Theta series and automorphic forms on $\boldsymbol{G} \boldsymbol{L}_{2}$

By Hideo Shimizu

(Received Jan. 17, 1972)

The main purpose of the present paper is to give another proof of Jacquet-Langlands [5, Th. 14.4], the assertion of which is the following.

Let \mathcal{K} be a division quaternion algebra over a global field F. To every irreducible admissible representation π of the Hecke algebra $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$, we can make correspond an irreducible admissible representation π^{*} of the Hecke algebra $\mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)$ so that, if π is a constituent of the representation of $\mathscr{H}\left(\mathcal{K}_{\mathbf{A}}^{\times}\right)$in $\mathcal{A}\left(\eta, \mathcal{K}_{\mathbf{A}}^{\times}\right)$(the space of automorphic forms on $\mathcal{K}_{\mathbf{A}}^{\times}$with a character η), then π^{*} is a constituent of the representation of $\mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)$ in $\mathcal{A}_{0}\left(\eta, G L_{2}(\boldsymbol{A})\right)$ (the space of cusp forms on $G L_{2}(\boldsymbol{A})$ with a character η) under the condition that the component π_{v} of π is infinite dimensional for all places v of F unramified in \mathcal{K}.

In view of various ideas in Jacquet-Langlands [5], and also of ShalikaTanaka [7] and Weil [11], we find it natural to consider theta series made of Weil representation of $S L_{2}(\boldsymbol{A})$ in the Schwartz space on $\mathcal{K}_{\boldsymbol{A}}$, and in order to construct an irreducible subspace of $\mathcal{A}_{0}\left(\eta, G L_{2}(\boldsymbol{A})\right)$ from the space of theta series, to make use of a spherical function associated with automorphic forms on \mathcal{K}_{A}^{\times}. In this way we obtain a proof of the above theorem, somewhat more direct than the original one, under a weaker condition that π is not onedimensional (in substance our proof is quite similar to that of [5, Th. 13.1]). The main theorem in our formulation is stated as Theorem 1 ($\$ 5$, No. 12). Applied to the holomorphic automorphic forms, it gives a generalization of Eichler [1, 2]. It is stated as Theorem 2 (8 6, No. 5).

For convenience sake we summarize in § 1-§3 generalities on admissible representations, theta series, automorphic forms and spherical functions.

§ 1. Admissible representation of $G L_{2}$.

1. Definition (non-archimedean case). In No. 1-No. 4, F will be a nonarchimedean local field. By an admissible representation π of $G L_{2}(F)$ we understand a representation π of $G L_{2}(F)$ in a vector space $C V$ over C satisfying the following conditions.
(1.1) For any $x \in \mathcal{V}$, the group of elements g in $G L_{2}(F)$ such that
$\pi(g) x=x$ is an open subgroup of $G L_{2}(F)$.
(1.2) For any open compact subgroup H of $G L_{2}(F)$, the space of elements x in \oslash such that $\pi(h) x=x$ for all $h \in H$ is finite dimensional.

We say that π is irreducible if Q has no proper invariant subspace.
2. Local Hecke algebra. Let \mathscr{A}_{F} be the space of all C-valued locally constant functions of compact support on $G L_{2}(F)$. It forms an associative algebra under the convolution:

$$
f_{1} * f_{2}(g)=\int_{G L_{2}(F)} f_{1}(g h) f_{2}\left(h^{-1}\right) d h
$$

We call \mathscr{H}_{F} the Hecke algebra of $G L_{2}(F)$. For an admissible representation π of $G L_{2}(F)$ in \mathcal{V}, we define a representation π of \mathscr{H}_{F} in \mathscr{V} by

$$
\pi(f) x=\int_{G L_{2}(F)} f(g) \pi(g) x d g \quad\left(f \in \mathscr{H}_{F}, x \in \mathcal{V}\right) .
$$

For a fixed $x, f(g) \pi(g) x$ is a \mathcal{V}-valued locally constant function of compact support on $G L_{2}(F)$. Therefore, the integral in the above expression is actually a finite sum. Denote by $\rho(g) f$ or $\lambda(g) f$ the right or left translate of a function f on $G L_{2}(F)$ by an element g in $G L_{2}(F)$:

$$
(\rho(g) f)(h)=f(h g), \quad(\lambda(g) f)(h)=f\left(g^{-1} h\right)
$$

By definition we have

$$
\begin{equation*}
\pi(\lambda(g) f)=\pi(g) \pi(f) \quad \text { for } g \in G L_{2}(F) \text { and } f \in \mathscr{A}_{F} \tag{1.3}
\end{equation*}
$$

Let \mathfrak{o} be the ring of all integers in F, and put $K=G L_{2}(\mathfrak{p})$. By an elementary idempotent we understand a function ξ on K of the form

$$
\xi(k)=\Sigma \operatorname{dim} \sigma_{i} \operatorname{tr} \sigma_{i}\left(k^{-1}\right),
$$

σ_{i} being a finite number of inequivalent irreducible representations of K. ξ is in fact an idempotent in \mathscr{A}_{F}, if we regard ξ as a function on $G L_{2}(F)$, putting $\xi(g)=0$ for $g \notin K$.

By (1.1) and (1.2) the representation π of \mathscr{A}_{F} has the following properties.
(1.4) For any $x \in \mathcal{V}$, there exists a function f in \mathscr{H}_{F} such that $\pi(f) x=x$.
(1.5) For any elementary idempotent $\xi, \pi(\xi) \subset \cup$ is finite dimensional.

Conversely, for any representation π of \mathscr{H}_{F} in $C V$ with these properties, there exists an admissible representation π of $G L_{2}(F)$ satisfying (1.3),
3. Principal series of representations. We denote by $|\alpha|_{F}$ the module of α in F^{\times}; namely, $d\left(\alpha \alpha_{1}\right)=|\alpha|_{F} d \alpha_{1}, d \alpha_{1}$ being the additive Haar measure of F. Let T be the group of all upper triangular elements in $G L_{2}(F)$. Every one-dimensional representation ζ of T can be written in the form

$$
\zeta\left(\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)\right)=\left.\left.\mu_{1}(\alpha) \mu_{2}(\delta)\right|^{\alpha}\right|_{F} ^{1 / 2},
$$

where μ_{1}, μ_{2} are quasi-characters of F^{\star}. Let $\mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ be the space of all locally constant functions f on $G L_{2}(F)$ satisfying

$$
f(t g)=\zeta(t) f(g) \quad\left(t \in T, g \in G L_{2}(F)\right) .
$$

The right translation ρ defines a representation of $G L_{2}(F)$ in $\mathscr{B}\left(\mu_{1}, \mu_{2}\right)$. It can be shown that ρ is admissible. By [5, Th. 3.3] the irreducible constituents of $\mathscr{B}\left(\mu_{1}, \mu_{2}\right)$ are the following.
i) If $\mu_{1} \mu_{2}^{-1}$ equals neither $\left.\left|\left.\right|_{F}\right.$ nor $|\right|_{\bar{F}} ^{-1}, \mathscr{B}\left(\mu_{1}, \mu_{2}\right)$ is irreducible.
ii) If $\mu_{1} \mu_{2}^{-1}=| |_{F}, \mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ contains the only one proper invariant subspace $\mathscr{B}_{s}\left(\mu_{1}, \mu_{2}\right)$, which is of codimension 1 .
iii) If $\mu_{1} \mu_{2}^{-1}=| |_{\boldsymbol{F}}^{-1}, \mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ contains the only one proper invariant subspace $\mathscr{B}_{f}\left(\mu_{1}, \mu_{2}\right)$, which is of dimension 1 .

In the case i) we write $\pi\left(\mu_{1}, \mu_{2}\right)$ for ρ. In the case ii) we write $\sigma\left(\mu_{1}, \mu_{2}\right)$ (resp. $\pi\left(\mu_{1}, \mu_{2}\right)$) for the representation of $G L_{2}(F)$ in $\mathcal{S}_{s}\left(\mu_{1}, \mu_{2}\right)$ (resp. $\mathcal{B}\left(\mu_{1}, \mu_{2}\right) /$ $\mathcal{B}_{s}\left(\mu_{1}, \mu_{2}\right)$) induced by ρ. In the case iii) we write $\sigma\left(\mu_{1}, \mu_{2}\right)$ (resp. $\left.\pi\left(\mu_{1}, \mu_{2}\right)\right)$ for the representation of $G L_{2}(F)$ in $\mathscr{B}\left(\mu_{1}, \mu_{2}\right) / \mathscr{B}_{f}\left(\mu_{1}, \mu_{2}\right)$ (resp. $\mathscr{B}_{f}\left(\mu_{1}, \mu_{2}\right)$) induced by ρ.
$\pi\left(\mu_{1}, \mu_{2}\right)\left(\right.$ resp. $\left.\sigma\left(\mu_{1}, \mu_{2}\right)\right)$ and $\pi\left(\mu_{2}, \mu_{1}\right)\left(\right.$ resp. $\left.\sigma\left(\mu_{2}, \mu_{1}\right)\right)$ are equivalent, and there is no other equivalence relation among these representations (cf. [4, § 1, Th. 7]).

By [5, Prop. 2.7] a finite dimensional irreducible admissible representation π of $G L_{2}(F)$ is necessarily one-dimensional, and we have $\pi(g)=\chi(\operatorname{det} g)$ with a quasi-character χ of F^{\times}. If $\mu_{1}(\alpha)=\chi(\alpha)|\alpha|_{F}^{1 / 2}, \mu_{2}(\alpha)=\chi(\alpha)|\alpha|_{F}^{-1 / 2}, \pi$ is equivalent to $\pi\left(\mu_{1}, \mu_{2}\right)$.
4. Absolutely cuspidal representations. An irreducible admissible representation π of $G L_{2}(F)$ is called absolutely cuspidal if it is not a constituent of $\mathscr{B}\left(\mu_{1}, \mu_{2}\right)$ for any choice of μ_{1}, μ_{2}.
5. Definition (archimedean case). In No. 5-No. 7, we assume that F is an archimedean local field so that F is either the real number field \boldsymbol{R} or the complex number field \boldsymbol{C}. Let K be a maximal compact subgroup of $G L_{2}(F)$. Let $d g$ (r.jp. $d k$) be a fixed Haar measure of $G L_{2}(F)$ (resp. K). We denote by \mathscr{H}_{F} the space of Radon measures on $G L_{2}(F)$ spanned by the following two kinds of measures:
i) $f(g) d g$; f is a C^{∞} function of compact support on $G L_{2}(F)$, which is K-finite on both sides.
ii) $\xi(k) d k ; \xi(k)$ is a matrix coefficient of some irreducible representation of K.
In the following we identify $f(g) d g$ (resp. $\xi(k) d k$) with a function f (resp. ξ).

Let \mathscr{H}_{F}^{\prime} be the space spanned by the measures of type i) and $\mathscr{A}_{F}^{\prime \prime}$ the space spanned by the measures of type ii). If $*$ denotes the convolution of measures, \mathscr{A}_{F} forms an associative algebra under $*$. In fact, $*$ coincides on \mathscr{A}_{F}^{\prime} (resp. $\mathscr{H}_{F}^{\prime \prime}$) with the convolution of functions on $G L_{2}(F)$ (resp. K), and

$$
\begin{aligned}
& f * \xi(g)=\int_{K} f(g k) \xi\left(k^{-1}\right) d k, \\
& \xi * f(g)=\int_{K} \xi\left(k^{-1}\right) f(k g) d k .
\end{aligned}
$$

We note that an elementary idempotent can be defined in the same way as in No. 2, and it is an element of $\mathscr{A}_{F}^{\prime \prime}$.

We say that a representation π of \mathscr{H}_{F} in \mathbb{V} is admissible if it satisfies the following conditions.
(1.6) For any $x \in \mathscr{V}$, we can find $f_{i} \in \mathscr{A}_{F}^{\prime}$ and $x_{i} \in \mathscr{V}$ such that

$$
x=\sum_{i=1}^{r} \pi\left(f_{i}\right) x_{i} .
$$

(1.7) For any elementary idempotent $\xi, \pi(\xi) \subset$ is finite dimensional.
(1.8) For any $x \in \mathscr{V}$ and for any elementary idempotent ξ, the mapping $f \rightarrow \pi(f) x$ of $\xi * \mathscr{H}_{F}^{\prime} * \xi$ into $\pi(\xi) \subset V$ is continuous (the topology in $\pi(\xi) \subset V$ is the usual topology in a finite dimensional vector space over C, and the topology in $\xi * \mathscr{C}_{F}^{\prime} * \xi$ is the one induced by the Schwartz topology in the space of all ${ }^{\circ} C^{\infty}$ functions of compact support on $G L_{2}(F)$).

REMARK. If we limit ourselves to a special case where $C V$ is a space consisting of continuous functions on $G L_{2}(F)$ and π is defined by

$$
\pi(\mu) \varphi(h)=\int \varphi(h g) d \mu(g) \quad\left(\varphi \in \mathbb{V}, \mu \in \mathscr{A}_{F}\right),
$$

then (1.6)-(1.8) can be replaced by the following conditions.
(1.6) For any $\varphi \in \mathcal{V}$, there is an elementary idempotent ξ such that $\pi(\xi) \varphi=\varphi$.
(1.7)' For any elementary idempotent $\xi, \pi(\xi) \subset \mathcal{V}$ is finite dimensional.
(1.8)' Let φ, ξ be as in (1.8). Let f_{i} be a sequence of functions in $\xi * \mathscr{f}_{F}^{\prime} * \xi$ such that the supports of f_{i} are all contained in a compact set of $G L_{2}(F)$, on which f_{i} converges uniformly to 0 , together with all derivatives of higher order. Then $\pi\left(f_{i}\right) \varphi(g)$ converges to 0 for all $g \in G L_{2}(F)$.

In this situation, (1.8)' is trivially satisfied. It can be shown that (1.8)' implies (1.8), and that (1.6)' and (1.7)' imply (1.6).
6. Representation of Z, K or \mathfrak{U} induced by an admissible representation. Let π be an admissible representation of \mathscr{H}_{F} in \mathcal{V}. Let Z be the center of $G L_{2}(F)$. We can define a representation π of Z (resp. K) by the condition that $\pi(g) \pi(f)=\pi(\lambda(g) f)$ is satisfied for all f in \mathscr{A}_{F}^{\prime}, if g is in Z (resp. K).

Let g be the Lie algebra of $G L_{2}(F)$ and \mathfrak{H} the universal enveloping algebra of $g_{c}=g \otimes_{\kappa} C . \quad \pi$ being as above, we can define a representation π of \mathfrak{l} in \mathcal{V} so that we have

$$
\pi(X) \pi(f)=\pi(X * f), \quad \pi(f) \pi(X)=\pi(f * X)
$$

for all $f \in \mathscr{G}_{F}^{\prime}$ and $X \in \mathrm{~g}$. Here

$$
\begin{aligned}
& X * f(g)=[(d / d \alpha) f(\exp (-\alpha X) g)]_{\alpha=0} \\
& f * X(g)=[(d / d \alpha) f(g \exp (-\alpha X))]_{\alpha=0}
\end{aligned}
$$

If g is in Z or K, we have

$$
\pi(\operatorname{Ad}(g) X)=\pi(g) \pi(X) \pi\left(g^{-1}\right)
$$

7. Classification of admissible representations. Let $T, \zeta, \mu_{1}, \mu_{2}$ be as in No. 3. Let $\mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ be the space of all functions φ on $G L_{2}(F)$ which are K-finite on the right and satisfy

$$
\varphi(t g)=\zeta(t) \varphi(g) \quad \text { for } t \in T .
$$

Note that any function in $\mathscr{B}\left(\mu_{1}, \mu_{2}\right)$ is necessarily a C^{∞} function. If we put

$$
\rho(\mu) \varphi\left(g_{1}\right)=\int \varphi\left(g_{1} g\right) d \mu(g)
$$

for $\mu \in \mathscr{A}_{F}$ and $\varphi \in \mathscr{B}\left(\mu_{1}, \mu_{2}\right)$, we obtain a representation ρ of \mathscr{A}_{F} in $\mathscr{B}\left(\mu_{1}, \mu_{2}\right)$. It is admissible. By [5, Th. 5.11 and Th. 6.2] every irreducible admissible representation of \mathscr{A}_{F} is equivalent to a constituent of some $\mathcal{B}\left(\mu_{1}, \mu_{2}\right)$.

The case $F=\boldsymbol{R}$. If $F=\boldsymbol{R}$, the irreducible constituents of $\mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ are the following ([5, Th. 5.11]).
i) If $\mu_{1} \mu_{2}^{-1}(\alpha)$ is not of the form $\alpha^{p} \operatorname{sgn} \alpha$ with a non-zero integer p, $\mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ is irreducible.
ii) If $\mu_{1} \mu_{2}^{-1}(\alpha)=\alpha^{p} \operatorname{sgn} \alpha$ for a positive integer $p, \mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ contains the only one proper invariant subspace $\mathscr{B}_{s}\left(\mu_{1}, \mu_{2}\right)$, which is of finite codimension.
iii) If $\mu_{1} \mu_{2}^{-1}(\alpha)=\alpha^{p} \operatorname{sgn} \alpha$ for a negative integer $p, \mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ contains the only one proper invariant subspace $\mathscr{B}_{r}\left(\mu_{1}, \mu_{2}\right)$, which is of finite dimension.

In the case i) we write $\pi\left(\mu_{1}, \mu_{2}\right)$ for the representation ρ of \mathscr{A}_{F} in $\mathcal{B}\left(\mu_{1}, \mu_{2}\right)$. In the case ii) we write $\sigma\left(\mu_{1}, \mu_{2}\right)$ (resp. $\pi\left(\mu_{1}, \mu_{2}\right)$) for the representation of \mathscr{H}_{F} in $\mathscr{B}_{s}\left(\mu_{1}, \mu_{2}\right)$ (resp. $\left.\mathscr{B}\left(\mu_{1}, \mu_{2}\right) / \mathscr{B}_{s}\left(\mu_{1}, \mu_{2}\right)\right)$ induced by ρ. In the case iii) we write $\sigma\left(\mu_{1}, \mu_{2}\right)$ (resp. $\pi\left(\mu_{1}, \mu_{2}\right)$) for the representation of \mathscr{H}_{F} in $\mathcal{B}\left(\mu_{1}, \mu_{2}\right) / \mathcal{B}_{f}\left(\mu_{1}, \mu_{2}\right)$ (resp. $\left.\mathcal{B}_{f}\left(\mu_{1}, \mu_{2}\right)\right)$ induced by ρ.

The equivalence relations of these representations are as follows. $\pi\left(\mu_{1}, \mu_{2}\right)$ and $\sigma\left(\mu_{1}{ }^{\prime}, \mu_{2}{ }^{\prime}\right)$ are not equivalent. $\pi\left(\mu_{1}, \mu_{2}\right)$ and $\pi\left(\mu_{1}{ }^{\prime}, \mu_{2}{ }^{\prime}\right)$ are equivalent if and only if $\left(\mu_{1}, \mu_{2}\right)=\left(\mu_{1}{ }^{\prime}, \mu_{2}{ }^{\prime}\right)$ or $\left(\mu_{2}{ }^{\prime}, \mu_{1}{ }^{\prime}\right)$. $\sigma\left(\mu_{1}, \mu_{2}\right)$ and $\sigma\left(\mu_{1}{ }^{\prime}, \mu_{2}{ }^{\prime}\right)$ are equivalent if and only if $\left(\mu_{1}, \mu_{2}\right)$ is one of the four pairs ($\left.\mu_{1}^{\prime}, \mu_{2}{ }^{\prime}\right),\left(\mu_{2}{ }^{\prime}, \mu_{1}{ }^{\prime}\right),\left(\mu_{1}{ }^{\prime} \eta\right.$,
$\left.\mu_{2}{ }^{\prime} \eta\right),\left(\mu_{2}{ }^{\prime} \eta, \mu_{1}{ }^{\prime} \eta\right)$. Here $\eta(\alpha)=\operatorname{sgn} \alpha$.
The case $F=\boldsymbol{C}$. If $F=\boldsymbol{C}$, the irreducible constituents of $\mathscr{B}\left(\mu_{1}, \mu_{2}\right)$ are the following ([5, Th. 6.2]).
i) If $\mu_{1} \mu_{2}^{-1}(\alpha)$ is not of the form $\alpha^{p} \bar{\alpha}^{q}$ or $\alpha^{-p} \bar{\alpha}^{-q}, p$ and q being positive integers, then $\mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ is irreducible.
ii) If $\mu_{1} \mu_{2}^{-1}(\alpha)=\alpha^{p} \bar{\alpha}^{q}$ with positive integers $p, q, \mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ contains the only one proper invariant subspace $\mathscr{B}_{s}\left(\mu_{1}, \mu_{2}\right)$, which is of finite codimension.
iii) If $\mu_{1} \mu_{2}^{-1}(\alpha)=\alpha^{-p} \bar{\alpha}^{-q}$ with positive integers $p, q, \mathscr{B}\left(\mu_{1}, \mu_{2}\right)$ contains the only one proper invariant subspace $\mathscr{B}_{f}\left(\mu_{1}, \mu_{2}\right)$, which is of finite dimension.

We define $\pi\left(\mu_{1}, \mu_{2}\right)$ or $\sigma\left(\mu_{1}, \mu_{2}\right)$ in the same way as in the real case. Unlike the real case, every irreducible admissible representation is equivalent to some $\pi\left(\mu_{1}, \mu_{2}\right) . \pi\left(\mu_{1}, \mu_{2}\right)$ and $\pi\left(\mu_{1}{ }^{\prime}, \mu_{2}{ }^{\prime}\right)$ are equivalent if and only if $\left(\mu_{1}, \mu_{2}\right)$ $=\left(\mu_{1}{ }^{\prime}, \mu_{2}{ }^{\prime}\right)$ or $\left(\mu_{2}{ }^{\prime}, \mu_{1}{ }^{\prime}\right)$.
8. The case of quaternion algebras. We consider in this section the multiplicative group of a division quaternion algebra \mathcal{K} over a local field F.

We define the Hecke algebra $\mathcal{H}\left(\mathcal{K}^{\times}\right)$and admissible representations of $\mathscr{H}\left(\mathcal{K}^{\times}\right)$exactly in the same way as in No. 2 or No. 5 , taking \mathcal{K}^{\times}(resp. the unique maximal compact subgroup of \mathcal{K}^{\times}) for $G L_{2}(F)$ (resp. K). In this case we still denote by K the maximal compact subgroup of \mathcal{K}^{\times}. Write $n(x)$ for the reduced norm of x in \mathcal{K}. Then K is the group of all $g \in \mathcal{K}^{\times}$with $n(g)$ $\in \mathfrak{o}^{\times}$(resp. $n(g)=1$) if F is non-archimedean (resp. $F=\boldsymbol{R}$) (there is no division quaternion algebra over $\boldsymbol{C})$. However, for any admissible representation π of $\mathscr{H}\left(\mathcal{K}^{\times}\right)$, there exists always a representation π of \mathcal{K}^{\times}satisfying (1.3) for $g \in \mathcal{K}^{\times}$and $f \in \mathscr{H}\left(\mathcal{K}^{\times}\right)$(even if F is archimedean, because K is a normal subgroup of \mathcal{K}^{\times}). If π is irreducible, the corresponding representation π of \mathcal{K}^{\times}is an irreducible (continuous) representation of ninite dimension.
9. Global Hecke algebra. In this section, we assume that F is a global field, i. e. an algebraic number field of finite degree or an algebraic function field over a finite field.

We write v for a place in F, F_{v} for the completion of F with respect to v, and \boldsymbol{A} for the adele of F. Also we write \mathfrak{o}_{v} and \mathfrak{D} for the rings of all integers in F_{v} and F, respectively. (If F is a number field, denote by S_{∞} the set of all archimedean places. If F is a function field, we fix a non-empty finite set S_{∞} of places. By an integer in F we understand an element in F contained in \mathfrak{o}_{v} for all $v \notin S_{\infty}$.)

Let \mathcal{K} be a quaternion algebra over F and put $\mathcal{K}_{v}=F_{v} \bigotimes_{F} \mathcal{K}$. We say that v is ramified in \mathcal{K} if \mathcal{K}_{v} is a division algebra. The number of ramified places is finite and even. Conversely, if there is given a set S of even number of non-archimedean or real places, there exists a unique (up to isomorphism) quaternion algebra \mathcal{K} over F such that S is exactly the set of places
ramified in \mathcal{K}.
For all v unramified in \mathcal{K}, we define an isomorphism θ_{v} of \mathcal{K}_{v} onto $M_{2}\left(F_{v}\right)^{\text {r }}$ in the following way. Take a maximal order \mathfrak{D} in \mathcal{K} with respect to \mathfrak{o}. For an unramified v not in S_{∞}, let \mathfrak{O}_{v} be the \mathfrak{o}_{v}-module in \mathcal{K}_{v} generated by \mathfrak{D}. There is an isomorphism of \mathfrak{D}_{v} onto $M_{2}\left(\mathfrak{D}_{v}\right)$, which can be naturally extended to an isomorphism of \mathcal{K}_{v} onto $M_{2}\left(F_{v}\right)$. Let θ_{v} be this isomorphism. For an unramified v in S_{∞}, take θ_{v} to be any isomorphism of \mathcal{K}_{v} onto $M_{2}\left(F_{v}\right)$. If \mathfrak{O}^{\prime} is another maximal order, we have $\mathfrak{D}_{v}=\mathfrak{D}_{v}{ }^{\prime}$ for almost all v; hence the choice of $\left\{\theta_{v}\right\}$ is canonical so far as "almost all" v are concerned.

We fix $\left\{\theta_{v}\right\}$ once and for all and identify \mathcal{K}_{v} with $M_{2}\left(F_{v}\right)$ and hence \mathcal{K}_{v}^{\times} with $G L_{2}\left(F_{v}\right)$ by θ_{v}. Put

$$
K_{v}= \begin{cases}G L_{2}\left(\mathfrak{n}_{v}\right) & \text { if } v \text { is non-archimedean }, \\ O_{2}(\boldsymbol{R}) & \text { if } F_{v}=\boldsymbol{R}, \\ U_{2}(\boldsymbol{C}) & \text { if } F_{v}=\boldsymbol{C},\end{cases}
$$

and denote by $\mathscr{H}\left(\mathcal{K}_{v}^{\times}\right)$the Hecke algebra of $\mathcal{K}_{v}^{\times}=G L_{2}\left(F_{v}\right)$.
If v is ramified in \mathcal{K}, we denote by K_{v} the maximal compact subgroup. of \mathcal{K}_{v}^{\times}, and by $\mathscr{H}\left(\mathcal{K}_{v}^{\times}\right)$the Hecke algebra of \mathcal{K}_{v}^{\times}defined in No. 8.

Put $K=\prod_{v} K_{v}$. Let $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$be the space spanned by all $\bigotimes_{v} f_{v}$ with $f_{v} \in \mathscr{H}\left(\mathcal{K}_{v}^{\times}\right)$, where almost all f_{v} are the characteristic functions of K_{v}. It forms an associative algebra (as a subalgebra of the tensor product of $\left.\mathscr{H}\left(\mathcal{K}_{v}^{\times}\right)\right)$.

Let π_{v} be an admissible representation of $\mathscr{H}\left(\mathcal{K}_{v}^{\times}\right)$in \mathcal{V}_{v} and assume (1.9) for almost all v, the restriction of π_{v} to K_{v} contains the identity representation exactly once.
Take an element e_{v} in V_{v} such that $\pi_{v}(k) e_{v}=e_{v}$ for all $k \in K_{v}$. Let Q be the restricted tensor product of \mathcal{V}_{v} with respect to $\left\{e_{v}\right\}$, i. e. the space spanned by all $\otimes_{v} x_{v}\left(x_{v} \in \mathcal{V}_{v}\right)$ such that $x_{v}=e_{v}$ for almost all v. We can define a representation π of $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$in \mathcal{V} by putting

$$
\pi(f) x=\otimes \pi_{v}\left(f_{v}\right) x_{v}
$$

if $f=\otimes f_{v}$ and $x=\otimes x_{v}$. By the assumption (1.9) the equivalence class of π is independent of the choice of $\left\{e_{v}\right\}$. We call π the tensor product of π_{v} and write $\pi=\otimes \pi_{v}$ (note that (1.9) is implicitly assumed whenever we speak of the tensor product of admissible representations). π is irreducible if and only if all π_{v} are irreducible.

The tensor product of admissible representations of $\mathscr{H}\left(\mathscr{K}_{v}^{\times}\right)$is an admissible representation of $\mathscr{G}\left(\mathcal{K}_{A}^{\times}\right)$in the sense of [5, §9], and every irreducible admissible representation of $\mathscr{N}\left(\mathcal{K}_{A}^{\times}\right)$is the tensor product of admissible repre-sentations of $\mathscr{A}\left(\mathcal{K}^{\times}\right)$([5, Prop. 9.1]).
$\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$can be interpreted as an algebra of measures (of compact support) on \mathcal{K}_{A}^{\times}. If φ is a continuous function on \mathcal{K}_{A}^{\times}and $\mu \in \mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$, we put

$$
\rho(\mu) \varphi(h)=\int \varphi(h g) d \mu(g)
$$

In particular, if an element f in $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$is of the form $\otimes f_{v}$, where f_{v} is a function on \mathcal{K}_{v}^{\times}, then f is identified with a function $f(g)=\Pi f_{v}\left(g_{v}\right)$ on \mathcal{K}_{A}^{\times}, and we have

$$
\rho(f) \varphi(h)=\int \varphi(h g) f(g) d g
$$

§ 2. Weil representations and theta series.

1. Weil representations (local case). Let us recall that the Schwartz space $\mathcal{S}(G)$ on a finite dimensional vector space G over a local field F is the space of all locally constant functions of compact support on G if F is nonarchimedean, and $\mathcal{S}(G)$ is the space of all rapidly decreasing C^{∞} functions on G if F is archimedean.

Let F be a local field and let \mathcal{A} be either one of the following semisimple algebras over F :
a) $F \oplus F$,
b) a separable quadratic extension of F,
c) a quaternion algebra over F.

In each case, denote by $x \rightarrow x^{c}$ the following involution of \mathcal{A} over F :
a) $(\alpha, \beta) \rightarrow(\beta, \alpha)$,
b) the non-trivial automorphism of \mathcal{A} over F,
c) the canonical involution of \mathcal{A} over F.

Put $\operatorname{tr}(a)=a+a^{c}, n(a)=a a^{\ell}$ for $a \in \mathcal{A} . \quad n(a)$ is a homomorphism of \mathcal{A}^{\times}into F^{\times}.
Fix a non-trivial additive character ψ of F. Since $(x, y) \rightarrow \operatorname{tr}(x y)$ is nondegenerate bilinear form on \mathcal{A}, \mathcal{A} can be identified with its dual by the pairing $\langle x, y\rangle=\psi(\operatorname{tr}(x y))$. Let $d x$ be the unique Haar measure on \mathcal{A} which equals its dual. For $M \in S(\mathcal{A})$, the Fourier transform M^{\prime} of M is by definition

$$
M^{\prime}(x)=\int_{\mathcal{A}} M(y)\langle x, y\rangle d y
$$

and M^{\prime} is again in $\mathcal{S}(\mathcal{A})$. By the self-duality of $d x$ we have

$$
M(x)=\int_{\mathcal{A}} M^{\prime}(y)\langle x,-y\rangle d y .
$$

Put $f(x)=\psi(n(x))=\psi\left(x x^{2}\right)$. By [11, Th. 2] there exists a constant $\gamma=\gamma(\mathcal{A} / F, \psi)$ such that $(M * f)^{\prime}(x)=\gamma f\left(x^{\prime}\right)^{-1} M^{\prime}(x)$ for all $M \in \mathcal{S}(\mathcal{A})$. $\gamma=1$ if
$\mathcal{A}=F \oplus F$ or $M_{2}(F)$ (cf. [11, Prop. 3]; note that the quadratic form $n(x)$ on \mathcal{A} is then a kernel form). $\gamma=-1$ if \mathcal{A} is a division quaternion algebra over F (cf. [11, Prop. 4]). If \mathcal{A} is a separable quadratic extension of F, the value of γ is found in [5, Lemma 1.2] or [10] (in [10], it is assumed that the residue class field of F is not of characteristic 2).

Let r be a representation of $S L_{2}(F)$ in $\mathcal{S}(\mathcal{A})$ defined by

$$
\begin{align*}
& r\left(\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right)\right) M(x)=\omega(\alpha)|\alpha| \AA^{1 / 2} M(\alpha x), \tag{2.1}\\
& r\left(\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\right) M(x)=\psi(\beta n(x)) M(x), \tag{2.2}\\
& r\left(\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right)\right) M(x)=\gamma(\mathcal{A} / F, \psi) M^{\prime}\left(x^{\prime}\right) . \tag{2.3}
\end{align*}
$$

Here ω is the non-trivial character of $F^{\times} / n\left(\mathcal{A}^{\times}\right)$if \mathcal{A} is a separable quadratic extension of F, and $\omega=1$ otherwise. $\left|\left.\right|_{\mathcal{A}}\right.$ is the module in \mathcal{A}. Since the elements of the form $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right),\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)$ generate $S L_{2}(F), r$ is uniquely determined by (2.1)-(2.3). That r is actually a representation is proved in [5, Prop. 1.3].

Lemma 1. For an element a in \mathcal{A}^{\times}and a function f on \mathcal{A}, write $\rho(a) f(x)$ $=f(x a), \lambda(a) f(x)=f\left(a^{-1} x\right), \iota(a) f(x)=f\left(a^{-1} x a\right)$. Let \mathcal{A}^{1} be the group of all elements in \mathcal{A} with $n(a)=1$; let s be any element in $S L_{2}(F)$.
i) $r(s)$ commutes with $\rho(a)$ and $\lambda(a)$ for all $a \in \mathcal{A}^{1}$.
ii) $r(s)$ commutes with $\ell(a)$ for all $a \in \mathcal{A}^{x}$.
iii) Put $s^{\prime}=\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)^{-1} s\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)$ for $\alpha \in F^{\times}$. If there is an element a in \mathcal{A} with $n(a)=\alpha$, we have $\rho(a) r(s)=r\left(s^{\prime}\right) \rho(a)$.

Proof. It is enough to prove i) and ii) when s is of the form $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right)$, $\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)$. In the first two cases, this is immediately seen from definition. If $s=\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)$, this amounts to see that, for $M \in \mathcal{S}(\mathcal{A}),(\rho(a) M)^{\prime}$ $=\lambda(a) M^{\prime},(\lambda(a) M)^{\prime}=\rho(a) M^{\prime}\left(a \in \mathcal{A}^{1}\right)$ and $(\iota(a) M)^{\prime}=\iota(a) M^{\prime}\left(a \in \mathcal{A}^{\times}\right)$. This is easy to prove. iii) can be proved in the same way.
2. Special or absolutely cuspidal representations. Let \mathcal{A} be a separable quadratic extension or a division quaternion algebra over a local field F, and π an irreducible representation of \mathcal{A}^{\times}in a finite dimensional vector space U over C. An element in the space $\mathcal{S}(\mathcal{A}) \otimes U$ is regarded as a function on \mathcal{A} taking values in U, whose coordinates (with respect to a basis of U) are Schwartz functions on \mathcal{A}. Denote again by r the representation $r \otimes 1$ of $S L_{2}(F)$ in $S(\mathcal{A}) \otimes U, 1$ being the identity representation of $S L_{2}(F)$ in U. Let
$\mathcal{S}(\mathcal{A}, \pi)$ be the space of all elements in $\mathcal{S}(\mathcal{A}) \bigotimes_{\boldsymbol{C}} U$ such that

$$
M(x g)=\pi\left(g^{-1}\right) M(x)
$$

for all $g \in \mathcal{A}^{1}$. It is invariant under the action of $S L_{2}(F)$ Lemma 2, i)). Let G_{+}be the group of all s in $G L_{2}(F)$ such that $\operatorname{det} s \in n\left(\mathcal{A}^{\times}\right)$. By [5, Prop. 1.5] the representation r of $S L_{2}(F)$ in $\mathcal{S}(\mathcal{A}, \pi)$ can be extended to a representation r_{π} of $G_{\dot{i}}$ in $\mathcal{S}(\mathcal{A}, \pi)$ by setting

$$
r_{\pi}\left(\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)\right) M(x)=|h|_{A^{1 / 2}} \pi(h) M(x h)
$$

if $\alpha=n(h)$ for $h \in \mathcal{A}^{\times}$.
If F is non-archimedean, there exists a unique division quaternion algebra \mathcal{K} over F. Put $\mathcal{A}=\mathcal{K}$; then it is proved in [5, Th. 4.2] that the representation r_{π} of $G_{+}=G L_{2}(F)$ in $\mathcal{S}(\mathcal{K}, \pi)$ is admissible and is a multiple of a single irreducible admissible representation π^{*}. If $\operatorname{dim} \pi=1, \pi$ is written as $\pi(g)$ $=\chi(n(g))$ with a quasi-character χ of F^{\times}; then π^{*} is a special representation $\sigma\left(\left.\chi\left|\left.\right|_{F^{1 / 2}}, \chi\right|\right|_{F^{-1 / 2}}\right)$. If $\operatorname{dim} \pi>1, \pi^{*}$ is an absolutely cuspidal representation. By [5, Th. 15.1], $\pi \rightarrow \pi^{*}$ gives a one to one correspondence between the equivalence classes of finite dimensional irreducible representations of \mathcal{K}^{\times}and the equivalence classes of special or absolutely cuspidal representations of $G L_{2}(F)$.

Assume now that $F=\boldsymbol{R}$. Let \mathcal{K} be a division quaternion algebra over \boldsymbol{R}. Identify \mathcal{K} with the set of matrices of the form $\left(\begin{array}{ll}a & b \\ -\bar{b} & \bar{a}\end{array}\right)$ with $a, b \in \boldsymbol{C}$. Then $n(h)=\operatorname{det} h$ for $h \in \mathcal{K}$. Every irreducible finite dimensional representation π of \mathcal{K}^{\times}is written as

$$
\pi(h)=n(h)^{r} \rho_{n}(h)
$$

with $r \in \boldsymbol{C}, \rho_{n}$ being the n-th symmetric tensor representation of $G L_{2}(\boldsymbol{C})$. Let μ_{1}, μ_{2} be quasi-characters of \boldsymbol{R}^{\times}defined by

$$
\begin{aligned}
& \mu_{1}(\alpha)=|\alpha|^{r \leftarrow n+1 / 2} \\
& \mu_{2}(\alpha)=|\alpha|^{r-1 / 2}(\operatorname{sgn} \alpha)^{n}
\end{aligned}
$$

:and put $\pi^{*}=\sigma\left(\mu_{1}, \mu_{2}\right)$. Every special representation of $\mathscr{H}\left(G L_{2}(\boldsymbol{R})\right)$ is obtained in this way. This correspondence of π and π^{*} is described in [5, §5] by means of an intervening quasi-character of \boldsymbol{C}^{\times}.
3. Weil representations (global case) and theta series. Let F be a global field and \mathcal{K} a quaternion algebra over F. We use the notation in §1, No. 9. Let ψ be a non-trivial character of \boldsymbol{A} / F and write $\psi(a)=\Pi \psi_{v}\left(a_{v}\right)$ for $a=\left(a_{v}\right)$ $\in A$. (We shall fix this character throughout this paper.) Let \mathfrak{a}_{v} be the largest \mathfrak{o}_{v}-lattice in F_{v} on which ψ_{v} is trivial. We call \mathfrak{a}_{v} the conductor of
ψ_{v}. Almost all \mathfrak{a}_{v} coincide with \mathfrak{o}_{v}.
Using the above ψ_{v}, we define the Weil representation r_{v} of $S L_{2}\left(F_{v}\right)$ in $\mathcal{S}\left(\mathcal{K}_{v}\right)$. Let $S_{0}\left(\mathcal{K}_{A}\right)$ be the space spanned by all elements of the form $\otimes_{v} M_{v}$ with $M_{v} \in \mathcal{S}\left(\mathcal{K}_{v}\right)$, where for almost all v, M_{v} is the characteristic function $M_{v}{ }^{0}$ of \mathfrak{D}_{v}. We shall prove in Lemma 7 that, for almost all $v, M_{v}{ }^{0}$ is invariant under $r_{v}\left(s_{v}\right)$ for $s_{v} \in S L_{2}\left(\mathbf{0}_{v}\right)$. Hence we get a representation r of $S L_{2}(\boldsymbol{A})$ in $\mathcal{S}_{0}\left(\mathcal{K}_{A}\right)$ by setting

$$
r(s)\left(\otimes M_{v}\right)=\otimes r_{v}\left(s_{v}\right) M_{v}
$$

for $s=\left(s_{v}\right) \in S L_{2}(\boldsymbol{A})$.
$\mathcal{S}_{0}\left(\mathcal{K}_{A}\right)$ is regarded as a subspace of the Schwartz space $\mathcal{S}\left(\mathcal{K}_{A}\right)$ on $\mathcal{K}_{A^{-}}$ By [11, Chap. III, No. 38, 39] the action of $S L_{2}(\boldsymbol{A})$ in $\mathcal{S}_{0}\left(\mathcal{K}_{\boldsymbol{A}}\right)$ can be extended to $\mathcal{S}\left(\mathcal{K}_{\boldsymbol{A}}\right)$, and the mapping $(s, M) \rightarrow r(s) M$ of $S L_{2}(\boldsymbol{A}) \times \mathcal{S}\left(\mathcal{K}_{\boldsymbol{A}}\right)$ into $\mathcal{S}\left(\mathcal{K}_{\boldsymbol{A}}\right)$ is. continuous. By [11, Chap. III, No. 41]

$$
\begin{equation*}
\Theta(M)=\sum_{\xi} \sum_{\mathcal{F}} M(\xi) \tag{2.4}
\end{equation*}
$$

converges uniformly on any compact subset of $\mathcal{S}\left(\mathcal{K}_{\boldsymbol{A}}\right)$. It follows that $\Theta(r(s) M)$ is, as a function of s, continuous on $S L_{2}(\boldsymbol{A})$.

Proposition 1. If $\sigma \in S L_{2}(F)$, then

$$
\begin{equation*}
\Theta(r(\sigma) M)=\Theta(M) . \tag{2.5}
\end{equation*}
$$

Proof. We can assume that M is of the form $\otimes M_{v}$ with $M_{v} \in \mathcal{S}\left(\mathcal{K}_{v}\right)$. If $\sigma=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right)$ with $\alpha \in F^{\times}$or $\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right)$ with $\beta \in F$, the left hand side of (2.5) is reduced to

$$
|\alpha|_{A_{\xi}} \sum_{\cup \sim F} M(\alpha \xi), \quad \text { or } \quad \sum_{\xi \sim \sim F} \psi(\beta n(\xi)) M(\xi),
$$

which is clearly $\sum_{\xi} M(\xi)$, since $|\alpha|_{A}=1$ and $\psi(\beta n(\xi))=1$.
To prove (2.5) for $\sigma=\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)$, note first the following. If $d x_{v}$ are the self-dual measures on \mathcal{K}_{v} with respect to $\left\langle x_{v}, y_{v}\right\rangle=\psi_{v}\left(\operatorname{tr}\left(x_{v} y_{v}\right)\right)$, we can introduce the product measure $d x$ of $d x_{v}$ on \mathcal{K}_{A}, and $d x$ is self-dual with respect to the pairing $\langle x, y\rangle=\psi(\operatorname{tr}(x y))$. If $M=\otimes M_{v}$, then $M^{\prime}=\otimes M_{v}{ }^{\prime}$ is the Fourier transform of M. As is stated in No. 1, $\gamma\left(\mathcal{K}_{v} / F_{v}, \psi_{v}\right)=1$ or -1 according as v is unramified or ramified in \mathcal{K}. Since the number of ramified v is even, we have $\prod_{v} \gamma\left(\mathcal{K}_{v} / F_{v}, \psi_{v}\right)=1$. Consequently, (2.5) for $\sigma=\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)$ is reduced to the Poisson's formula

$$
\sum_{\xi ß \wedge_{F}} M(\xi)=\sum_{\xi \sim \varkappa_{F}} M^{\prime}(\xi) .
$$

Remark. The statement in the above is valid if we take, in place of
\mathcal{K}, an algebra over F of type a), b) or c) in No. 1. The case of separable quadratic extension of F is discussed in Shalika-Tanaka [7], where $\Theta(r(s) M)$, is used to construct cusp forms on $S L_{2}(\boldsymbol{A})$.

Assume for a moment that the characteristic of F is not 2 . In the notation in Weil [11], $\operatorname{Ps}(\mathcal{A})_{A}$ is isomorphic to $S p(\mathcal{A})_{A}$ and there is an obvious. embedding of $S L_{2}(\boldsymbol{A})$ into $S p(\mathcal{A})_{A}$, and hence into $P S(\mathcal{A})_{A}$. We see that $s \rightarrow(s, r(s))$ gives an isomorphism of $S L_{2}(\boldsymbol{A})$ into $M p(\mathcal{A})_{A}$, and the restriction of this isomorphism to $S L_{2}(F)$ is the same as \boldsymbol{r}_{F} defined in [11, Chap. III,. No. 40]. Then, Proposition 1, together with the remark preceding it, is a. consequence of [11, Th. 6].

§ 3. Automorphic forms and spherical functions.

1. Definition of automorphic forms. Let \mathcal{K} be a quaternion algebra over a global field F and η a quasi-character of $\boldsymbol{A}^{\times} / F^{\times}$. By an automorphic form: (more precisely, an automorphic form with a quasi-character η), we understand. a continuous function φ on $\mathcal{K}_{F}^{\times} \backslash \mathcal{K}_{A}^{\times}$satisfying the following conditions.
(3.1) φ is K-finite on the right.
(3.2) For any elementary idempotent ξ in $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$, the space $\left\{\rho(\xi f) \varphi \mid f \in \mathscr{H}\left(\mathcal{H}_{A}^{\times}\right)\right\}$is finite dimensional.
$\varphi(z g)=\eta(z) \varphi(g)$ for all $z \in \boldsymbol{A}^{\times}$and $g \in \mathcal{K}_{A}^{\times}$.
For any compact set Ω in \mathcal{K}_{A}^{\times}and for any constant $c>0$, there exist constants c_{1}, c_{2} such that

$$
\left|\varphi\left(\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) g\right)\right| \leqq c_{1}|a|_{A}^{c_{2}}
$$

for all $g \in \Omega$ and for all $a \in A^{\times}$with $|a|_{A} \geqq c$.
(The condition (3.4) should be neglected unless $\mathcal{K}_{A}^{\times}=G L_{2}(\boldsymbol{A})$.) Here the nota-tion is the same as in $\S 1$, No. 9 and $\left.\right|_{A}$ is the module in \mathcal{K}_{A}. We denote: by $\mathcal{A}\left(\eta, \mathcal{K}_{A}^{\times}\right)$the space of all automorphic forms with a quasi-character η.

Let $\mathcal{A}_{0}\left(\eta, G L_{2}(\boldsymbol{A})\right)$ be the space of all φ in $\mathcal{A}\left(\eta, G L_{2}(\boldsymbol{A})\right)$ such that

$$
\int_{A^{\prime} / F} \varphi\left(\left(\begin{array}{ll}
1 & u \tag{C}\\
0 & 1
\end{array}\right) g\right) d u=0
$$

for all $g \in G L_{2}(\boldsymbol{A})$. Such a φ is called cusp form. To simplify the statement, we occasionally write $\mathcal{A}_{0}\left(\eta, \mathcal{K}_{A}^{\times}\right)$for $\mathcal{A}\left(\eta, \mathcal{K}_{A}^{\times}\right)$if \mathcal{K} is a division algebra.

If $\varphi \in \mathcal{A}\left(\eta, \mathcal{K}_{A}^{\times}\right)$and $\mu \in \mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$, then $\rho(\mu) \varphi \in \mathcal{A}\left(\eta, \mathcal{K}_{A}^{\times}\right)$; thus we obtain a representation ρ of $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$in $\mathcal{A}\left(\eta, \mathcal{K}_{A}^{\times}\right) . \mathcal{A}_{0}\left(\eta, \mathcal{K}_{A}^{\times}\right)$is invariant under ρ. It. can be shown that the restriction of ρ to $\mathcal{A}_{0}\left(\eta, \mathcal{K}_{A}^{\times}\right)$is the direct sum of irreducible admissible representations, each of which occurs with a finite:
multiplicity ([5, Prop. 10.5, Prop. 10.9, Lemma 14.1]). Moreover, each multiplicity is at most 1 if $\mathcal{K}_{A}^{x}=G L_{2}(\boldsymbol{A})$ ([5, Prop. 11.1.1]).

Remark. For any quasi-character η of $\boldsymbol{A}^{\times} / F^{\times}$, we can find a quasicharacter χ such that $\chi^{2} \eta$ is a character. Put $\varphi^{\prime}(g)=\chi(n(g)) \varphi(g)$ for $\varphi \in$ $\mathcal{A}_{0}\left(\eta, \mathcal{K}_{A}^{\times}\right)$. Then $\varphi \rightarrow \varphi^{\prime}$ gives an isomorphism of $\mathcal{A}_{0}\left(\eta, \mathcal{K}_{A}^{\times}\right)$onto $\mathcal{A}_{0}\left(\mathcal{X}^{2} \eta, \mathcal{K}_{A}^{\times}\right)$. If ρ is the representation of $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$in the former space, the representation in the latter space is the tensor product of ρ and the one-dimensional representation $\chi \circ n$. For this reason we may assume that η is a character without losing generality.
2. The space $L_{0}{ }^{2}\left(\eta, \mathcal{K}_{A}^{\times}\right) . ~ \eta$ being a character of $\boldsymbol{A}^{\times} / F^{\times}$, let $L_{0}{ }^{2}\left(\eta, \mathcal{K}_{A}^{\times}\right)$ be the space of all functions φ on \mathcal{K}_{A}^{\times}satisfying the following conditions.

$$
\begin{equation*}
\varphi(z \gamma g)=\eta(z) \varphi(g) \quad \text { for } z \in \boldsymbol{A}^{\times}, \gamma \in \mathcal{K}_{F}^{\times}, g \in \mathcal{K}_{A}^{\times}, \tag{3.5}
\end{equation*}
$$

$$
|\varphi(g)| \text { is square-integrable on } P\left(\mathcal{K}^{\times}\right)_{F} \backslash P\left(\mathcal{K}^{\times}\right)_{A} \text {, where } P\left(\mathcal{K}^{\times}\right)=\mathcal{K}^{\times} / F^{\times} \text {. }
$$ If $\mathcal{K}_{\boldsymbol{A}}^{\times}=G L_{2}(\boldsymbol{A})$,

$$
\int_{A^{\prime} F} \varphi\left(\left(\begin{array}{ll}
1 & u \tag{3.7}\\
0 & 1
\end{array}\right) g\right) d u=0 \quad \text { for almost all } g .
$$

$L_{0}{ }^{2}\left(\eta, \mathcal{K}_{A}^{\times}\right)$forms a Hilbert space, the inner product being

$$
\left(\varphi_{1}, \varphi_{2}\right)=\int_{P\left(K^{\star}\right)_{F^{\prime} \backslash P\left(k^{*}\right)}} \varphi_{1}(g) \overline{\varphi_{2}(g)} d \dot{g} .
$$

The right translation ρ defines a unitary representation of \mathcal{K}_{A}^{\times}in $L_{0}{ }^{2}\left(\eta, \mathcal{K}_{A}^{\times}\right)$. The space $\mathcal{A}_{0}\left(\eta, \mathcal{K}_{A}^{\times}\right)$coincides with the space of all K-finite functions in $L_{0}{ }^{2}\left(\eta, \mathcal{K}_{A}^{\times}\right)$(cf. Godement [4, §3, No. 1]).

If \mathcal{L} is a closed subspace of $L_{0}{ }^{2}\left(\eta, \mathcal{K}_{A}^{\times}\right)$invariant and irreducible (topologically) under the action of \mathcal{K}_{A}^{\times}, then $V=\mathcal{L} \cap \mathcal{A}_{0}\left(\eta, \mathcal{K}_{A}^{\times}\right)$is invariant and irreducible under the action of $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$; conversely if the subspace Q of $\mathcal{A}_{0}\left(\eta, \mathcal{K}_{A}^{\times}\right)$is irreducible under the action of $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$, its closure \mathcal{L} is invariant and irreducible under the action of \mathcal{K}_{A}^{\times}, and \mathcal{V} is the space of K-finite functions in \mathcal{L} (cf. [4, § 3, No. 3]).
3. Spherical functions. We write \mathcal{K}^{1} for the group of all elements in \mathcal{K}^{\times}of reduced norm 1 and put $K_{v}{ }^{1}=K_{v} \cap \mathcal{K}_{v}{ }^{1}, K^{1}=K \cap \mathcal{K}_{\Lambda}{ }^{1}$. Let \mathcal{L} be an irreducible closed subspace of $L_{0}{ }^{2}\left(\eta, \mathcal{K}_{A}^{\times}\right)$and π a representation of \mathcal{K}_{A}^{\times}in \mathcal{L}. For an irreducible representation \mathfrak{D} of K^{1}, let $\mathcal{L}(\mathfrak{D})$ be the space of all φ in \mathcal{L} such that

$$
\int_{K^{1}} \chi_{b}\left(k_{1}^{-1}\right) \pi\left(k_{1}\right) \varphi d k_{1}=\varphi,
$$

where $\chi_{\mathfrak{b}}\left(k_{1}\right)=\operatorname{dim} \boldsymbol{D} \operatorname{tr} \mathfrak{d}\left(k_{1}\right)$.
Lemma 2. $\mathcal{L}(b)$ is finite dimensional.
Proof. Let \mathscr{V} be the space of all K-finite vectors in \mathcal{L}. We first prove
that $\mathcal{L}(\emptyset) \subset \subset$. By $[4, \S 3$, Th. 2$] \pi$ is the tensor product of irreducible unitary representations π_{v} of \mathcal{K}_{v}^{\times}in \mathcal{L}_{v}. Denote again by π (resp. π_{v}) the admissible representation of $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$(resp. $\mathscr{H}\left(\mathcal{K}_{v}^{\times}\right)$) in \mathcal{V} (resp. $\left.C V_{v}\right), ~ V_{v}$ being the space of all K_{v}-finite vectors in \mathcal{L}_{v}. Let S be a finite set of places such that for all $v \notin S$, the restriction of π_{v} to K_{v} contains the identity representation. If $v \in S$, we have $\pi_{v}=\pi\left(\mu_{1}, \mu_{2}\right)$ with unramified quasi-characters μ_{1}, μ_{2} of F_{v}^{\times}. Then it is easy to see that \mathcal{V}_{v} contains the unique (up to a scalar multiple) vector invariant under $K_{v}{ }^{1}$, which is still K_{v}-invariant (hence the same is true for \mathcal{L}_{v}). It follows that every element in $\mathcal{L}(D)$ is H-finite if $H=Z(K) K^{1} \prod_{v \in S} K_{v}, Z(K)$ being the center of K. Since H is of finite index in K, it is also K-finite.

It is evident that, if $\mathcal{L}(\mathrm{D}) \neq\{0\}$, an element in $\mathcal{L}(\mathrm{D})$ transforms under the action of H according to an irreducible representation $\tilde{\mathfrak{D}}$ of H determined uniquely by δ and η. If $\xi(k)=\sum \operatorname{dim} \sigma_{i} \operatorname{tr} \sigma_{i}\left(k^{-1}\right)$, where σ_{i} are all the irreducible constituents of the representation of K induced by $\tilde{\mathfrak{D}}$, then $\mathcal{L}(\mathfrak{D})$ is contained in $\pi(\xi) \subset \cup$. Hence $\mathcal{L}(D)$ is finite dimensional.

By Lemma 2 we can define the spherical function ω_{b} of type \mathfrak{D} of π (cf.. Godement [3]). By definition we have

$$
\omega_{\mathrm{b}}(g)=\operatorname{tr}(E(\mathfrak{D}) \pi(g)),
$$

$E(\mathfrak{D})$ being the projection of \mathcal{L} to $\mathcal{L}(\mathfrak{D})$. It follows that

$$
\begin{equation*}
\omega_{\mathfrak{b}}(g)=\sum_{i=1}^{N}\left(\pi(g) \varphi_{i}, \varphi_{i}\right) \tag{3.8}
\end{equation*}
$$

if $\left\{\varphi_{1}, \cdots, \varphi_{N}\right\}$ is an orthonormal basis of $\mathcal{L}(\mathcal{D})$. In a special case where the multiplicity of D in $\mathcal{L}(\mathcal{D})$ is 1 , we have

$$
\begin{equation*}
\varphi\left(g_{0}\right) \omega_{\mathrm{b}}(g)=\operatorname{dim} \mathrm{D} \int_{K^{1}} \varphi\left(g_{0} k g k^{-1}\right) d k \tag{3.9}
\end{equation*}
$$

for any φ in $\mathcal{L}(\mathbb{D})$ and for any g_{0} in $\mathcal{K}_{\boldsymbol{A}}^{\times}$(cf. [3, Th. 8]).
Since $\pi=\bigotimes_{v} \pi_{v}$ and $\delta=\bigotimes_{v} \mathfrak{D}_{v}$ with irreducible unitary representations π_{v} of \mathcal{K}_{v}^{\times}and irreducible representations \mathfrak{D}_{v} of $K_{v}{ }^{1}$, we have

$$
\begin{equation*}
\omega_{\mathrm{b}}(g)=\prod_{v} \omega_{\mathrm{b}_{v}}\left(g_{v}\right) \tag{3.10}
\end{equation*}
$$

$\omega_{\mathrm{b}_{v}}$ being the spherical function of type δ_{v} of π_{v}. Also we have

$$
\begin{align*}
& \omega_{\mathrm{D}}\left(k_{1} g k_{1}^{-1}\right)=\omega_{\mathrm{o}}(g) \quad \text { for } k_{1} \in K^{1}, \tag{3.11}\\
& \int_{K^{1}} \chi_{\mathrm{D}}\left(k_{1}^{-1}\right) \omega_{\mathrm{D}}\left(k_{1} g\right) d k_{1}=\omega_{\mathrm{D}}(g) . \tag{3.12}
\end{align*}
$$

These are immediately seen from definition.

§ 4. Construction of a space of automorphic forms.

1. Let \mathcal{K} be a division quaternion algebra over a global field F and η a character of $\boldsymbol{A}^{\times} / F^{\times}$. Write $\eta(a)=\mathbf{I I} \eta_{v}\left(a_{v}\right)$ for $a=\left(a_{v}\right) \in \boldsymbol{A}^{\times}$. Let Q be an irreducible subspace of $\mathcal{A}\left(\eta, \mathcal{K}_{\mathbf{A}}^{\times}\right)$and π the representation of $\mathscr{K}\left(\mathcal{K}_{A}^{\times}\right)$in Υ. Let \mathcal{L} be the closure of \mathbb{V} in $L_{0}{ }^{2}\left(\eta, \mathcal{K}_{\mathbf{a}}\right)$ and write still π for the representation - of \mathcal{K}_{A}^{\times}in \mathcal{L}. In the notation in §3, No. 2, let \mathfrak{D} be any irreducible representation of K^{1} such that $\mathcal{L}(\mathcal{D}) \neq\{0\}$ and let $\left\{\varphi_{i}\right\}_{i=1}^{N}$ be an orthonormal basis of $\mathcal{L}(0)$.

Denote by $G L_{2}(\boldsymbol{A})_{4}$. the group of all $s \in G L_{2}(\boldsymbol{A})$ such that $\operatorname{det} s=n(h)$ for some $h \in \mathcal{K}_{\boldsymbol{A}}^{\times}$and put $G L_{2}(F)_{\uparrow+}=G L_{2}(F) \cap G L_{2}(\boldsymbol{A})_{\ldots}$. If s is in $G L_{2}(\boldsymbol{A})_{+,}$, write $s=\left(\begin{array}{cc}\operatorname{det} s & 0 \\ 0 & 1\end{array}\right) s_{1}$ and take an arbitrary h in $\mathcal{K}_{\boldsymbol{A}}$ with $n(h)=\operatorname{det} s$. For an element M in $\mathcal{S}\left(\mathcal{K}_{\boldsymbol{A}}\right)$, let ϕ_{M} be a function on $G L_{2}(\boldsymbol{A})$:. defined by

$$
\begin{equation*}
\phi_{M}(s)=\sum_{i=1}^{N}|\operatorname{det} s|_{\mathcal{A}} \int_{F^{\left(\cdot K^{\star}\right)_{F} \backslash P\left(\kappa^{\star}\right)_{\mathcal{A}}}} \Phi_{i}(M, s, g) \overline{\varphi_{i}(g)} d \dot{g}, \tag{4.}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{i}(M, s, g)=\int_{{x_{F}}_{\boldsymbol{F}}^{1} \backslash x_{\boldsymbol{A}}^{1}} \varphi_{i}\left(g_{1} h g\right) \Theta\left(\rho\left(g_{1} h\right) \iota(g) r\left(s_{1}\right) M\right) d g_{1} \tag{4.2}
\end{equation*}
$$

Since $\Theta(\rho(\gamma) M)=\Theta(\lambda(\gamma) M)=\Theta(M)$ for $\gamma \in \mathcal{K}_{F}^{\times}$, the integrand in (4.2) is, as a function of g_{1}, left $\mathcal{K}_{F}{ }^{1}$-invariant, and the integral is independent of a choice of h. We see easily that $\Phi_{i}(M, s, g)$ is, as a function of g, left $\mathcal{K}_{\mathcal{F}}^{x}$-invariant.

Lemma 3. $\phi_{M}(s)$ is a continuous function on $G L_{2}(\boldsymbol{A})_{\dot{+}}$, and $\phi_{M}(\sigma s)=\phi_{M}(s)$ for all $\boldsymbol{\sigma} \in G L_{2}(F)_{+}$and $s \in G L_{2}(\boldsymbol{A})_{+}$.

Proof. Since $x \rightarrow g^{-1} x h g$ is an automorphism of \mathcal{K}_{A}, the mapping (h, g, s_{1}) $\rightarrow \rho(h) \iota(g) r\left(s_{1}\right) M$ is a continuous mapping of $\mathcal{K}_{\boldsymbol{A}}^{\times} \times \mathcal{K}_{\boldsymbol{A}}^{\times} \times S L_{2}(\boldsymbol{A})$ into $\mathcal{S}\left(\mathcal{K}_{\boldsymbol{A}}\right)$. Hence $\Theta\left(\rho(h) \iota(g) r\left(s_{1}\right) M\right)$ is a continuous function of h, g, s_{1} (for a fixed ξ, $\rho(h) \iota(g) r\left(s_{1}\right) M(\xi)$ is a continuous function of h, g, s_{1} and $\Theta(M)$ is uniformly convergent on a compact subset of $\mathcal{S}\left(\mathcal{K}_{A}\right)$). Since $P\left(\mathcal{K}^{x}\right)_{F} \backslash P\left(\mathcal{K}^{x}\right)_{A}$ and $\mathcal{K}_{F}{ }^{1} \backslash \mathcal{K}_{A}{ }^{1}$ are compact, the integrand in (4.1) is bounded if s stays in a compact set of $G L_{2}(\boldsymbol{A})_{+}$. It implies that ϕ_{M} is continuous.

Let σ be an element in $G L_{2}(F)_{+}$of the form $\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)$. We can find an element δ in \mathcal{K}_{F}^{\times}such that $n(\delta)=\alpha$. Substituting δh for h and then replacing g_{1} by $\delta g_{1} \delta^{-1}$ in (4.2), we see that $\Phi_{i}(M, \sigma s, g)=\Phi_{i}(M, s, g)$. Hence $\phi_{M}(\sigma s)=\phi_{M}(s)$. Assume now that $\sigma \in S L_{2}(F)$. By Lemma 1, if $s=\left(\begin{array}{cc}\operatorname{det} s & 0 \\ 0 & 1\end{array}\right) s_{1}=s_{2}\left(\begin{array}{cc}\operatorname{det} s & 0 \\ 0 & 1\end{array}\right)$, we have $\rho\left(g_{1} h\right) \iota(g) r\left(s_{1}\right) M=\rho\left(g_{1} h\right) r\left(s_{1}\right) \iota(g) M=r\left(s_{2}\right) \rho\left(g_{1} h\right) \iota(g) M$, and by Proposition $1, \Theta\left(r\left(s_{2}\right) \rho\left(g_{1} h\right) \iota(g) M\right)$ remains invariant if we replace s_{2} by σs_{2}. Hence ${ }^{\circ} \Phi_{i}(M, \sigma s, g)=\Phi_{i}(M, s, g)$ and $\phi_{M}(\sigma s)=\phi_{M}(s)$. This proves the lemma.
2. An element $s=\left(s_{v}\right)$ in $G L_{2}(\boldsymbol{A})$ belongs to $G L_{2}(\boldsymbol{A})_{+}$if and only if $\operatorname{det} s_{v}$
is positive for all real places v ramified in \mathcal{K}. From this it follows that $G L_{2}(\boldsymbol{A})=G L_{2}(F) G L_{2}(\boldsymbol{A})_{4 .}$. By Lemma 3 ϕ_{M} can be extended to a function on $G L_{2}(\boldsymbol{A})$ invariant under the left translations by elements of $G L_{2}(F)$. Obviously ϕ_{M} is then continuous on $G L_{2}(\boldsymbol{A})$.

Consider an arbitrary continuous function ϕ on $G L_{2}(F) \backslash G L_{2}(\boldsymbol{A})$. For a fixed s, $\phi\left(\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right) s\right)$ is a function of $a \in \boldsymbol{A}$, invariant under the translation $a \rightarrow a+\alpha$ for $\alpha \in F$. Let ψ be as in §2, No. 3. Every character of A / F can be written as $a \rightarrow \psi(\alpha a)$ with $\alpha \in F$. Hence the Fourier coefficients of the above function are

$$
\hat{\phi}(\alpha, s)=\int_{A^{\prime} F} \phi\left(\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) s\right) \phi(-\alpha a) d a
$$

da being the Haar measure of \boldsymbol{A} such that the total volume of \boldsymbol{A} / F is 1 . We see that

$$
\hat{\phi}(\alpha, s)=\hat{\phi}\left(1,\left(\begin{array}{ll}
\alpha & 0 \tag{4.3}\\
0 & 1
\end{array}\right) s\right) \quad \text { for } \alpha \in F^{\times} .
$$

Let us now prove that

$$
\begin{equation*}
\phi_{M}(s)=\sum_{\alpha \in F} \hat{\phi}_{M}(\alpha, s) \tag{4.4}
\end{equation*}
$$

for $M \in \mathcal{S}\left(\mathcal{K}_{\boldsymbol{A}}\right)$. Assume first that $s \in G L_{2}(\boldsymbol{A})_{+}$. The term by term integration of (4.2) gives (this is permitted, since $\Theta\left(\rho(h) \iota(g) r\left(s_{1}\right) M\right)$ converges uniformly while (h, g, s_{1}) stays in a compact subset of $\mathcal{K}_{A}^{\times} \times \mathcal{K}_{A}^{\times} \times S L_{2}(\boldsymbol{A})$)

$$
\begin{aligned}
\Phi_{i}(M, s, g)= & \int_{\mathscr{x}_{F}^{1} \backslash x_{A}^{1}} \varphi_{i}\left(g_{1} h g\right) r\left(s_{1}\right) M(0) d g_{1} \\
& +\sum_{\xi \notin x_{F}^{\times}} \int_{x_{F}^{1} \backslash x_{A}^{1}} \varphi_{i}\left(g_{1} h g\right) r\left(s_{1}\right) e(g) M\left(\xi g_{1} h\right) d g_{1} .
\end{aligned}
$$

Here the second term can be written as

$$
\sum_{\xi \in x_{F}^{\times} / \mathscr{x}_{F}^{1}} \int_{x_{A}^{1}} \varphi_{i}\left(g_{1} \xi h g\right) r\left(s_{1}\right) \iota(g) M\left(g_{1} \xi h\right) d g_{1} .
$$

Therefore, putting

$$
\begin{align*}
\phi_{0}(s)= & \left.\sum_{i=1}^{N}|\operatorname{det} s|_{A} \int_{P\left(\mathcal{K}^{\times}\right)}\right)_{F} \backslash P\left(\mathcal{K}^{\star}\right)_{A} \int_{\mathscr{K}_{F}^{1} \backslash \kappa_{A}^{1}} \tag{4.5}\\
& \varphi_{i}\left(g_{1} h g\right) r\left(s_{1}\right) M(0) \overline{\varphi_{i}(g)} d g_{1} d \dot{g},
\end{align*}
$$

and

$$
\begin{align*}
\phi_{1}(s)= & \sum_{i=1}^{N}|\operatorname{det} s|_{A} \int_{P\left(\mathfrak{s}^{\times}\right)_{F} \backslash P\left(\mathcal{N}^{\times}\right)_{A}} \int_{\mathfrak{N}_{A}^{1}} \tag{4.6}\\
& \varphi_{i}\left(g_{1} h g\right) r\left(s_{1}\right) c(g) M\left(g_{1} h\right) \overline{\varphi_{i}(g)} d g_{1} d \dot{g},
\end{align*}
$$

we have

$$
\phi_{M}(s)=\phi_{0}(s)+\sum_{\alpha \neq F_{\ddagger}^{\times}} \phi_{1}\left(\left(\begin{array}{ll}
\alpha & 0 \tag{4.7}\\
0 & 1
\end{array}\right) s\right) .
$$

Here we have put $F_{+}^{\times}=F^{\times} \cap n\left(\mathcal{K}_{\underset{F}{x})}\right.$.
By the same reasoning as before, the Fourier coefficients of ϕ_{M} can be calculated term by term. If $s=s_{2}\left(\begin{array}{cc}\operatorname{det} s & 0 \\ 0 & 1\end{array}\right)$, we have

$$
\begin{aligned}
\int_{A^{\prime} F} & \Phi_{i}\left(M,\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) s, g\right) \psi(-\alpha a) d a \\
= & \sum_{\xi \times \varkappa_{F}} \int_{A / F} \int_{\mathscr{x}_{F}^{1} \backslash \varkappa_{A}^{1}} \varphi_{i}\left(g_{1} h g\right) r\left(s_{2}\right) \rho\left(g_{1} h\right) \iota(g) M(\xi) \\
& \psi(a n(\xi)-\alpha a) d g_{1} d a .
\end{aligned}
$$

This is not 0 if and only if there exists an element ξ in \mathcal{K}_{F} with $\alpha=n(\xi)$, and if $\alpha=n(\xi)$ for $\xi \in \mathcal{K}_{F}^{\times}$, then it equals

$$
\begin{aligned}
& \int_{\mathscr{K}_{\boldsymbol{A}}^{1}} \varphi_{i}\left(g_{1} h g\right) \rho\left(g_{1} h\right) r\left(s_{1}\right) \iota(g) M(\xi) d g_{1} \\
= & \int_{\mathscr{K}_{\boldsymbol{A}}^{1}} \varphi_{i}\left(\xi g_{1} h g\right) r\left(s_{1}\right) \iota(g) M\left(\xi g_{1} h\right) d g_{1} \\
= & \int_{\mathscr{K}_{\boldsymbol{A}}^{1}} \varphi_{i}\left(g_{1} \xi h g\right) r\left(s_{1}\right) \iota(g) M\left(g_{1} \xi h\right) d g_{1} .
\end{aligned}
$$

From this we see that $\hat{\phi}_{M}(0, s)=\phi_{0}(s)$ and

$$
\hat{\phi}_{M}(\alpha, s)= \begin{cases}\phi_{1}\left(\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right) s\right) & \text { if } \alpha \in F_{+}^{\times}, \tag{4.8}\\
0 & \text { otherwise } .\end{cases}
$$

Hence (4.4) (for $s \in G L_{2}(\boldsymbol{A})_{+}$) follows from (4.7),
If s is not in $G L_{2}(\boldsymbol{A})_{+}$, find an element β in F^{\times}such that $s^{\prime}=\left(\begin{array}{ll}\beta & 0 \\ 0 & 1\end{array}\right) s$ $\in G L_{2}(\boldsymbol{A})_{+}$. Then $\phi_{M}\left(s^{\prime}\right)=\phi_{M}(s)$ and $\hat{\phi}_{M}\left(\alpha, s^{\prime}\right)=\hat{\phi}_{M}(\alpha \beta, s)$ by (4.3) so that (4.4) is valid for s. Putting $\alpha=\beta^{-1}$ in the above equality, we see that $\hat{\phi}_{M}(1, s)=0$ if $s \notin G L_{2}(\boldsymbol{A})_{+}$(cf. (4.8)).

Lemma 4. If π is not a representation of dimension 1 , we have $\hat{\phi}_{M}(0, s)=0$.
Proof. For $\varphi \in \mathcal{V}$, put

$$
H \varphi(g)=\int_{\mathscr{N}_{F}^{1} \backslash \varkappa_{A}^{1}} \varphi\left(g_{1} g\right) d g_{1}
$$

It is easy to see that $H \varphi$ is a continuous function on \mathcal{K}_{A}^{\times}belonging to $L_{0}{ }^{2}\left(\eta, \mathcal{K}_{A}^{\times}\right)$. Furthermore, $H \varphi$ is right K-finite. Hence $H \varphi \in \mathcal{A}\left(\eta, \mathcal{K}_{A}^{\times}\right)$. Since $\varphi \rightarrow H \varphi$ commutes with the right translation, either $H(\mathcal{V})=0$ or the representation of $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$in $H(\mathcal{V})$ is equivalent to π. In the latter case π is necessarily one-dimensional representation, for $H \varphi(g)$ depends only on $n(g)$. Hence
we have $H(\subset V)=\{0\}$, and $\hat{\phi}_{M}(0, s)=\phi_{0}(s)=0$ by (4.5).
3. In the notation in No. 2, we put $W_{M}(s)=\hat{\phi}_{M}(1, s)$. Evidently

$$
W_{M}\left(\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) s\right)=\psi(a) W_{M}(s)
$$

for $a \in \boldsymbol{A}$. Remark that $\hat{\phi}_{M}(1, s)$ is $\phi_{1}(s)$ if $s \in G L_{2}(\boldsymbol{A})_{+}$and 0 otherwise. In view of (4.6) and (3.8) we obtain

$$
W_{M}(s)= \begin{cases}|\operatorname{det} s|_{A} \int_{J_{\boldsymbol{A}}^{1}} \omega_{\mathrm{b}}\left(g_{1} h\right) r\left(s_{1}\right) M\left(g_{1} h\right) d g_{1} & \text { if } s \in G L_{2}(\boldsymbol{A})_{+} \tag{4.9}\\ 0 & \text { if } s \notin G L_{2}(\boldsymbol{A})_{+}\end{cases}
$$

It follows from (3.11) and (3.12) that

$$
W_{M}=W_{\widetilde{M}}=W_{\bar{x}_{b}: M},
$$

if we put

$$
\begin{aligned}
\tilde{M}(x) & =\int_{K 1} M\left(k_{1} x k_{1}^{-1}\right) d k_{1}, \\
\bar{\chi}_{\mathrm{b}} * M(x) & =\int_{K^{1}} \chi_{\mathrm{D}}\left(k_{1}\right) M\left(k_{1} x\right) d k_{1} .
\end{aligned}
$$

For this reason we may limit ourselves to the functions M such that $M=\tilde{M}$ $=\bar{\chi}_{b} * M$.

In a special case where the multiplicity of \mathfrak{b} in $\mathcal{L}(\mathfrak{b})$ is 1 , we still obtain (4.9) if we put

$$
\begin{equation*}
\varphi(g) \phi_{M}(s)=\operatorname{dim} \mathfrak{D}|\operatorname{det} s|_{A} \int_{\mathscr{x}_{F^{1}} \backslash \mathscr{\varkappa}_{A}^{1}} \varphi\left(g_{1} h g\right) \Theta\left(\rho\left(g_{1} h\right) r\left(s_{1}\right) \iota(g) M\right) d g_{1} \tag{4.10}
\end{equation*}
$$

for $s \in G L_{2}(\boldsymbol{A})_{+}$and for $M \in \mathcal{S}\left(\mathcal{K}_{\boldsymbol{A}}\right)$ such that $\tilde{M}=M$, where φ is any non-zero function in $\mathcal{L}(\mathfrak{b})$ and g is any element in \mathcal{K}_{A}^{\times}with $\varphi(g) \neq 0$ (cf. (3.9)).
4. Let $\mathcal{S}_{1}\left(\mathcal{K}_{A}\right)$ be the subspace of $\mathcal{S}\left(\mathcal{K}_{A}\right)$ spanned by all M satisfying the following conditions.
i) $\quad M(x)=\Pi M_{v}\left(x_{v}\right)$ with $M_{v} \in \mathcal{S}\left(\mathcal{K}_{v}\right)$.
ii) $\tilde{M}=M$.
iii) $\bar{\chi}_{\mathrm{b}} * M=M$.
iv) If $F_{v}=\boldsymbol{R}$ and \mathcal{K}_{v} is a division quaternion algebra over $\boldsymbol{R}, \mathcal{K}_{v}$ is identified with the set of all matrices of the form $\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right)$ with $a, b \in \boldsymbol{C}$. We have $n(x)=\operatorname{det} x$ for $x \in \mathcal{K}_{v}$. Assume that π_{v} is written as

$$
\pi_{v}(g)=n(g)^{r} \rho_{n}(g)
$$

($r \in \boldsymbol{C}, \rho_{n}=$ the n-th symmetric tensor representation of $G L_{2}(\boldsymbol{C})$) and that $\psi_{v}(\alpha)=\exp \left(2 \pi i u_{v} \alpha\right)$ with $u_{v} \in \boldsymbol{R}$. Let χ_{n} be the character of ρ_{n}. Then M_{v} is of the form

$$
M_{v}(x)=\exp \left(-2 \pi\left|u_{v}\right| n(x)\right) P(n(x)) \chi_{n}\left(x^{\iota}\right)
$$

for $x \in \mathcal{K}_{v}, P$ being a polynomial.
v) If $F_{v}=\boldsymbol{R}$ or \boldsymbol{C} and $\mathcal{K}_{v}=M_{2}\left(F_{v}\right)$, and if $\psi_{v}(\boldsymbol{\alpha})=\exp \left(2 \pi i u_{v} \operatorname{tr}_{F_{v^{\prime} \boldsymbol{R}}}(\boldsymbol{\alpha})\right)$ with $u_{v} \in \boldsymbol{R}, M_{v}$ is of the form

$$
M_{v}(x)=\exp \left(-\pi d_{v}\left|u_{v}\right| \operatorname{tr}\left(x^{t} \bar{x}\right)\right) P(x)
$$

where $d_{v}=\left[F_{v}: \boldsymbol{R}\right]$ and $P(x)$ is a polynomial of $\xi_{i j}, \bar{\xi}_{i j}$ if $x=\left(\begin{array}{ll}\xi_{11} & \xi_{12} \\ \xi_{21} & \xi_{22}\end{array}\right)$.
5. Let \mathcal{V}^{*} be the space spanned by all $\rho\left(\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)\right) \phi_{M}$ for $M \in \mathcal{S}_{1}\left(\mathcal{K}_{A}\right)$ and $a \in E, E$ being a representative system of $\boldsymbol{A}^{\times} /\left(\boldsymbol{A}^{\times}\right)^{2}$. By (4.4) the mapping $\phi_{M}(s) \rightarrow W_{M}(s)=\hat{\phi}_{M}(1, s)$ is injective and commutes with the right translation. Let \mathscr{W}^{*} be the space spanned by all $\rho\left(\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)\right) W_{M}$ for $M \in \mathcal{S}_{1}\left(\mathcal{K}_{A}\right)$ and $a \in E$.

Proposition 2. If π is not one-dimensional, \mathcal{V}^{*} is a subspace of $\mathcal{A}_{0}(\eta$, $G L_{2}(\boldsymbol{A})$).

Proof. In §5 we shall see that \mathscr{W}^{*} is invariant under $\rho(\mu)$ for all $\mu \in \mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)$ and the representation of $\mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)$ in \mathscr{W}^{*} is admissible. This implies the conditions (3.1) and (3.2) for all functions in \mathscr{V}^{*}. So far we see that ϕ_{M} is continuous on $G L_{2}(\boldsymbol{A})$, left $G L_{2}(F)$-invariant and cuspidal (i.e. $\hat{\phi}_{M}(0, s)=0$). Therefore it is enough to prove that ϕ_{M} satisfies (3.3) and (3.4) (then, every right translate of ϕ_{M} will also satisfy these conditions).

Let z be in \boldsymbol{A}^{\times}. Since

$$
\begin{aligned}
& z s=\left(\begin{array}{cc}
z^{2} \operatorname{det} s & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
z^{-1} & 0 \\
0 & z
\end{array}\right) s_{1}, \\
& r\left(\left(\begin{array}{cc}
z^{-1} & 0 \\
0 & z
\end{array}\right)\right) M=\left|z^{-1}\right|_{A} \rho\left(z^{-1}\right) M
\end{aligned}
$$

we see that $\Phi_{i}(M, z s, g)=\left|z^{-1}\right|_{A} \eta(z) \Phi_{i}(M, s, g)$ and hence that $\phi_{M}(z s)=\eta(z) \phi_{M}(s)$ (cf. (4.1), (4.2)).

To prove (3.4) in our case, we may assume that Ω is a compact subset of $G L_{2}(\boldsymbol{A})_{+}$and a varies within $\boldsymbol{A}_{+}^{\times}=n\left(\mathcal{K}_{\boldsymbol{A}}^{\times}\right)$. Let us substitute $\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) s$ for s in (4.1). Write $s=\left(\begin{array}{cc}\operatorname{det} s & 0 \\ 0 & 1\end{array}\right) s_{1}$ and let h be an element in $\mathcal{K}_{\boldsymbol{A}}^{\times}$such that $n(h)=a$ det s. If s varies in Ω and g varies in a compact fundamental domain Ω_{1} of $P\left(\mathcal{K}^{\times}\right)_{F}$ in $P\left(\mathcal{K}^{\times}\right)_{A}, c(g) r\left(s_{1}\right) M$ stays in a compact subset of $\mathcal{S}\left(\mathcal{K}_{\boldsymbol{A}}\right)$. By [11, Lemma 5] there exists a function M_{0} in $\mathcal{S}\left(\mathcal{K}_{A}\right)$ such that

$$
\left|\iota(g) r\left(s_{1}\right) M(x)\right| \leqq M_{0}(x)
$$

for all $x \in \mathcal{K}_{A}, s \in \Omega, g \in \Omega_{1}$. On the other hand, the functions φ_{i} are bounded on \mathcal{K}_{A}^{\times}. Hence we get an estimate

$$
\left|\phi_{M}\left(\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) s\right)\right| \leqq c_{1}|n(h)|_{A} \int_{\mathscr{N}_{F^{\prime}}^{1} \backslash \varkappa_{A}^{1}} \Theta\left(\rho\left(g_{1} h\right) M_{0}\right) d g_{1}
$$

${ }^{\circ} c_{1}$ being a constant independent of a and s. Now (3.4) is a consequence of the following lemma.

Lemma 5. Let c be a constant >0, and M an element in $\mathcal{S}\left(\mathcal{K}_{A}\right)$. Then $\because \Theta(\rho(h) M)$ is bounded for all $h \in \mathcal{K}_{\boldsymbol{A}}^{\times}$such that $|n(h)|_{A}>c$.

Proof. Assume first that F is a number field. Let S_{∞} be the set of all archimedean places in F and put $\mathcal{K}_{\infty}=\prod_{v \in S_{\infty}} \mathcal{K}_{v}$. We can assume that $M(x)=$ $M_{\infty}\left(x_{\infty}\right) \prod_{v \in S_{\infty}} M_{v}\left(x_{v}\right)$, where $M_{\infty} \in \mathcal{S}\left(\mathcal{K}_{\infty}\right)$ and M_{v} is the characteristic function of a \mathfrak{D}_{v}-lattice L_{v} in \mathcal{K}_{v}, and almost all L_{v} are \mathfrak{D}_{v}. Clearly $\Theta(\rho(h) M)$ does not change if we replace h by δh for $\delta \in \mathcal{K}_{F}^{\times}$. Let \mathcal{K}_{A}^{0} be the group of all $g \in \mathcal{K}_{A}^{\times}$ with $|n(h)|_{A}=1$. Identify an element $\alpha \in \boldsymbol{R}^{\times}$with an element $g \in \mathcal{K}_{\boldsymbol{A}}^{\times}$such that $g_{v}=1$ for $v \notin S_{\infty}$ and $g_{v}=\alpha$ for $v \in S_{\infty}$. We have $\mathcal{K}_{\boldsymbol{A}}^{\times}=\boldsymbol{R}^{\times} \mathcal{K}_{\boldsymbol{A}}^{0}$ and $\mathcal{K}_{F}^{\times} \backslash \mathcal{K}_{\boldsymbol{A}}^{0}$ is compact. Hence we may assume that $h=\alpha \in \boldsymbol{R}^{\times}$applying [11, Lemma 5] again.

Let L be the set of all $\xi \in \mathcal{K}_{F}$ such that $\xi \in L_{v}$ for all $v \notin S_{\infty}$. Projecting L to \mathcal{K}_{∞}, we get a Z-lattice in \mathcal{K}_{∞}. We have

$$
\Theta(\rho(\alpha) M)=\sum_{\xi=L} M_{\infty}(\alpha \xi)
$$

Let M_{∞}^{\prime} be the Fourier transform of M_{∞} and L^{\prime} the dual lattice of L. By 'Poisson's formula

$$
\sum_{\xi \in \Sigma} M_{\infty}(\alpha \xi)=|\alpha|^{-m} \sum_{\xi \in \perp} M_{\infty}^{\prime}\left(\alpha^{-1} \xi\right)
$$

m being the dimension of \mathcal{K}_{∞} over \boldsymbol{R}. Letting $|\alpha| \rightarrow \infty$, the right hand side converges to a constant multiple of $\int M_{\infty}^{\prime}\left(x_{\infty}\right) d x_{\infty}$. This proves our assertion.

If F is a function field, it is easy to show that the support of $\rho(h) M$ is contained in a fixed compact subset of $\mathcal{K}_{\boldsymbol{A}}$ for all h with $|n(h)|_{\boldsymbol{A}}>c$. Then the lemma follows immediately.

§ 5. Whittaker spaces.

1. We shall prove that the representation of $\mathscr{A}\left(G L_{2}(\boldsymbol{A})\right)$ in \mathscr{W}^{*} introduced in $\S 4$, No. 4 is admissible, and determine its equivalence class.

From the definition of W_{M} and (3.10) it follows that, if $M(x)=\Pi M_{v}\left(x_{v}\right)$ is an element of $\mathcal{S}_{1}\left(\mathcal{K}_{A}\right)$, then we have

$$
\begin{equation*}
W_{M}(s)=\prod_{v} W_{M_{v}}\left(s_{v}\right), \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{\boldsymbol{M}_{v}}(s)=|\operatorname{det} s|_{F_{v}} \int_{\mathcal{X}_{v}^{1}} \boldsymbol{\omega}_{\boldsymbol{v}_{v}}\left(g_{1} h\right) r_{v}\left(s_{1}\right) M_{v}\left(g_{1} h\right) d g_{1} \tag{5.2}
\end{equation*}
$$

for $s=\left(\begin{array}{cc}\operatorname{det} s & 0 \\ 0 & 1\end{array}\right) s_{1} \in G L_{2}\left(F_{v}\right)_{+}, h$ being an element of \mathcal{K}_{v}^{\times}with $n(h)=\operatorname{det} s_{r}$ and

$$
\begin{equation*}
W_{M_{v}}(s)=0 \quad \text { for } s \notin G L_{2}\left(F_{v}\right)_{\psi} . \tag{5.3}
\end{equation*}
$$

Clearly we have

$$
\begin{equation*}
W_{M_{v}}\left(s s^{\prime}\right)=W_{r_{v}\left(s^{\prime}\right) M_{v}}(s) \quad \text { for } \quad s^{\prime} \in S L_{2}\left(F_{v}\right) . \tag{5.4}
\end{equation*}
$$

Let η_{v} be as in $\S 4$, No. 1. By the same proof as in Proposition 2 we get:

$$
\begin{equation*}
W_{M_{v}}(s z)=\eta_{v}(z) W_{M_{v}}(s) \quad \text { for } z \in F_{v}^{\times} . \tag{5.5}
\end{equation*}
$$

Denote by $\mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$ the space of all $M_{v} \in \mathcal{S}\left(\mathcal{K}_{v}\right)$ satisfying

$$
M_{v}\left(k_{1} x k_{1}^{-1}\right)=M_{v}(x) \quad\left(k_{1} \in K_{v}^{1}\right), \quad \bar{\chi}_{\mathrm{b}_{v}} * M_{v}=M_{v}
$$

as well as the conditions iv), v) in $\S 4$, No. 4. Let \mathscr{W}_{v}^{*} be the space spanned' by all $\rho\left(\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)\right) W_{M_{v}}$ for $M_{v} \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$ and $\alpha \in E_{v}, E_{v}$ being a representative system of $F_{v}^{\times} /\left(F_{v}^{\times}\right)^{2}$. Let $M_{v}{ }^{0}$ be the characteristic function of \mathfrak{D}_{v} and write $W_{v}{ }^{0}=W_{M_{v}}$ for $M_{v}=M_{v}{ }^{\circ}$. We shall prove in Lemma 7 that, for almost all v, $W_{v}{ }^{0}$ is invariant under the right translations by elements of $G L_{2}\left(\mathrm{o}_{v}\right)$. By
(5.1) we see that W^{*} is the restricted tensor product of W_{v}^{*} with respect to $\left\{W_{v}{ }^{\circ}\right\}$ and that, if we let $\mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)\left(\right.$ resp. $\left.\mathscr{H}\left(G L_{2}\left(F_{v}\right)\right)\right)$ act on \mathscr{W}^{*} (resp. $\mathscr{W}_{v}{ }^{*}$), by right translation, the representation of $\mathscr{H}\left(G L_{2}(A)\right)$ in \mathscr{W}^{*} is the tensor product of the representations of $\mathscr{H}\left(G L_{2}\left(F_{v}\right)\right)$ in $\mathscr{W}_{v}{ }^{*}$ (granted that \mathscr{W}^{*} or $\mathscr{W}_{v}{ }^{*}$ is invariant under this action, which we are going to prove).
π being as in $\S 4$, No. 1 , write $\pi=\otimes \pi_{v}$. Let S be the set of all places in F ramified in \mathcal{K}.

Proposition 3. $\mathscr{W}_{v}{ }^{*}$ is invariant under the action of $\mathscr{H}\left(G L_{2}\left(F_{v}\right)\right)$ and the representation ρ_{v} of $\mathscr{H}\left(G L_{2}\left(F_{v}\right)\right)$ in $\mathscr{W}_{v} *$ is admissible. If $v \notin S$ and π_{v} is infinite dimensional, ρ_{v} is equivalent to π_{v}. If $v \in S, \rho_{v}$ is equivalent to $\pi_{v}{ }^{*}(\S 2$, No. 2).

The proof of this proposition will be given in No. 2-No. 11. Since all the arguments in the following are purely local, we write for simplicity r for r_{v}. \mathfrak{D}_{v} denotes always an irreducible representation of $K_{v}{ }^{1}$ contained in the restriction of π_{v} to $K_{v}{ }^{1}$.
2. In No. 2-No. 6, v denotes a non-archimedean place in F unramified in \mathcal{K} so that $\mathcal{K}_{v}=M_{2}\left(F_{v}\right)$ and $\mathcal{K}_{v}^{\times}=G L_{2}\left(F_{v}\right)$. Assume first that $\pi_{v}=\pi\left(\mu_{1}, \mu_{2}\right)$ with quasi-characters μ_{1}, μ_{2} of F_{v}^{\times}such that $\mu_{1} \mu_{2}{ }^{-1}$ is neither $\left.\left|\left.\right|_{F v}\right.$ nor $|\right|_{F v}{ }^{-1}$.

By Godement [3, No. 16] the spherical function $\omega_{b_{v}}$ is obtained in the
following way.*) Let T, ζ be as in $\S 1$, No. 3 (take F to be F_{v}). Put $U=$ $T \cap K_{v}{ }^{1}$; then $\mathcal{K}_{v}{ }^{\times}=T K_{v}{ }^{1}$. If we put

$$
\chi_{\Sigma_{v}}(t k)=\zeta(t) \int_{U} \zeta\left(u^{-1}\right) \chi_{v_{v}}(u k) d u
$$

for $t \in T$ and $k \in K_{v}{ }^{1}$, we have

$$
\begin{equation*}
\omega_{\mathrm{b} v}(g)=\int_{K_{v}^{1}} \chi \zeta_{\delta_{v}}\left(k_{1} g k_{1}^{-1}\right) d k_{1} \tag{5.6}
\end{equation*}
$$

for $g \in \mathcal{K}_{v}^{\times}$. Here $d k_{1}$ (resp. $d u$) is the Haar measure of $K_{v}{ }^{1}$ (resp. U) with the total volume 1.

Let us calculate W_{M} for $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$. We put $T^{1}=T \cap \mathcal{K}_{v}{ }^{1}$. For $\alpha \in F_{v}^{\times}$ set $h=\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)$. Since $M\left(k_{1} x k_{1}{ }^{-1}\right)=M(x)$ and $\bar{\chi}_{b_{v}} * M=M$, we have

$$
\begin{aligned}
& |\alpha|_{F_{v}^{-1}}^{-1} W_{M}\left(\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)\right)=\int_{\mathcal{K}_{v^{1}}} \omega_{v_{v}}\left(h g_{1}\right) M\left(h g_{1}\right) d g_{1} \\
& \quad=\int_{\mathscr{K}_{v^{1}}} \chi_{\delta_{v}}\left(h g_{1}\right) M\left(h g_{1}\right) d g_{1} \\
& \quad=\int_{T^{1 / U}} \int_{K_{v^{1}}} \int_{U} \zeta\left(h t_{1} u^{-1}\right) \chi_{\delta_{v}}\left(u k_{1}\right) M\left(h t_{1} k_{1}\right) d \dot{t}_{1} d k_{1} d u \\
& \quad=\int_{T^{1} / U} \int_{U} \zeta\left(h t_{1} u^{-1}\right) M\left(h t_{1} u^{-1}\right) d \dot{t_{1}} d u \\
& \quad=\int_{T^{1}} \zeta\left(h t_{1}\right) M\left(h t_{1}\right) d t_{1} .
\end{aligned}
$$

Here $d t_{1}$ is the left invariant measure of T^{1} and $d t_{1}=d \dot{t}_{1} d u$. If we write $t_{1}=\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right)\left(\begin{array}{rr}\gamma & 0 \\ 0 & \gamma^{-1}\end{array}\right)$, we have $d t_{1}=|\gamma| F_{v}^{-2} d \beta d^{\times} \gamma$. Then the last expression in the above equals

$$
\mu_{1}(\alpha)|\alpha|_{F_{v}^{-1 / 2}} \int_{F_{v}^{\times}} \int_{F_{v}} \mu_{1} \mu_{2}^{-1}(\gamma) M\left(\left(\begin{array}{cc}
\alpha \gamma & \beta \\
0 & \gamma^{-1}
\end{array}\right)\right) d \beta d^{\times} \gamma .
$$

Therefore, if $s=\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right) s_{1}$ with $\operatorname{det} s=\alpha$, we get

$$
W_{M}(s)=\mu_{1}(\alpha)|\alpha|_{F_{v}^{1 / 2}} \int_{F_{v}^{\times}} \int_{F_{v}} \mu_{1} \mu_{2}^{-1}(\gamma) r\left(s_{1}\right) M\left(\left(\begin{array}{cc}
\alpha \gamma & \beta \tag{5.7}\\
0 & \gamma^{-1}
\end{array}\right)\right) d \beta d^{\times} \gamma .
$$

For $M \in \mathcal{S}\left(\mathcal{K}_{v}\right)$ and $\left(\alpha_{1}, \alpha_{2}\right) \in F_{v} \times F_{v}$, we put

$$
f(M)\left(\alpha_{1}, \alpha_{2}\right)=\int_{F_{v}} M\left(\left(\begin{array}{cc}
\alpha_{1} & \xi \\
0 & \alpha_{2}
\end{array}\right)\right) d \xi
$$

[^0]Clearly $f(M) \in \mathcal{S}\left(F_{v} \oplus F_{v}\right)$. Denote by r_{0} the Weil representation of $S L_{2}\left(F_{v}\right)^{*}$ in $\mathcal{S}\left(F_{v} \oplus F_{v}\right)$ (with respect to the character ψ_{v} of F_{v}). By [5, Prop. 1.6] r_{c}. can be extended to a representation of $G L_{2}\left(F_{v}\right)$ such that

$$
r_{0}\left(\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)\right) m\left(\alpha_{1}, \alpha_{2}\right)=m\left(\alpha \alpha_{1}, \alpha_{2}\right)
$$

for $m \in \mathcal{S}\left(F_{v} \oplus F_{v}\right)$.
Lemma 6. For $M \in \mathcal{S}\left(\mathcal{K}_{v}\right)$ and $s_{1} \in S L_{2}\left(F_{v}\right)$ we have

$$
f\left(r\left(s_{1}\right) M\right)=r_{0}\left(s_{1}\right) f(M) .
$$

The proof is immediate.
It follows from Lemma 6 and (5.7) that

$$
\begin{equation*}
W_{M}(s)=\mu_{1}(\operatorname{det} s)|\operatorname{det} s|_{F_{v}^{1 / 2}}^{1 / 2} \int_{F_{v}^{\prime \prime}} \mu_{1} \mu_{2}^{-1}(\gamma) r_{0}(s) f(M)\left(\gamma, \gamma^{-1}\right) d^{\times} \gamma \tag{5.8}
\end{equation*}
$$

so that W_{M} is contained in the space $W\left(\mu_{1}, \mu_{2} ; \psi_{v}\right)$ in the notation in [5, §3]. By the assumption on μ_{1}, μ_{2} this space is the Whittaker space of $\pi\left(\mu_{1}, \mu_{2}\right)$, (cf. [5, Prop. 3.5]).

For $s_{1} \in S L_{2}\left(F_{v}\right)$ and $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$, we have $\rho\left(s_{1}\right) W_{M}=W_{N}$ with $N=r\left(s_{1}\right) M$, and $S_{1}\left(\mathcal{K}_{v}\right)$ is invariant under $r\left(s_{1}\right)$, because $r\left(s_{1}\right)$ commutes with $\rho\left(k_{1}\right)$ and: $\lambda\left(k_{1}\right)$ for $k_{1} \in K_{v}{ }^{1}$ (Lemma 11). By (5.4) and (5.5) the space $W_{v}{ }^{*}$ spanned by all. $\rho\left(\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)\right) W_{M}\left(M \in S_{1}\left(\mathcal{K}_{v}\right)\right.$ and $\left.\alpha \in E_{v}\right)$ is invariant under $\rho(s)$ for all. $s \in G L_{2}\left(F_{v}\right) . W_{v}^{*}$ is clearly non-zero. Since $W\left(\mu_{1}, \mu_{2} ; \psi_{v}\right)$ is irreducible, we have $\mathscr{W}_{v}^{*}=W\left(\mu_{1}, \mu_{2} ; \psi_{v}\right)$ and hence ρ_{v} is equivalent to $\pi\left(\mu_{1}, \mu_{2}\right)$.
3. Let π_{v} be $\pi\left(\mu_{1}, \mu_{2}\right)$ with quasi-characters μ_{1}, μ_{2} of F_{v}^{\times}such that $\mu_{1} \mu_{2}^{-1}=| |_{F_{v}^{-1}}$. Write $\mu_{1}(\alpha)=\chi(\alpha)|\alpha|_{F_{v}^{-1 / 2}}, \mu_{2}(\alpha)=\chi(\alpha)|\alpha|_{F_{v}^{1 / 2}}$. Then π_{v} is the one-dimensional representation $\chi \circ n$. Obviously δ_{v} is the identity representation and $\omega_{\mathrm{b} v}(g)=\chi(n(g))$. By a simple calculation we again obtain (5.8) for $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$. As in No. 2, we see that $\mathscr{W}_{v}{ }^{*}$ is an invariant subspace of $W\left(\mu_{1}, \mu_{2} ; \psi_{v}\right)$. Consequently ρ_{v} is admissible.
4. For almost all v, the restriction of π_{v} to K_{v} contains the identity representation. By [5, Lemma 3.9], if $\mathcal{K}_{v}^{\times}=G L_{2}\left(F_{v}\right)$ and v is non-archimedean, such a π_{v} is of the form $\pi\left(\mu_{1}, \mu_{2}\right)$ with unramified ($=$ trivial on $\mathfrak{D}_{v}^{\times}$) quasicharacters μ_{1}, μ_{2} of F_{v}^{\times}.

Lemma 7. Assume that $\pi_{v}=\pi\left(\mu_{1}, \mu_{2}\right)$ with unramified quasi-characters μ_{1}, μ_{2} of F_{v}^{\times}. Let \mathfrak{a}_{v} be the conductor of ψ_{v}. Put

$$
L_{v}=\mathfrak{o}_{v} e_{11}+\mathfrak{o}_{v} e_{12}+\mathfrak{a}_{v} e_{21}+\mathfrak{a}_{v} e_{22},
$$

$e_{i j}$ being a 2 by 2 matrix such that (i, j)-coefficient is 1 and the other coefficients: are 0. If N is the characteristic function of L_{v}, then $r\left(s_{1}\right) N=N$ for $s_{1} \in S L_{2}\left(\mathrm{o}_{v}\right)$.. Furthermore, if $M=\int_{K_{\boldsymbol{v}^{1}}} \lambda\left(k_{1}\right) N d k_{1}$, then $\rho(s) W_{M}=W_{M}$ for $s \in G L_{2}\left(\mathrm{D}_{\boldsymbol{v}}\right)$.

Proof. $G L_{2}\left(\mathfrak{D}_{v}\right)$ is generated by $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right),\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)(\alpha \in$ $\mathfrak{o}_{v}^{\times}, \beta \in \mathfrak{o}_{v}$). We note that L_{v} is a \mathfrak{o}_{v}-lattice and $n(x) \in \mathfrak{a}_{v}$ for all $x \in L_{v}$. It follows from definition that $r(s) N=N$ if $s=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right)$ or $\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right)$. Let $L_{v}{ }^{*}$ be the set of all $x \in \mathcal{K}_{v}$ such that $\operatorname{tr}\left(x L_{v}\right) \subset \mathfrak{a}_{v}$. Evidently $L_{v}{ }^{*}=\mathfrak{a}_{v} e_{11}+\mathfrak{o}_{v} e_{12}+\mathfrak{a}_{v} e_{21}$ $+\mathrm{o}_{v} e_{22}$ and the Fourier transform N^{\prime} of N is the characteristic function of $L_{v} *$ up to a positive constant. Hence $r\left(\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)\right) N(x)=N^{\prime}\left(x^{c}\right)=c N(x)$. Since $r\left(\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)^{2}\right) N=r(-1) N=N, c$ must be 1 . This proves the first assertion. By Lemma 1, i), the same assertion is valid also for M. It follows from (5.8) that

$$
\begin{aligned}
& W_{M}\left(s\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)\right)=\mu_{1}(\operatorname{det} s)|\operatorname{det} s|_{F_{v}^{1 / 2}} \\
& \quad \int \mu_{1} \mu_{2}^{-1}(\gamma) r_{0}(s) f\left(\rho\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right) M\right)\left(\gamma, \gamma^{-1}\right) d^{\times} \gamma .
\end{aligned}
$$

If $\alpha \in \mathfrak{o}_{v}^{\times}$, we have $\rho\left(\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)\right) M=M$ so that $\rho\left(\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)\right) W_{M}=W_{M}$. Together with what we have proved above, this proves the second assertion.
5. We assume now that $\pi_{v}=\sigma\left(\mu_{1}, \mu_{2}\right)$ with quasi-characters μ_{1}, μ_{2} of F_{v}^{\times} such that $\mu_{1} \mu_{2}^{-1}=| |_{F_{v}}$. Write $\mu_{1}(\alpha)=\chi(\alpha)|\alpha|_{F_{v}^{1 / 2},} \mu_{2}(\alpha)=\chi(\alpha)|\alpha|_{F_{v}^{-1 / 2}}$. In the notation in $\S 1$, No. 3, put $\mathscr{V}=\mathscr{B}\left(\mu_{1}, \mu_{2}\right)$ and $\mathcal{V}_{s}=\mathscr{B}_{s}\left(\mu_{1}, \mu_{2}\right)$.

We first note that the restriction of π_{v} to $K_{v}{ }^{1}$ does not contain the identity representation. If this is not true, there would be a non-zero function f in \mathcal{V}_{s} invariant under $K_{v}{ }^{1}$. By $[5, \S 3]$

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle=\int_{K_{v}} \varphi_{1}(k) \varphi_{2}(k) d k
$$

is a non-degenerate bilinear form on $\mathscr{B}\left(\mu_{1}, \mu_{2}\right) \times \mathscr{B}\left(\mu_{1}^{-1}, \mu_{2}^{-1}\right)$ invariant under the right translation, and $\mathscr{B}_{s}\left(\mu_{1}, \mu_{2}\right)$ is the space of all $\varphi \in \mathscr{B}\left(\mu_{1}, \mu_{2}\right)$ orthogonal to the function $\chi^{-1} \circ \operatorname{det}$ in $\mathscr{B}\left(\mu_{1}^{-1}, \mu_{2}^{-1}\right)$. Hence

$$
\int_{K_{v}} \chi^{-1}(\operatorname{det} k) f(k) d k=\int_{o_{v}^{\times}} \chi^{-1}(\alpha) f\left(\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)\right) d^{\times} \alpha=0 .
$$

It implies that $f(1)=0$ so that f is identically 0 . This is a contradiction.
Let $\mathcal{C V}\left(D_{v}\right)$ be the space of all $f \in \mathcal{V}$ such that

$$
\int_{K_{v}^{1}} \chi_{b_{v}}\left(k_{1}^{-1}\right) \rho\left(k_{1}\right) f=f,
$$

and put $\mathcal{V}_{s}\left(\partial_{v}\right)=\mathcal{V}_{s} \cap \subset\left(\mathfrak{D}_{v}\right)$. By the above remark \mathfrak{D}_{v} is not the identity representation. On the other hand, the representation of $G L_{2}\left(F_{v}\right)$ in Q / Q_{s} is equivalent to $\chi \circ$ det, whose restriction to $K_{v}{ }^{1}$ is the identity representation.

Hence $\mathcal{V}\left(\partial_{v}\right)=\mathcal{V}_{s}\left(\partial_{v}\right)$. From the definition of spherical functions it follows that (5.6) is still valid in our case.

As in No. 2, we have $W_{\boldsymbol{M}} \in W\left(\mu_{1}, \mu_{2} ; \psi_{v}\right)$ for $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$. By [5, Prop. 3.6] W_{M} belongs to the Whittaker space $W\left(\sigma\left(\mu_{1}, \mu_{2}\right) ; \psi_{v}\right)$ of $\sigma\left(\mu_{1}, \mu_{2}\right)$ if

$$
\begin{align*}
& \int_{F v} f(M)\left(\xi_{1}, 0\right) d \xi_{1} \tag{5.9}\\
= & \int_{F_{v \times F}} M\left(\left(\begin{array}{rr}
\xi_{1} & \xi_{2} \\
0 & 0
\end{array}\right)\right) d \xi_{1} d \xi_{2}=0 .
\end{align*}
$$

This condition is certainly satisfied by $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$, for

$$
\begin{aligned}
& \int_{F_{v \times F}} M\left(\left(\begin{array}{rr}
\xi_{1} & \xi_{2} \\
0 & 0
\end{array}\right)\right) d \xi_{1} d \xi_{2} \\
= & \int_{F v \times F_{v}} \int_{K_{v}^{\prime}} M\left(\left(\begin{array}{rr}
\xi_{1} & \xi_{2} \\
0 & 0
\end{array}\right) k_{1}\right) \chi_{b_{v}}\left(k_{1}\right) d k_{1} d \xi_{1} d \xi_{2} \\
= & \int_{F_{v \times F v}} \int_{K_{v}^{\prime}} M\left(\left(\begin{array}{cc}
\xi_{1}^{\prime} & \xi_{2}^{\prime} \\
0 & 0
\end{array}\right)\right) \chi_{b_{v}}\left(k_{1}\right) d k_{1} d \xi_{1^{\prime}} d \xi_{2^{\prime}}=0,
\end{aligned}
$$

since $\int \chi_{\delta_{v}}\left(k_{1}\right) d k_{1}=0$. By the same reasoning as in No. 2, we see that $\mathscr{W}_{v}{ }^{*}$ is the Whittaker space of $\sigma\left(\mu_{1}, \mu_{2}\right)$ so that ρ_{v} is equivalent to $\sigma\left(\mu_{1}, \mu_{2}\right)$.
6. Let us assume that π_{v} is absolutely cuspidal, and is realized in its Kirillov model ($[5, \S 2]$). The representation space of π_{v} is then the space $\mathcal{S}\left(F_{v}^{\times}\right)$of all locally constant functions of compact support on F_{v}^{\times}. Let Ψ be any non-trivial additive character of F_{v}. We may assume that

$$
\begin{aligned}
& \pi_{v}\left(\left(\begin{array}{ll}
\alpha & \beta \\
0 & 1
\end{array}\right)\right) \varphi(\xi)=\Psi(\beta \xi) \varphi(\alpha \xi), \\
& \pi_{v}\left(\left(\begin{array}{ll}
\alpha & 0 \\
0 & \alpha
\end{array}\right)\right) \varphi(\xi)=r_{v}(\alpha) \varphi(\xi)
\end{aligned}
$$

for $\alpha \in F_{v}^{\times}, \beta \in F_{v}$ and $\varphi \in \mathcal{S}\left(F_{v}^{\times}\right)$. Hence π_{v} is determined by the action of $\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)$.
μ being a character of F_{v}, we set

$$
\hat{\varphi}(\mu)=\int_{F_{v}^{\times}} \varphi(\xi) \mu(\xi) d^{\times} \xi
$$

for $\varphi \in \mathcal{S}\left(F_{v}^{\times}\right)$. Transforming the action of $\pi_{v}(g)\left(g \in \mathcal{K}_{v}^{\times}\right)$by the mapping $\varphi \rightarrow \hat{\varphi}$, we obtain (cf. [5, Prop. 2.10])

$$
\begin{align*}
& \pi_{v}\left(\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)\right) \hat{\varphi}(\mu)=\mu^{-1}(\alpha) \hat{\varphi}(\mu), \tag{5.10}\\
& \pi_{v}\left(\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\right) \hat{\varphi}(\mu)=\int_{F_{v}^{\times}} \mu(\xi) \Psi(\beta \xi) \varphi(\xi) d^{\times} \xi, \tag{5.11}
\end{align*}
$$

$$
\pi_{v}\left(\left(\begin{array}{ll}
0 & 1 \tag{5.12}\\
-1 & 0
\end{array}\right)\right) \hat{\varphi}(\mu)=C(\mu) \hat{\varphi}\left(\mu^{-1} \eta_{v}^{-1}\right)
$$

with a constant $C(\mu)$ depending only on μ.
Here we sketch a proof. (5.10) and (5.11) are immediate. To see (5.12), let ν be a character of $\mathfrak{o}_{v}^{\times}$and φ_{ν} an element in $\mathcal{S}\left(F_{v}^{\times}\right)$such that $\varphi_{\nu}(\xi)=\nu^{-1}(\xi)$ if $\xi \in \mathfrak{D}_{v}^{\times}$and 0 outside of $\mathfrak{p}_{v}^{\times}$. If $\widetilde{\varpi}$ is a prime element in F_{v}, the functions $\pi_{v}\left(\left(\begin{array}{cc}\omega^{-n} & 0 \\ 0 & 1\end{array}\right)\right) \varphi_{\nu}$ (for all integers n and for all characters ν_{-}^{-}of $\left.\mathfrak{o}_{v}^{\times}\right)$form a basis of $\mathcal{S}\left(F_{v}^{\times}\right)$. Let ν_{0} be the restriction of η_{v} to $\mathfrak{o}_{v}^{\times}$. Write $w=\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)$. Since $w\left(\begin{array}{ll}\alpha^{-1} & 0 \\ 0 & 1\end{array}\right) w^{-1}=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha\end{array}\right)^{-1}\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)$, we have

$$
\pi_{v}\left(\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)\right) \pi_{v}(w) \varphi_{\nu}=\nu \nu_{0}(\alpha) \pi_{v}(w) \varphi_{\nu}
$$

for $\alpha \in \mathfrak{n}_{v}$. Therefore, we can write

$$
\pi_{v}(w) \varphi_{\nu}=\sum_{n} C_{n}\left(\nu^{-1} \nu_{0}^{-1}\right) \pi_{v}\left(\left(\begin{array}{cc}
\widetilde{\sigma}^{-n} & 0 \\
0 & 1
\end{array}\right)\right) \varphi_{\nu-1 \nu_{0}-1}
$$

Taking the Fourier transforms of the both sides, we get

$$
\pi_{v}(w) \hat{\varphi}_{\nu}(\mu)=\sum_{n} C_{n}\left(\nu^{-1} \nu_{0}^{-1}\right) \mu\left(\widetilde{\tau}^{n}\right) \hat{\varphi}_{\nu-1 \nu_{0}-1}(\mu) .
$$

Clearly $\hat{\varphi}_{\nu-\nu_{\nu_{0}-1}}(\mu)=\hat{\varphi}_{\nu}\left(\eta_{\nu}{ }^{-1} \mu^{-1}\right)$ and this is not 0 if and only if the restriction μ_{0} of μ to ${\rho_{v}^{\times}}^{\times}$equals $\nu^{-1} \nu_{0}^{-1}$. Hence, if we put

$$
C(\mu)=\sum_{n} C_{n}\left(\mu_{0}\right) \mu\left(\widetilde{w}^{n}\right),
$$

(5.12) holds for $\varphi=\varphi_{\nu}$. It is now easy to see that (5.12) holds for all $\pi_{v}\left(\left(\begin{array}{ll}\widetilde{\omega}^{-n} & 0 \\ 0 & 1\end{array}\right)\right) \varphi_{\nu}$.

In the following we take ψ_{v} for Ψ. It is shown in [5, Prop. 2.21.2] that the hermitian form

$$
\left(\varphi_{1}, \varphi_{2}\right)=\int_{F_{v}} \varphi_{1}(\xi) \overline{\varphi_{2}(\xi)} d^{\times} \xi
$$

on $\mathcal{S}\left(F_{v}^{\times}\right)$is invariant under π_{v}. Write $\mathcal{V}=\mathcal{S}\left(F_{v}^{\times}\right)$and define $\mathcal{V}\left(\delta_{v}\right)$ as in No. 5. Let $\left\{\varphi_{i}\right\}_{i=1}^{N}$ be an orthonormal basis of $\mathcal{V}\left(\wp_{v}\right)$. By definition

$$
\omega_{\mathrm{b} v}(g)=\sum_{i=1}^{N} \int_{K_{v^{1}}}\left(\pi_{v}\left(k_{1} g\right) \varphi_{i}, \varphi_{i}\right) \chi_{\mathrm{b}_{v}}\left(k_{1}^{-1}\right) d k_{1}
$$

Hence, if $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$, we have

$$
\begin{equation*}
W_{M}(g)=|\operatorname{det} s|_{F_{v}} \sum_{i=1}^{N} \int_{\kappa_{v} v^{1}}\left(\pi_{v}\left(g_{1} h\right) \varphi_{i}, \varphi_{i}\right) r\left(s_{1}\right) M\left(g_{1} h\right) d g_{1}, \tag{5.13}
\end{equation*}
$$

where $s=\left(\begin{array}{cc}\operatorname{det} s & 0 \\ 0 & 1\end{array}\right) s_{1}$ and $n(h)=\operatorname{det} s$.

As in No. 2 we see that $\mathscr{W}_{v} *$ is invariant under $\rho(s)$ for $s \in G L_{2}\left(F_{v}\right)$. For $W \in \mathscr{W}_{v}{ }^{*}$ and $\xi \in F_{v}^{\times}$, put $\varphi_{W}(\xi)=W\left(\left(\begin{array}{ll}\xi & 0 \\ 0 & 1\end{array}\right)\right)$.

Lemma 8. $\varphi_{W} \in \mathcal{S}\left(F_{v}^{\times}\right)$for $W \in \mathscr{W}_{v}{ }^{*}$.
Proof. It is enough to prove this in case $W=W_{M}$ for $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$. Then it follows immediately from (5.13) that φ_{W} is locally constant and the support of φ_{W} is contained in a compact set of F_{v}. We now prove that $\varphi_{W}=0$ in a neighbourhood of 0 . We shall prove in Lemma 14 that \mathfrak{b}_{v} is not the identity representation. Hence

$$
M(0)=\int_{K_{v^{1}}} \chi_{b_{v}}\left(k_{1}\right) M(0) d k_{1}=0
$$

and hence there exists a neighbourhood V of 0 in \mathcal{K}_{v} on which M is identically 0 .

It is easy to see (cf. the proof of [5, Prop. 2.20]) that the support of the function $\left(\pi_{v}(g) \varphi, \varphi\right)$ is compact modulo F_{v}^{\times}, if $\varphi \in \mathcal{S}\left(F_{v}^{\times}\right)$. Hence there is a compact set C in \mathcal{K}_{v}^{\times}such that $F_{v}^{\times} C$ contains the support of $\left(\pi_{v}(g) \varphi_{i}, \varphi_{i}\right)$ for $i=1, \cdots, N$.

Set $s=h=\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)$ in (5.13). $g_{1} h$ is written in the form $\left(\begin{array}{ll}\delta & 0 \\ 0 & \delta\end{array}\right) k_{1}\left(\begin{array}{ll}\gamma & \beta \\ 0 & 1\end{array}\right)$ with $k_{1} \in K_{v}{ }^{1}$. Then $\alpha=\gamma \delta^{2}$. Assume that $k_{1}\left(\begin{array}{ll}\gamma & \beta \\ 0 & 1\end{array}\right) \in C$. Then γ is contained in a compact subset of F_{v}. Consequently, we can find a small neighbourhood V^{\prime} of 0 in F_{v} such that if $\alpha \in V^{\prime}$, then δC is contained in V so that $M\left(g_{1} h\right)=0$, and hence $\varphi_{W}(\alpha)=0$.
q. e.d.

By Lemma $8, W \rightarrow \varphi_{W}$ is a linear mapping of $\mathscr{W}_{v}{ }^{*}$ into $\mathcal{S}\left(F_{v}^{\times}\right)$. It is easily seen that

$$
\varphi_{X}(\xi)=\psi_{v}(\beta \xi) \varphi_{W}(\alpha \xi) \quad \text { if } X=\rho\left(\left(\begin{array}{cc}
\alpha & \beta \tag{5.14}\\
0 & 1
\end{array}\right)\right) W
$$

We now assert that

$$
\begin{equation*}
\pi_{v}(s) \varphi_{W}=\varphi_{\rho(s) W} \quad \text { for } s \in G L_{2}\left(F_{v}\right) . \tag{5.15}
\end{equation*}
$$

In view of (5.14) it is enough to prove (5.15) for $s=w=\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)$. To do this, let us calculate $\hat{\varphi}_{W}$. If $W=W_{M}$, we have

$$
\begin{align*}
\hat{\varphi}_{W}(\mu)= & \int_{F_{v}^{\times}} \mu(\xi) d^{\times} \xi \tag{5.16}\\
& \quad \int_{\varkappa_{v}^{1}} \sum_{i=1}^{N}|\xi|_{F_{v}}\left(\pi_{v}\left(g_{1}\left(\begin{array}{ll}
\xi & 0 \\
0 & 1
\end{array}\right)\right) \varphi_{i}, \varphi_{i}\right) M\left(g_{1}\left(\begin{array}{ll}
\hat{\xi} & 0 \\
0 & 1
\end{array}\right)\right) d g_{1} \\
= & \int_{\mathcal{X}_{v}^{\times}} \mu(\operatorname{det} g)|\operatorname{det} g|_{F_{v}} \sum_{i=1}^{N}\left(\pi_{v}(g) \varphi_{i}, \varphi_{i}\right) M(g) d g .
\end{align*}
$$

Lemma 9. Let $d x$ be the self-dual measure of \mathcal{K}_{v} (with respect to $\langle x, y\rangle$ $\left.=\psi_{v}(\operatorname{tr}(x y))\right)$ and $d g$ the Haar measure of \mathcal{K}_{v}^{\times}such that $|\operatorname{det} g|_{F_{v}}{ }^{2} d g$ coincides:
with $d x$ on \mathcal{K}_{v}^{\times}. Then we have

$$
\begin{align*}
& \int_{\mathcal{X}_{v}^{x}}|\operatorname{det} g|_{F_{v}} \mu(\operatorname{det} g)\left(\pi_{v}(g) \varphi_{1}, \varphi_{2}\right) \psi_{v}(\operatorname{tr} g) d g \tag{5.17}\\
& \quad=C(\mu)\left(\varphi_{1}, \varphi_{2}\right)
\end{align*}
$$

for $\varphi_{1}, \varphi_{2} \in \mathcal{S}\left(F_{v}^{\times}\right)$.
Proof. We follow the method in [5, Lemma 13.1.1]. Write $g=\left(\begin{array}{ll}\gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22}\end{array}\right)$, in the form

$$
g=\left(\begin{array}{ll}
\delta & 0 \\
0 & \delta
\end{array}\right)\left(\begin{array}{rr}
1 & -\beta^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right) w\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)
$$

if $\gamma_{21} \neq 0$. If $d \alpha$ is the self-dual measure of F_{v} (with respect to $\langle\alpha, \beta\rangle=\psi_{v}(\alpha \beta)$) and if $d^{\times} \alpha=|\alpha|_{F_{v}}{ }^{-1} d \alpha$, then $d g=|\gamma|_{F v}{ }^{-1} d \beta d \beta^{\prime} d^{\times} \gamma d^{\times} \delta$. In the above notation we have

$$
\left(\pi_{v}(g) \varphi_{1}, \varphi_{2}\right)=\eta_{v}(\delta)\left(\pi_{v}\left(\left(\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right) w\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right)\right) \varphi_{1}, \pi_{v}\left(\left(\begin{array}{ll}
1 & \beta^{\prime} \\
0 & 1
\end{array}\right)\right) \varphi_{2}\right) .
$$

Put

$$
f_{1}=\pi_{v}\left(\left(\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right) w\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\right) \varphi_{1}, \quad f_{2}=\pi_{v}\left(\left(\begin{array}{cc}
1 & \beta^{\prime} \\
0 & 1
\end{array}\right)\right) \varphi_{2}
$$

By (5.10)-(5.12) we have

$$
\begin{aligned}
& \hat{f}_{1}\left(\mu^{\prime}\right)=\mu^{\prime-1}(\gamma) C\left(\mu^{\prime}\right) \int_{F_{v}^{\times}} \mu^{\prime-1} \eta_{v}^{-1}(\xi) \psi_{v}(\xi \beta) \varphi_{1}(\xi) d^{\times} \xi \\
& \hat{f}_{2}\left(\mu^{\prime}\right)=\int_{F_{v}^{\times}} \mu^{\prime}(\xi) \psi_{v}\left(\xi \beta^{\prime}\right) \varphi_{2}(\xi) d^{\times} \xi
\end{aligned}
$$

If $d \mu$ is the dual-measure of $d^{\star} \alpha$,

$$
\left(f_{1}, f_{2}\right)=\int \hat{\hat{f}_{1}}\left(\mu^{\prime}\right) \overline{\hat{f}_{2}\left(\mu^{\prime}\right)} d \mu^{\prime}
$$

Therefore, the left hand side of (5.17) equals

$$
\begin{aligned}
& \int\left[\int\left|\delta^{2} \gamma\right|_{F v} \mu\left(\delta^{2} \gamma\right) \eta_{v}(\delta) \mu^{\prime-1}(\gamma) C\left(\mu^{\prime}\right)\right. \\
& \left\{\int \mu^{\prime-1} \eta_{v}^{-1}(\xi) \psi_{v}(\xi \beta) \varphi_{1}(\xi) d^{\times} \xi\right\}\left\{\overline{\left.\int \mu^{\prime}(\xi) \psi_{v}\left(\xi \beta^{\prime}\right) \varphi_{2}(\xi) d^{\times} \xi\right\}}\right. \\
& \left.\quad \psi_{v}\left(\delta\left(\beta^{\prime}-\beta\right)\right) d \mu^{\prime}\right]|\gamma|_{F_{v}}{ }^{-1} d \beta d \beta^{\prime} d^{\times} \gamma d^{\times} \delta
\end{aligned}
$$

Now we have (by Fourier's inversion formula)

$$
\begin{aligned}
& \iint \mu^{\prime}(\xi) \varphi_{2}(\xi) \psi_{v}\left(\xi \beta^{\prime}\right) \psi_{v}\left(-\delta \beta^{\prime}\right) d^{\times} \xi d \beta^{\prime}=|\delta|_{F_{v}}^{-1} \mu^{\prime}(\delta) \varphi_{2}(\delta), \\
& \iint \mu^{\prime-1} \eta_{v}^{-1}(\xi) \varphi_{1}(\xi) \psi_{v}(\xi \beta) \psi_{v}(-\delta \beta) d^{\times} \xi d \beta=|\delta|_{F_{v}}{ }^{-1} \mu^{\prime-1} \eta_{v}^{-1}(\delta) \varphi_{1}(\delta)
\end{aligned}
$$

so that (after a change of a variable) the left hand side of (5.17) equals

$$
\int \mu \mu^{\prime-1}(\gamma) C\left(\mu^{\prime}\right) d \mu^{\prime} d^{\times} \gamma \int \varphi_{1}(\delta) \overline{\varphi_{2}(\delta)} d^{\times} \delta
$$

Write $\mu\left(\varepsilon \widetilde{\sigma}^{n}\right)=\nu(\varepsilon) t^{n}$ and $\mu^{\prime}\left(\varepsilon \varpi^{n}\right)=\nu^{\prime}(\varepsilon) t^{\prime n}$ with characters ν, ν^{\prime} of ρ_{v}^{\times}and complex numbers t, t^{\prime} of absolute value 1. Put $c=\int_{0_{v}^{\times}} d^{\times} \varepsilon$. If $\gamma=\varepsilon \widetilde{\Phi}^{m}$ for $\varepsilon \in \mathfrak{o}_{v}^{\times}$, then

$$
\begin{aligned}
\int \mu \mu^{\prime-1}(\gamma) C\left(\mu^{\prime}\right) d \mu^{\prime} & =1 / c \sum_{\nu^{\prime}} \int_{11^{\prime} \mid=1} \nu \nu^{\prime-1}(\varepsilon)\left(t t^{\prime-1}\right)^{m} \sum_{n} C_{n}\left(\nu^{\prime}\right) t^{\prime n} d t^{\prime} \\
& =1 / c \sum_{\nu^{\prime}} \nu \nu^{\prime-1}(\varepsilon) t^{m} C_{m}\left(\nu^{\prime}\right) .
\end{aligned}
$$

Hence, integrating it by $d^{\times} \gamma$, we get

$$
1 / c \sum_{m} \int_{o_{v}^{\times}} \sum_{\nu^{\prime}} \nu^{\prime \prime-1}(\varepsilon) t^{m} C_{m}\left(\nu^{\prime}\right) d^{\times} \varepsilon=\sum_{m} t^{m} C_{m}(\nu)=C(\mu) .
$$

This proves the lemma.
We assume in the following that $d g$ is normalized as in Lemma 9, though the final result is independent of this normalization. Putting $W^{\prime}=\rho(w) W$ in (5.16) in place of W, we obtain

$$
\hat{\varphi}_{W^{\prime}}(\mu)=\int_{x_{v}^{\times}} \mu(\operatorname{det} g)|\operatorname{det} g|_{F_{v}} \sum_{i}\left(\pi_{v}(g) \varphi_{i}, \varphi_{i}\right) M^{\prime}\left(g^{\prime}\right) d g .
$$

Since

$$
M^{\prime}\left(g^{d}\right)=\int_{x_{v}^{\times}} M(h) \psi_{v}\left(\operatorname{tr}\left(h g^{\imath}\right)\right)|\operatorname{det} h|_{F_{v}}^{2} d h,
$$

we get (replacing g by $g h^{\iota^{-1}}$)

$$
\begin{aligned}
\hat{\varphi}_{W^{\prime}}(\mu)= & \iint|\operatorname{det}(g h)|_{F_{v}} \mu\left(\operatorname{det}\left(g h^{-1}\right)\right) \\
& \sum_{i}\left(\pi_{v}\left(g h^{h^{-1}}\right) \varphi_{i}, \varphi_{i}\right) M(h) \varphi_{v}(\operatorname{tr} g) d h d g \\
= & C(\mu) \int|\operatorname{det} h|_{F_{v}} \mu^{-1}(\operatorname{det} h) \\
& \sum_{i}\left(\pi_{v}\left(h^{L^{-1}}\right) \varphi_{i}, \varphi_{i}\right) M(h) d h \quad(\text { by Lemma } 9) \\
= & C(\mu) \hat{\varphi}_{W}\left(\mu^{-1} \eta_{v}^{-1}\right) .
\end{aligned}
$$

This proves (5.15) for $s=w$.
(5.15) shows in particular that the space of all $W \in \mathscr{W}_{v}{ }^{*}$ such that $\varphi_{W}=0$ is $G L_{2}\left(F_{v}\right)$-invariant. If $\varphi_{W}=0$, then $\pi_{v}(s) \varphi_{W}=\varphi_{\rho(s) W}=0$ and hence $W\left(\left(\begin{array}{ll}\xi & 0 \\ 0 & 1\end{array}\right) s\right)=0$ for all $s \in G L_{2}\left(F_{v}\right)$. Therefore, the mapping $W \rightarrow \varphi_{W}$ is injec-
tive. Its image is a non-zero π_{v}-invariant subspace of $\mathcal{S}\left(F_{v}^{\times}\right)$so that it must be the whole space. It follows that $\mathscr{W}_{v}{ }^{*}$ is the Whittaker space of π_{v} and that ρ_{v} is equivalent to π_{v}.
7. We assume that v is non-archimedean and ramified in \mathcal{K} so that \mathcal{K}, is now a division quaternion algebra over F_{v}. In this case π_{v} is an irreducible finite dimensional representation of \mathcal{K}_{v}^{\times}. Let χ be the character of π_{v}. It follows from definition that

$$
\omega_{\mathrm{b}_{v}}(g)=\int_{K_{v}^{1}} \chi_{\mathrm{b}_{v}}\left(k_{1}^{-1}\right) \chi\left(k_{1} g\right) d k_{1}
$$

and hence that, if $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$,

$$
W_{M}(s)=|\operatorname{det} s|_{F_{v}} \int_{\mathcal{K}_{v}^{1}} \chi\left(g_{1} h\right) r\left(s_{1}\right) M\left(g_{1} h\right) d g_{1}
$$

for $s=\left(\begin{array}{cc}\operatorname{det} s & 0 \\ 0 & 1\end{array}\right) s_{1}$ and for $h \in \mathcal{K}_{v}^{\times}$with $n(h)=\operatorname{det} s$. Note that $\mathcal{K}_{v}{ }^{1}=K_{v}{ }^{1}$.
Let U be the space of functions on \mathcal{K}_{v}^{\times}spanned by all the coefficients of π_{v}. Let Ω be the representation of \mathcal{K}_{v}^{\times}in U defined by right translation:

$$
\Omega(g) f(h)=f(h g) \quad \text { for } f \in U .
$$

Ω is the direct sum of d copies of π_{v}, if $d=\operatorname{dim} \pi_{v}$.
For $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right), f \in U, g \in \mathcal{K}_{v}^{\times}$and $x \in \mathcal{K}_{v}$, we put

$$
\varphi_{M, f}(g, x)=\int_{x_{v}^{1}} f\left(g g_{1}\right) M\left(x g_{1}\right) d g_{1} .
$$

Since f, M are locally constant, this integral is in substance a finite sum and $\varphi_{M, f}(g, x) \in U$ for a fixed x. Furthermore, we have $\varphi_{M, f}\left(g g_{1}, x\right)=\varphi_{M, r}\left(g, x g_{1}{ }^{-1}\right)$ or $\Omega\left(g_{1}\right) \varphi_{M, f}(g, x)=\varphi_{M, f}\left(g, x g_{1}{ }^{-1}\right)$ for $g_{1} \in \mathcal{K}_{v}{ }^{1}$. Hence $\varphi_{M, f}(g, x)$ is (as a U valued function of x) an element of $\mathcal{S}\left(\mathcal{K}_{v}, \Omega\right)$ in the notation in §3, No. 2. If we write r_{Ω} for the Weil representation of $G L_{2}\left(F_{v}\right)$ in $\mathcal{S}\left(\mathcal{K}_{v}, \Omega\right)$, we get

$$
r_{\Omega}(s) \varphi_{M, f}=|\operatorname{det} s|_{F v} \varphi_{\rho(h) r\left(s_{1}\right) M, \Omega(h) f},
$$

where s_{1} and h are the same as before. Denote by V_{1} the space spanned by $r_{\Omega}(s) \varphi_{M, \chi}$ for all $s \in G L_{2}\left(F_{v}\right)$ and $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$. Let L be the linear map of $\mathcal{S}\left(\mathcal{K}_{v}, \Omega\right)$ into \boldsymbol{C} defined by

$$
L(\varphi)=(\varphi(1))(1)
$$

for $\varphi \in \mathcal{S}\left(\mathcal{K}_{v}, \Omega\right)$ (this is the value of the function $\varphi(1)(g)$ in U at $\left.g=1\right)$. Let \mathcal{V}_{2} be the space of all $\varphi \in \mathcal{S}\left(\mathcal{K}_{v}, \Omega\right)$ such that $L\left(r_{\Omega}(s) \varphi\right)=0$ for all $s \in G L_{2}\left(F_{v}\right)$. Clearly \mathcal{V}_{2} is $G L_{2}\left(F_{v}\right)$-invariant. We see at once that

$$
L\left(r_{\Omega}(s) \varphi_{M, \chi}\right)=W_{M}(s)
$$

It follows that the space $\mathscr{W}_{v}{ }^{*}$ coincides with the space of $L\left(r_{\Omega}(s) \varphi\right)$ for all $\varphi \in \mathscr{V}_{1}$ and that the representation ρ_{v} of $G L_{2}\left(F_{v}\right)$ in $\mathscr{W}_{v}{ }^{*}$ is equivalent to the
representation of $G L_{2}\left(F_{v}\right)$ in $\mathcal{V}_{1} / \bigvee_{1} \cap \mathcal{V}_{2}$ induced by $r_{\boldsymbol{g}}$. Consequently, ρ_{v} is the direct sum of representations equivalent to $\pi_{v}{ }^{*}$ (cf. §3, No. 2). By the uniqueness of the Whittaker space ([5, Th. 2.14]) we see that $\mathscr{W}_{v}{ }^{*}$ is irreducible and ρ_{v} is equivalent to $\pi_{v}{ }^{*}$.

Here we prove a lemma which will be used in $\S 6$. \mathfrak{p} denotes a prime ideal in \mathfrak{o}_{v} and \mathfrak{O}_{v} a maximal order in \mathcal{K}_{v}.

Lemma 10. Assume that the restriction of π_{v} to K_{v} contains the identity representation. Then π_{v} is of the form $\chi_{v} \circ n, \chi_{v}$ being an unramified quasicharacter of $F_{v} \times$. Let \mathfrak{a}_{v} be the conductor of ψ_{v}. If M is the characteristic function of the two-sided \mathfrak{D}_{v}-ideal L_{v} of norm \mathfrak{a}_{v}, then $\rho(s) W_{M}=W_{M}$ for all $s=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ in $G L_{2}\left(\mathfrak{o}_{v}\right)$ such that $\gamma \in \mathfrak{p}$.

Proof. Since K_{v} is a normal subgroup of \mathcal{K}_{v}^{\times}and \mathcal{K}_{v} / K_{v} is abelian, π_{v} must be one-dimensional. Therefore we can write $\pi_{v}=\chi_{v} \circ n$. That χ_{v} is unramified is obvious. Under the assumption of the lemma we get $W_{M}(s)$ $=r_{\boldsymbol{\Omega}}(s) M(1)$ with $\Omega=\pi_{v}$. By definition we have $r_{\Omega}(s) M=M$ if $s=\left(\begin{array}{cc}\alpha & \beta \\ 0 & \delta\end{array}\right)$ is in $G L_{2}\left(\mathfrak{o}_{v}\right)$. It is well known that the set of all $x \in \mathcal{K}_{v}$ such that $\operatorname{tr}\left(x L_{v}\right) \subset a_{v}$ is $\mathfrak{a}_{v} L_{v}{ }^{-1} \mathfrak{B}^{-1}=L_{v} \mathfrak{B}^{-1}$, $\mathfrak{ß}$ being a prime ideal of \mathfrak{O}_{v}. Hence the Fourier transform M^{\prime} of M is a constant multiple of the characteristic function of $L_{v} \mathfrak{B}^{-1}$. Then $r_{\Omega}(w) M=M^{\prime}$ is invariant under $r_{\Omega}\left(\left(\begin{array}{rr}1 & -\gamma \\ 0 & 1\end{array}\right)\right)$ for all $\gamma \in \mathfrak{p}$. Since the group of all elements $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ in $G L_{2}\left(\mathfrak{D}_{v}\right)$ with $\gamma \in \mathfrak{p}$ is generated by the elements of the form $\left(\begin{array}{ll}\alpha & \beta \\ 0 & \beta \\ \delta\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ \gamma & 1\end{array}\right)$, this proves our assertion.
8. In No. 8-No. 11, v is assumed to be archimedean. In this section we :assume that $F_{v}=\boldsymbol{R}$ or $\boldsymbol{C}, \mathcal{K}_{v}=M_{2}\left(F_{v}\right)$ and π_{v} is infinite dimensional and of the form $\pi\left(\mu_{1}, \mu_{2}\right)$ with quasi-characters μ_{1}, μ_{2} of F_{v}^{\times}.

Note that the representation π_{v} of $\mathscr{H}\left(\mathcal{K}_{v}^{\times}\right)$is induced by a unitary representation (which we again denote by π_{v}) of \mathcal{K}_{v}^{\times}in a Hilbert space \mathcal{L}_{v}. Obviously $\omega_{b_{v}}$ is uniquely determined by the values of

$$
\int \omega_{\mathrm{b}_{v}}(g) f(g) d g=\operatorname{tr}\left(E\left(\mathfrak{\grave { D }}_{v}\right) \pi_{v}(f)\right)
$$

for $f \in \mathscr{H}\left(\mathcal{K}_{v}^{\times}\right)$so that $\omega_{b_{v}}$ depends only on the representation of $\mathscr{H}\left(\mathcal{K}_{v}^{\times}\right)$in the space of $K_{v}{ }^{1}$ finite vectors in \mathcal{L}_{v} (here $K_{v}{ }^{1}$ is $\mathrm{SO}_{2}(\boldsymbol{R})$ if $F_{v}=\boldsymbol{R}$ and $S U_{2}(\boldsymbol{C})$ if $F_{v}=\boldsymbol{C}$). From this we see that (5.6) is still valid in our case.

Let r_{0} be the Weil representation of $S L_{2}\left(F_{v}\right)$ in $\mathcal{S}\left(F_{v} \oplus F_{v}\right)$ with respect to the character ψ_{v} of F_{v}. As in No. 2, if $M(x)=\exp \left(-\pi d_{v}\left|u_{v}\right| \operatorname{tr}\left(x^{t} \bar{x}\right)\right) P(x)$ is in $S_{1}\left(\mathscr{K}_{v}\right)$, we get

$$
\begin{align*}
W_{M}(s)= & \mu_{1}(\operatorname{det} s)|\operatorname{det} s|_{F_{v}}^{1 / 2} \tag{5.18}\\
& \int_{F_{v}^{\times}} \mu_{1} \mu_{2}^{-1}(\gamma) r_{0}(s) f(M)\left(\gamma, \gamma^{-1}\right) d^{\times} \gamma,
\end{align*}
$$

for $s \in G L_{2}\left(F_{v}\right)$, where

$$
\begin{align*}
f(M)\left(\alpha_{1}, \alpha_{2}\right) & =\exp \left(-\pi d_{v}\left|u_{v}\right|\left(\alpha_{1} \bar{\alpha}_{1}+\alpha_{2} \bar{\alpha}_{2}\right)\right) P_{0}\left(\alpha_{1}, \alpha_{2}\right), \tag{5.19}\\
P_{0}\left(\alpha_{1}, \alpha_{2}\right) & =\int_{F v} \exp \left(-\pi d_{v}\left|u_{v}\right| \xi \bar{\xi}\right) P\left(\left(\begin{array}{rr}
\alpha_{1} & \xi \\
0 & \alpha_{2}
\end{array}\right)\right) d \xi .
\end{align*}
$$

Clearly P_{0} is a polynomial of $\alpha_{1}, \alpha_{2}, \bar{\alpha}_{1}, \bar{\alpha}_{2}$.
For $m \in \mathcal{S}\left(F_{v} \oplus F_{v}\right)$, put

$$
f^{\prime}(m)\left(\alpha_{1}, \alpha_{2}\right)=\int_{F_{v}} m\left(\alpha_{1}, \xi\right) \psi_{v}\left(\alpha_{2} \xi\right) d \xi
$$

If m is of the form

$$
m\left(\alpha_{1}, \alpha_{2}\right)=\exp \left(-\pi d_{v}\left|u_{v}\right|\left(\alpha_{1} \bar{\alpha}_{1}+\alpha_{2} \bar{\alpha}_{2}\right)\right) Q\left(\alpha_{1}, \alpha_{2}\right),
$$

where Q is a polynomial of $\alpha_{1}, \bar{\alpha}_{1}, \alpha_{2}, \bar{\alpha}_{2}$, then $f^{\prime}(m)$ is written as

$$
f^{\prime}(m)\left(\alpha_{1}, \alpha_{2}\right)=\exp \left(-\pi d_{v}\left|u_{v}\right|\left(\alpha_{1} \bar{\alpha}_{1}+\alpha_{2} \bar{\alpha}_{2}\right)\right) Q^{\prime}\left(\alpha_{1}, \alpha_{2}\right)
$$

Q^{\prime} being another polynomial of $\alpha_{1}, \bar{\alpha}_{1}, \alpha_{2}, \bar{\alpha}_{2}$. By [5, Prop. 1.6] we have

$$
f^{\prime}\left(r_{0}(s) m\right)\left(\alpha_{1}, \alpha_{2}\right)=f^{\prime}(m)\left(\left(\alpha_{1}, \alpha_{2}\right) s\right)
$$

for $s \in G L_{2}\left(F_{v}\right)$. From this it follows that $f(M)\left(M \in S_{1}\left(\mathcal{K}_{v}\right)\right)$ is $\mathrm{SO}_{2}(\boldsymbol{R})$ - or $S U_{2}(\boldsymbol{C})$-finite according as $F_{v}=\boldsymbol{R}$ or \boldsymbol{C}, if each group is made to act on $f(M)$ through r_{0}. Hence W_{M} belongs to the space $W\left(\mu_{1}, \mu_{2} ; \psi_{v}\right)$, which is the Whittaker space of $\pi\left(\mu_{1}, \mu_{2}\right)$ (cf. [5, Th. 5.13] for $F_{v}=\boldsymbol{R}$ and [5, Th. 6.3] for $F_{v}=\boldsymbol{C}$).

Lemma 11. Let g_{1} be the Lie algebra of $S L_{2}\left(F_{v}\right)$. Then, $\mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$ is invariant under $r(X)$ for all $X \in g_{1}$.

Proof. Since $r(s)$ commutes with $\rho\left(k_{1}\right)$ and $\lambda\left(k_{1}\right)\left(k_{1} \in K_{v}{ }^{1}\right)$, it is sufficient to show that the space \mathscr{M} of all functions of the form $M(x)=\exp \left(-\pi d_{v}\left|u_{v}\right|\right.$ $\left.\operatorname{tr}\left(x^{t} \bar{x}\right)\right) P(x), P$ being an arbitrary polynomial of $\xi_{i j}, \bar{\xi}_{i j}$, is invariant under $x(X)$. Assume first that $F_{v}=\boldsymbol{R} . \quad \mathfrak{g}_{1}=\mathfrak{E l}_{2}(\boldsymbol{R})$ is spanned by $X_{1}=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right), \quad X_{2}$ $=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), X_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) . \quad M$ being as above, we have

$$
\begin{aligned}
r\left(X_{1}\right) M(x) & =\left[(d / d \alpha) r\left(\exp \alpha X_{1}\right) M(x)\right]_{\alpha=0} \\
& =\left[(d / d \alpha)\left(e^{\alpha} M\left(e^{\alpha} x\right)\right)\right]_{\alpha=0}, \\
r\left(X_{2}\right) M(x) & =\left[(d / d \alpha) r\left(\exp \alpha X_{2}\right) M(x)\right]_{\alpha=0} \\
& =\left[(d / d \alpha)\left(\psi_{v}(\alpha n(x)) M(x)\right)\right]_{\alpha=0} .
\end{aligned}
$$

A direct calculation shows that $r\left(X_{1}\right) M$ and $r\left(X_{2}\right) M$ are again in \mathcal{M}. Since
$\operatorname{Ad}(w) X_{2}=-X_{3}$, we have only to show that \mathscr{M} is invariant under $r(w)$ or that \mathscr{M} is invariant under the Fourier transformation $M \rightarrow M^{\prime}$. This is easy to prove. The proof is the same in case $F_{v}=\boldsymbol{C}$,
q. e. d.

Let g be the Lie algebra of $G L_{2}\left(F_{v}\right)$. By Lemma 11, (5.4) and (5.5) the space of all $W_{M}\left(M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)\right)$ is invariant under $\rho(X)$ for $X \in \mathrm{~g}$. If $F_{v}=\boldsymbol{R}$, $W_{v}{ }^{*}$ is spanned by all $W_{M}\left(M \in S_{1}\left(\mathcal{K}_{v}\right)\right)$ and their right translates by $\varepsilon=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$. It is obviously invariant under $\rho(\varepsilon)$ and $\rho(X)$ for $X \in \mathrm{~g}$. If $F_{v}=\boldsymbol{C}, \mathscr{W}_{v}{ }^{*}$ is the space of all $W_{\boldsymbol{M}}\left(M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)\right)$. In either case $\mathscr{W}_{v}{ }^{*}$ is invariant under $\rho(f)$ for all $f \in \mathscr{H}\left(\mathcal{K}_{v}^{x}\right)\left(\right.$ cf. [5, Lemma 5.4]) so that $\mathscr{W}_{v}{ }^{*}=W\left(\mu_{1}\right.$, $\left.\mu_{2} ; \psi_{v}\right)$. Hence ρ_{v} is equivalent to $\pi\left(\mu_{1}, \mu_{2}\right)$.
9. Let the assumptions be the same as in No. 8 except that $\pi_{v}=\pi\left(\mu_{1}, \mu_{2}\right)$ is now finite dimensional. Since π_{v} is induced by a unitary representation, π_{v} is necessarily one-dimensional. Consequently we may assume that $\mu_{1} \mu_{2}{ }^{-1}$
 representation and $\omega_{\mathrm{b}_{v}}(g)=\chi(n(g))$. We see that (5.18) is still valid for $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$. As in No. 8, we infer that $\mathscr{W}_{v}{ }^{*}$ is an invariant subspace of $W\left(\mu_{1}, \mu_{2} ; \psi_{v}\right)$. Hence ρ_{v} is admissible.
10. We assume that $F_{v}=\boldsymbol{R}, \mathcal{K}_{v}=M_{2}(\boldsymbol{R})$ and $\pi_{v}=\sigma\left(\mu_{1}, \mu_{2}\right)$ with quasicharacters μ_{1}, μ_{2} of \boldsymbol{R}^{\times}such that $\mu_{1} \mu_{2}^{-1}(\alpha)=\alpha^{p}(\operatorname{sgn} \alpha)$ for a positive integer p. In this case $K_{v}{ }^{1}=S O_{2}(\boldsymbol{R})$. Write \mathfrak{b}_{v} as

$$
\mathfrak{o}_{v}\left(\left(\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\right)=e^{i n \theta} .
$$

By [5, Th. 5.11] \mathfrak{o}_{v} is contained in the restriction of $\sigma\left(\mu_{1}, \mu_{2}\right)$ if and only if $n \geqq p+1$ or $n \leqq-p-1$ and $n \equiv p+1(\bmod 2)$. If this condition is satisfied, $\boldsymbol{\delta}_{v}$ is not contained in the restriction to $K_{v}{ }^{1}$ of the representation of $\mathscr{H}\left(\mathcal{K}_{v}^{\times}\right)$in $\mathscr{B}\left(\mu_{1}, \mu_{2}\right) / \mathscr{B}_{s}\left(\mu_{1}, \mu_{2}\right)$. It follows that (5.6) is still valid in this case. Hence we obtain again (5.18).

By [5, Cor. 5.14] W_{M} is in the Whittaker space $W\left(\sigma\left(\mu_{1}, \mu_{2}\right) ; \psi_{v}\right)$ of $\sigma\left(\mu_{1}\right.$, μ_{2}) if and only if

$$
\begin{equation*}
\int_{--\infty}^{\infty} \alpha_{1}{ }^{i} \frac{\partial^{j}}{\partial \alpha_{2}{ }^{j}} f(M)\left(\alpha_{1}, 0\right) d \alpha_{1}=0 \tag{5.20}
\end{equation*}
$$

for all (i, j) such that $i+j=p-1, i \geqq 0, j \geqq 0$.
We now prove (5.20) for $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$. Differentiating (5.19) by α_{2}, we get

$$
\frac{\partial^{j}}{\partial \alpha_{2}{ }^{j}} f(M)\left(\alpha_{1}, 0\right)=\sum_{k=0}^{j} C_{j k} \int_{-\infty}^{\infty} \exp \left(-\pi\left|u_{v}\right|\left(\alpha_{1}{ }^{2}+\xi^{2}\right)\right)^{-\frac{\partial^{j-k}}{\partial \xi_{22}}{ }^{j-k}} P\left(\left(\begin{array}{cc}
\alpha_{1} & \xi \\
0 & 0
\end{array}\right)\right) d \xi
$$

with

$$
C_{j k}= \begin{cases}\binom{j}{k}\left(-\pi\left|u_{v}\right|\right)^{k / 2} k!/(k / 2)! & \text { if } k \equiv 0(\bmod 2), \\ 0 & \text { if } k \not \equiv 0(\bmod 2)\end{cases}
$$

(we write $P(x)=P\left(\left(\begin{array}{ll}\xi_{11} & \xi_{12} \\ \xi_{21} & \xi_{22}\end{array}\right)\right)$. Since $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$, we have

$$
P(x)=1 / 2 \pi \int_{0}^{2 . \pi} P\left(x k_{1}\right) e^{i n \theta} d \theta
$$

so that

$$
\frac{\partial^{j-k}}{\partial \xi_{22}^{j-k}} P(x)=1 / 2 \pi \int_{0}^{2 \pi}\left(-\sin \theta \frac{\partial}{\partial \xi_{21}}+\cos \theta \frac{\partial}{\partial \xi_{22}}\right)^{j-k} P\left(x k_{1}\right) e^{i n \theta} d \theta
$$

Putting $x=\left(\begin{array}{ll}\alpha_{1} & \xi \\ 0 & 0\end{array}\right)$ and $\left(\alpha_{1}, \xi\right) k_{1}=(\alpha, \beta)$, we can write

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \alpha_{1}{ }^{i} \frac{\partial^{j}}{\partial \alpha_{2}{ }^{j}} f(M)\left(\alpha_{1}, 0\right) d \alpha_{1} \\
= & 1 / 2 \pi \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{2 \varepsilon} \exp \left(-\pi\left|u_{v}\right|\left(\alpha^{2}+\beta^{2}\right)\right)(\alpha \cos \theta+\beta \sin \theta)^{i} \\
& \quad \sum_{k} C_{j k}\left(-\sin \theta \frac{\partial}{\partial \xi_{21}}+\cos \theta \frac{\partial}{\partial \xi_{22}}\right)^{j-k} P\left(\left(\begin{array}{cc}
\alpha & \beta \\
0 & 0
\end{array}\right)\right) e^{i n \theta} d \theta d \alpha d \beta .
\end{aligned}
$$

This is a linear combination of the integrals of the form

$$
\int_{0}^{2 \pi} \cos ^{l} \theta \sin ^{m} \theta e^{i n \theta} d \theta
$$

with $l \geqq 0, m \geqq 0, l+m \leqq i+j=p-1$. It is easy to see that these integrals all vanish if $|n| \geqq p+1$. Hence we get (5.20),

We infer, as in No. 8, that $\mathscr{W}_{v}{ }^{*}$ is the Whittaker space of $\sigma\left(\mu_{1}, \mu_{2}\right)$ and ρ_{v} is equivalent to $\sigma\left(\mu_{1}, \mu_{2}\right)$.
11. We assume that $F_{v}=\boldsymbol{R}$ and \mathcal{K}_{v} is a division quaternion algebra over \boldsymbol{R}. We use the notation in $\S 4$, No. 4 , iv). Let χ be the character of π_{v}. Since the restriction of π_{v} to $K_{v}{ }^{1}=\mathcal{K}_{v}{ }^{1}$ is irreducible, \mathfrak{b}_{v} is necessarily this restriction. Hence

$$
\begin{equation*}
\omega_{\mathrm{b}_{v}}(g)=\chi(1) \int_{x_{v}^{1}} \chi\left(k_{1}^{-1}\right) \chi\left(k_{1} g\right) d k_{1} . \tag{5.21}
\end{equation*}
$$

Let ω be a quasi-character of \boldsymbol{C}^{\times}defined by

$$
\omega(z)=(z \bar{z})^{r-1 / 2} z^{n+1}
$$

and $\mathcal{S}_{1}(\boldsymbol{C})$ the space of all functions m on \boldsymbol{C} of the form

$$
m(z)=\exp \left(-2 \pi\left|u_{v}\right| z \bar{z}\right) P(z, \bar{z}),
$$

where $P(z, \bar{z})$ is a polynomial of z and \bar{z} such that $P(z u, \bar{z} \bar{u})=\omega\left(u^{-1}\right) P(z, \bar{z})$ for all $u \in \boldsymbol{C}$ with $u \bar{u}=1 . \quad P(z, \bar{z})$ is then written as $P(z, \bar{z})=P(z \bar{z}) \bar{z}^{n+1}, P$ being an arbitrary polynomial.

Let f be a linear mapping of $\mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$ onto $\mathcal{S}_{1}(\boldsymbol{C})$ defined by

$$
f(M)(z)=\exp \left(-2 \pi\left|u_{v}\right| z \bar{z}\right) P(z \bar{z}) \bar{z}^{n+1}
$$

for $M(x)=\exp \left(-2 \pi\left|u_{v}\right| n(x)\right) P(n(x)) \chi_{n}\left(x^{\prime}\right)$. The following lemma can be easily proved by using [5, Lemma 5.20.1].

LEMMA 12. Let r_{ω}, be the Weil representation of $G L_{2}(\boldsymbol{R})_{+}$in $\mathcal{S}(\boldsymbol{C}, \boldsymbol{\omega})$ with respect to the additive character $\psi_{v}\left(\operatorname{tr}_{C / \boldsymbol{R}}(z)\right)$ of \boldsymbol{C}. Then we have

$$
r_{\omega}(s) f(M)=f(r(s) M)
$$

for all $M \in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$ and $s \in S L_{2}(\boldsymbol{R})$.
Let s be in $G L_{2}(\boldsymbol{R})_{\div}$and h (resp. a) an element in $\mathcal{K}_{\boldsymbol{v}}^{\times}$(resp. \boldsymbol{C}^{\times}) such that $\operatorname{det} s=n(h)=a \bar{a} . \quad$ Write $s=\left(\begin{array}{ll}\operatorname{det} s & 0 \\ 0 & 1\end{array}\right) s_{1} . \quad$ By (5.21) and Lemma 12 we get

$$
\begin{aligned}
W_{M}(s)= & |\operatorname{det} s|_{R} \chi(1) \int_{v^{1}} \int_{\kappa_{v}} \chi\left(k_{1}^{-1}\right) \chi\left(k_{1} g_{1} h\right) r\left(s_{1}\right) M\left(g_{1} h\right) d k_{1} d g_{1} \\
= & |\operatorname{det} s|_{R}^{1 / 2} \chi(1) r_{\omega}\left(s_{1}\right) f(M)(a) \omega(a) \\
& \quad \iint \chi\left(k_{1}^{-1}\right) \chi\left(k_{1} g_{1} h\right) \chi\left(h^{-1} g_{1}^{-1}\right) d k_{1} d g_{1} \\
= & |\operatorname{det} s|_{R}^{1 / 2} \omega(a) r_{\omega}\left(s_{1}\right) f(M)(a) \\
= & r_{\omega}(s) f(M)(1) .
\end{aligned}
$$

It is proved in [5, Lemma 5.12, Th. 5.13] that the functions $r_{\omega}(s) m(1)\left(m \in \mathcal{S}_{1}(C)\right)$ and their right translates by $\varepsilon=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ generate the Whittaker space of $\pi_{v}{ }^{*}=\sigma\left(\mu_{1}, \mu_{2}\right)$ for

$$
\mu_{1}(\alpha)=|\alpha|_{R}^{r+n \cdot+1 / 2}, \quad \mu_{2}(\alpha)=|\alpha|_{R}^{r-1 / 2}(\operatorname{sgn} \alpha)^{n}
$$

It implies that $\mathscr{W}_{v}{ }^{*}$ coincides with this Whittaker space and that ρ_{v} is equivalent to $\pi_{v}{ }^{*}$.

For a later application we remark the following. Put $M(x)$ $=\exp \left(-2 \pi\left|u_{v}\right| n(x)\right) \chi_{n}\left(x^{c}\right)$. Let g be the Lie algebra of $G L_{2}(\boldsymbol{R})$ (identified with $M_{2}(\boldsymbol{R})$). We regard $U=\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right), V_{+}=\left(\begin{array}{ll}1 & i \\ i & -1\end{array}\right), V_{-}=\left(\begin{array}{ll}1 & -i \\ -i & -1\end{array}\right)$ as elements in $g \otimes_{R} C$. For an integer $p \geqq 0$, put

$$
\begin{gathered}
\varphi_{n \div 2 p+2}= \begin{cases}\rho\left(V_{+}\right)^{p} W_{M} & \text { if } u_{v}>0 \\
\rho\left(V_{+}\right)^{p} \rho\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\right) W_{M} & \text { if } u_{v}<0\end{cases} \\
\varphi_{-n-2 p-2}= \begin{cases}\rho\left(V_{-}\right)^{p} \rho\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\right) W_{M} & \text { if } u_{v}>0 \\
\rho\left(V_{-}\right)^{p} W_{M} & \text { if } u_{v}<0\end{cases}
\end{gathered}
$$

Then, these functions form a basis of $\mathscr{W}_{v}{ }^{*}$ and

$$
\rho(U) \varphi_{m}=\operatorname{im} \varphi_{m} \quad \text { for } m= \pm(n+2), \pm(n+4), \cdots
$$

Thus we have seen that, in all cases, the assertion of Proposition 3 is true.
12. Proposition 4. The notation being the same as in Proposition 3, assume that π is not one-dimensional. Then, π_{v} is infinite dimensional for all $v \notin S$.

Proof. Assume that π_{v} is finite dimensional (hence one-dimensional) for a place $v \notin S$. We use the notation in No. 3 or No. 9. The only proper invariant subspace of $W\left(\mu_{1}, \mu_{2} ; \psi_{v}\right)$ is the Whittaker space $W\left(\sigma\left(\mu_{1}, \mu_{2}\right) ; \psi_{v}\right)$ of $\sigma\left(\mu_{1}, \mu_{2}\right)$. We shall show that $\mathscr{W}_{v}{ }^{*}$ is not contained in this subspace so that $W_{v}^{*}=W\left(\mu_{1}, \mu_{2} ; \psi_{v}\right)$.

Let v be non-archimedean. By (5.8) and [5, Prop. 3.4, Prop. 3.6] $W_{M}(M$ $\left.\in \mathcal{S}_{1}\left(\mathcal{K}_{v}\right)\right)$ is in $W\left(\sigma\left(\mu_{1}, \mu_{2}\right) ; \psi_{v}\right)$ if and only if

$$
\int f(M)(0, \xi) d \xi=\iint M\left(\left(\begin{array}{cc}
0 & \xi^{\prime} \tag{5.22}\\
0 & \xi
\end{array}\right)\right) d \xi d \xi^{\prime}=0
$$

The characteristic function $M_{v}{ }^{0}$ of \mathfrak{D}_{v} is in $\mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$, but does not satisfy this condition.

Let v be archimedean. By [5, Cor. 5.14] and its analogue in the case of \boldsymbol{C}, we see that (5.22) is a necessary and sufficient condition for $W_{M} \in W\left(\sigma\left(\mu_{1}\right.\right.$, $\left.\left.\mu_{2}\right) ; \psi_{v}\right)$. The function $M(x)=\exp \left(-\pi d_{v}\left|u_{v}\right| \operatorname{tr}\left(x^{t} \bar{x}\right)\right)$ is contained in $\mathcal{S}_{1}\left(\mathcal{K}_{v}\right)$, but does not satisfy this condition.

From this it follows that $\mathscr{W}_{v}{ }^{*}$ has a one-dimensional constituent. Put $\mathcal{U}_{v}=W\left(\sigma\left(\mu_{1}, \mu_{2}\right) ; \psi_{v}\right)$ and let Q be the restricted tensor product of \mathscr{W}_{v}, * $\left(v^{\prime} \neq v\right)$ and $\Psi_{v} . \mathscr{V}^{*} / Q$ is isomorphic to the restricted tensor product of $\mathscr{W}_{v^{\prime}} *\left(v^{\prime} \neq v\right)$ and a one-dimensional space $\mathscr{W}_{v} * / \mathcal{U}_{v}$.

On the other hand, by Proposition 2, σ^{*} is an invariant subspace of $\mathcal{A}_{0}\left(\eta, G L_{2}(A)\right)$ so that \mathscr{V}^{*} is a direct sum of irreducible subspaces. Since the representations of $\mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)$ in \mathscr{W}^{*} and \mathscr{V}^{*} are equivalent, the representation of $\mathscr{H}\left(G L_{2}(A)\right)$ in $\mathscr{W}^{*} / \mathcal{U}$ is a direct sum of irreducible representations, each of which is equivalent to a constituent of $\mathcal{A}_{0}\left(\eta, G L_{2}(\boldsymbol{A})\right)$. Let $\sigma=\otimes \sigma_{v}$, be any one of them. From what we have seen, σ_{v} must be one-dimensional. This is impossible (cf. [5, pp. 353-354]). q. e.d.

We resume Proposition 3 and Proposition 4 as follows.
THEOREM 1. Let \mathcal{K} be a division quaternion algebra over a global field F and S the set of all places in F ramified in \mathcal{K}. Let $\pi=\otimes \pi_{v}$ be an irreducible constituent of the representation ρ of $\mathcal{H}\left(\mathcal{K}_{A}^{\times}\right)$in $\mathcal{A}\left(\eta, \mathcal{K}_{A}^{\times}\right), \eta$ being a character of $\boldsymbol{A}^{\times} / F^{\times}$. For $v \in S$, let $\pi_{v}{ }^{*}$ be as in $\S 2$, No. 2 and define an admissible representation π^{*} of $\mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)$ by

$$
\pi^{*}=\bigotimes_{v \oplus S} \pi_{v} \bigotimes_{v \in S} \pi_{v}^{*}
$$

In the same notation $a s$ in $\S 4$, No. 1, let σ^{*} be the space spanned by all
$\rho\left(\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)\right) \phi_{M}$ for $M \in \mathcal{S}_{1}\left(\mathcal{K}_{\boldsymbol{A}}\right)$ and $a \in E, E$ being a representative system of $\boldsymbol{A}^{\times} /\left(\boldsymbol{A}^{\times}\right)^{2}$.

Assume that π is not one-dimensional. Then \mathcal{Q}^{*} is an invariant subspace ${ }^{*}$ of $\mathcal{A}_{0}\left(\eta, G L_{2}(\boldsymbol{A})\right)$ and the representation of $\mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)$ in \mathbb{V}^{*} is equivalent to π^{*}.

§ 6. An application to the holomorphic automorphic forms.

1. In this section, F is a totally real algebraic number field. We denote by \mathfrak{p} non-archimedean places in F and by v (exclusively) archimedean places in F. Also we write \boldsymbol{A}_{∞} (resp. \boldsymbol{A}_{f}) the archimedean (resp. non-archimedean) part of \boldsymbol{A}.

Let g_{v} be the Lie algebra of $G L_{2}\left(F_{v}\right)$ and \mathfrak{u}_{v} the universal enveloping: algebra of $g_{v} \otimes_{\mu} \boldsymbol{C}$. The universal enveloping algebra \mathfrak{H} of $G L_{2}\left(\boldsymbol{A}_{\infty}\right)$ is identified with $\otimes \mathcal{U}_{v}$. In the notation in $\S 5$, No. 11, regard

$$
D=(1 / 4)\left(V_{+} V_{-}+V_{-} V_{+}\right)-(1 / 2) U^{2}
$$

as an element in \mathfrak{u}_{v}. Put

$$
D_{v}=\bigotimes_{v^{\prime}} X_{v^{\prime}} \quad \text { with } X_{v^{\prime}}= \begin{cases}D & \text { if } v^{\prime}=v, \\ 1 & \text { if } v^{\prime} \neq v .\end{cases}
$$

For an integer m, let σ_{m} be the representation of $\mathrm{SO}_{2}(\boldsymbol{R})$ defined by

$$
\sigma_{m}\left(\left(\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\right)=e^{i m \theta} .
$$

Let m_{v} be an integer $\geqq 2$ and \mathfrak{n} an integral \mathfrak{o}-ideal. We denote by $U_{\mathfrak{p}}(\mathfrak{n})^{\prime}$ the group of all $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \beta\end{array}\right)$ in $G L_{2}\left(\mathfrak{o}_{\mathfrak{p}}\right)$ such that $\gamma \equiv 0\left(\bmod \mathfrak{n o p}_{p}\right)$. Let $\mathcal{A}_{0}\left(G L_{2}(\boldsymbol{A})\right)$; be the space of all continuous functions φ on $G L_{2}(F) \backslash G L_{2}(\boldsymbol{A})$ satisfying the conditions (3.1), (3.2), (3.4) and (C) in §3. Consider the space H of all φ in: $\mathcal{A}_{0}\left(G L_{2}(\boldsymbol{A})\right)$ satisfying the following conditions.

$$
\begin{aligned}
& \rho\left(D_{v}\right) \varphi=(1 / 2)\left(\left(m_{v}-1\right)^{2}-1\right) \varphi, \\
& \rho(k) \varphi=\Pi \sigma_{m_{v}}\left(k_{v}\right) \varphi \quad \text { for } k \in \Pi U_{p}(\mathfrak{n}) \Pi S O_{2}\left(F_{v}\right), \\
& \rho(z) \varphi=\Pi\left(\operatorname{sgn} z_{v}\right)^{m_{v}} \varphi \quad \text { for } z \in \boldsymbol{A}_{\infty}^{\times} .
\end{aligned}
$$

Evidently H is invariant under $\rho(z)$ for $z \in \boldsymbol{A}^{\times}$, and ρ defines a representation $\rho_{\boldsymbol{A}}$ of \boldsymbol{A}^{\times}in H trivial on $F^{\times}\left(\boldsymbol{\Pi} 0_{p} \times\right)\left(\boldsymbol{A}_{\infty}^{\times}\right)^{0},\left(\boldsymbol{A}_{\infty}\right)^{0}$ being the group of all $z \in \boldsymbol{A}_{\infty}^{\times}$. such that $z_{v}>0$. Consequently ρ_{A} is actually a representation of a finite quotient group of \boldsymbol{A}^{\times}so that it is a direct sum of one-dimensional representations. Let Y be the set of all quasi-characters η of $\boldsymbol{A}^{\times} / F^{\times}$such that $\eta_{v}(\alpha)=(\operatorname{sgn} \alpha)^{m_{v}}$ and η_{p} is unramified. It follows from the above argument
that H is contained in \mathscr{B}, where \mathscr{B} is the sum of the spaces $\mathcal{A}_{0}\left(\eta, G L_{2}(\boldsymbol{A})\right)$ for $\eta \in Y$.

Let φ be a non-zero element in H. Write $\varphi=\Sigma \varphi_{i}, \varphi_{i} \neq 0, \varphi_{i} \in \vartheta_{i}, \mathcal{Q}_{i}$ being a certain irreducible subspace of \mathscr{G}. It is immediate to see that, if $\pi=\otimes \pi_{p} \otimes \pi_{v}$ is the representation of $\mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)$ in any one of \mathcal{V}_{i}, π has to satisfy the following conditions.
(6.1) π_{v} is equivalent to $\sigma\left(\mu_{1}, \mu_{2}\right)$, where μ_{1} and μ_{2} are quasi-characters of F_{v}^{\times}such that $\mu_{1}(\alpha)=|\alpha|^{\left(m_{v-1) / 2}\right.}, \mu_{2}(\alpha)=|\alpha|^{-\left(m_{v-1) / 2}^{2}\right.}(\operatorname{sgn} \alpha)^{m_{v}}$.
(6.2) The restriction of $\pi_{\mathfrak{p}}$ to $U_{p}(\mathfrak{n})$ contains the identity representation.
2. Lemma 13. Let μ_{1}, μ_{2} be quasi-characters of $F_{\mathfrak{p}}^{\times}$. Assume that $\pi_{\mathfrak{p}}$ is infinite dimensional and of the form $\pi\left(\mu_{1}, \mu_{2}\right)$ or $\sigma\left(\mu_{1}, \mu_{2}\right)$. Then, the restriction .of $\pi_{\mathfrak{p}}$ to $U_{\mathfrak{p}}(\mathfrak{p})$ contains the identity representation if and only if μ_{1}, μ_{2} are unramified. Suppose this condition is satisfied. If $\pi_{\mathfrak{p}}=\pi\left(\mu_{1}, \mu_{2}\right)$, the space of $U_{p}(\mathfrak{p})$-invariant vectors is spanned by two linearly independent vectors φ_{1}, φ_{2}, where φ_{1} is $G L_{2}\left(\mathfrak{o}_{p}\right)$-invariant and $\varphi_{2}=\pi_{p}\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \widetilde{\omega}\end{array}\right)\right) \varphi_{1}$. If $\pi_{p}=\sigma\left(\mu_{1}, \mu_{2}\right)$, the space of $U_{\mathrm{p}}(\mathfrak{p})$-invariant vectors is of dimension 1 .

Proof. First consider the case $\pi_{p}=\pi\left(\mu_{1}, \mu_{2}\right)$ and let π_{p} act on the space $\mathscr{B}\left(\mu_{1}, \mu_{2}\right)\left(\S 1\right.$, No. 3). Let φ be a $U_{p}(\mathfrak{p})$-invariant function in $\mathscr{B}\left(\mu_{1}, \mu_{2}\right)$. Since $\left(T \cap G L_{2}\left(\mathrm{D}_{\mathfrak{p}}\right)\right) \backslash G L_{2}\left(\mathrm{D}_{\mathfrak{p}}\right) / U_{\mathfrak{p}}(\mathfrak{p})$ is represented by two elements $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, φ is determined by its values at these elements. If $\varphi \neq 0$, at least one of these two values is not 0 . On the other hand, if $\alpha, \delta \in \mathfrak{p}_{p}^{\times}$, we have

$$
\begin{aligned}
& \varphi\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=\varphi\left(\left(\begin{array}{ll}
\alpha & 0 \\
0 & \delta
\end{array}\right)\right)=\mu_{1}(\alpha) \mu_{2}(\delta) \varphi\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right), \\
& \varphi\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)=\varphi\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
\alpha & 0 \\
0 & \delta
\end{array}\right)\right)=\mu_{1}(\delta) \mu_{2}(\alpha) \varphi\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) .
\end{aligned}
$$

-Therefore μ_{1}, μ_{2} must be trivial on $\mathfrak{D}_{\mathrm{p}}^{\times}$. Assuming this is the case, let φ_{1} be an element in $\mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ such that $\varphi_{1}(u)=1$ for all $u \in G L_{2}\left(\mathfrak{o}_{\mathfrak{p}}\right)$. Then φ_{2} $=\rho\left(\left(\begin{array}{cc}1 & 0 \\ 0 & \widetilde{\sigma}\end{array}\right)\right) \varphi_{1}$ is $U_{p}(\mathfrak{p})$-invariant. Since

$$
\varphi_{2}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=\mu_{2}(\widetilde{\omega})|\widetilde{\varpi}|_{F_{p}}{ }^{-1 / 2}, \quad \varphi_{2}\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)=\mu_{1}(\widetilde{\varpi})|\widetilde{\varpi}|_{F_{\mathfrak{p}}}^{1 / 2},
$$

φ_{1} and φ_{2} are linearly independent.
Next assume that $\mu_{1} \mu_{2}^{-1}=| |_{F_{p}}$ and $\pi_{\mathfrak{p}}=\sigma\left(\mu_{1}, \mu_{2}\right)$ acts on the space $\mathcal{B}_{s}\left(\mu_{1}\right.$, .$\left.\mu_{2}\right)$. As is seen above, if $\mathscr{B}_{s}\left(\mu_{1}, \mu_{2}\right)$ contains a non-zero $U_{p}(p)$-invariant vector, . μ_{1} and μ_{2} must be trivial on \mathcal{D}_{p}^{\times}. In this case, a function $\varphi \in \mathscr{B}\left(\mu_{1}, \mu_{2}\right)$ is in $\mathscr{B}_{s}\left(\mu_{1}, \mu_{2}\right)$ if and only if

$$
\begin{equation*}
\int_{G L_{2}\left(0_{\mathfrak{p}}\right)} \varphi(k) d k=0 . \tag{6.3}
\end{equation*}
$$

If φ is $U_{\mathfrak{p}}(\mathfrak{p})$-invariant, an easy calculation shows that (6.3) is reduced to

$$
\varphi\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)+|\widetilde{\omega}|_{F_{p}} \varphi\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=0
$$

Hence there is exactly one $U_{\mathfrak{p}}(\mathfrak{p})$-invariant function φ satisfying (6.3). This; proves our assertion.

Lemma 14. Let $\pi_{\mathfrak{p}}$ be absolutely cuspidal. Then the restriction of π_{p} to $U_{p}(\mathfrak{p}) \cap K_{\mathrm{p}}{ }^{1}$ does not contain the identity representation.

Proof. The notation being the same as in §5, No. 5, take for Ψ a character of $F_{\mathfrak{p}}$ whose conductor is $\mathfrak{o}_{\mathfrak{p}}$. Let φ be a $\left(U_{\mathfrak{p}}(\mathfrak{p}) \cap K_{\mathfrak{p}}{ }^{1}\right)$-invariant. function in $\mathcal{S}\left(F_{\mathfrak{p}}^{\times}\right)$. Since $\varphi(\xi)=\pi_{\mathfrak{r}}\left(\left(\begin{array}{cc}1 & \beta \\ 0 & 1\end{array}\right)\right) \varphi(\xi)=\Psi(\beta \xi) \varphi(\xi)$ for all $\beta \in \mathfrak{o}_{\mathfrak{p}}$, the: support of φ is contained in \mathcal{D}_{p}. Putting $\pi_{\mathfrak{p}}(w) \varphi=\varphi^{\prime}$, we get $\pi_{\mathfrak{p}}\left(\left(\begin{array}{cc}1 & -\gamma \\ 0 & 1\end{array}\right)\right) \varphi^{\prime}$ $=\varphi^{\prime}$ for all $\gamma \in \mathfrak{p}$, for $w\left(\begin{array}{ll}1 & 0 \\ \gamma & 1\end{array}\right)=\left(\begin{array}{rr}1 & -\gamma \\ 0 & 1\end{array}\right) w$. Consequently, the support of φ^{\prime}. is contained in \mathfrak{p}^{-1}. By (5.12) we have

$$
\begin{equation*}
\hat{\varphi}^{\prime}(\mu)=C(\mu) \hat{\varphi}\left(\mu^{-1} \eta_{p}^{-1}\right) \tag{6.4}
\end{equation*}
$$

for all characters μ of F_{p}^{\times}. Write $\mu\left(\varepsilon \varpi^{n}\right)=\nu(\varepsilon) t^{n}$, where ν is a character of: 0_{p}^{x} and t is a complex number of absolute value 1 . Then we have

$$
\begin{aligned}
& \hat{\varphi}^{\prime}(\mu)=\sum_{n=-1}^{\infty} t^{n} \int_{0_{p}^{\times}} \varphi^{\prime}\left(\widetilde{\omega}^{n} \varepsilon\right) \nu(\varepsilon) d \varepsilon \\
& \hat{\varphi}\left(\mu^{-1} \eta_{p}^{-1}\right)=\sum_{n=0}^{\infty} t^{-n} \eta_{p}(\widetilde{\omega})^{-n} \int_{0_{0}^{x}} \varphi\left(\widetilde{\varpi}^{n} \varepsilon\right) \nu^{-1} \nu_{0}^{-1}(\varepsilon) d \varepsilon \\
& C(\mu)=\sum_{n=-\infty}^{-2} t^{n} C_{n}(\nu)
\end{aligned}
$$

because $C_{n}(\nu)=0$ if $n \geqq-1$ by [5, Prop. 2.23]. Putting these expressions in (6.4), we get an equality which holds for all ν and t. This is possible only if $\varphi^{\prime}=\varphi=0$. This proves the lemma.
3. From now on we assume that \mathfrak{n} is square-free. Let U_{0} be the sum of all irreducible subspaces \mathcal{V} in \mathscr{B} such that the representation π of $\mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)$ in \mathscr{C} satisfies (6.1), (6.2) and π_{p} is a special representation for all \mathfrak{p} dividing n. Put $H_{0}=H \cap \mathcal{U}_{0} . ~ Q$ being as above, $\sigma \cap H$ is one-dimensional (Lemma 13 and [5, Lemma 3.9]) so that $\operatorname{dim} H_{0}$ is the number of irreducible subspaces contained in \mathcal{U}_{0}.

Let us write for a moment $H=H(\mathfrak{n}), H_{0}=H_{0}(\mathfrak{n})$. Denote by $\mathfrak{p}_{j}(j=1,2$, , $\cdots, \nu)$ all the prime divisors of \mathfrak{n} and by $\widetilde{\sigma}_{j}$ a prime element of \mathfrak{p}_{j}. For a. subset B of $A=\{1,2, \cdots, \nu\}$, we put

$$
\mathfrak{n}_{B}=\prod_{j \subset B} \mathfrak{p}_{j}, \quad p_{B}=\prod_{j: B}\left(\begin{array}{cc}
1 & 0 \\
0 & \varpi_{j}
\end{array}\right) .
$$

It follows from Lemma 13 that

$$
H(\mathfrak{n})=\sum_{B \subset A} \sum_{c \in A-B} \rho\left(p_{C}\right) H_{0}\left(\mathfrak{n}_{B}\right),
$$

where the sum is direct. In other words, $H(\mathfrak{n})$ is the direct sum of $H_{0}(\mathfrak{n})$ and the space spanned by the right translates of elements in $H_{0}(\mathfrak{m}), \mathfrak{m}$ being a proper divisor of \mathfrak{n}. $H_{0}(\mathfrak{n})$ (to be precise, the intersection of $H_{0}(\mathfrak{n})$ and $\mathcal{A}_{0}\left(\eta, G L_{2}(A)\right)$) has been introduced in Miyake [6] as the orthogonal complement of the space $\sum_{B \nsubseteq A} \sum_{C \subset A-B} \rho\left(p_{C}\right) H\left(\mathfrak{n}_{B}\right)$. We call any function in $H_{0}(\mathfrak{n})$ properly of level n .
4. Assuming that $\nu+[F: Q]$ is even, let \mathcal{K} be a definite quaternion algebra of discriminant n over F.

Denote by \mathcal{B}^{\prime} the sum of $\mathcal{A}\left(\eta, \mathcal{K}_{A}^{x}\right)$ for $\eta \in Y$. Let V^{\prime} be an irreducible subspace in \mathcal{B}^{\prime} and π the representation of $\mathscr{H}\left(\mathscr{K}_{A}^{\times}\right)$in $\subset V^{\prime}$. Let U^{\prime} be the sum of all $C V^{\prime}$ such that

$$
\begin{equation*}
\pi_{v} \text { is equivalent to the representation } g \rightarrow n(g)^{-\left(m_{v-2}\right) / 2} \rho_{m_{v-2}}(g), \tag{6.5}
\end{equation*}
$$

the restriction of $\pi_{\mathfrak{p}}$ to $K_{\mathfrak{p}}$ contains the identity representation.
Then it follows from Lemma 10 that, if \mathfrak{p} divides \mathfrak{n}, we have $\pi_{\mathfrak{p}}=\chi_{\mathfrak{p}} \circ n$ with an unramified character χ_{p} of $F_{p} \times$, and hence π_{p} is trivial on K_{p}.

Denote by δ the irreducible representation of K^{1} of the form $\otimes \mathscr{D}_{p} \otimes \delta_{v}$, where δ_{v} is equivalent to $\rho_{m v-2}$ (we identify $K_{v}{ }^{1}$ with $S U_{2}(\boldsymbol{C})$. cf. §4, No. 4) and D_{p} is the identity representation. π being as above, δ is contained in the restriction of π to K^{1} with the multiplicity 1 .

Set $\mathcal{K}_{\infty}^{\times}=\Pi \mathcal{K}_{v}^{\times}, \mathcal{K}_{\infty}^{1}=\Pi \mathcal{K}_{v}{ }^{1}$ and define the representation Λ of $\mathcal{K}_{\infty}^{\times}$by

$$
\begin{equation*}
\Lambda(g)=\otimes_{v}\left(n(g)^{-\left(m_{v}-2\right) / 2} \rho_{m_{v-2}}\left(g_{v}\right)\right) . \tag{6.7}
\end{equation*}
$$

Let H^{\prime} be the space of all φ in \mathcal{U}^{\prime} invariant under $\rho(k)$ for all $k \in \Pi K_{p}$. It is easy to see that H^{\prime} is the space of all functions φ on $\mathcal{K}_{F}^{\times} \backslash \mathcal{K}_{A}^{\times}$satisfying the following conditions:
i) $\rho(k) \varphi=\varphi$ for $k \in \Pi K_{p}$,
ii) $\varphi \rightarrow \rho(k) \varphi$ defines a representation of $\mathcal{K}_{\infty}^{\times}$equivalent to a direct sum of Λ.

We consider the space U spanned by all matrix coefficients of Λ and the representation λ of $\mathcal{K}_{\infty}^{\times}$in U defined by left translation. If $l=\operatorname{dim} \Lambda, \lambda$ is a direct sum of l copies of Λ (since Λ is unitary). There is an isomorphism of H^{\prime} onto the space of all functions φ^{\prime} on $\mathcal{K}_{F}^{\times} \backslash \mathcal{K}_{\boldsymbol{A}}^{\times}$taking values in U such that

$$
\varphi^{\prime}(h k g)=\lambda\left(g^{-1}\right) \varphi^{\prime}(h) \quad \text { for } g \in \mathcal{K}_{\infty}^{\times}, k \in \Pi K_{\mathfrak{p}}, h \in \mathcal{K}_{A}^{\times} .
$$

This isomorphism is given by $\varphi \rightarrow \varphi^{\prime},\left(\varphi^{\prime}(h)\right)(g)=\varphi(h g)$.

We fix an arbitrary irreducible subspace V of U and denote by $H^{\prime \prime}$ the space of all φ in H^{\prime} such that φ^{\prime} takes its values in V.
5. Let \mathfrak{a}_{p} be the conductor of ψ_{p}. Write $\psi_{v}(\boldsymbol{\alpha})=\exp \left(2 \pi i u_{v} \alpha\right)$. Let L_{p} denote a two-sided $\mathfrak{D}_{\mathfrak{p}}$-ideal of norm $\mathfrak{a}_{\mathfrak{p}}$ if \mathfrak{p} divides $\mathfrak{n}\left(\mathfrak{D}_{\mathfrak{p}}\right.$ is the maximal order in $\mathcal{K}_{\mathfrak{p}}$) and $L_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}} e_{11}+\mathfrak{o}_{\mathfrak{p}} e_{12}+\mathfrak{a}_{\mathfrak{p}} e_{21}+\mathfrak{a}_{\mathfrak{p}} e_{22}$ if \mathfrak{p} does not divide \mathfrak{n}. Put

$$
M(x)=\Pi M_{\mathrm{p}}\left(x_{\mathrm{p}}\right) \Pi M_{v}\left(x_{v}\right) \quad \text { for } x \in \mathcal{K}_{A},
$$

where

$$
M_{\mathfrak{p}}=\int_{K_{p}} \lambda\left(k_{1}\right) N_{\mathfrak{p}} d k_{1},
$$

$N_{\mathfrak{p}}$ being the characteristic function of $L_{\mathfrak{p}}\left(M_{\mathfrak{p}}=N_{\mathfrak{p}}\right.$ if $\mathfrak{a}_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}}$ or if \mathfrak{p} divides n) and

$$
M_{v}\left(x_{v}\right)=\exp \left(-2 \pi\left|u_{v}\right| n\left(x_{v}\right)\right) \chi_{m_{v-2}}\left(x_{v}{ }^{\ell}\right) .
$$

Let e be an element in \boldsymbol{A}^{\times}such that $e_{v}=-1$ whenever $u_{v}<0$ and all other components are 1 .

Let φ be in $H^{\prime \prime}$ and g in $\mathcal{K}_{\mathbf{A}}^{\times}$. If s is an element in $G L_{2}(\boldsymbol{A})$ such that $\operatorname{det} s=n(h)$ for $h \in \mathcal{K}_{A}^{\times}$, we denote by $\phi_{\varphi, g}(s)$ the right hand side of (4.10) in $\S 4$, where M is the function defined just above. Extend $\phi_{\varphi, g}$ to a function on $G L_{2}(\boldsymbol{A}), G L_{2}(F)$-invariant on the left.

Put $\theta_{\varphi, g}(s)=\phi_{\varphi, g}\left(s\left(\begin{array}{ll}e & 0 \\ 0 & 1\end{array}\right)\right)$. Let $\left\{\varphi_{i}\right\}_{i=1}^{n}$ be a basis of $H^{\prime \prime}$ and $\left\{g_{i}\right\}_{i=1}^{n}$ a set of elements in $\mathcal{K}_{\boldsymbol{A}}^{\times}$such that $\operatorname{det}\left(\varphi_{i}\left(g_{j}\right)\right) \neq 0$. Our aim is to prove the following theorem, which may be viewed as a generalization of Eichler [1, 2].

THEOREM 2. If $m_{v}>2$ for all v, H_{0} is spanned by $\theta_{\varphi_{i, g_{j}}}(i, j=1, \cdots, n)$.
The proof will be given in No. 6-No. 10.
6. Let $\pi=\otimes \pi_{\mathfrak{p}} \otimes \pi_{v}$ be an irreducible constituent of U^{\prime}. Then $\pi_{v}{ }^{*}$ is equivalent to $\sigma\left(\mu_{1}, \mu_{2}\right)$ defined in (6.1), and for all \mathfrak{p} dividing \mathfrak{n}, we have $\pi_{p}=\chi_{p} \circ n$ so that $\pi_{p}{ }^{*}=\sigma\left(\chi_{p}| |_{F_{p}}{ }^{1 / 2}, \chi_{p}| |_{F_{p}}{ }^{-1 / 2}\right)$ (cf. § 2, No. 2). Therefore, by Theorem 1,

$$
\pi^{*}=\bigotimes_{\forall+n} \pi_{p} \otimes_{v, n} \pi_{p}^{*} \otimes_{v}^{*} \pi_{v}{ }^{*}
$$

is an irreducible constituent of U_{0} if π is not one-dimensional. Denote by $\subset \cup^{*}$ the space of π^{*} defined in $\S 4$, No. 4 .

Let $U^{\prime}(\pi)$ be the sum of all irreducible subspaces \mathcal{V}^{\prime} in Q^{\prime} such that the representation of $\mathscr{H}\left(\mathcal{K}_{\boldsymbol{A}}^{\times}\right)$in \mathcal{V}^{\prime} is equivalent to π. Fix an irreducible subspace \mathcal{V}^{\prime} in $U^{\prime}(\pi)$. Take any non-zero element φ in $\mathcal{V}^{\prime} \cap H^{\prime}$ and an element g in \mathcal{K}_{A}^{\times}such that $\varphi(g) \neq 0$. Obviously φ satisfies

$$
\int_{K^{1}} \chi_{0}\left(k_{1}{ }^{-1}\right) \rho\left(k_{1}\right) \varphi d k_{1}=\varphi .
$$

By definition we have $\theta_{\varphi, g}=\varphi(g) \rho\left(\left(\begin{array}{ll}e & 0 \\ 0 & 1\end{array}\right)\right) \phi_{M}, \phi_{M}$ being as in (4.10), and
hence $\hat{\theta}_{\varphi, g}(1, s)=\varphi(g) \rho\left(\left(\begin{array}{ll}e & 0 \\ 0 & 1\end{array}\right)\right) W_{M}(s)$ (§4, No. 2). It follows from Lemma 7, Lemma 10 and the remark at the end of $\S 5$, No. 10 that $\theta_{\varphi, g}$ is a non-zero element in $C^{*} \cap H_{0}$ (that W_{M} is non-zero is clear in view of the argument in §5). In the same notation, it is easy to see that

$$
\hat{\theta}_{\Phi, g}(1, s)=\Phi(g) \rho\left(\left(\begin{array}{ll}
e & 0 \\
0 & 1
\end{array}\right)\right) W_{M}(s) \quad \text { for all } \Phi \in \mathcal{U}^{\prime}(\pi) \cap H^{\prime}, g \in \mathcal{K}_{A}^{\times} .
$$

Therefore, Theorem 2 follows if we prove that
(6.8) every irreducible constituent of U_{0} is equivalent to π^{*} for some irreducible constituent π of \mathcal{U}^{\prime}, and π being as in (6.8), we have $U^{\prime}(\pi) \cap H^{\prime \prime} \neq\{0\}$.
(6.8) will be a special case of [5, Th. 16.1] at the time its proof is completed. For the present we use [8, Prop. 4.1] instead.
7. For all \mathfrak{p} prime to \mathfrak{n}, denote by $\mathscr{G}_{\mathfrak{p}}{ }^{0}$ the subalgebra of $\mathscr{N}\left(G L_{2}\left(F_{\mathfrak{p}}\right)\right)$ consisting of all right and left $G L_{2}\left(\mathrm{o}_{\mathrm{p}}\right)$-invariant elements, and put

$$
\mathscr{G}^{0}=\bigotimes_{1+n} \mathscr{H}_{p}{ }^{0} .
$$

For all \mathfrak{p} dividing \mathfrak{n}, let $\xi_{\mathfrak{p}}$ be an elementary idempotent in $\mathscr{H}\left(G L_{2}\left(F_{\mathfrak{p}}\right)\right)$ such that $\xi_{\mathfrak{p}} * f_{\mathfrak{p}}=f_{\mathfrak{p}}, f_{\mathfrak{p}}$ being the characteristic function of $U_{p}(\mathfrak{n})$, and let $\xi_{\mathfrak{p}}{ }^{\prime}$ be the characteristic function of K_{p}. Then

$$
f \longrightarrow f \otimes\left(\otimes_{\nmid j n} \xi_{\downarrow} \otimes_{v} \bar{\sigma}_{m_{v}}\right)
$$

and

$$
f \longrightarrow f \otimes\left(\otimes_{p \nmid n} \xi_{p^{\prime}} \otimes_{v} \bar{x}_{b_{v}}\right)
$$

define embeddings of \mathscr{K}^{0} into $\mathscr{H}\left(G L_{2}(\boldsymbol{A})\right)$ and $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$, respectively. We identify \mathscr{F}^{0} with the images of these embeddings. In this way \mathscr{H}^{0} is made to act on $\mathcal{A}_{0}\left(G L_{2}(\boldsymbol{A})\right.$) as well as on $\mathcal{A}\left(\mathcal{K}_{A}^{\times}\right)$. It is obvious that $H, H_{0}, H^{\prime}, H^{\prime \prime}$ are invariant under $\rho(f)$ for $f \in \mathscr{A}^{0}$. Writing $T(f)$ (resp. $\left.T_{0}(f), T^{\prime}(f), T^{\prime \prime}(f)\right)$ for the restriction of $\rho(f)$ to H (resp. $H_{0}, H^{\prime}, H^{\prime \prime}$), we obtain representations T, T_{0}, $T^{\prime}, T^{\prime \prime}$ of \mathscr{H}^{0}. We see immediately that T^{\prime} is equivalent to the direct sum of l copies of $T^{\prime \prime}$.
8. $H^{\prime \prime}$ is isomorphic to the space $M\left(1,\left\{m_{v}-2\right\}\right)$ defined in Shimizu [8, § 2.2] (if $\check{\varphi}(g)=\varphi\left(g^{-1}\right), \varphi \rightarrow \check{\varphi}^{\prime}$ gives the isomorphism). Also $T^{\prime \prime}$ is equivalent to the representation \mathfrak{I} defined in the same place, if \mathfrak{I} is restricted to \mathscr{F}^{0}.

On the other hand, H is isomorphic to the space of holomorphic cusp forms introduced in Shimura [9]. Put $U(\mathfrak{n})=\prod_{p} U_{p}(\mathfrak{n}) G L_{2}\left(\boldsymbol{A}_{\infty}\right)$ and let $s_{i}(i=1$, $\cdots, q)$ be the representatives in $G L_{2}(\boldsymbol{A})$ of $G L_{2}(F) \backslash G L_{2}(\boldsymbol{A}) / U(\mathfrak{n})$. Put Γ_{i} $=G L_{2}(F) \cap s_{i} U(\mathfrak{n}) s_{i}{ }^{-1}$. Let \mathfrak{F} be the set of all $z=\left(z_{v}\right)$ with $z_{v} \in \boldsymbol{C}, \operatorname{Im} z_{v} \neq 0$.

For $s \in G L_{2}(\boldsymbol{A})$ we set

$$
\begin{aligned}
& s(z)=\binom{\alpha_{v} z_{v}+\beta_{v}}{\gamma_{v} z_{v}+\delta_{v}}, \\
& j(s, z)=\prod_{v}\left|\operatorname{det} s_{v}\right|^{m_{v} / 2}\left(\gamma_{v} z_{v}+\delta_{v}\right)^{-m_{v}} \quad \text { if } s_{v}=\binom{\alpha_{v} \beta_{v}}{\gamma_{v} \delta_{v}} .
\end{aligned}
$$

Let S_{i} be the space of all f satisfying the following conditions.
i) f is holomorphic on \mathfrak{F}.
ii) $f(\sigma(z))=f(z) j(\sigma, z)^{-1}$ for $\sigma \in \Gamma_{i}$.
iii) $\Pi_{v}\left|\operatorname{Im} z_{v}\right|^{m_{v / 2}^{2}}|f(z)|$ is bounded on \mathfrak{F}.

Let S be the direct product of S_{1}, \cdots, S_{q}. We can assume that $s_{i} \in G L_{2}\left(\boldsymbol{A}_{f}\right)$. For $\varphi \in H$, put

$$
f_{i}(z)=j\left(s, z_{0}\right)^{-1} \varphi\left(s_{i} s\right),
$$

where $z_{0}=(\sqrt{ }-1, \cdots, \sqrt{-1})$ and s is an element in $G L_{2}\left(\boldsymbol{A}_{\infty}\right)$ such that $s\left(z_{0}\right)=z$. Then $\varphi \rightarrow\left(f_{1}, \cdots, f_{q}\right)$ gives an isomorphism of H onto S. Furthermore, the representation T of \mathscr{G}^{0} in H is equivalent to the representation \mathscr{Z} defined in $[9, \S 3]$, if it is restricted to \mathscr{F}^{0}.
9. We assert that T_{0} is equivalent to $T^{\prime \prime}$. It is sufficient to show that $\operatorname{tr} T_{0}(f)=\operatorname{tr} T^{\prime \prime}(f)$ for all $f \in \mathscr{A}^{0}$ (cf. [8, §4.4]). In the notation in No. 3, $H_{0}\left(n_{B}\right)$ is invariant under $T(f)$ and $\rho\left(p_{C}\right)$ commutes with $T(f)$. Consequently we have

$$
\begin{equation*}
\operatorname{tr}(T(f) \mid H(\mathfrak{n}))=\sum_{B \subset A} 2^{\#(A-B)} \operatorname{tr}\left(T(f) \mid H_{0}\left(\mathfrak{n}_{B}\right)\right), \tag{6.10}
\end{equation*}
$$

where $T(f) \mid H_{0}\left(\mathfrak{n}_{B}\right)$ is the restriction of $T(f)$ to $H_{0}\left(\mathfrak{n}_{B}\right)$ and $\#(A-B)$ is the number of elements in $A-B$. On the other hand, the repeated application of [8, Prop. 4.1] yields

$$
\begin{equation*}
\operatorname{tr} T^{\prime \prime}(f)=\sum_{B \cdot A}(-2)^{\#(A-B)} \operatorname{tr}\left(T(f) \mid H\left(\mathfrak{n}_{B}\right)\right) \tag{6.11}
\end{equation*}
$$

Substituting (6.10) in (6.11), we see that $\operatorname{tr} T^{\prime \prime}(f)=\operatorname{tr}\left(T(f) \mid H_{0}(\mathfrak{n})\right.$), as asserted.
10. Lemma 15. Let μ_{1}, μ_{2} be unramified quasi-characters of $F_{p} \times$ and let φ be a $G L_{2}\left(\mathfrak{o}_{\mathrm{p}}\right)$-invariant element in the representation space of $\pi\left(\mu_{1}, \mu_{2}\right)$. Then φ is an eigenfunction of $\rho(f)$ for all $f \in \mathscr{H}_{p}{ }^{0}$. Let f_{1} (resp. f_{2}) be the characteristic function of

$$
G L_{2}\left(\mathrm{o}_{\mathrm{p}}\right)\left(\begin{array}{ll}
\widetilde{\omega} & 0 \\
0 & 1
\end{array}\right) G L_{2}\left(\mathrm{o}_{\mathrm{p}}\right) \quad\left(\text { resp. } .\left(\begin{array}{cc}
\widetilde{\omega} & 0 \\
0 & \widetilde{\omega}
\end{array}\right) G L_{2}\left(\mathfrak{o}_{\mathrm{p}}\right)\right) .
$$

If $\rho\left(f_{i}\right) \varphi=c_{i} \varphi(i=1,2)$, then

$$
\begin{aligned}
& \mu_{1}(\widetilde{\varpi})+\mu_{2}(\varpi)=|\widetilde{\varpi}|_{F_{\emptyset}}{ }^{1 / 2} c_{1}, \\
& \mu_{1}(\widetilde{\varpi}) \mu_{2}(\widetilde{\varpi})=c_{2} .
\end{aligned}
$$

The proof is straightforward if we let $\pi\left(\mu_{1}, \mu_{2}\right)$ act on the space $\mathcal{B}\left(\mu_{1}, \mu_{2}\right)$.

Take an irreducible subspace \mathscr{W} of \mathscr{U}_{0} and let $\sigma=\otimes \sigma_{p} \otimes \sigma_{v}$ be the representation of $\mathscr{N}\left(G L_{2}(\boldsymbol{A})\right)$ in \mathscr{W}. If $\varphi \in \mathscr{W} \cap H_{0}, \varphi$ is an eigenfunction of $\rho(f)$, for all $f \in \mathscr{G}^{0}$. Write $\rho(f) \varphi=c_{f} \varphi$ for $f \in \mathscr{G}^{0}$. Since T_{0} is equivalent to $T^{\prime \prime}$, there exists a non-zero function $\varphi^{\prime \prime}$ in $H^{\prime \prime}$ such that $\rho(f) \varphi^{\prime \prime}=c_{f} \varphi^{\prime \prime}$ for all. $f \in \mathscr{A}^{0}$. It follows from Lemma 15 that there exists an irreducible representation $\pi=\otimes \pi_{p} \otimes \pi_{v}$ of $\mathscr{H}\left(\mathcal{K}_{A}^{\times}\right)$contained in U^{\prime} such that π_{p} is equivalent: to σ_{p} for all \mathfrak{p} prime to \mathfrak{n}. Note that $\pi_{v}{ }^{*}$ is equivalent to σ_{v}. By [6, Corollary of Th. 1$]^{*), ~} \pi^{*}$ is necessarily equivalent to σ. Also it is clear that $\varphi^{\prime \prime}$ is contained in $\mathcal{U}^{\prime}(\pi) \cap H^{\prime \prime}$. This proves (6.8) and (6.9), and completes the: proof of Theorem 2.
11. We discuss a case where the situation seems the simplest. Assume: that
i) $[F: \boldsymbol{Q}]$ is even,
ii) the class number of F is 1 ,
iii) every totally positive unit in F is a square of a unit in F.

Furthermore, we make a particular choice of ψ. Let $\psi_{\boldsymbol{Q}}$ be an additive character of the adele of \boldsymbol{Q} trivial on \boldsymbol{Q} such that $\psi_{\boldsymbol{Q}, \infty}(\alpha)=e^{2 \pi i \alpha}$ and the conductor of $\psi_{\boldsymbol{Q}, p}$ is \boldsymbol{Z}_{p} for all rational primes p. Put $\psi(x)=\psi_{\boldsymbol{Q}}\left(\operatorname{tr}_{F / \boldsymbol{Q}}(x)\right)$. It. implies that $u_{v}=1$ and $\mathfrak{a}_{\mathfrak{p}} \supset \mathfrak{o}_{\mathfrak{p}}$.

Put $\Gamma_{1}=G L_{2}(\mathfrak{p})$ and let S_{1} be as in No. 8. Let \mathcal{K} be a definite quaternion algebra of discriminant \mathfrak{D} over F. Fix a maximal order \mathfrak{D} in \mathcal{K} and define: the isomorphisms θ_{p} of \mathcal{K}_{p} onto $M_{2}\left(F_{p}\right)$ as in $\S 1$, No. 8 (so that $K_{p}=\mathfrak{D}_{p}^{\times}$). It can be shown that if p is the class number of $\mathfrak{D}, \mathcal{K}_{F}^{\times} \backslash \mathcal{K}_{A}^{\times} / \Pi K_{p} \mathcal{K}_{\infty}^{\times}$is represented by the elements x_{1}, \cdots, x_{p} in $\mathcal{K}_{A}{ }^{1}$.

Let V be as in No. 4 and $\left\{\omega_{1}, \cdots, \omega_{l}\right\}$ a basis of V. Take elements g_{1}, \cdots, g_{l} in \mathcal{K}_{∞}^{1} such that $\operatorname{det}\left(\omega_{\lambda}\left(g_{\mu}\right)\right) \neq 0$. Put $M^{\prime}(x)=\prod_{p} M_{p}\left(x_{\mathfrak{p}}\right)$.

By Theorem 2 we see that, if $m_{v}>2$ for all v, S_{1} is spanned by $f_{i j \lambda \mu}$. $(i, j=1, \cdots, p ; \lambda, \mu=1, \cdots, l)$ whose restrictions to $\mathfrak{F}^{0}=\left\{z \in \mathfrak{F} \mid \operatorname{Im} z_{v}>0\right\}$ are: given by

$$
\begin{aligned}
f_{i j \lambda \mu}(z)= & \sum_{\xi \in \sim_{F}} \omega_{\lambda}\left(\xi^{\iota} g_{\mu}\right) M^{\prime}\left(x_{j}^{-1} \xi x_{i}\right) \\
& \prod_{v}\left[n\left(\xi_{v}\right)^{\left(m_{v}-2\right) / 2} \exp \left(2 \pi i n\left(\xi_{v}\right) z_{v}\right)\right] .
\end{aligned}
$$

If \mathfrak{X}_{i} is the right \mathfrak{D}-ideal such that $\mathfrak{X}_{i \mathfrak{p}}=x_{i p} \mathfrak{D}_{\mathfrak{p}}$ and if $\mathfrak{a}=\Pi \mathfrak{a}_{\mathfrak{p}}$, then the support of $M^{\prime}\left(x_{j}^{-1} \xi x_{i}\right)$ is contained in $a \mathfrak{x}_{j} \mathfrak{x}_{i}{ }^{-1}$, and its value depends only on. $\xi \bmod \mathfrak{X}_{j} \mathfrak{X}_{i}{ }^{-1}$.

REmark. Let F be an algebraic number field of finite degree and δ the

[^1]different of F. It is proved in Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Satz 176 (as to a generalization to the function field case, see J. V. Armitage, On a theorem of Hecke in number fields and function fields, Inventiones Math., 2(1967), 238-246) that there exists a $\gamma \in F^{\times}$such that $b \gamma$ is a square of an ideal in $F . \psi_{\boldsymbol{a}}$ being the same as in $\S 6$, No. 11, define a character ψ of A / F by
$$
\psi(x)=\psi_{\boldsymbol{Q}}\left(\operatorname{tr}_{F / \boldsymbol{Q}}(\gamma x)\right) .
$$

Then the conductor a_{p} of ψ_{p} is ${\mathfrak{D}_{p}}^{-1} \gamma_{p}{ }^{-1}$ and hence it is a square of an ideal in F_{p}. In the discussions in $\S 6$, No. 5 , we can start with this particular character ψ. In this case, however, there is an alternative and simpler way of defining $\theta_{\varphi, g}$ or of defining M (cf. $\S 6$, No. 5). Namely, for every \mathfrak{p}, we may take M_{p} to be the characteristic function of the two-sided \mathscr{O}_{p}-ideal L_{p} of norm $\mathfrak{a}_{\mathfrak{p}}$ (if $\mathfrak{a}_{p}=\mathfrak{b}_{p}{ }^{2}$, then $L_{p}=\mathfrak{b}_{p} \mathfrak{D}_{p}$). The statement in $\S 6$, No. 11 can be modified accordingly. The space S_{1} can be spanned by $f_{i j \lambda_{i}}(i, j=1, \cdots, p$; $\lambda, \mu=1, \cdots, l)$ whose restrictions to $\left\{z \in \mathfrak{F} \mid \gamma_{v} \operatorname{Im} z_{v}>0\right\}$ are given by

$$
\begin{aligned}
f_{i j \lambda \mu}(z)= & \sum_{\xi=x_{j} L_{i}-1} \omega_{\lambda}\left(\xi^{\prime} g_{\mu}\right) \\
& \times \prod_{v}\left[n\left(\xi_{v}\right)^{\left(m_{v}-2\right) / 2} \exp \left(2 \pi i \gamma_{v} n\left(\xi_{v}\right) z_{v}\right)\right]
\end{aligned}
$$

Here L is a two-sided \mathfrak{D}-ideal of norm a.

College of General Education, University of Tokyo

References

[1] M. Eichler, Über die Darstellbarkeit von Modulformen durch Thetareihen, J. Reine Angew. Math., 195 (1955), 156-171.
[2] M. Eichler, Quadratische Formen und Modulfunctionen, Acta Arith., 4 (1958), 217-239.
[-3] R. Godement, A theory of spherical functions, I, Trans. Amer. Math. Soc., 73 (1952), 496-556.
[4] R. Godement, Notes on Jacquet-Langlands' theory, Lecture note, Institute for Advanced Study, Princeton, 1970.
[5] H. Jacquet and R. P. Langlands, Automorphic forms on $G L(2)$, Lecture note in Mathematics No. 114, Springer, 1970.
[6] T. Miyake, On automorphic forms on $G L_{2}$ and Hecke operators, Ann. of Math., 94 (1971), 174-189.
[7] J. A. Shalika and S. Tanaka, On an explicit construction of a certain class of automorphic forms, Amer. J. Math., 91 (1969), 1049-1076.
[8] H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math., 81 (1965), 166-193.
[9] G. Shimura, On Dirichlet series and abelian varieties attached to automorphic forms, Ann. of Math., 76 (1962), 237-294.
[10] S. Tanaka, On irreducible unitary representations of some special linear groupof the second order, I, Osaka J. Math., 3 (1966), 217-227.
[11] A. Weil, Sur certaines groupes d'opérateurs unitaires, Acta Math., 111 (1964). 143-211.

[^0]: *) In [3, No. 16] the space $\mathfrak{j} \zeta$ of the induced representation consists of all continuous functions on $G L_{2}\left(F_{v}\right)$ satisfying $f(t g)=\zeta(t) f(g)(t \in T)$. The space $\mathcal{B}\left(\mu_{1}, \mu_{2}\right)$ - of $\pi\left(\mu_{1}, \mu_{2}\right)$ is the space of all locally constant functions in $\mathfrak{F} \zeta$. However, the spherical functions of both representations are the same, for all $K_{v}{ }^{1}$-finite functions in $5 \sqrt{5}$ are ilocally constant.

[^1]: ${ }^{*)}$ It asserts that, if $\sigma_{i}(i=1,2)$ are irreducible constituents of $\mathcal{A}_{0}\left(\eta_{i}, G L_{2}(\boldsymbol{A})\right)$.. respectively and if $\sigma_{1 v}$ is equivalent to $\sigma_{2 v}$ for almost all v including all archimedeana valuations, then σ_{1} is equivalent to σ_{2}.

