $P_{\psi}(V_{J}^{\prime}(l_{i}))$ is a component of the fixed point set of $\psi$ , where
$V_{j}^{\prime}(l_{i})=V_{j}^{+}(l_{i})\oplus V_{j}^{-}(l-l_{i})$ .

Thus we have proved that $\psi$ is $\mathcal{F}_{\iota-1}^{+}$ -free on $P_{\psi}(V)$ . Since the open sub-
manifold $P_{\psi}(V\times C)-P_{\psi}(V)$ is $\psi$ -equivariantly diffeomorphic to $V$ the rest of
the statement is clear.

REMARK (2.21). In the above proof we have shown that the fixed point
set of the action $\psi$ on $P_{\psi}(V)$ is the disjoint union of $P_{\psi}(V(l/2))=S(V(l/2))/\psi_{1}$

(when 1 is even) and $P,(V^{\prime}(l_{i}))=S(V^{\prime}(l_{i}))/\psi_{1}$ for $l_{i}\neq l/2$ . $1n$ particular, if $1=2$

then any element in $P_{\psi}(V)$ is fixed by $\psi$ . lndeed in this case the actions $\psi$ and
$\psi_{1}$ coincide, whence $\psi$ is trivial on $P_{\psi}(V)$ .

It is again a routine matter to verify that the assignment

$\mathcal{B}_{m2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})\ni(X, V, \psi)\leftrightarrow[P_{\psi}(V\times C), \psi]\in\Omega_{m.2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$

induces a well-defined homomorphism

${}^{t}P:B_{m2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})\rightarrow\Omega_{m.2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ .
THEOREM (2.22). Let 1 be an integer, $1<l$ . The homomorphism

${}^{t}P\circ\nu:\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{G}_{l-1}^{+})\rightarrow\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$

is a splitting for
$j_{*}:$ $\Omega_{n}^{\sigma}(S^{1} ; \mathcal{F}_{\iota}^{+})\rightarrow\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l-1}^{+})$ .

PROOF. Consider the composition $\nu\circ j_{*}\circ {}^{t}P$. Then, for any (X, $V,$ $\psi$) with
connected $X$, we have

$\nu\circ j_{*}\circ {}^{t}P[X, V, \psi]=[X, V, \psi]$
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by (2.18). Since such [X, $V,$ $\psi$] generate $\sum_{m-2k=n}B_{m,2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ , we have

$\nu\circ j_{*}\circ {}^{t}P=identity$ .
By (2.6), $\nu$ is an isomorphism. Hence it follows that

$j_{*}\circ {}^{t}P\circ\nu=identity$ .
REMARK (2.23). It can be shown easily that, for any $[M, \psi]\in\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ ,

the element
$[M, \psi]-{}^{t}P\circ\nu\circ j^{*}[M, \psi]\in i_{*}\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l-1}^{+})$

is represented by $[M_{1}, \psi]$ where

$M_{1}=$ (
$M-\bigcup_{x_{i}}$ int $D(V_{i})$) $\cup\bigcup_{x_{i}}-W_{\psi}(V_{i})$

glued along $\bigcup_{x_{i}}S(V_{i})$ .
Here $\{X_{i}\}$ is the totality of the connected components of the first kind of

the fixed point set of $\psi(Z_{\iota})$ and $V_{i}$ is the normal bundle of $X_{i}$ in M. $-W_{\psi}$

denotes the U-manifold $W_{\psi}$ with the opposite structure. We may call $M_{1}$

twisted blowing up of $M$ along $\cup X_{i}$ .
COROLLARY (2.24). There are canonical isomorphisms

$\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+})\cong\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{1}^{+})\oplus\sum_{1<k\leq l}{}^{t}P_{n}^{U}(S^{1} ; \mathcal{F}_{k}^{+})$

and
$\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{\infty}^{+})\cong\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{1}^{+})\oplus\sum_{1<k}{}^{t}P_{n}^{U}(S^{1} ; \mathcal{F}_{k}^{+})$ ,

where
${}^{t}P_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+})={}^{t}P(\sum_{m+2k=n}B_{m.2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+}))$ .

PROOF. For $\mathcal{F}_{l}^{+}$ it is immediate from (2.23). Since

$\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{\infty}^{+})=\rightarrow\lim_{l}\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$

the case for $\mathcal{F}_{\infty}^{+}$ follows from the former.
We turn to the real case. Let (X, $V,$ $\psi$) $\in \mathcal{B}_{m,k}(S^{1} ; \mathcal{F}_{l}^{+})$ and suppose that

$X$ is connected. $Z_{l}$ acts on $V$ and hence on $V^{C}$ , the complexification of $V$ ,
by automorphisms. Decompose $V^{C}$ into the direct sum of eigensubbundles

$V^{c}=_{0}\sum_{\iota_{i<l}}V^{C}(l_{i})$

where $\psi(g)v=g^{\iota_{i}}v$ for $g\in Z_{l}$ and $v\in V^{c}(l_{i})$ . For $0<l_{i}<l/2$ we set

$U(l_{i})=V\cap(V^{c}(l_{i})\oplus V^{C}(l-l_{i}))$ .
$\prime U(l_{i})$ can be given a structure of $\psi$ -invariant complex vector bundle with a
decomposition
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$U(l_{i})=V(l_{i})\oplus V(l-l_{i})$

such that, for any $g\in Z_{l}$ , we have

$\psi(g)v=\psi^{\prime}(g)^{l_{i}}v$ for $v\in V(l_{i})$

and
$\psi(g)v=\psi^{\prime}(g)^{\iota-\iota_{l}}$ for $v\in V(l-l_{i})$ ,

where $\psi^{\prime}(g)$ denotes the scalar multiplication in the complex vector bundle
$U(l_{i})$ . For example, the map $\rho:V^{C}(l_{i})\rightarrow U(l_{i})$ given by

(2.25) $\rho(v)=(v+\overline{v})/2$

is a real isomorphism for $l_{i}\neq l/2$ so that it transports the complex structure
of $V^{C}(l_{i})$ onto $U(l_{i})$ . With this structure we have $U(l_{i})=V(l_{i})$ and $V(l-l_{i})=0.$ .

If 1 is even, we set

$V(l/2)=V\cap V^{c}(l/2)$ .
$Z_{\iota}$ acts on $V(l/2)$ by

$\psi(g)v=g^{\iota/2}v$ , $g\in Z_{l}$ , $v\in V(l/2)$ ,

where it should be noticed that $g^{\iota/2}=\pm 1$ for $g\in Z_{l}$ . $V(l/2)$ does not have
complex vector bundle structure in general. Here we digress to give a proof
of Remark (2.2). It clearly suffices to prove that the fiber dimension of $V(l/2)$

is even when 1 is even. Consider the transformation $\psi(\zeta)$ on $V(l/2)$ where
$\zeta=e^{2\pi\sqrt{- 1}/\iota}$ . Since it is connected to the identity in $\psi(S$

‘
$)$ , it preserves the

orientation. Since it keeps the base pointwise fixed, it acts on each fiber of
$V(l/2)$ preserving orientation. But $\psi(\zeta)=-1$ on each fiber. This implies the
dimension of the fiber is even. This proves (2.2).

Now consider the $S^{1}$ -action on $V(l_{i}),$ $0<l_{i}<l,$ $l_{t}\neq l/2$ , defined by

$g-\psi(g)\psi^{\prime}(g)^{-\iota_{i}}$ .
Since $\psi(g)\psi^{\prime}(g)^{-\iota_{i}}=1$ for $g\in Z_{l}$ on $V(l_{i})$ there exists a unique action $\psi_{i}^{\prime\prime}$ on
$V(l_{i})$ such that

(2.26) $\psi_{i}^{\prime\prime}(g)^{l}=\psi(g)\psi^{\prime}(g)^{-\iota_{i}}$ .
The action $\psi_{i^{\prime\prime}}$ covers $\varphi$ . Let $\psi^{\prime\prime}$ be the $S^{1}$ -action on $\sum_{0<\iota_{i}<l.l_{i}\neq\iota/2}V(l_{i})$ given by

$\psi^{\prime\prime}(g)=\Sigma\psi_{i}^{\prime\prime}(g)$ .

We define the $S^{1}$ -action $\psi_{1}$ on $\sum_{0<\iota_{i}<\iota,\iota_{i}\neq\iota/2}V(l_{i})$
by

(2.27) $\psi_{1}(g)=\psi^{\prime\prime}(g)^{2}\psi^{\prime}(g)$ .

This action covers $\varphi^{2}$ . Next observe that, when 1 is even, there is a unique
$S^{1}$ -action $\psi_{1}$ on $V(l/2)$ such that
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(2.28) $\psi_{1}(g)^{l/2}=\psi(g)$ .
This also covers $\varphi^{2}$ . Thus we can form the direct sum action $\psi_{1}$ on $V$ from
(2.26) and (2.27).

LEMMA (2.29). The $S^{1}$ -action $\psi_{1}$ on $V$ is independent of the choice of $\psi-$

invariant complex vector bundle structures on $U(l_{i}),$ $l_{i}\neq l/2$ .
PROOF. Let $\psi^{\prime}(g)$ be the scalar multiplication of a $\psi$-invariant complex

vector bundle structure on $U(l_{i})$ and let $\overline{\psi}^{\prime}(g)$ be the one which is transporteci
by $\rho$ from $V^{C}(l_{i})$ as in (2.25). It is not difficult to see that

$\psi^{\prime}(g)=\overline{\psi}^{\prime}(g)$ on $V(l_{i})$

and
$\psi^{\prime}(g)=\overline{\psi}^{\prime}(g)^{-1}$ on $V(l-l_{i})$ .

According to (2.26) we define $\overline{\psi}^{\prime\prime}$ by

$\overline{\psi}^{\prime\prime}(g)^{l}=\psi(g)\overline{\psi}^{\prime}(g)^{-\iota_{i}}$ on $U(l_{i})$ .
Then we have

$\overline{\psi}^{\prime\prime}(g)^{l}=\psi(g)\psi^{\prime}(g)^{-\iota_{i}}=\psi^{\prime\prime}(g)^{l}$ on $V(l_{i})$ ,

and
$\overline{\psi}^{\prime\prime}(g)^{l}=\psi(g)\psi^{\prime}(g)^{l_{i}}$

$=\psi(g)\psi^{\prime}(g)^{-(l-l_{i})}\psi^{\prime}(g)^{l}$

$=\psi^{\prime\prime}(g)^{l}\psi^{\prime}(g)^{\iota}$ on $V(l-l_{i})$

where $0<l_{i}<l/2$ . Hence it follows that

$\overline{\psi}^{\prime\prime}(g)=\left\{\begin{array}{ll} & \psi^{\prime\prime}(g)\\ & \psi^{\prime}(g)\psi^{\prime}(g)\end{array}\right.$ $ononV(l^{i}-l_{i})V(l),$

.
Then

$\overline{\psi}_{1}(g)=\overline{\psi}^{\prime\prime}(g)^{2}\overline{\psi}^{\prime}(g)$

$=\{\psi^{1,}(g)^{2}\psi^{\prime}(g)^{2}\psi^{\prime}(g)^{-1}=\psi^{\prime\prime}(g)^{2}\psi^{\prime}(g)=\psi_{1}(g)\psi(g)$

on $V(l-l_{i})$ .
on $V(l_{i})$ ,

This proves $\overline{\psi}_{1}=\psi_{1}$ on $U(l_{i}),$ $0<l_{i}<l/2$ . Thus $\overline{\psi}_{1}=\psi_{1}$ everywhere.
With this $\psi_{1}$ defined we can proceed in an entirely similar way as in the

complex case. Note that, in the complex case, $\psi_{1}(g)$ on $V(l/2)$ satisfied (2.28)

too. In particular (2.16) holds for $\mathcal{B}_{m,k}(S^{1} ; \mathcal{F}_{l}^{+})$ instead of $\mathcal{B}_{m.2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ and
we can form the smooth manifolds $P_{\psi}(V)=S(V)/\psi_{1}$ and $P_{\psi}(V\times C)=S(V\times C)/\psi_{A}$

which we shall also call twisted complex projective space bundles. We orient
$P_{\psi}(V\times C)$ concordantly with $D(V)\subset P_{\psi}(V\times C)$ as in the complex case. The
normal bundle of $P_{\psi}(V)$ in $P_{\psi}(V\times C)$ is oriented by its complex line bundle
structure associated to $S(V)\rightarrow P_{\psi}(V)$ . Then the above orientations of $ P_{\psi}(V\times C\rangle$
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and the normal bundle determine the orientation of $P_{\psi}(V)$ . Proposition (2.18)

holds also for $\mathcal{B}_{m,k}(S^{1} ; \mathcal{F}_{l}^{+})$ . We define the homomorphism

$\ell P:B_{m,k}(S^{1} ; \mathcal{F}_{l}^{+})\rightarrow\Omega_{m+k}(S^{1} ; \mathcal{F}_{l}^{+})$

by
${}^{t}P[X, V, \psi]=[P_{o^{\prime}}(V\times C), \psi]$ .

Then we obtain
THEOREM (2.29). Let 1 be an integer, $1<1$ . The homomorphism

$\iota_{P\circ\nu;}\Omega_{n}(S^{1}, \mathcal{F}_{\iota}^{+}, \mathcal{F}_{l-1}^{+})\rightarrow\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+})$

is a splitting for
$j_{*}:$ $\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+})\rightarrow\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+}, \mathcal{F}_{l^{+}-1})$ .

COROLLARY (2.30). There are canonical isomorphisms

$\Omega_{n}(S^{1} ; \mathcal{F}_{l}^{+})\cong\Omega_{n}(S^{1} ; \mathcal{F}_{1}^{+})\oplus\sum_{1<k\leqq l}{}^{t}P_{n}(S^{1} ; \mathcal{F}_{k}^{+})$

and
$\Omega_{n}(S^{1} ; \mathcal{F}_{\infty}^{+})\cong\Omega_{n}(S^{1} ; \mathcal{F}_{1}^{+})\oplus\sum_{1<k}{}^{t}P_{n}(S^{1} ; \mathcal{F}_{k}^{+})$

where
$\iota_{P_{n}(S^{1};}\mathcal{F}_{l}^{+})={}^{t}P_{n}(\sum_{m+k=n}B_{m,k}(S^{1} ; \mathcal{F}_{l}^{+}))$ .

REMARK. Let (X, $V,$ $\psi$) $\in \mathcal{B}_{m.2k}^{U}(S$
’ ; $\mathcal{F}_{l^{+}})$ and suppose that the action $\varphi$

induced on $X$ (see (2.1)) is free which implies in particular that the action $\psi$

on $V$ is $\mathcal{F}_{l}$ -free. Even under this assumption the fixed point set of the action
$\psi$ on $P_{\psi}(V\times C)$ is not empty in general. For example when $l=2$ the submani-
fold $P_{\psi}(V)$ is the fixed point set by (2.21). However in this case, $i$ . $e$ . when
the fixed point set $F$ of the action $\varphi$ on $X$ is empty, the action $\psi^{\prime\prime}$ is free so
that $S(V\times C)/\psi^{\prime\prime}$ is a smooth manifold. Moreover the action $\psi$ on $S(V\times C)/\psi^{\prime}$

is $\mathcal{F}_{l- 1}$ -free. This can be used to give a splitting for
$j_{*}:$ $\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{l})\rightarrow\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{\iota}, \mathcal{F}_{l-1})$ .

Similarly let (X, $V,$ $\psi$) $\in \mathcal{B}_{m,k}(S^{1} ; \mathcal{F}_{l}^{+})$ and assume that the fixed point set $F$

of $\varphi$ is empty and $V$ has a structure of $\psi$ -invariant complex vector bundle.
Then we can form $\psi^{\prime\prime}$ and smooth manifold $S(V\times C)/\psi^{\prime\prime}$ in this case too (but
not canonically). This can be used to show that

$j_{*}:$ $\Omega_{n}(S^{1} ; \mathcal{F}_{l})\otimes Z[1/2]\rightarrow\Omega_{n}(S’ ; \mathcal{F}_{\iota}, \mathcal{F}_{l-1})\otimes Z[1/2]$

is onto. These constructions were used by Ossa [7].
Finally we remark that in the above constructions we may replace $\psi^{\prime/}(g)$

$ly\psi^{\prime}(g)\psi^{\prime}(g)$ which will give another splitting for $j_{*}$ .
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\S 3. The Kosniowski Formula.

Let $M$ be a closed U-manifold with a smooth $S^{1}$ -action $\psi$ preserving the
given U-structure. Then each component $F_{j}$ of the fixed point set $F$ is a
U-manifold in a natural way. Moreover the normal bundle $V_{f}$ of $F_{j}$ in $M$

decomposes as a direct sum
$V_{j}=\sum_{\iota}V_{fs}$

of complex vector bundles $V_{js}$ on which the given $S^{1}$ -action $\psi$ is expressed by

$\psi(g)v=g^{k_{fs}}v$ , $k_{js}\in Z,$ $k_{js}\neq 0$ ,

for $v\in V_{js}$ , where $g^{k_{fs}}v$ denotes the scalar multiplication in the complex
vector bundle $V_{fs}$ . We define the integers $d^{+}(F_{j})$ and $d^{-}(F_{j})$ by

$d^{+}(F_{j})=\sum_{s,k_{js}>0}\dim_{C}V_{js}$
,

$d^{-}(F_{j})=\sum_{s.k_{fs}<0}\dim_{C}V_{js}$ .

We shall call $d^{+}(F_{j})(d^{-}(F_{j}))$ positive (negative) type number of $F_{j}$ . With these
understood, the Kosniowski formula reads as follows.

THE KOSNIOWSKI FORMULA [6]. Let $M$ be a closed U-manifold with a
smooth $S^{1}$ -action preserving the U-structure. Then the following relation be-
tween the $T_{y}$ -genera of $M$ and the components of the fixed point set holds.

$T_{y}(M)=\sum_{f}(-y)^{a+}(F_{j^{)}}T_{y}(F_{j})$

$=\sum_{j}(-y)^{a^{-}(F_{j})}T_{y}(F_{j})$ ,

where $T_{y}$ is the genus associated to the formal power series in $t$

$-e^{t(1+y)}-1^{-+t}t(1+y)$

cf. [2].

In this section we shall give an elementary proof of this formula. IIV
view of Corollary (2.24) it is clearly sufficient to prove the formula $fo1^{-}$

$[M, \psi]\in\Omega_{n}^{U}(S^{1} ; \mathcal{F}_{1}^{+})$ and $(M, \psi)=(P_{\psi}(V\times C), \psi)$ where (X, $V,$ $\psi$) $\in \mathcal{B}_{m.2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ .
I. Semi-free case. The proof given here is due to Takao Matumoto.

We thank him for communicating us his proof.
Let $\psi_{p,q}$ be the $S^{1}$ -action on $S^{2(p\cdot\succ q)-1}$ defined by

$\psi_{p,q}(g)(z_{1}, z_{p}, w_{1}, w_{q})=(gz_{1}, gz_{p}, g^{-1}w_{1}, g^{-1}w_{q})$

where $z_{i},$ $w_{j}\in C$. The action is free so that the quotient space $CP_{p,q}=$

$S^{2(p+q)-1}/\psi_{p,q}$ is a closed smooth manifold. $CP_{p,q}$ is made almost complex
manifold by local charts
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$(z_{i}^{1}z,$
$\cdots$ , $- z_{z^{p_{i}}}$ $w_{i^{1}}\overline{z},$

$\cdots$
$w_{\underline{q})}\overline{z}_{i}$ where $z_{i}\neq 0$

and

( $\frac{z}{w}1J^{-}\ldots$ $-\frac{z}{w}p_{-}f$ $w_{j}^{1}w,$
$\cdots$

$w_{j}^{q}lU$ ) where $w_{j}\neq 0$ .

LEMMA (3.1). With the above almost complex structure, we have

$T_{y}(CP_{p,q})=1-(-y)1((-y)^{q}-(-y)^{p})$ .

PROOF. Consider the diffeomorphism

$f:CP_{p,q}\rightarrow CP^{p+q-1}$

$i$ nduced by $f:S^{2(p\cdot q)-1}4\rightarrow S^{2(pq)-1}4$ given by

$f(z_{1}, z_{p}, w_{1}, \cdots w_{q})=(z_{1}, z_{p},\overline{w}_{1}, \overline{w}_{q})$ .
Let $CP^{\gamma}$ denote $CP^{p\cdot\vdash q-1}$ with the almost complex structure transported by $f$ .

Then it is not difficult to see that

$\tau(CP^{\prime})\oplus 1=p\xi\oplus q\xi^{*}$

where $\tau,$ $1,$ $\xi$ and $\xi^{*}$ denote the complex tangent bundle, the trivial complex
line bundle, the canonical line bundle and its dual respectively. It is also
clear that the orientation of $CP^{\prime}$ is $(-1)^{q}$ times the usual orientation of
$CP^{p+q-1}$ . It follows that

$T_{y}(CP_{p,q})=T_{y}(CP^{\prime})=coefficient$ of $(-1)^{q}x^{\mathfrak{n}}$ in $h(x)$

-where $n=p+q-1$ and

$h(x)=(e^{x(y\cdot\vdash 1)}-1x(y+1)+x)^{p}(e^{-x(y+1)}-1-x(y+1)-x)^{q}$

By the Cauchy integral formula

$T_{y}(CP_{p,q})=(-1)^{q_{-}}2\pi i\oint x^{n\cdot\vdash 1}h(x)_{-dx}$ .
The substitution $u=e^{x(y+1)}-1$ gives

$T_{y}(CP_{p,q})=2\pi i1$ $(-y)y+1^{q}$

$\oint_{(1^{-}+\overline{u})}^{(y_{n})_{+}^{p_{1}}(-}-\frac{1+u+}{u}du1+u\underline{+y^{-)^{q}}1}$ .
Hence

$T_{y}(CP_{p,q})=(-y)^{q}/(y+1)$

$\times$ (coefficient of $u^{n}$ in $(1+u+y)^{p}(1+u+1/y)^{q}/(1+u)$).

IBut $(1+u+y)^{p}(1+u+1/y)^{q}$ is of the form

$\sum_{\iota=0}^{n\neq 1}a_{\iota}(1+u)^{t}$
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with $a_{0}=y^{p}/y^{q}$ and $a_{n+1}=1$ . Therefore

coefficient of $u^{n}$ in $(1+u+y)^{P}(1+u+1/y)^{q}/(1+u)=(-1)^{n}y^{p}/y^{q}+1$ .
Hence we obtain

1
$T_{y}(CP_{p,q})=\overline{1-}(\overline{-y)}((-y)^{q}-(-y)^{p})$ .

Now suppose that the $S^{1}$ -action $\psi$ is semi-free ( $i$ . $e$ . $\mathcal{F}_{1}^{+}$ -free) on $M$. We
define the $S^{1}$-actions $\psi$ and $\psi_{1}$ on $V_{i}\times C$ by

$\psi(g)(v, \alpha)=(\psi(g)v, \alpha)$

and
$\psi_{1}(g)(v, \alpha)=(\psi(g)v, g\alpha)$ .

Choose a $\psi$-invariant hermitian metric on the complex vector bundle $V_{j}$ . Let
$D(V_{j}\times C)$ and $D(V_{j})$ be the associated unit disk bundles and $S(V_{j}\times C)$ and
$S(V_{f})$ the associated sphere bundles. Since the action $\psi_{1}$ is free on $S(V_{j}\times C)$ ,

the quotient space $P_{\psi}(V_{j}\times C)=S(V_{j}\times C)/\psi_{1}$ and $S(V_{f})/\psi_{1}$ are smooth mani-
folds. Just as in (2.17), $P_{\psi}(V_{j}\times C)$ is identified with $D(V_{f})\cup W_{\psi}(V_{j})$ where
$W_{\psi}(V_{f})$ is the disk bundle associated to the $S^{1}$ -bundle $S(V_{j})\rightarrow P_{\psi}(V_{j})$ . In
particular $P_{\psi}(V_{f}\times C)$ is endowed with a $\psi$-invariant U-structure which extends
that of $D(V_{j})$ . Moreover since $\psi_{1}$ acts on $V_{f}$ by automorphisms, $P_{\psi}(V_{j}\times C)$

$isfiberedoverF_{j}withfiberCP_{d_{j}+1.d_{j}}+-whered_{j}^{\pm}=d^{\pm}(F_{j})$ . Then the U-structure
of $P_{\psi}(V_{j}\times C)$ given above is compatible in the sense of [2, (21.8)]. Similarly
$P_{\psi}(V_{j})$ has a $\psi$ -invariant U-structure and is fibered over $F_{j}$ with fiber
$CP_{a_{j}^{+}.a_{f}^{-}}$ . With these understood,

LEMMA (3.2). Let $\psi$ be a U-structure preserving semi-free $S^{1}$ -action on a
closed U-manifold M. Then we have

$\sum_{j}[P_{\psi}(V_{f}\times C), \psi]=[M, \psi]$ in $\Omega_{*}^{U}(S ; \mathcal{F}_{1}^{+})$

and
$\sum_{j}[P_{\psi}(V_{j})]=0$ in $\Omega_{*}^{U}$ .

PROOF. Let $M_{1}$ be the manifold obtained by glueing together
$M-U$ int $D(V_{j})$ and $\cup-W_{\psi}(V_{j})$ along their common boundary $\cup S(V_{j})$ . Then,
as in (2.23) we have

(3.3) $\sum[P_{\psi}(V_{j}\times C), \psi]+[M_{1}, \psi]=[M, \psi]$

in $\Omega_{*}^{U}(S^{1} ; \mathcal{F}_{1}^{+})$ . But the action $\psi$ restricted on $M_{0}=M-\cup intD(V_{f})$ is free
so that $M_{0}/\psi=Y$ is a U-manifold. Let $N$ be the 2-disk bundle associated to
the S’-fibering $M_{0}\rightarrow Y$. Then clearly we have

$\partial N=M_{1}$ and $\partial Y=\cup P_{\psi}(V_{j})$ .
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Therefore
$[M_{1}, \psi]=0$ in $\Omega_{*}^{U}(S^{1} ; \mathcal{F}_{1}^{+})$

and
$\sum[P_{\psi}(V_{j})]=0$ in $\Omega_{*}^{U}$ .

This together with (3.3) proves Lemma.
PROOF OF THE KOSNIOWSKI FORMULA FOR $[M, \psi]\in\Omega_{*}^{U}(S^{1} ; \mathcal{F}_{1}^{+})$ . We first

remark that the bundle $P_{\psi}(V_{j}\times C)\rightarrow F_{j}$ has $U(d_{f}+1),$ $d_{j}=d_{j}^{+}+d_{j}^{-}$ , as structure
group and the almost complex structure on the fiber $CP_{a_{j}^{+}+\iota.a_{j}^{-}}$ is invariant
under the action of $U(d_{j}+1)$ . Therefore, by the strictly multiplicative pro-
perty of the $T_{y}$ -genus [2, (22.8)] we get

$T_{y}(P_{\psi}(V_{j}\times C))=T_{y}(F_{j})T_{y}(CPae_{J^{+1d_{j}}}^{+.-)}$ .
Then by (3.1)

$T_{y}(P_{\psi}(V_{j}\times C))=---$$1-(-y)^{-((-y)^{d_{j}^{-}}-(-y)^{d_{j}^{\tau}+1})T_{y}(F_{j})}1$ .

Combining this with (3.2) we obtain

(3.4) $T_{y}(M)=\overline{1-}(\overline{-y)}1\sum_{j}((-y)^{d_{j}^{-}}-(-y)^{a_{j}^{+}+1})T_{y}(F_{j})$ .

Similarly from the second equality in (3.2) we get

(3.5) $0=-$ $--1--\sum((-y)^{d_{j}^{-}}-(-y)^{d_{j}^{+}})T_{y}(F_{j})$ .
$(1-(-y))$ $j$

Subtracting (3.5) from (3.4) yields

$T_{y}(M)=\sum(-y)^{a_{j}^{+}}T_{y}(F_{j})$ .
This together with (3.5) yields

$T_{y}(M)=\sum(-y)^{a_{j}^{-}}T_{y}(F_{j})$ .

II. Case of $[P_{\psi}(V\times C), \psi]\in {}^{t}P_{*}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ . Given (X, $V,$ $\psi$) $\in \mathcal{B}_{m2k}^{U}(S^{1} ; \mathcal{F}_{:}^{+})$ ,
let $F$ be the fixed point set of $\varphi$ in $X$ and let $\{F_{j}\}$ be the connected com-
ponents of $F$. Let $U_{j}$ be the normal bundle of $F_{j}$ in $X$. The action $\varphi$ de-
composes $U_{j}$ into the direct sum $U_{j}=\sum U_{jt}$ so that

$\varphi(g)u=g^{k_{jt}}u$ for $g\in S^{1}$ and $u\in U_{jt}$

where $k_{jt}\in Z$. Set
$U_{j}^{+}=\sum_{k_{ft}>0}U_{jt}$

and
$U_{j}^{-}=\sum_{k_{jt}<0}U_{jt}$ .

We also set



Smooth $S^{1}\cdot action$ and bordism 719

$V_{j}^{+}=\sum_{l_{i}}V_{j}^{+}(l_{i})$ ,

$V_{j}^{-}=\sum_{\iota_{i}}V_{j}^{-}(l_{i})$

where $V_{j}^{\pm}(l_{i})$ are as in (2.9). Note that $\{F_{j}\}$ is a part of connected com-
ponents of the fixed point set of the action $\psi$ in $P_{\psi}(V\times C)$ and we have

$d^{+}(F_{j})=\dim U_{j}^{+}+\dim V_{j}^{+},$

(3.6)
$d^{-}(F_{j})=\dim U_{j}^{-}+\dim V_{j}^{-}$ .

Here and throughout this Section $\dim$ means the complex dimension.
We consider the action $\psi^{\prime\prime}$ defined in (2.10). Since $\psi^{\prime\prime}$ commutes with $\psi 1$

it can be extended to the $S^{1}$ -action $\psi^{\prime\prime}$ on $P_{\psi}(V\times C)$ by the formula

$\psi^{\prime\prime}(g)[v, \alpha]=[\psi^{\prime\prime}(g)v, \alpha]$ .
LEMMA (3.7). Let (X, $V,$ $\psi$) $\in \mathcal{B}_{m.2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ and suppose that $X$ is connected.

The action $\psi^{\prime\prime}$ on $P_{\psi}(V\times C)$ is semi-free. Its fixed point set consists of com-
ponents $P_{\psi}(V_{J}^{+}\times C)$ and $P_{\psi}(V_{j}^{-})$ . Their type numbers are given by

$d^{+}(P_{\psi}(V_{j}^{+}\times C))=\dim U_{j}^{+}$ ,

$d^{-}(P_{\psi}(V_{j}^{+}\times C))=\dim U_{j}^{-}+\dim V_{j}^{-}$ ,

$d^{+}(P_{\psi}(V_{j}^{-}))=\dim U_{j}^{-}$ ,

$d^{-}(P_{\psi}(V_{j}^{-}))=\dim U_{j}^{+}+\dim V_{j}^{+}+1$ .
PROOF. Since $\psi^{\prime\prime}$ covers $\varphi,$ $itsfixedpointsetiscontainedinUP_{\psi}(V|F_{j}\times C)$ .

Then, using (2.11), we see that the fixed point set is as stated. As to the
type numbers of $P_{\psi}(V_{j^{-}}^{\dashv}\times C)$ , since it contains $F_{j}$ around which the action $\psi^{\prime\prime}$

is equivalent to the given action $\psi^{\prime/}$ on $V$ the statement follows from the
definition of $U_{j}^{\pm}$ and $V_{j}^{\pm}$ .

Next consider $P_{\psi}(V_{j}^{-})$ . Let $D(u_{j})$ be a small $\varphi$ -invariant open tubular
neighborhood of $F_{j}$ in $X$. Then the bundle $V|D^{o}(U_{j})$ can be $\psi$ -equivariantly
identified with the complex vector bundle $V\oplus U_{j}$ . With this in mind, given
a point $(v_{0},0)\in S(V_{j}^{-})\subset S(V_{j}^{-}\times C)$ any point in $S(V_{j}^{-}\times C)$ near $(v_{0},0)$ can be
expressed in the form $(v_{0}+v, \alpha),$ $v\in V\oplus U_{j},$ $a\in C$. Note that the normal
vectors to $P_{\psi}(V_{j}^{-})$ in $P_{\psi}(V\times C)$ at $[v_{0},0]$ are spanned by $[v_{0}, \alpha],$ $[v_{0}+v, 0$)

with $v\in V_{j}^{+}$ and $[v_{0}+u, 0]$ with $u\in U_{j}^{\pm}$ . We compute the effect of $\psi^{\prime\prime}(g)$ on
these generators.

$\psi^{\prime\prime}(g)[v_{0}, \alpha]=[\psi^{\prime\prime}(g)v_{0}, \alpha]$

$=[\psi^{\prime}(g)^{-1}v_{0}, a]$ by (2.11)

$=[\psi_{1}(g)v_{0}, a]$ by (2.13)

$=[v_{0}, g^{-1}\alpha]$ .
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$\psi^{t}(g)[v_{0}+v, 0]=[\psi^{\prime}(g)^{-1}v_{0}+v, 0]$ for $v\in V_{j}^{\neq}$ by (2.11)

$=[\psi_{1}(g)v_{0}+v, 0]$ by (2.13)

$=[v_{0}+\psi_{1}^{-1}(g)v, 0]$

$=[v_{0}+\psi^{\prime}(g)^{-1}v, 0]$ .
$\psi^{\prime\prime}(g)[v_{0}+u, 0]=[\psi^{\prime}(g)^{-1}v_{0}+\varphi(g)u, 0]$ for $u\in U_{j}$ by (2.11)

$=[\psi_{1}(g)v_{0}+\varphi(g)u, 0]$

$=[v_{0}+\varphi(g)^{-2}\varphi(g)u, 0]$ since $\psi_{1}(g\epsilon=\varphi^{2}(g)$ on $U_{j}$

$=[v_{0}+\varphi(g)^{-1}u, 0]$ .
Therefore we have

$d^{\vdash}(P_{\psi}(V_{f}^{-}))=\dim U_{j}^{-}$

$d^{-}(P_{\psi}(V_{j}^{-}))=\dim U_{j}^{+}+\dim V_{j}^{+}+1$ .
In an entirely similar way we obtain
LEMMA (3.8). Under the same assumption as in (3.7), the fixed point set of

$\psi^{\prime\prime}$ in $P_{\psi}(V)$ consists of components $P_{\psi}(V_{j}^{+})$ and $P_{\psi}(V_{j}^{-})$ for which the type
numbers are given by

$d^{+}(P_{\psi}(V_{f}^{+}))=\dim U_{f}^{+}$ ,

$d^{-}(P_{\psi}(V_{f}^{+}))=\dim U_{f}^{-}+\dim V_{j}^{-},$

$d^{+}(P_{\psi}(V_{f}^{-}))=\dim U_{j}^{-}$ ,

$d^{-}(P_{\psi}(V_{f}^{-}))=\dim U_{j}^{+}+\dim V_{f}^{+}$ .
The following Corollary (3.10) is a variant of the Kosniowski formula for

$(P_{\psi}(V\times C), \psi)$ .
PROPOSITION (3.9). Let (X, $V,$ $\psi$) $\in \mathcal{B}_{m.2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+})$ . Let $\{F_{j}\}$ be the com-

ponents of the fixed point set of $\varphi$ in $X$, and let $U_{j}^{\pm}$ and $V_{j}^{\pm}$ be defined as
above. We have

$T_{y}(P_{\psi}(V\times C))=\frac{1}{1-(-y)}\sum_{j}\{(-y)^{\dim u_{j}^{-}+\dim v_{J^{-}-(-y)^{\dim U_{j}\dim}\}T_{y}(F_{j})}}+\tau\gamma_{j^{\rightarrow}}\perp 1$

and

$T_{y}(P_{\psi}(V))=\frac{1}{1-(-y)}\sum_{j}\{(-y)^{\dim U_{j}^{-}+\dim}-(-y)^{\dim U_{j}^{\perp}+\dim}\}T_{y}(F_{j})v_{j}^{-}\gamma_{j}^{+}$

COROLLARY (3.10). Under the same assumption as in (3.9) the following

relations hold.

$T_{y}(P_{\psi}(V\times C))=T_{y}(P_{\psi}(V))+\sum_{j}(-y)^{\dim u_{f}^{+}+\dim V_{j}^{+}}T_{y}(F_{j})$

$=(-y)T_{y}(P_{\psi}(V))+\sum_{j}(-y)^{\dim U_{j^{-}}+\dim V_{j}^{-}}T_{y}(F_{j})$ ,



Smooth $S^{1}$ -action and bordism 721

$0=\sum_{j}((-y)^{\dim U_{j}^{+}}-(-y)^{\dim U_{j^{-}}})T_{y}(F_{j})$ .

PROOF OF (3.9) AND (3.10). The action $\varphi$ on $X$ is semi-free so that we can
apply the Kosniowski formula proved in I to get the last relation of (3.10).
The action $\psi^{\prime\prime}$ on $P_{\psi}(V\times C)$ is semi-free. Hence we can apply the Kosniowski
formula to this action. By the strictly multiplicative property of $T_{y}$ -genus
and (3.1),

$T_{y}(P_{\psi}(V_{j}^{+}\times C))=-\frac{1}{-(-y)}1(1-(-y)^{\dim V_{j}^{+}+1})T_{y}(F_{j})$ ,

$T_{y}(P_{\psi}(V_{j}^{-}))=\overline{1-}(\overline{-y)}1((-y)^{\dim V_{j}^{-}}-1)T_{y}(F_{j})$ .

$\}Using$ the data in (3.7) we obtain

$T_{y}(P_{\psi}(V\times C))=1-(\overline{-y)}-\sum_{j}\{(-y)^{dlmu_{j}^{+}}(1-(-y)^{\dim})1v_{j}^{+}+1$

$+(-y)^{\dim u_{j}^{-}}((-y)^{\dim v_{j}^{-}}-1)\}T_{y}(F_{j})$ .
‘Using the last relation in (3.10) we obtain

$T_{y}(P_{\psi}(V\times C))=-1--(-y\overline{)}\sum_{j}\{(-y)^{\dim U_{j}^{-}+\dim}-(-y)^{\dim U_{j}^{+}+\dim V_{j}^{+}+1}\}T_{y}(F_{j})1v_{j}^{-}$ .
“The formula for $T_{y}(P_{\psi}(V))$ is proved similarly using (3.8). This proves (3.9).
The rest of the statement in (3.10) is immediate from (3.9).

Now we shall deduce the Kosniowski formula for $(P_{\psi}(V\times C), \psi)$ from (3.10).
We proceed by induction on 1 where (X, $V,$ $\psi$) $\in \mathcal{B}_{m.2k}^{U}(S^{1} ; \mathcal{F}_{l}^{+}),$ $1<1$. Let $\{F_{j}\}$

$lbe$ the components of the fixed point set of $\varphi$ in $X$. First suppose $1=2$ .
Then by (2.21) the fixed point set of $\psi$ is the union of $F_{j}$ and $P_{\psi}(V)$ . As in
-the proof of (3.7) we see that the type number of $P_{\psi}(V)$ is given by

$d^{+}(P_{\psi}(V))=0$ and $d^{-}(P_{\psi}(V))=1$ .
’Thus with this and (3.6) the formulae in (3.10) are nothing but Kosniowski’s
one in this case.

Next suppose $1>2$ . Then the components of the fixed point set consists
of $\{F_{j}\}$ and $\{F_{s}^{\prime}\}$ where $F_{s}^{\prime}\subset P_{\psi}(V)$ . See (2.21). Let $d^{\pm}(F_{s}^{\prime})$ be the type num-
tbers of $F_{s}^{\prime}$ , and let $d^{\prime\pm}(F_{s}^{\prime})$ denote the type numbers of $F_{s}^{\prime}$ with respect to the
.action $\psi$ restricted on $P_{\psi}(V)$ . As in the proof of (3.7) we have

$\}\ovalbox{\tt\small REJECT}\langle 3.11$) $d^{\llcorner}(F_{s}^{\prime})=d^{\prime+}(F_{s}^{\prime})$ and $d^{-}(F_{s}^{\prime})=d^{\prime-}(F_{s}^{\prime})+1$ .

By (2.18) the action $\psi$ on $P_{\psi}(V)$ is $\mathcal{F}_{l-1}^{+}$ -free. Hence by the induction assump-
tion we can apply the Kosniowski formula to this action to get
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$T_{y}(P_{\varphi^{\prime}}(V))=\sum_{s}(-y)^{d^{\prime}(p_{s^{)}}^{\prime}}T_{y}(F_{s}^{\prime})+$

$=\sum(-y)^{d^{\prime-}(F_{\acute{S}})}T_{y}(F_{s}^{\prime})$ .

Substitute this in the formula (3.10) and use (3.6) and (3.11). We obtain

$\tau_{y}(’(\ddagger^{+}(F_{j^{)}}$

$=\Sigma(-y)^{a-(F_{\acute{l}})}T_{y}(F_{\epsilon}^{\prime})+\sum_{J}(-y)^{d^{-}(F_{j^{)}}}T_{y}(F_{j})$ .

This proves the Kosniowski formula in its full generality.

\S 4. The Atiyah-Singer Formula.

In the case of oriented manifold with a smooth S’-action, the norma13
bundle $V_{j}$ of each component $F_{j}$ of the fixed point set has still an $S^{1}$ -invariant
complex vector bundle structure with a direct sum decomposition

$V_{j}=\sum_{\epsilon}V_{js}$

such that
$\varphi(g)v=g^{k_{js}}v$

for $v\in V_{js}$ . Here the complex structure on $V_{js}$ is determined up to sign of
$k_{js}$ . We fix it by requiring $k_{js}>0$ . Then the normal bundle $V_{j}$ and the $\cdot$

manifold $F_{j}$ are canonically oriented. We set $d(F_{j})=\dim_{c}V_{j}$ . With the above
orientation convention we have

THE ATIYAH-SINGER FORMULA [1, p. 594]. Let $M$ be an oriented closed’
smooth manifold with a smooth $S^{1}$ -action. Then

sign $M=\sum_{eF_{j},.d(p_{j})ven}sign(F_{j})$
,

$0=.\sum_{F_{f^{d(F}f^{)odd}}}sign(F_{j})$ .

An elementary proof of this formula will be given in the sequel. By
(2.30) it is sufficient to prove it for $[M, \psi]\in\Omega_{*}(S^{1} ; \mathcal{F}_{1}^{+})$ , and $[M, \psi]=$

$[P_{\psi}(V\times C), \psi]\in {}^{t}P_{n}(S^{1} ; \mathcal{F}_{l}^{+}),$ $1<l$ . As to the case of $\Omega_{*}(S^{1} ; \mathcal{F}_{1}^{+})$ we refer to
[5] where a proof similar to that of I in Section 3 is given. Thus we confine
our attention to the case of ${}^{t}P_{n}(S^{1} ; \mathcal{F}_{l}^{+})$ . Given (X, $V,$ $\psi$) $\in \mathcal{B}_{m,2k}(S^{1} ; \mathcal{F}_{l}^{+})$ the
real vector bundle $V$ does not necessarily have a structure of complex vector
bundle. Consequently we can not in general use auxiliary action $\psi$

“ as in the
complex case. To remedy this point we first make some cohomological con-
siderations for a special type of (X, $V,$ $\psi$). Let $\{F_{j}\}$ be the components of
the fixed point set $F$ of $\varphi$ on $X$ as before.

I. We first assume that each $F_{j}$ has real codimension 2 in $X$.
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We shall prove
PROPOSITION (4.1). Suppose that (X, $V,$ $\psi$) $\in \mathcal{B}_{m,2k}(S^{1} ; \mathcal{F}_{l}^{+})$ and each $F_{j}$ has

.yeal codimension 2 in X. Then

sign $P_{\psi}(V\times C)=|\sum_{0^{j}}$

sign $F_{j}$ if $k$ is odd ’

if $k$ is even.

sign $P_{\psi}(V)=\{0\sum_{f}$

sign $F_{j}$

$ififkkisisevenodd,$

.
REMARK. In (4.1), assume moreover that the manifold $X$ (and hence the

vector bundle $V$ too) is orientable. Then the Atiyah-Singer formula applied to
.the semi-free action $\varphi$ on $X$ yields

$\sum_{j}$
sign $F_{j}=0$ . Therefore sign $P_{\psi}(V\times C)=$

sign $P_{\psi}(V)=0$ in this case.
The proof of (4.1) is preceded by several lemmas. We shall only give

proof for $P_{\psi}(V)$ , the case for $P_{\psi}(V\times C)$ being entirely similar.
We use the following notations. $P=P_{\psi}(V),$ $P_{0}=P_{\psi}(V|F)=S(V|F)/\psi_{1}$ ,

$Y=X/\varphi$ . Let $i:P_{0}\subset P,$ $i:P\subset(P, P_{0}),$ $i^{\prime}$ : $F\subset Y$ and $i^{\prime}$ : $Y\subset(Y, F)$ be inclu-
sions. Since the projection $S(V)\rightarrow X$ is equivariant with respect to $\psi_{1}$ and
$\varphi^{2}$ it induces a map $\pi:P\rightarrow Y$. Let $\pi_{0}$ : $P_{0}\rightarrow F$ be the restriction of $\pi$ and set
$\pi_{1}=(\pi, \pi_{0}):(P, P_{0})\rightarrow(Y, F)$ . It is easy to see that $\pi;P-P_{0}\rightarrow Y-F$ is a fiber

. bundle which has $(2k-1)$ -dimensional real projective space $RP^{2k-1}$ as fiber and
$\pi_{0}$ ; $P_{0}\rightarrow F$ is a fiber bundle with fiber $CP^{k-1}$ associated to the vector bundle $V$

.with the complex structure determined by our orientation convention. Moreover,
since each $F_{j}$ has real codimension 2 in $X$, the quotient space $Y=X/\varphi$ is a

. compact manifold with boundary $F$. Take a collar neighborhood $F\times[0,1]$ of
$F=\partial Y$ in $Y$ and set $Y_{1}=Y-F\times[0,1$), $Q_{0}=\pi^{-1}(F\times[0,1])$ and $Q_{1}=\pi^{-1}(Y_{1})$ .
Note that $Q_{0}$ is a tubular neighborhood of $P_{0}$ in $P$.

We shall
$consider\downarrow^{the}following\downarrow commutativediagram.\downarrow$

$...\rightarrow^{\prime*}H^{q}(Y, F)\delta\rightarrow^{\prime*}H^{q}(Y)j\rightarrow^{i^{\prime*}}H^{q}(F)\rightarrow^{\delta^{\prime*}}H^{q\cdot\vdash 1}(Y, F)\rightarrow$

$\downarrow\pi_{1}^{*}$ $\downarrow\pi^{*}$ $\downarrow\pi_{0}^{*}$ $\downarrow\pi_{1}^{*}$

$t.(4.2)$
$...\rightarrow H^{q}(P, P_{0})\rightarrow^{j^{*}}H^{q}(P)\rightarrow^{i^{*}}H^{q}(P_{0})\rightarrow^{\delta^{*}}H^{q\cdot\vdash 1}(P, P_{0})$

$\downarrow\pi_{11}$ $\downarrow\pi_{1}$

$\hat{H}^{q-(2k- 1)}(Y, F)=\hat{H}^{q-(2k- 1)}(Y, F)$

$\downarrow\rho_{1}$ $\downarrow\rho$

$\delta^{\prime*}$ $j^{\prime*}$

$H^{q}(F)\rightarrow H^{q\cdot\vdash 1}(Y, F)\downarrow\rightarrow H\cdot(Y)\downarrow^{q\cdot\vee 1}$



724 A. HATTORI and H. TANIGUCHI

Here $H^{*}$ denotes the usual rational cohomology and $\hat{H}*denotes$ the coho-
mology with coefficients in the rational orientation sheaf of the manifold Y.
$\pi_{\iota}$ and $\pi_{1!}$ are Gysin homomorphisms; i. e. $\pi_{!}=\theta^{-1}\pi_{*}\theta$ where $\theta$ denotes the $\cdot$

Poincar\’e-Lefschetz duality and $\pi_{1!}$ is the transform (via excision) of $\theta^{-1}\pi_{*}\theta_{\leftarrow}$

$H^{q}(Q_{1}, \partial Q_{1})\rightarrow\hat{H}^{q-(2k- 1)}(Y_{1}, \partial Y_{1})$ . The homomorphism $\rho_{1}$ is given by $\rho_{1}(y)=y\cdot\overline{\chi}$

where $\chi\in\hat{H}^{2k}(Y)$ is the rational characteristic class of $RP^{2k-1}$ -bundle $\pi:$:
$Q_{1}\rightarrow Y_{1}\cong Y$, and $\rho=j^{J*}\circ\rho_{1}$ .

Let $i_{1}$ : $H^{*}(P_{0})\rightarrow H^{*}(P)$ be the Gysin homomorphism of $i$ . As is well-
known, the element $\chi=i^{*}i,(1)$ of $H^{2}(P_{0})$ is the Euler class of the normal-
bundle $\nu_{i}$ of the embedding $i$ . Let $e\in H^{2}(P_{0})$ denote the first Chern class of
the canonical line bundle $\xi$ of the complex projective space bundle $P_{0}$ . Let-
$c_{1}\in H^{2}(F)$ denote the first Chern class of the normal bundle $\mu$ of $F$ in $X$ with
the complex structure determined by our orientation convention.

LEMMA (4.3). With the above notations, we have

$x=2e+\pi_{0}^{*}(c_{1})$ .
PROOF. We claim that

$\nu_{i}=\xi^{2}\otimes\pi_{0}^{*}(\mu)$ ,

which implies Lemma (4.3). For the additivity of the first Chern class $with_{1}$

respect to the tensor product of complex line bundle yields

$x=c_{1}(\nu_{i})=2c_{1}(\xi)+\pi_{0}^{*}c_{1}(\mu)$

$=2e+\pi_{0}^{*}c_{1}$ .
To prove the claim, note that the normal bundle $\tilde{\nu}$ of $S(V|F)$ in $S(V)$ is.
equivalent to $\tilde{\pi}^{*}\mu$ where $\tilde{\pi};S(V|F)\rightarrow F$ is the projection. Moreover we can-
choose an equivalence equivariantly with respect to $\psi_{1}$ . Thus we may assume:
that $\tilde{\nu}=S(V|F)\times\mu F$ (fiber product) with the action given by

$\psi_{1}(g)(v, u)=(\psi^{\prime}(g)v, \varphi(g)^{2}u)$ .
$S(V|F)$ is contained in the Hopf bundle $\xi$, the conjugate bundle of $\xi$ , as the $\cdot$

sphere bundle. With this understanding, it is easy to see $t^{hat}$ the assignment-

$[v, u]\leftrightarrow\overline{v}\otimes\overline{v}\otimes u$

gives a well-defined equivalence

$\nu_{i}=\tilde{\nu}/\psi_{1}\rightarrow\xi^{2}\otimes\pi_{0}^{*}(\mu)$

where $\overline{v}$ is the conjugation of $v\in\overline{\xi}$ in $\xi$ . This proves (4.3).

To proceed further we recall some fundamental properties of the Gysim
homomorphism which we shall use later.

(4.4) $i^{*}i_{\mathfrak{l}}(\pi_{0}^{*}(y)\chi^{j})=\pi_{0}^{*}(y)\chi^{j+1}$ for $y\in H^{*}(F)$ .
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(4.5) $\pi_{1}i_{I}=\pm\delta^{*}\pi_{01}$ .
(4.6) $\pi_{!}(\pi^{*}(y)x)=y\pi_{1}(x)$ for $y\in H^{*}(Y)$ and $x\in H^{*}(P)$ .

Now since $P_{0}$ is a complex projective space bundle, $H^{*}(P_{0})$ is a free $H^{*}(F)-$

module (via $\pi_{0}^{*}$ ) on generators 1, $e$ , $\cdot$ .. , $e^{k- 1}$ . In virtue of (4.3) 1, $\chi$ , , $\chi^{k-1}$

also form a system of free $H^{*}(F)$ -module generators.
LEMMA (4.7). The Gysin homomorphism

$\pi_{01}$ : $H^{*}(P_{0})\rightarrow H^{*}(F)$

is onto. Its kernel equals

$A=\sum_{j=0}^{k-2}H^{*}(F)x^{j}$ .

PROOF. $\pi_{0!}$ lowers degree by $2(k-1)$ . Hence $\pi_{01}(x^{j})=0$ for $j<k-1$ . Then

$\pi_{0},(\pi_{0}^{*}(y)x^{j})=y\pi_{01}(x^{j})=0$ for $j<k-1$ .
Thus $\pi_{0!}(A)=0$ . If we assume $\pi_{01}(\chi^{k-1})=0$ , then $\pi_{01}$ would be trivial. But the
Gysin homomorphism maps the top dimensional classes of $P_{0}$ into the top

dimensional classes of $F$ non-trivially. Hence $\pi_{01}(\chi^{k- 1})\neq 0$ and $\pi_{01}(H^{*}(F)\chi^{k-1})$

$=H^{*}(F)$ .
LEMMA (4.8). Let $A=\sum_{J=0}^{k-2}H^{*}(F)\cdot\chi^{j}$ as above. Then $i_{I}|A$ and $i^{*}|i_{1}(A)$ are

injective.
PROOF. This follows immediately from (4.4).

LEMMA (4.9). The rows of (4.2) are exact. The columns of (4.2) are exact
except for the part

$\pi^{*}$
$\pi_{1}$

$H^{q}(Y)\rightarrow H^{q}(P)\rightarrow H^{q-(2k-1)}(Y, F)$ .
PROOF. The rows are part of exact sequences of pairs and hence exact.

The first column is exact as part of the Gysin exact sequence in the rational
cohomology of the $RP^{2k-1}$-bundle $\pi_{1}$ : $(Q_{1}, \partial Q_{1})\rightarrow(Y_{1}, \partial Y_{1})$ .

To prove the exactness of

$\pi_{1}$ $\rho$

(4.10) $H^{q}(P)\rightarrow\hat{H}^{q-(2k-1)}(Y, F)-\neq H^{q+1}(Y)$

we consider the following commutative diagram

$j_{1}^{*}$ $\delta_{1}^{*}$ $j_{1}^{*}$

$\rightarrow H^{q}(P, Q_{1})\rightarrow$ $H^{q}(P)$ $\rightarrow$ $H^{q}(Q_{1})$ $\rightarrow H^{q+1}(P, Q_{1})\rightarrow$

$||$
$||$

$H^{q}(Q_{0}, \partial Q_{0})$ $\downarrow\pi_{1}$ $\downarrow\pi_{1}^{\prime}$ $H^{q}(Q_{0}, \partial Q_{0})$

$\downarrow\pi_{01}^{\prime}$
$\downarrow\pi_{0t}^{\prime}$

$\rightarrow H^{q-2k}(F)\rightarrow\hat{H}^{q-(2k- 1)}(Y, F)\rightarrow\hat{H}^{q-(2k- 1)}(Y)\rightarrow H^{q+1- 2k}(F)\rightarrow$

$\downarrow\rho$ $\downarrow\rho^{\prime}$

$H^{q+1}(Y)$ $=$ $H^{q+1}(Y)$
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where $\pi_{0!}^{\prime}$ and $\pi_{!}^{\prime}$ are Gysin homomorphisms and $\rho^{\prime}(y)=y\overline{x}$ . Let

$\phi:H^{*}(P_{0})\rightarrow H^{*}(Q_{0}, \partial Q_{0})$

be the Thom isomorphism. Then we have

$\pi_{01}^{\prime}=\pi_{01}\circ\phi^{-1}$ and $j_{1}^{*}\circ\phi=i_{1}$ .
Therefore from (4.7) and (4.8) it follows that $\pi_{01}^{\prime}$ is surjective and $\delta_{1}^{*}(H^{q}(Q_{1}))$

$\cap Kernel\pi_{0}^{\prime},$ $=0$ . Then the exactness of (4.10) follows from a diagram chasing
using the exactness of the third column of the above diagram.

PROPOSITION (4.11). Let (X, $V,$ $\psi$) $\in \mathcal{B}_{m,2k}(S^{1} ; \mathcal{F}_{l}^{+})$ and assume that
$co\dim_{R}F_{j}=2$ for all $F_{j}$ . Then

Kernel of $\pi_{!}$ : $H^{q}(P)\rightarrow\hat{H}^{q-(2k-1)}(Y, F)$

$=\pi^{*}H^{q}(Y)\oplus i_{I}(A^{q-2})$ (direct sum)

where

$A^{q- 2}=\sum_{j=0}^{k-2}H^{q- 2- 2j}(F)x^{j}$ .

PROOF. Since $\pi_{1}$ lowers degree by $2k-1$ we have $\pi_{!}(1)=0$ . Then, by
\langle 4.6),

$\pi^{*}H^{q}(Y)\subset Kerne1$ of $\pi_{1}$ .
By (4.5) and (4.7) we have, for $i\leqq k-2$ ,

$\pi_{1}i_{I}(\pi_{0}^{*}(y)x^{j})=\pm\delta^{*}\pi_{01}(\pi_{0}^{*}(y)x^{j})=0$ .
Thus $ i_{1}(A)\subset$ Kernel of $\pi_{!}$ .

Next, using (4.4) we obtain

$i^{*}(\pi^{*}H^{q}(Y)\cap i_{1}(A^{q- 2}))\subset\pi_{0}^{*}H^{q}(F)\cap A^{q- 2}\cdot\chi=0$ .
But $i^{*}$ is injective on $i_{!}(A^{q- 2})$ by (4.8). Hence $\pi^{*}H^{q}(Y)\cap i_{!}(A^{q- 2})=0$ . We have
proved that

$\pi^{*}H^{q}(Y)\oplus i_{I}(A^{Q- 2})\subset$ Kernel $\pi_{!}$ .
To prove the equality it is therefore sufficient to show that

$\dim\pi^{*}H^{q}(Y)+\dim A^{q-2}=\dim$ Kernel $\pi_{1}$ ,

or
$\dim\pi^{*}H^{q}(Y)+\dim A^{q-2}+\dim\pi_{!}H^{q}(P)=\dim H^{q}(P)$ .

This follows from a diagram chasing of (4.2) using (4.9). We leave the details
to the reader. We only note that

$i^{*}H^{q}(P)=A^{q- 2}\cdot\chi\oplus\pi_{0}^{*}(\delta^{\prime*-1}(\rho_{1}\hat{H}^{q-(2k- 1)}(Y, F)))$

as follows easily from (4.4).

LEMMA (4.12). Suppose that (X, $V,$ $\psi$) $\in \mathcal{B}_{2m,2k}(S^{1} ; \mathcal{F}_{l}^{+})$ and $co\dim_{R}F_{j}=2$
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for all $F_{j}$ . Then the pairing

$\pi^{*}H^{m+k- 1}(Y)\times\pi_{!}H^{m\cdot.k- 1}4(P)\rightarrow R$

defined by
$\pi^{*}y\cdot\pi_{t}(x)=(\pi^{*}y\cdot x)[P]$

is a dual pairing. In particular

$\dim\pi^{*}H^{m^{\prime}- k- 1}(Y)=\dim\pi_{!}H^{m^{\llcorner}k- 1}(P)$ .
PROOF. If $\pi^{*}y\cdot\pi_{1}(x)=0$ for any $x$, then by Poincar\’e duality in $P,$ $\pi^{*}y=0$ .

Suppose that $\pi^{*}y\cdot\pi_{!}(x)=0$ for any $y\in H^{m+k-1}(Y)$ . Then

$0=\pi_{1}(\pi^{*}y\cdot x)[Y, F]=(y\cdot\pi_{1}(x))[Y, F]$

for all $y$ by (4.6). Hence $\pi_{1}(x)=0$ . This proves (4.12).

We are now ready to prove Proposition (4.1). In the case of $P_{\psi}(V)$ we
may clearly assume that (X, $V,$ $\psi$) $\in \mathcal{B}_{2m,2k}(S^{1} ; \mathcal{F}_{l}^{+})$ and $m+k-1$ is even. We
set

$B_{1}=i_{1}(A^{m+k- 3})$ , $B_{2}=\pi^{*}H^{m+k- 1}(Y)$

and
$B_{3}=a$ complement of $B_{1}\oplus B_{2}$ in $H^{m+k- 1}(P)$ .

Then by (4.6), (4.11) and (4.12) the matrix of the cup product

$H^{m+k- 1}(P)\times H^{m+k- 1}(P)\rightarrow R$

with respect to the decomposition $H^{m+k- 1}(P)=B_{1}\oplus B_{2}\oplus B_{3}$ is of the following
form.

It follows easily that
sign $P_{\psi}(V)=signM_{11}$ .

But using (4.4) we get

$i_{1}(y_{1}x^{j_{1}})i_{1}(y_{2}\chi^{j_{2}})=i_{I}(y_{1}y_{2}x^{j_{1}+j_{2}+1})$

.and hence
$i_{I}(y_{1}x^{j_{1}})i_{1}(y_{2}x^{j_{2}})[P]=y_{1}y_{2}x^{j_{1}+J_{2+1}}[P_{0}]$ .

Therefore sign $M_{11}$ is equal to the signature of the bilinear form $Q$ on
$A^{m+k- 3}=\sum_{j=0}^{k-2}H^{m+k-3- 2j}(F)\chi^{j}$ defined by



728 A. HATTORI and H. TANIGUCHI

$Q(y_{1}x^{f_{1}}, y_{2}x^{j_{2}})=y_{1}y_{2}x^{f_{1}\cdot\vdash j_{2+1}}[P_{0}]$ .
We set

$C_{j}=H^{m+k-\S-2j}(F)\chi^{f}$ .
Since the fundamental cohomology class of $P_{0}$ is $\mu^{\chi^{k-1}}$ where $\mu$ is that of $F_{\nu}$

we get
$Q(C_{j_{1}}, C_{f_{2}})=0$ for $j_{1}+j_{2}+1<k-1$

and
$Q(y_{1}x^{j_{1}}, y_{2}x^{j_{2}})=y_{1}y_{2}[F]$ for $i_{1}+j_{2}+1=k-1$ .

Therefore the matrix of $Q$ with respect to the decomposition $ A^{m+k-3}=C_{1}\oplus$

$\oplus C_{k- 2}$ is of the form

$N_{0,k- 2}$

$0$

$\prime^{\prime}’’$

’

$’’$

’

$*$

$\pm {}^{t}N_{0.k-2}$

where $N_{j,k- 2- j}$ is the matrix of the cup product $ H^{m+k-s-2j}(F)\times H^{m-k+1+2f}(F\lambda$

$\rightarrow R$ . From this it follows easily that

sign $P_{\psi}(V)=signM_{11}$

$=signQ=$ I $0signFifk$
is odd,

if $k$ is even.
This completes the proof of (4.1) for $P_{\psi}(V)$ . The case of $P_{\psi}(V\times C)$ is simi-
larly proved.

II. General case. First we shall prove the following proposition which
is a variant of the Atiyah-Singer formula. Cf. (3.9) and (3.10).

PROPOSITION (4.13). Let (X, $V,$ $\psi$) $\in \mathcal{B}_{m,2k}(S^{1} ; \mathcal{F}_{l}^{+})$ . Let $\{F_{j}\}$ be the $com-$

ponents of the fixed poinl set $F$ of $\varphi$ in X. Then

sign $P_{\psi}(V\times C)=\sum_{Jco\dim_{Cf}even}.signF_{j}$ ,
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sign $P_{\psi}(V)=\sum_{co\dim_{C}F_{j}}$
odd

sign $F_{j}$ ,

where $co\dim_{C}$ means the complex codimension in $V$ .
PROOF. First we shall decompose [X, $V,$ $\psi$] into a sum of elements with

certain simple properties. Take a $\varphi$ -invariant tubular neighborhood $D(U_{j}))$

around $F_{j}$ and let $p_{j}$ ; $D(U_{j})\rightarrow F_{j}$ be the projection of the normal $bundle\leftarrow$

Then there is a $\psi$-equivariant bundle equivalence

$\theta_{j}$ : $V|D(U_{j})\rightarrow p^{*}(V|F_{j})=D(U_{j})\times V|F_{j}$
$F_{j}$

where the action $\psi$ on $p^{*}(V|F_{j})$ is given by

$\psi(g)(u, v)=(\psi(g)u, \psi(g)v)$

$=(\varphi(g)^{l}u, \psi(g)v)$ .
We identify both bundles through $\theta_{j}$ and consider the $S^{1}$ -action $\psi^{\prime\prime}$ defined by

$\psi^{\prime\prime}(g)(u, v)=(\varphi(g)u, v)$ .
Clearly $\psi^{\prime\prime}$ commutes with $\psi$ . Moreover it is semi-free outside of $V|F_{j\sim}$

Therefore the mapping cylinder $W_{j}$ of the projection $V|S(U_{j})\rightarrow V|S(U_{f})/\psi^{\prime\prime}$

is a vector bundle over the mapping cylinder $Y_{j}$ of the projection $ S(U_{j})\rightarrow$

$ S(U_{j})/\varphi$ where $S(U_{j})=\partial D(U_{j})$ . Thus we can form a vector bundle

$V_{j}=V|D(U_{j})\cup W_{j}$

on the complex projective space bundle $X_{j}=P(U_{j}\times C)=D(U_{j})\cup Y_{j}$ . The
orientation of the manifold $V_{j}$ is given concordantly with that of $V|D(U_{j})_{-}$

The actions $\psi$ and $\psi$
“ are extended over $V_{j}$ in the obvious way. Define

$V^{\prime}=$ ( $ V-\cup$ int $V|D(U_{j})$) $\cup\cup W_{j}$

glued along $\cup V|S(V_{j})$ , and

$X^{\prime}=$ ($X-U$ int $D(U_{j})$) $\cup\cup Y_{j}$

glued along $\cup S(U_{j})$ . The action $\psi$ is also extended on $V^{\prime}$ . We have

[X, $V,$ $\psi$] $=[X^{\prime}, V^{\prime}, \psi]+\sum[X_{j}, V_{j}, \psi]$ .
It is therefore sufficient to prove (4.13) for (X‘, $V^{\prime},$ $\psi$) and $(X_{j}, V_{j}, \psi)$ separately-
The fixed point set of $\varphi$ in $X^{\prime}$ is the union of $L_{j}=P(U_{j})$ . Since each $L_{j}$.
has real codimension 2 in $X^{\prime}$ we can apply (4.1) which is a special case of
(4.13).

The fixed point set of $\varphi$ in $X_{j}$ is the union of $F_{j}$ and $-L_{j}$ , where $-L_{p}$

is $P(U_{j})$ with the opposite orientation. The action $\psi^{\prime\prime}$ on $P_{\psi}(V\times C)$ is semi-
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free and its fixed point set is the union of $P(V_{j}|F_{j}\times C)$ and $-P(V_{j}|L_{j}\times C)$ .
Applying the Atiyah-Singer formula in the semi-free case we obtain

sign $P_{\varphi}(V_{j}\times C)=\{0signP(V_{j}|F_{j}\times C)$

, if $\dim_{c}U_{j}$ is even,

if $\dim_{C}U_{j}$ is odd,

$=\{0signF_{j}$
, if $\dim_{c}U_{j}$ and $k$ are both even,

otherwise.

When $k$ is even this proves the formula in (4.13) for sign $P_{\varphi^{\prime}}(V\times C)$ . When $k$

is odd then
sign $F_{j}$ -sign $L_{j}=0$

since $L_{j}=P(U_{j})$ . Thus the formula holds in this case too.
The proof for sign $P_{\psi}(V)$ is entirely similar and is left to the reader.
Now the Atiyah-Singer formula for $P_{\psi}(V\times C)$ takes the following form.
PROPOSITION (4.14). Let (X, $V,$ $\psi$) $\in \mathcal{B}_{m,2k}(S^{1} ; \mathcal{F}_{l}^{+})$ . Let $\{F_{j}\}$ be the com-

ponents of the fixed point set of $\varphi$ in $X$ and $\{F_{s}^{\prime}\}$ be the components of the
fixed point set of $\psi$ in $P_{\psi}(V\times C)$ which are contained in $P_{\psi}(V)$ , cf. (2.21). $We$

orient $F_{j}$ and $F_{s}^{\prime}$ in accordance with the orienta tion convention with respect to
the action $\psi$ on $P_{\psi}(V\times C)$ . Then we have

sign $P_{\psi}(V\times C)=\sum_{co\dim F_{j}even}signF_{j}$ ,

$0=\sum_{eco\dim F_{s}^{\prime}ven}$
sign $F_{s}^{\prime}$

and

$\sum_{co\dim F_{j}odd}signF_{j}+\sum_{co\dim F_{s^{\circ dd}}^{\prime}}signF_{s}^{\prime}=0$

where codim means the complex codimension in $P_{\varphi^{\gamma}}(V\times C)$ .
The deduction of (4.14) from (4.13) is quite similar to that of the Kosniow-

ski formula from (3.10) and is left to the reader. This finishes our proof of
the Atiyah-Singer formula.

University of Tokyo
and

Sophia University
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