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The main purpose of the present paper is to give another proof of
Jacquet-Langlands [5, Th. 14.4], the assertion of which is the following.

Let $X$ be a division quaternion algebra over a global field $F$. To every
irreducible admissible representation $\pi$ of the Hecke algebra $\mathcal{H}(JC_{A}^{\times})$ , we can
make correspond an irreducible admissible representation $\pi^{*}$ of the Hecke
algebra $\mathcal{H}(GL_{2}(A))$ so that, if $\pi$ is a constituent of the representation of
$\mathcal{H}(JC_{p}^{\times}4)$ in $\mathcal{A}(\eta, J\zeta_{A}^{\times})$ (the space of automorphic forms on $JC_{A}^{\times}$ with a character
$\eta)$ , then $\pi^{*}$ is a constituent of the representation of $\mathcal{H}(GL_{2}(A))$ in $\mathcal{A}_{0}(\eta, GL_{2}(A)\rangle$

(the space of cusp forms on $GL_{2}(A)$ with a character $\eta$) under the condition
that the component $\pi_{v}$ of $\pi$ is infinite dimensional for all places $v$ of $F$ un-
ramified in $JC$ .

In view of various ideas in Jacquet-Langlands [5], and also of Shalika-
Tanaka [7] and Weil [11], we find it natural to consider theta series made
of Weil representation of $SL_{2}(A)$ in the Schwartz space on $Jf_{A}$ , and in order
to construct an irreducible subspace of $\mathcal{A}_{0}(\eta, GL_{2}(A))$ from the space of theta
series, to make use of a spherical function associated with automorphic forms
on $JC_{A}^{\backslash }$ . In this way we obtain a proof of the above theorem, somewhat more
direct than the original one, under a weaker condition that $\pi$ is not one-
dimensional (in substance our proof is quite similar to that of [5, Th. 13.1]).

The main theorem in our formulation is stated as Theorem 1 (\S 5, No. 12).

Applied to the holomorphic automorphic forms, it gives a generalization of
Eichler $[1, 2]$ . It is stated as Theorem 2 (\S 6, No. 5).

For convenience sake we summarize in \S 1-\S 3 generalities on admissible
representations, theta series, automorphic forms and spherical functions.

\S 1. Admissible representation of $GL_{2}$ .
1. Definition (non-archimedean case). In No. 1–No. 4, $F$ will be a non-

archimedean local field. By an admissible representation $\pi$ of $GL_{2}(F)$ we
understand a representation $\pi$ of $GL_{2}(F)$ in a vector space $\mathcal{V}$ over $C$ satis-
fying the following conditions.

(1.1) For any $x\in \mathcal{V}$ , the group of elements $g$ in $GL_{2}(F)$ such that
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$\pi(g)x=x$ is an open subgroup of $GL_{2}(F)$ .
(1.2) For any open compact subgroup $H$ of $GL_{2}(F)$ , the space of elements

$x$ in $\mathcal{V}$ such that $\pi(h)x=x$ for all $h\in H$ is finite dimensional.

We say that $\pi$ is irreducible if $\mathcal{V}$ has no proper invariant subspace.
2. Local Hecke algebra. Let $\mathcal{H}_{F}$ be the space of all C-valued locally

constant functions of compact support on $GL_{2}(F)$ . It forms an associative
algebra under the convolution:

$f_{1}*f_{2}(g)=\int_{GL_{2}(F)}f_{1}(gh)f_{2}(h^{-1})dh$ .

We call $\mathcal{H}_{F}$ the Hecke algebra of $GL_{2}(F)$ . For an admissible representation
$\pi$ of $GL_{2}(F)$ in $\mathcal{V}$ , we define a representation $\pi$ of $\mathcal{H}_{F}$ in $\mathcal{V}$ by

$\pi(f)x=\int_{GL_{2}(F)}f(g)\pi(g)xdg$ $(f\in \mathcal{H}_{F}, x\in \mathcal{V})$ .

For a fixed $x,$ $f(g)\pi(g)x$ is a $\mathcal{V}$ -valued locally constant function of compact
support on $GL_{2}(F)$ . Therefore, the integral in the above expression is actually
a finite sum. Denote by $\rho(g)f$ or $\lambda(g)f$ the right or left translate of a func-
tion $f$ on $GL_{2}(F)$ by an element $g$ in $GL_{2}(F)$ :

$(\rho(g)f)(h)=f(hg)$ , $(\lambda(g)f)(h)=f(g^{-1}h)$ .
By definition we have

(1.3) $\pi(\lambda(g)f)=\pi(g)\pi(f)$ for $g\in GL_{2}(F)$ and $f\in \mathcal{H}_{F}$ .
Let $0$ be the ring of all integers in $F$, and put $K=GL_{2}(0)$ . By an elemen-

tary idempotent we understand a function $\xi$ on $K$ of the form

$\xi(k)=\Sigma\dim\sigma_{i}$ tr $\sigma_{i}(k^{-1})$ ,

$\sigma_{i}$ being a finite number of inequivalent irreducible representations of $K$.
$\xi$ is in fact an idempotent in $\mathcal{H}_{F}$ , if we regard $\xi$ as a function on $GL_{2}(F)$ ,

putting $\xi(g)=0$ for $g\not\in K$

By (1.1) and (1.2) the representation $\pi$ of $\mathcal{H}_{F}$ has the following properties.

(1.4) For any $x\in \mathcal{V}$ , there exists a function $f$ in $\mathcal{H}_{F}$ such that $\pi(f)x=x$ .
(1.5) For any elementary idempotent $\xi,$ $\pi(\xi)\mathcal{V}$ is finite dimensional.

Conversely, for any representation $\pi$ of $\mathcal{H}_{F}$ in $\mathcal{V}$ with these properties, there
exists an admissible representation $\pi$ of $GL_{2}(F)$ satisfying (1.3).

3. Principal series of representations. We denote by $|\alpha|_{F}$ the module
of $\alpha$ in $F^{x}$ ; namely, $d(\alpha\alpha_{1})=|\alpha|_{F}d\alpha_{1},$ $d\alpha_{1}$ being the additive Haar measure
of $F$. Let $T$ be the group of all upper triangular elements in $GL_{2}(F)$ . Every
one-dimensional representation $\zeta$ of $T$ can be written in the form
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$\zeta$ (( $ 0\alpha$ $\beta\delta))=\mu_{1}(\alpha)\mu_{2}(\delta)\left|\begin{array}{l}\alpha\\-\delta^{-}\end{array}\right|$

where $\mu_{1},$ $\mu_{2}$ are quasi-characters of $F^{\times}.$ Let $\mathcal{B}(\mu_{1}, \mu_{2})$ be the space of all
locally constant functions $f$ on $GL_{2}(F)$ satisfying

$f(tg)=\zeta(t)f(g)$ $(t\in T, g\in GL_{2}(F))$ .

The right translation $\rho$ defines a representation of $GL_{2}(F)$ in $\mathcal{B}(\mu_{1}, \mu_{2})$ . It
can be shown that $\rho$ is admissible. By [5, Th. 3.3] the irreducible constituents
of $\mathcal{B}(\mu_{1}, \mu_{2})$ are the following.

i) If $\mu_{1}\mu_{2}^{-1}$ equals neither $||_{F}$ nor $||_{F}^{-1},$ $\mathcal{B}(\mu_{1}, \mu_{2})$ is irreducible.
ii) If $\mu_{1}\mu_{2}^{-1}=||_{F},$ $\mathcal{B}(\mu_{1}, \mu_{2})$ contains the only one proper invariant sub-

space $\mathcal{B}_{S}(\mu_{1}, \mu_{2})$ , which is of codimension 1.
iii) If $\mu_{1}\mu_{2}^{-1}=||_{F}^{-1},$ $\mathcal{B}(\mu_{1}, \mu_{2})$ contains the only one proper invariant sub-

space $\mathcal{B}_{f}(\mu_{1}, \mu_{2})$ . which is of dimension 1.
In the case i) we write $\pi(\mu_{1}, \mu_{2})$ for $\rho$ . In the case ii) we write $\sigma(\mu_{1}, \mu_{2})$

\langle resp. $\pi(\mu_{1}, \mu_{2}))$ for the representation of $GL_{2}(F)$ in $\mathcal{B}_{s}(\mu_{1}, \mu_{2})$ (resp. $\mathcal{B}(\mu_{1}, \mu_{2})/$

$\mathcal{B}_{S}(\mu_{1}, \mu_{2}))$ induced by $\rho$ . In the case iii) we write $\sigma(\mu_{1}, \mu_{2})$ (resp. $\pi(\mu_{1},$ $\mu_{2})$)

for the representation of $GL_{2}(F)$ in $\mathcal{B}(\mu_{1}, \mu_{2})/\mathcal{B}_{f}(\mu_{1}, \mu_{2})$ (resp. $\mathcal{B}_{f}(\mu_{1},$ $\mu_{2})$) induced
by $\rho$ .

$\pi(\mu_{1}, \mu_{2})$ (resp. $\sigma(\mu_{1},$ $\mu_{2})$) and $\pi(\mu_{2}, \mu_{1})$ (resp. $\sigma(\mu_{2},$ $\mu_{1})$) are equivalent, and
there is no other equivalence relation among these representations (cf. [4,

\S 1, Th. 7]).

By [5, Prop. 2.7] a finite dimensional irreducible admissible representation
$\pi$ of $GL_{2}(F)$ is necessarily one-dimensional, and we have $\pi(g)=\chi(\det g)$ with
a quasi-character $\chi$ of $F^{\times}$ . If $\mu_{1}(\alpha)=x(\alpha)|\alpha|_{F}^{1/2},$ $\mu_{2}(\alpha)=\chi(\alpha)|\alpha|_{F}^{-1\prime 2},$ $\pi$ is equi-
valent to $\pi(\mu_{1}, \mu_{2})$ .

4. Absolutely cuspidal representations. An irreducible admissible repre-
sentation $\pi$ of $GL_{2}(F)$ is called absolutely cuspidal if it is not a constituent of
$\mathcal{B}(\mu_{1}, \mu_{2})$ for any choice of $\mu_{1},$ $\mu_{2}$ .

5. Definition (archimedean case). In No. 5-No. 7, we assume that $F$ is
an archimedean local field so that $F$ is either the real number field $R$ or the
complex number field $C$. Let $K$ be a maximal compact subgroup of $GL_{2}(F)$ .
Let $dg(\tau_{\rightarrow\lrcorner}\urcorner^{\neg}p. dk)$ be a fixed Haar measure of $GL_{2}(F)$ (resp. $K$). We denote
by $\mathcal{H}_{F}$ the space of Radon measures on $GL_{2}(F)$ spanned by the following two
kinds of measures:

i) $f(g)dg;f$ is a $C^{\infty}$ function of compact support on $GL_{2}(F)$ , which is
K-finite on both sides.

ii) $\xi(k)dk;\xi(k)$ is a matrix coefficient of some irreducible representation
of $K$.
In the following we identify $f(g)dg$ (resp. $\xi(k)dk$ ) with a function $f$ (resp. $\xi$).
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Zet $\mathcal{H}_{F}^{\prime}b^{Q}$. the space spanned by the measures of type i) and $\mathcal{H}_{\Gamma}^{\prime\prime}$ the space
spanned by the measures of type ii). If $*denotes$ the convolution of mea-
sures, $\mathcal{H}_{F}$ forms an associative algebra under $*$ . In fact, $*coincides$ on $\mathcal{H}_{F}^{\prime}$

$1(resp. \mathcal{H}_{F}^{\prime\prime})$ with the convolution of functions on $GL_{2}(F)$ (resp. $K$ ), and

$f*\xi(g)=\int_{K}f(gk)\xi(k^{-1})dk$ ,

$\xi*f(g)=\int_{K}\xi(k^{-1})f(kg)dk$ .

We note that an elementary idempotent can be defined in the same way as
In No. 2, and it is an element of $\mathcal{H}_{F}^{\prime\prime}$ .

We say that a representation $\pi$ of $\mathcal{H}_{F}$ in $\mathcal{V}$ is admissible if it satisfies
the following conditions.
(1.6) For any $x\in \mathcal{V}$ , we can find $f_{i}\in \mathcal{H}_{F}$ and $x_{i}\in \mathcal{V}$ such that

$x=\sum_{i=1}^{r}\pi(f_{i})x_{i}$ .
$\ell(1.7)$ For any elementary idempotent $\xi,$ $\pi(\xi)\mathcal{V}$ is finite dimensional.
(1.8) For any $x\in \mathcal{V}$ and for any elementary idempotent $\xi$ , the mapping
$f\rightarrow\pi(f)x$ of $\xi*\mathcal{H}_{F}^{\prime}*\xi$ into $\pi(\xi)\mathcal{V}$ is continuous (the topology in $\pi(\xi)\mathcal{V}$ is the
usual topology in a finite dimensional vector space over $C$, and the topology
in $\xi*\mathcal{H}_{F}^{\prime}*\xi$ is the one induced by the Schwartz topology in the space of all

$\prime C^{\infty}$ functions of compact support on $GL_{2}(F))$ .
REMARK. If we limit ourselves to a special case where $\mathcal{V}$ is a space

consisting of continuous functions on $GL_{2}(F)$ and $\pi$ is defined by

$\pi(\mu)\varphi(h)=\int\varphi(hg)d\mu(g)$ $(\varphi\in \mathcal{V}, \mu\in \mathcal{H}_{F})$ ,

then $(1.6)-(1.8)$ can be replaced by the following conditions.
$H(1.6)^{\prime}$ For any $\varphi\in \mathcal{V}$ , there is an elementary idempotent $\xi$ such that $\pi(\xi)\varphi=\varphi$ .
$’(1.7)^{\prime}$ For any elementary idempotent $\xi,$ $\pi(\xi)\mathcal{V}$ is finite dimensional.
$’(1.8)^{\prime}$ Let $\varphi,$

$\xi$ be as in (1.8). Let $f_{i}$ be a sequence of functions in $\xi*\mathcal{H}_{F}^{\prime}*\xi$

such that the supports of $f_{i}$ are all contained in a compact set of $GL_{2}(F)$ , on
which $f_{i}$ converges uniformly to $0$ , together with all derivatives of higher

$)$ \langle ) $rder$ . Then $\pi(f_{i})\varphi(g)$ converges to $0$ for all $g\in GL_{2}(F)$ .
In this situation, (1.8) is trivially satisfied. It can be shown that (1.8)

implies (1.8), and that (1.6) and (1.7) imply (1.6).
6. Representation of $Z,$ $K$ or $\mathfrak{U}$ induced by an admissible representation.

Let $\pi$ be an admissible representation of $\mathcal{H}_{F}$ in $\mathcal{V}$ . Let $Z$ be the center of
$CL_{2}(F)$ . We can define a representation $\pi$ of $Z$ (resp. $K$ ) by the condition
cthat $\pi(g)\pi(f)=\pi(\lambda(g)f)$ is satisfied for all $f$ in $\mathcal{H}_{F}^{\prime}$ , if $g$ is in $Z$ (resp. $K$).
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Let $\mathfrak{g}$ be the Lie algebra of $GL_{2}(F)$ and $\mathfrak{U}$ the universal enveloping algebra
of $\mathfrak{g}_{C}=\mathfrak{g}\otimes C.$ $\pi$ being as above, we can define a representation $\pi$ of $\mathfrak{U}$ in $\mathcal{V}$

so that we have

$\pi(X)\pi(f)=\pi(X*f)$ , $\pi(f)\pi(X)=\pi(f*X)$

for all $f\in \mathcal{H}_{F}^{\prime}$ and $X\in \mathfrak{g}$ . Here

$X*f(g)=[(d/d\alpha)f(\exp(-\alpha X)g)]_{a-0}$ ,

$f*X(g)=[(d/d\alpha)f(g\exp(-\alpha X))]_{a=0}$ .

If $g$ is in $Z$ or $K$, we have

$\pi(Ad(g)X)=\pi(g)\pi(X)\pi(g^{-1})$ .
7. Classification of admissible representations. Let $T,$ $\zeta,$

$\mu_{1},$ $\mu_{2}$ be as in $\cdot$

No. 3. Let $\mathcal{B}(\mu_{1}, \mu_{2})$ be the space of all functions $\varphi$ on $GL_{2}(F)$ which are
K-finite on the right and satisfy

$\varphi(tg)=\zeta(t)\varphi(g)$ for $t\in T$ .

Note that any function in $\mathcal{B}(\mu_{1}, \mu_{2})$ is necessarily a $C^{\infty}$ function. If we put

$\rho(\mu)\varphi(g_{1})=\int\varphi(g_{1}g)d\mu(g)$

for $\mu\in \mathcal{H}_{F}$ and $\varphi\in \mathcal{B}(\mu_{1}, \mu_{2})$ , we obtain a representation $\rho$ of $\mathcal{H}_{F}$ in $\mathcal{B}(\mu_{1}, \mu_{2})$ .
It is admissible. By [5, Th. 5.11 and Th. 6.2] every irreducible admissible
representation of $\mathcal{H}_{F}$ is equivalent to a constituent of some $\mathcal{B}(\mu_{1}, \mu_{2})$ .

The case $F=R$ . If $F=R$ , the irreducible constituents of $\mathcal{B}(\mu_{1}, \mu_{g})$ are
the following ([5, Th. 5.11]).

i) If $\mu_{1}\mu_{2}^{-1}(\alpha)$ is not of the form $\alpha^{p}sgn\alpha$ with a non-zero integer $p$ ,
$\mathcal{B}(\mu_{1}, \mu_{2})$ is irreducible.

ii) If $\mu_{1}\mu_{z^{-1}}(\alpha)=\alpha^{p}sgn\alpha$ for a positive integer $p,$ $\mathcal{B}(\mu_{1}, \mu_{2})$ contains the
only one proper invariant subspace $\mathcal{B}_{s}(\mu_{1}, \mu_{2})$ , which is of finite codimension.

iii) If $\mu_{1}\mu_{2}^{-1}(\alpha)=\alpha^{p}$ sgn $\alpha$ for a negative integer $p,$ $\mathcal{B}(\mu_{1}, \mu_{2})$ contains.
the only one proper invariant subspace $\mathcal{B}_{f}(u_{1}, \mu_{2})$ , which is of finite dimension.

In the case i) we write $\pi(\mu_{1}, \mu_{2})$ for the representation $\rho$ of $\mathcal{H}_{F}$ in
$\mathcal{B}(\mu_{1}, \mu_{2})$ . In the case ii) we write $\sigma(\mu_{1}, \mu_{2})$ (resp. $\pi(\mu_{1},$ $\mu_{2})$) for the representa-

tion of $\mathcal{H}_{F}$ in $\mathcal{B}_{S}(\mu_{1}, \mu_{2})$ (resp. $\mathcal{B}(\mu_{1},$ $\mu_{2})/\mathcal{B}_{s}(\mu_{1},$ $\mu_{2})$ ) induced by $\rho$ . In the case
iii) we write $\sigma(\mu_{1}, \mu_{2})$ (resp. $\pi(\mu_{1},$ $\mu_{2})$ ) for the representation of $\mathcal{H}_{F}$ in
$\mathcal{B}(\mu_{1}, \mu_{2})/\mathcal{B}_{f}(\mu_{1}, \mu_{2})$ (resp. $\mathcal{B}_{f}(\mu_{1},$ $\mu_{2})$ ) induced by $\rho$ .

The equivalence relations of these representations are as follows. $\pi(\mu_{1}, \mu_{2})$

and $\sigma(\mu_{1}^{\prime}, \mu_{2}^{\prime})$ are not equivalent. $\pi(\mu_{1}, \mu_{2})$ and $\pi(\mu_{1}^{\prime}, \mu_{2}^{\prime})$ are equivalent if
and only if $(\mu_{1}, \mu_{2})=(\mu_{1}‘, \mu_{2}^{\prime})$ or $(\mu_{2}^{\prime}, \mu_{1}^{\prime})$ . $\sigma(\mu_{1}, \mu_{2})$ and $\sigma(\mu_{1}^{\prime}, \mu_{2}^{\prime})$ are equi-
valent if and only if $(\mu_{1}, \mu_{2})$ is one of the four pairs $(\mu_{1}^{\prime}, \mu_{2}^{\prime}),$ $(\mu_{2}^{\prime}, \mu_{1}^{\prime}),$ $(\mu_{1}^{\prime}\eta,$ .
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$\mu_{2}^{\prime}\eta),$ $(\mu_{2}^{\prime}\eta, \mu_{1}^{\prime}\eta)$ . Here $\eta(\alpha)=sgn\alpha$ .
The case $F=C$. If $F=C$, the irreducible constituents of $\mathcal{B}(\mu_{1}, \mu_{2})$ are

the following ([5, Th. 6.2]).
i) If $\mu_{1}\mu_{2}^{-1}(\alpha)$ is not of the form $\alpha^{p}\overline{\alpha}^{q}$ or $\alpha^{-p}\overline{\alpha}^{-q},$ $p$ and $q$ being positive

integers, then $\mathcal{B}(\mu_{1}, \mu_{2})$ is irreducible.
ii) If $\mu_{1}\mu_{2}^{-1}(\alpha)=\alpha^{p}\overline{\alpha}^{q}$ with positive integers $p,$ $q,$ $\mathcal{B}(\mu_{1}, \mu_{2})$ contains the

.only one proper invariant subspace $\mathcal{B}_{S}(\mu_{1}, \mu_{2})$ , which is of finite codimension.
iii) If $\mu_{1}\mu_{2}^{-1}(\alpha)=\alpha^{-p}\overline{\alpha}^{-q}$ with positive integers $p,$ $q,$ $\mathcal{B}(\mu_{1}, \mu_{2})$ contains

the only one proper invariant subspace $\mathcal{B}_{f}(\mu_{1}, \mu_{2})$ , which is of finite dimension.
We define $\pi(\mu_{1}, \mu_{2})$ or $\sigma(\mu_{1}, \mu_{2})$ in the same way as in the real case.

Unlike the real case, every irreducible admissible representation is equivalent
to some $\pi(\mu_{1}, \mu_{2})$ . $\pi(\mu_{1}, \mu_{2})$ and $\pi(\mu_{1}^{\prime}, \mu_{2}^{\prime})$ are equivalent if and only if $(\mu_{1}, \mu_{2})$

$=(\mu_{1}^{\prime}, \mu_{z^{\prime}})$ or $(\mu_{2}^{\prime}, \mu_{1}^{\prime})$ .
8. The case of quaternion algebras. We consider in this section the

multiplicative group of a division quaternion algebra $c\chi$ over a local field $F$.
We define the Hecke algebra $\mathcal{H}(JC^{\times})$ and admissible representations of

$\mathcal{H}(cX^{\times})$ exactly in the same way as in No. 2 or No. 5, taking JT’ (resp. the
unique maximal compact subgroup of $JC^{\times}$ ) for $GL_{2}(F)$ (resp. $K$). In this case
we still denote by $K$ the maximal compact subgroup of $c\chi^{x}$ . Write $n(x)$ for
the reduced norm of $x$ in Jkr. Then $K$ is the group of all $g\in JC^{\times}$ with $n(g)$

$\in 0^{\times}$ (resp. $n(g)=1$ ) if $F$ is non-archimedean (resp. $F=R$) (there is no divi-
sion quaternion algebra over $C$ ). However, for any admissible representation
$\pi$ of $\mathcal{H}(JC^{\times})$ , there exists always a representation $\pi$ of $J^{\times}$ satisfying (1.3) for

.. $g\in JC^{\times}$ and $f\in \mathcal{H}(JC^{\times})$ (even if $F$ is archimedean, because $K$ is a normal
subgroup of $J\zeta^{\times}$ ). If $\pi$ is irreducible, the corresponding representation $\pi$ of
$X^{\times}$ is an irreducible (continuous) representation of finite dimension.

9. Global Hecke algebra. In this section, we assume that $F$ is a global
field, $i$ . $e$ . an algebraic number field of finite degree or an algebraic function
field over a finite field.

We write $v$ for a place in $F,$ $F_{v}$ for the completion of $F$ with respect to
$v$ , and $A$ for the adele of $F$. Also we write $0_{v}$ and $\mathfrak{o}$ for the rings of all
integers in $F_{v}$ and $F$, respectively. (If $F$ is a number field, denote by $S_{\infty}$ the
set of all archimedean places. If $F$ is a function field, we fix a non-empty
finite set $S_{\infty}$ of places. By an integer in $F$ we understand an element in $F$

.contained in $0_{v}$ for all $v\not\in S_{\infty}.$ )

Let $\sigma\chi$ be a quaternion algebra over $F$ and put $JC_{v}=F_{v}\bigotimes_{F}JC$ . We say

that $v$ is ramified in Jkr if. $X_{v}$ is a division algebra. The number of ramified
places is finite and even. Conversely, if there is given a set $S$ of even num-
ber of non-archimedean or real places, there exists a unique (up to isomor-
phism) quaternion algebra $cX$ over $F$ such that $S$ is exactly the set of places
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ramified in $X$ .
For all $v$ unramified in $JC$ , we define an isomorphism $\theta_{v}$ of $\chi_{v}$ onto $M_{2}(F_{v}))$

in the following way. Take a maximal order $\mathfrak{Q}$ in $X$ with respect to $0$ . $For^{-}$

an unramified $v$ not in $S_{\infty}$ , let $\mathfrak{Q}_{v}$ be the $0_{v}$ -module in $JC_{v}$ generated by $\mathfrak{Q}$ .
There is an isomorphism of $\mathfrak{Q}_{v}$ onto $M_{2}(\mathfrak{o}_{v})$ , which can be naturally extended
to an isomorphism of $X_{v}$ onto $M_{2}(F_{v})$ . Let $\theta_{v}$ be this isomorphism. For an
unramified $v$ in $S_{\infty}$ , take $\theta_{v}$ to be any isomorphism of $J_{v}$ onto $M_{2}(F_{v})$ . If $\mathfrak{Q}^{\prime}$

is another maximal order, we have $\mathfrak{Q}_{v}=\mathfrak{Q}_{v}$
‘ for almost all $v$ ; hence the

choice of $\{\theta_{v}\}$ is canonical so far as ”almost all” $v$ are concerned.
We fix $\{\theta_{v}\}$ once and for all and identify $X_{v}$ with $M_{2}(F_{v})$ and hence $JC_{v^{x}}$

with $GL_{2}(F_{v})$ by $\theta_{v}$ . Put

$K_{t}$. $=\left\{\begin{array}{l}GL_{2}(\mathfrak{o}_{v})\\O_{2}(R)\\U_{2}(C)\end{array}\right.$ $i^{i_{f}}i_{f}^{f}F_{v}=R\Gamma^{v}=Cv_{\{}isnon- archimedean$

,

and denote by $\mathcal{H}(JC_{v^{x}})$ the Hecke algebra of $X_{v^{\times}}=GL_{2}(F_{v})$ .
If $v$ is ramified in $X$ , we denote by $K_{v}$ the maximal compact $subgroup*$

of $JC_{v}^{\times}$ , and by $\mathcal{H}(JC_{v}^{\times})$ the Hecke algebra of $JC_{v}^{\times}$ defined in No. 8.
Put $K=\prod_{v}K_{v}$ . Let $\mathcal{H}(JC_{A}^{\times})$ be the space spanned by all $\bigotimes_{v}f_{v}$ with $f_{v}\in \mathcal{H}(JC_{v}^{\times}),$ .

where almost all $f_{v}$ are the characteristic functions of $K_{v}$ . It forms an asso-
ciative algebra (as a subalgebra of the tensor product of $\mathcal{H}(JC_{v}^{\times})$).

Let $\pi_{v}$ be an admissible representation of $\mathcal{H}(JC_{v^{\times}})$ in $\mathcal{V}_{v}$ and assume
(1.9) for almost all $v$ , the restriction of $\pi_{)}$ to $K_{v}$ contains the identity

representation exactly once.
Take an element $e_{v}$ in $\mathcal{V}_{v}$ such that $\pi_{v}(k)e_{v}=e_{v}$ for all $k\in K_{v}$ . Let $\mathcal{V}$ be
the restricted tensor product of $\mathcal{V}_{v}$ with respect to $\{e_{v}\}$ , $i$ . $e$ . the space .

spanned by all $\bigotimes_{v}\mathfrak{r}_{v}(x_{v}\in \mathcal{V}_{v})$ such that $x_{v}=e_{v}$ for almost all $v$ . We can

define a representation $\pi$ of $\mathcal{H}(JC_{A}^{\times})$ in $\mathcal{V}$ by putting

$\pi(f)x=\otimes\pi_{v}(f_{v})x_{v}$

if $f=\otimes f_{v}$ and $x=\otimes x_{v}$ . By the assumption (1.9) the equivalence class of $\pi$

is independent of the choice of $\{e_{v}\}$ . We call $\pi$ the tensor product of $\pi_{v}$ and
write $\pi=\otimes\pi_{v}$ (note that (1.9) is implicitly assumed whenever we speak of
the tensor product of admissible representations). $\pi$ is irreducible if and’
only if all $\pi_{v}$ are irreducible.

The tensor product of admissible representations of $\mathcal{H}(JC_{v}^{\times})$ is an admis-
sible representation of $\mathcal{H}(J\zeta_{A}^{\times})$ in the sense of [5, \S 9], and every irreducible .

admissible representation of $\mathcal{H}(J\zeta_{A}^{\times})$ is the tensor product of admissible repre–
sentations of $\vee a_{\{}(JC^{\times})$ ([ , Prop. 9.1]).
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$\mathcal{H}(J\zeta_{A}^{\times})$ can be interpreted as an algebra of measures (of compact support)
on $JC_{A}^{\times}$ . If $\varphi$ is a continuous function on $JC_{A}^{\times}$ and $\mu\in \mathcal{H}(JC_{A}^{\times})$ , we put

$\rho(\mu)\varphi(h)=\int\varphi(hg)d\mu(g)$ .

In particular, if an element $f$ in $\mathcal{H}(JC_{A}^{x})$ is of the form $\otimes f_{v}$ , where $f_{v}$ is a
function on $JC_{v}^{\times}$ , then $f$ is identified with a function $f(g)=\Pi f_{v}(g_{v})$ on $J\zeta_{A}^{x}$

and we have

$\rho(f)\varphi(h)=\int\varphi(hg)f(g)dg$ .

\S 2. Weil representations and theta series.

1. Weil representations (local case). Let us recall that the Schwartz
space $S(G)$ on a finite dimensional vector space $G$ over a local field $F$ is the
space of all locally constant functions of compact support on $G$ if $F$ is non-
archimedean, and $S(G)$ is the space of all rapidly decreasing $C^{\infty}$ functions on
$G$ if $F$ is archimedean.

Let $F$ be a local field and let $\mathcal{A}$ be either one of the following semisimple
algebras over $F$ :

a) $F\oplus F$,
b) a separable quadratic extension of $F$,
c) a quaternion algebra over $F$.

In each case, denote by $x\rightarrow x$ the following involution of $\mathcal{A}$ over $F$ :
a) $(\alpha, \beta)\rightarrow(\beta, \alpha)$ ,
b) the non-trivial automorphism of $\mathcal{A}$ over $F$,
c) the canonical involution of $\mathcal{A}$ over $F$.

Put tr $(a)=a+a^{\iota},$ $n(a)=aa^{c}$ for $a\in \mathcal{A}$ . $n(a)$ is a homomorphism of $\mathcal{A}$
’ into $F^{x}$ .

Fix a non-trivial additive character $\psi$ of $F$. Since $(x, y)\rightarrow tr(xy)$ is non-
degenerate bilinear form on $\mathcal{A},$ $\mathcal{A}$ can be identified with its dual by the
pairing $\langle x, y\rangle=\psi(tr(xy))$ . Let $dx$ be the unique Haar measure on $\mathcal{A}$ which
equals its dual. For $M\in S(\mathcal{A})$ , the Fourier transform $M^{\prime}$ of $M$ is by defini-
tion

$M^{\prime}(x)=\int_{A}M(y)\langle x, y\rangle dy$

and $M^{\prime}$ is again in $S(\mathcal{A})$ . By the self-duality of $dx$ we have

$M(x)=\int_{d}M^{\prime}(y)\langle x, -y\rangle dy$ .

Put $f(x)=\psi(n(x))=\psi(xx^{\iota})$ . By [11, Th. 2] there exists a constant
$\gamma=\gamma(\mathcal{A}/F, \psi)$ such that $(M*f)^{\prime}(x)=\gamma f(x^{f})^{-1}M^{\prime}(x)$ for all $M\in S(\mathcal{A})$ . $\gamma=1$ if
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$\mathcal{A}=F\oplus F$ or $M_{2}(F)$ (cf. [11, Prop. 3] ; note that the quadratic form $n(x)$ on
$\mathcal{A}$ is then a kernel form). $\gamma=-1$ if $\mathcal{A}$ is a division quaternion algebra over
$F$ (cf. [11, Prop. 4]). If $\mathcal{A}$ is a separable quadratic extension of $F$, the value
of $\gamma$ is found in [5, Lemma 1.2] or [10] (in [10], it is assumed that the
residue class field of $F$ is not of characteristic 2).

Let $r$ be a representation of $SL_{2}(F)$ in $S(\mathcal{A})$ defined by

(2.1) $r(\left(\begin{array}{ll}\alpha & 0\\0 & \alpha^{-1}\end{array}\right))M(x)=\omega(\alpha)|\alpha|_{\lambda^{1/2}}\llcorner M(\alpha x)$ ,

(2.2) $r($ ( $10$ $\beta 1$) $)M(x)=\psi(\beta n(x))M(x)$ ,

(2.3) $r(\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right))M(x)=\gamma(\mathcal{A}/F, \psi)M^{\prime}(x^{\prime})$ .

Here $\omega$ is the non-trivial character of $F^{\times}/n(\mathcal{A}^{x})$ if $\mathcal{A}$ is a separable quadratic
extension of $F$, and $\omega=1$ otherwise. $||a$ is the module in $\mathcal{A}$ . Since the

elements of the form $\left(\begin{array}{ll}\alpha & 0\\0 & \alpha^{-1}\end{array}\right)$ , ( $\beta_{1}$ ), $\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ generate $SL_{2}(F),$ $r$ is uni-

quely determined by $(2.1)-(2.3)$ . That $r$ is actually a representation is proved
in [5, Prop. 1.3].

LEMMA 1. For an element $a$ in $\mathcal{A}^{\times}$ and afunction $f$ on $\mathcal{A}$ , wrzte $\rho(a)f(x)$

$=f(xa),$ $\lambda(a)f(x)=f(a^{-1}x),$ $\iota(a)f(x)=f(a^{-1}xa)$ . Let $d$ ‘ be the group of all elements
in $cA$ with $n(a)=1$ ; let $s$ be any element in $SL_{2}(F)$ .

i) $r(s)$ commutes with $\rho(a)$ and $\lambda(a)$ for all $a\in \mathcal{A}^{1}$ .
ii) $r(s)$ commutes with $\iota(a)$ for all $a\in \mathcal{A}^{\times}$ .

iii) Put $s^{\prime}=\left(\begin{array}{ll}\alpha & 0\\0 & 1\end{array}\right)s\left(\begin{array}{ll}\alpha & 0\\0 & 1\end{array}\right)$ for $\alpha\in F^{\times}$ . If there is an element $a$ in
$\mathcal{A}$ with $ n(a)=\alpha$ , we have $\rho(a)r(s)=r(s^{\prime})\rho(a)$ .

PROOF. It is enough to prove i) and ii) when $s$ is of the form $(_{0}^{\alpha}$
$\alpha^{-1)}0$

( $\beta 1$) or $(_{-1}^{0}$ $01)$ . In the first two cases, this is immediately seen from

definition. If $s=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ , this amounts to see that, for $M\in S(\mathcal{A}),$ $(\rho(a)M)^{\prime}$

$=\lambda(a)M^{\prime},$ $(\lambda(a)M)^{\prime}=\rho(a)M^{\prime}(a\in \mathcal{A}^{1})$ and $(\iota(a)M)^{\prime}=\iota(a)M^{\prime}(a\in \mathcal{A} ’)$ . This is
easy to prove. iii) can be proved in the same way.

2. Special or absolutely cuspidal representations. Let $\mathcal{A}$ be a separable
quadratic extension or a division quaternion algebra over a local field $F$, and
$\pi$ an irreducible representation of $\mathcal{A}$

’ in a finite dimensional vector space $U$

over $C$. An element in the space $S(\mathcal{A})\bigotimes_{b}U$ is regarded as a function on $\mathcal{A}$

taking values in $U$ , whose coordinates (with respect to $a\dot{o}asis$ of $U$ ) are
Schwartz functions on $\mathcal{A}$ . Denote again by $r$ the representation $r\otimes 1$ of
$SL_{2}(F)$ in $S(\mathcal{A})\otimes U,$ $1$ being the identity representation of $SL_{2}(F)$ in $U$ . Let
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$S(\mathcal{A}, \pi)$ be the space of all elements in $S(\mathcal{A})\bigotimes_{C}U$ such that

$M(xg)=\pi(g^{-1})M(x)$

for all $g\in \mathcal{A}^{1}$ . It is invariant under the action of $SL_{2}(F)$ (Lemma 2, $i$ )). Let
$G_{+}$ be the group of all $s$ in $GL_{2}(F)$ such that $\det s\in n(\mathcal{A}^{\times})$ . By [5, Prop. 1.5]

the representation $r$ of $SL_{2}(F)$ in $S(\mathcal{A}, \pi)$ can be extended to a representation
$r_{\pi}$ of $G_{+}$ in $S(\mathcal{A}, \pi)$ by setting

$r_{\pi}(\left(\begin{array}{ll}\alpha & 0\\0 & 1\end{array}\right))M(x)=|h|_{\mathcal{A}^{1/2}}\pi(h)M(xh)$

if $\alpha=n(h)$ for $h\in \mathcal{A}^{\times}$ .
If $F$ is non-archimedean, there exists a unique division quaternion algebra

$\chi$ over $F$. Put $\mathcal{A}=JC$ ; then it is proved in [5, Th. 4.2] that the representa-

tion $r_{\pi}$ of $G_{+}=GL_{2}(F)$ in $S(JC, \pi)$ is admissible and is a multiple of a single
irreducible admissible representation $\pi^{*}$ . If $\dim\pi=1,$ $\pi$ is written as $\pi(g)$

$=x(n(g))$ with a quasi-character $\chi$ of $F^{\times}$ ; then $\pi^{*}$ is a special representation
$\ovalbox{\tt\small REJECT}\sigma(\chi||_{F^{1/2}}, \chi||_{F^{-1/2}})$ . If $\dim\pi>1,$ $\pi^{*}$ is an absolutely cuspidal representation.
By [5, Th. 15.1], $\pi\rightarrow\pi^{*}$ gives a one to one correspondence between the equi-
valence classes of finite dimensional irreducible representations of $\zeta X^{\times}$ and
the equivalence classes of special or absolutely cuspidal representations of
$CL_{2}(F)$ .

Assume now that $F=R$ . Let $JC$ be a division quaternion algebra over
$R$. Identify $\chi$ with the set of matrices of the form ( $\frac{b}{a}$) with $a,$ $b\in C$.
Then $n(h)=\det h$ for $h\in JC$ . Every irreducible finite dimensional representa-

tion $\pi$ of $X^{\times}$ is written as
$\pi(h)=n(h)^{r}\rho_{n}(h)$

with $r\in C,$ $\rho_{n}$ being the n-th symmetric tensor representation of $GL_{2}(C)$ .
Let $\mu_{1},$ $\mu_{2}$ be quasi-characters of $R^{\times}$ defined by

$\mu_{1}(\alpha)=|\alpha|^{r+n+1/2}$

$\mu_{2}(\alpha)=|a|^{r- 1/2}(sgn\alpha)^{n}$

.and put $\pi^{*}=\sigma(\mu_{1}, \mu_{2})$ . Every special representation of $\mathcal{H}(GL_{2}(R))$ is obtained
in this way. This correspondence of $\pi$ and $\pi^{*}$ is described in [5, \S 5] by

means of an intervening quasi-character of $C^{\times}$ .
3. Weil representations (global case) and theta series. Let $F$ be a global

field and $\chi$ a quaternion algebra over $F$. We use the notation in \S 1, No. 9.
Let $\psi$ be a non-trivial character of $A/F$ and write $\psi(a)=\prod\psi_{v}(a_{v})$ for $a=(a_{v})$

$\in A$ . (We shall fix this character throughout this paper.) Let $\mathfrak{a}_{v}$ be the
largest $0_{v}$ -lattice in $F_{v}$ on which $\psi_{v}$ is trivial. We call $\mathfrak{a}_{v}$ the conductor of
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$\psi_{v}$ . Almost all $\mathfrak{a}_{v}$ coincide with $0_{v}$ .
Using the above $\psi_{v}$ , we define the Weil representation $r_{v}$ of $SL_{2}(F_{v})$ in

$S(JC_{v})$ . Let $S_{0}(dC_{A})$ be the space spanned by all elements of the form $\bigotimes_{v}M_{v}$

with $\Lambda I_{v}\in S(J_{v})$ , where for almost all $v,$ $M_{v}$ is the characteristic function $M_{v}$

of $\mathfrak{Q}_{v}$ . We shall prove in Lemma 7 that, for almost all $v,$ $M_{v}^{0}$ is invariant
under $r_{v}(s_{v})$ for $s_{v}\in SL_{2}(0_{v})$ . Hence we get a representation $r$ of $SL_{2}(A)$ in
$S_{0}(JC_{A})$ by setting

$r(s)(\otimes\lrcorner|I_{v})=\otimes r_{v}(s_{v})M_{v}$

for $s=(s_{v})\in SL_{2}(A)$ .
$S_{0}(JC_{A})$ is regarded as a subspace of the Schwartz space $S(JC_{A})$ on $JC_{A}$ .

By [11, Chap. III, No. 38, 39] the action of $SL_{2}(A)$ in $S_{0}(JC_{\Lambda})$ can be extended
to $S(JC_{A})$ , and the mapping $(s, 1ll)\rightarrow r(s)M$ of $SL_{2}(A)\times S(JC_{A})$ into $S(JC_{A})$ is.
continuous. By [11, Chap. III, No. 41]

(2.4) $\Theta(M)=_{\xi}\sum_{Jp}M(\xi)$

converges uniformly on any compact subset of $S(JC_{A})$ . It follows that $\Theta(r(s)M\rangle$

is, as a function of $s$ , continuous on $SL_{2}(A)$ .
PROPOSITION 1. If $\sigma\in SL_{2}(F)$ , then

(2.5) $\Theta(r(\sigma)M)=\Theta(M)$ .
PROOF. We can assume that $\lrcorner 1l$ is of the form $\otimes M_{v}$ with $M_{v}\in S(JC_{v})$ .

If $\sigma=\left(\begin{array}{ll}\alpha & 0\\0 & a^{-1}\end{array}\right)$ with $a\in F^{x}$ or ( $\beta 1$) with $\beta\in F$, the left hand side of $(2.5)/$

is reduced to
$|\alpha|_{A}\sum_{J_{F}\dot{\sigma}}M(\alpha\xi)$ , or $\epsilon^{\sum_{\ovalbox{\tt\small REJECT} F}\psi(\beta n(\xi))M(\xi)}$

which is clearly $\sum_{\text{\’{e}}}M(\xi)$ , since $|\alpha|_{A}=1$ and $\psi(\beta n(\xi))=1$ .
To prove (2.5) for $\sigma=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ , note first the following. If $dx_{v}$ are the

self-dual measures on $JC_{v}$ with respect to $\langle x_{v}, y_{v}\rangle=\psi_{v}(tr(x_{v}y_{v}))$ , we can
introduce the product measure $dx$ of $dx_{v}$ on $X_{A}$ , and $dx$ is self-dual with
respect to the pairing $\langle x, y\rangle=\psi(tr(xy))$ . If $M=\otimes M_{v}$ , then $M^{\prime}=\otimes M_{v}^{\prime}$ is the
Fourier transform of $M$. As is stated in No. 1, $\gamma(JC_{v}/F_{v}, \psi_{v})=1$ or $-1$ accord-
ing as $v$ is unramified or ramified in $JC$ . Since the number of ramified $v$ is
even, we have $\prod_{v}\gamma(JC_{v}/F_{v}, \psi_{v})=1$ . Consequently, (2.5) for $\sigma=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ is
reduced to the Poisson’s formula

$\sum_{\xi c-.A^{\prime}F}1\iota/l(\xi)=_{\xi}\sum_{\prime\vee\vee F}M^{\prime}(\xi)$ .

RIEMARK. The statement in the above is valid if we take, in place of
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\langle$X$ , an algebra over $F$ of type a), b) or c) in No. 1. The case of separable
quadratic extension of $F$ is discussed in Shalika-Tanaka [7], where $\Theta(r(s)M)\searrow$

is used to construct cusp forms on $SL_{2}(A)$ .
Assume for a moment that the characteristic of $F$ is not 2. In the nota-

tion in Weil [11], Ps $(\mathcal{A})_{A}$ is isomorphic to $sp(\mathcal{A})_{A}$ and there is an obvious.
embedding of $SL_{2}(A)$ into $sp(\mathcal{A})_{\Lambda}$ , and hence into Ps $(\mathcal{A})_{A}$ . We see that
$s\rightarrow(s, r(s))$ gives an isomorphism of $SL_{2}(A)$ into $Mp(\mathcal{A})_{A}$ , and the restriction
of this isomorphism to $SL_{2}(F)$ is the same as $r_{F}$ defined in [11, Chap. III,.
No. 40]. Then, Proposition 1, together with the remark preceding it, is a
consequence of [11, Th. 6].

\S 3. Automorphic forms and spherical functions.

1. Definition of automorphic forms. Let $ J\zeta$ be a quaternion algebra over $\cdot$

a global field $F$ and $\eta$ a quasi-character of $A^{\times}/F^{\times}$ . By an automorphic form
(more precisely, an automorphic form with a quasi-character $\eta$ ), we $understand_{t}$

a continuous function $\varphi$ on $J\zeta_{F}^{\times}\backslash J\zeta_{A}^{\times}$ satisfying the following conditions.

(3.1) $\varphi$ is K-finite on the right.

(3.2) For any elementary idempotent $\xi$ in $\mathcal{H}(J\zeta_{A}^{\times})$ , the space
$\{\rho(\xi f)\varphi|f\in \mathcal{H}(JC_{A}^{\times})\}$ is finite dimensional.

(3.3) $\varphi(zg)=\eta(z)\varphi(g)$ for all $z\in A^{\times}$ and $g\in J\zeta_{A}^{\times}$ .
(3.4) For any compact set $\Omega$ in $JC_{A}^{\times}$ and for any constant $c>0$ ,

there exist constants $c_{1},$ $c_{2}$ such that

$|\varphi(\left(\begin{array}{ll}a & 0\\0 & 1\end{array}\right)g)|\leqq c_{1}|a|_{A}^{c_{2}}$

for all $ g\in\Omega$ and for all $a\in A^{\times}$ with $|a|_{A}\geqq c$ .
(The condition (3.4) should be neglected unless $JC_{A}^{\times}=GL_{2}(A).$ ) Here the nota–
tion is the same as in \S 1, No. 9 and $||_{A}$ is the module in $\sigma X_{A}$ . We $denote^{\nu}$

by $\mathcal{A}(\eta, J_{A}^{\times})$ the space of all automorphic forms with a quasi-character $\eta$ .
Let $\mathcal{A}_{0}(\eta, GL_{2}(A))$ be the space of all $\varphi$ in $\mathcal{A}(\eta, GL_{2}(A))$ such that

(C) $\int_{A/F}\varphi(\left(\begin{array}{ll}1 & u\\0 & 1\end{array}\right)g)du=0$

for all $g\in GL_{2}(A)$ . Such a $\varphi$ is called cusp form. To simplify the statement,.

we occasionally write $\mathcal{A}_{0}(\eta, J\zeta_{A}^{\times})$ for $\mathcal{A}(\eta, JC_{A}^{\times})$ if $\sigma\chi$ is a division algebra.
If $\varphi\in \mathcal{A}(\eta, JC_{A}^{\times})$ and $\mu\in \mathcal{H}(JC_{A}^{\times})$ , then $\rho(\mu)\varphi\in \mathcal{A}(\eta, J\zeta_{A}^{\times})$ ; thus we obtain a

representation $\rho$ of $\mathcal{H}(JC_{A}^{\times})$ in $\mathcal{A}(\eta, JC_{A}^{\times})$ . $\mathcal{A}_{0}(\eta, J\zeta_{A}^{\times})$ is invariant under $\rho$ . It
can be shown that the restriction of $\rho$ to $\mathcal{A}_{0}(\eta, J\zeta_{A}^{\times})$ is the direct sum of
irreducible admissible representations, each of which occurs with a finite $\cdot$
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multiplicity ([5, Prop. 10.5, Prop. 10.9, Lemma 14.1]). Moreover, each multi-
plicity is at most 1 if $JC_{A}^{x}=GL_{2}(A)$ ( $[5$ , Prop. 11.1.1]).

REMARK. For any quasi-character $\eta$ of $A^{\times}/F^{X}$ , we can find a quasi-
character $\chi$ such that $ x^{2}\eta$ is a character. Put $\varphi^{\prime}(g)=\chi(n(g))\varphi(g)$ for $\varphi\in$

$\mathcal{A}_{0}(\eta, JC_{A}^{\times})$ . Then $\varphi\rightarrow\varphi^{\prime}$ gives an isomorphism of $\mathcal{A}_{0}(\eta, JC_{A}^{\times})$ onto $\mathcal{A}_{0}(x_{\eta}^{2}, JC_{A}^{\times})$ .
If $\rho$ is the representation of $\mathcal{H}(J\zeta_{A}^{\times})$ in the former space, the representation
in the latter space is the tensor product of $\rho$ and the one-dimensional repre-
sentation $x\circ n$ . For this reason we may assume that $\eta$ is a character with-
out losing generality.

2. The space $L_{0}^{2}(\eta, JC_{A}^{\times})$ . $\eta$ being a character of $A^{\times}/F^{\times}$ , let $L_{0}^{2}(\eta, JC_{A}^{\times})$

be the space of all functions $\varphi$ on $JC_{A}^{\times}$ satisfying the following conditions.

$’(3.5)$ $\varphi(z\gamma g)=\eta(z)\varphi(g)$ for $z\in A^{\times},$ $\gamma\in JC_{F}^{\times},$ $g\in.X_{A}^{\times}$ ,

(3.6) $|\varphi(g)|$ is square-integrable on $P(JC^{\times})_{F}\backslash P(JC^{\times})_{A}$ , where $P(JC^{\times})=J\zeta^{\times}/F^{x}$ .
(3.7) If $JC_{A}^{x}=GL_{2}(A)$ ,

$\int_{A/F}\varphi(\left(\begin{array}{ll}1 & u\\0 & 1\end{array}\right)g)du=0$ for almost all $g$ .

$L_{0}^{2}(\eta, JC_{A}^{\times})$ forms a Hilbert space, the inner product being

$(\varphi_{1}, \varphi_{2})=\int_{P()p\backslash P(\prime^{X})_{A}}f_{\backslash }^{X}\varphi_{1}(g)\overline{\varphi_{2}(g})d\dot{g}$ .

The right translation $\rho$ defines a unitary representation of $J\zeta_{A}^{\times}$ in $L_{0}^{2}(\eta, J\zeta_{A}^{\times})$ .
The space $\mathcal{A}_{0}(\eta, JC_{A}^{\times})$ coincides with the space of all K-finite functions in
$L_{0}^{2}(\eta, J_{A}^{\times})$ (cf. Godement [4, \S 3, No. 1]).

If $\mathcal{L}$ is a closed subspace of $L_{0^{2}}(\eta, JC_{A}^{\times})$ invariant and irreducible (topo-

logically) under the action of $J\zeta_{A}^{x}$ then $\mathcal{V}=\mathcal{L}\cap \mathcal{A}_{0}(\eta, JC_{A}^{\times})$ is invariant and
irreducible under the action of $\mathcal{H}(JC_{A}^{\times})$ ; conversely if the subspace $\mathcal{V}$ of
$\mathcal{A}_{0}(\eta, J_{A}^{\times})$ is irreducible under the action of $\mathcal{H}(J\zeta_{A}^{\times})$ , its closure $\mathcal{L}$ is invariant

.and irreducible under the action of $JC_{4\wedge}^{\times}$ , and $\mathcal{V}$ is the space of K-finite func-
tions in $\mathcal{L}$ (cf. [4, \S 3, No. 3]).

3. Spherical functions. We write $JC^{1}$ for the group of all elements in
-JC of reduced norm 1 and put $K_{v}^{1}=K_{v}\cap JC_{v}^{1},$ $K^{1}=K\cap JC_{A}^{1}$ . Let $\mathcal{L}$ be an
irreducible closed subspace of $L_{0}^{2}(\eta, JC_{A}^{x})$ and $\pi$ a representation of $\chi_{A}^{x}$ in $\mathcal{L}$ .
For an irreducible representation $\mathfrak{d}$ of $K^{1}$ , let $\mathcal{L}(\mathfrak{d})$ be the space of all $\varphi$ in
$\mathcal{L}$ such that

$\int_{K^{1}}\chi_{b}(k_{1}^{-1})\pi(k_{1})\varphi dk_{1}=\varphi$ ,

where $\chi_{b}(k_{1})=\dim \mathfrak{d}$ tr $\mathfrak{d}(k_{1})$ .
LEMMA 2. $\mathcal{L}(\mathfrak{d})$ is finite dimensional.
PROOF. Let $\mathcal{V}$ be the space of all K-finite vectors in $\mathcal{L}$ . We first prove
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that $\mathcal{L}(\mathfrak{d})\subset \mathcal{V}$ . By [4, \S 3, Th. 2] $\pi$ is the tensor product of irreducible uni-
tary representations $\pi_{v}$ of $JC_{v}^{\times}$ in $\mathcal{L}_{v}$ . Denote again by $\pi$ (resp. $\pi_{v}$ ) the $\cdot$

admissible representation of $\mathcal{H}(J_{A}^{\times})$ (resp. $\mathcal{H}(JC_{v^{\times}})$) in $\mathcal{V}$ (resp. $\mathcal{V}_{v}$ ), $\mathcal{V}_{v}$ being

the space of all $K_{v}- finite$ vectors in $\mathcal{L}_{v}$ . Let $S$ be a finite set of places such
that for all $vGS$ , the restriction of $\pi_{v}$ to $K_{v}$ contains the identity representa-
tion. If $v\not\in S$ , we have $\pi_{v}=\pi(\mu_{1}, \mu_{2})$ with unramified quasi-characters $\mu_{1},$ $\mu_{2}$

of $ F_{v^{\vee}}\cdot$ . Then it is easy to see that $\mathcal{V}_{v}$ contains the unique (up to a scalar
multiple) vector invariant under $K_{v}^{1}$ , which is still $K_{v}$ -invariant (hence the
same is true for $\mathcal{L}_{v}$ ). It follows that every element in $\mathcal{L}(\mathfrak{d})$ is H-finite if
$H=Z(K)K^{1}\prod_{v\not\in S}K_{v},$ $Z(K)$ being the center of $K$. Since $H$ is of finite index in
$K$, it is also K-finite.

It is evident that, if $\mathcal{L}(\mathfrak{d})\neq\{0\}$ , an element in $\mathcal{L}(\mathfrak{d})$ transforms under the
action of $H$ according to an irreducible representation $\sim \mathfrak{d}$ of $H$ determined
uniquely by $\mathfrak{d}$ and $\eta$ . If $\xi(k)=\sum\dim\sigma_{i}$ tr $\sigma_{i}(k^{-1})$ , where $\sigma_{i}$ are all the irre-
ducible constituents of the representation of $K$ induced by $\mathfrak{d}\sim$, then $\mathcal{L}(\mathfrak{d})$ is..
contained in $\pi(\xi)\mathcal{V}$ . Hence $\mathcal{L}(\mathfrak{d})$ is finite dimensional.

By Lemma 2 we can define the spherical function $\omega_{\mathfrak{d}}$ of type $\mathfrak{d}$ of $\pi$ (cf..

Godement [3]). By definition we have

$\omega_{\mathfrak{d}}(g)=tr(E(\mathfrak{d})\pi(g))$ ,

$E(\mathfrak{d})$ being the projection of $\mathcal{L}$ to $\mathcal{L}(\mathfrak{d})$ . It follows that

(3.8) $\omega_{\mathfrak{d}}(g)=\sum_{i=1}^{N}(\pi(g)\varphi_{i}, \varphi_{i})$

if $\{\varphi_{1}$ , $\cdot$ .. , $\varphi_{N}\}$ is an orthonormal basis of $\mathcal{L}(\mathfrak{d})$ . In a special case where the-
multiplicity of $\mathfrak{d}$ in $\mathcal{L}(\mathfrak{d})$ is 1, we have

(3.9) $\varphi(g_{0})\omega_{\mathfrak{d}}(g)=\dim \mathfrak{d}\int_{K^{1}}\varphi(g_{0}kgk^{-1})dk$

for any $\varphi$ in $\mathcal{L}(\mathfrak{d})$ and for any $g_{0}$ in $J_{A}^{\times}$ (cf. [3, Th. 8]).
Since $\pi=\bigotimes_{v}\pi_{v}$ and $\mathfrak{d}=\bigotimes_{v}\mathfrak{d}_{v}$ with irreducible unitary representations $\pi_{v}$ of

$X_{v^{\times}}$ and irreducible representations $\mathfrak{d}_{v}$ of $K_{v}^{1}$ , we have

(3.10) $\omega_{\mathfrak{d}}(g)=\prod_{v}\omega_{\mathfrak{d}_{v}}(g_{v})$ ,

$\omega_{b_{v}}$ being the spherical function of type $\mathfrak{d}_{v}$ of $\pi_{v}$ . Also we have

(3.11) $\omega_{b}(k_{1}gk_{1}^{-1})=\omega_{0}(g)$ for $k_{1}\in K^{1}$

(3.12) $\int_{K^{1}}\chi_{b}(k_{1^{-1}})\omega_{\mathfrak{d}}(k_{1}g)dk_{1}=\omega_{b}(g)$ .

These are immediately seen from definition.
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\S 4. Construction of a space of automorphic forms.

1. Let .Jkr be a division quaternion algebra over a global field $F$ and $\eta$ a
character of A $/F^{\times}$ . Write $\eta(a)=II\eta_{v}(a_{v})$ for $a=(a_{v})\in A^{\times}$ . Let $\mathcal{V}$ be an
irreducible subspace of $\mathcal{A}(\eta, JC_{A}^{Y})and\pi$ the representation of $\mathcal{H}(JC_{A}^{\times})in\mathcal{V}$ . Let
$\mathcal{L}$ be the closure of $\mathcal{V}$ in $L_{0}^{2}(\eta, J_{\iota_{A}^{Y}}^{\prime})$ and write still $\pi$ for the representation
of (

$\chi_{A}^{v}$ in $\mathcal{L}$ . In the notation in \S 3, No. 2, let $\mathfrak{d}$ be any irreducible repre-
sentation of $K^{1}$ such that $\mathcal{L}(\mathfrak{d})\neq\{0\}$ and let $\{\varphi_{i}\}_{i=1}^{v}$ be an orthonormal basis
of $\mathcal{L}(\mathfrak{d})$ .

Denote by $GL_{2}(A)_{+}$ the group of all $s\in GL_{2}(A)$ such that $\det s=n(h)$ for
some $h\in JC_{A}^{\times}$ and put $GL_{2}(F)_{\backslash }.=GL_{2}(F)\cap GL_{2}(A)_{:}.$ . If $s$ is in $GL_{2}(A)_{+}$ , write
$s=(_{0}^{\det s}- 01)s_{1}$ and take an arbitrary $h$ in $J_{4\wedge^{\times}}$ with $n(h)=\det s$ . For an
element $\lrcorner lI$ in $S(J_{A})$ , let $\phi_{\psi}$ be a function on $GL_{2}(A)-$. defined by

$((4.1)$ $\phi_{M}(s)=\sum_{l=1}^{\backslash }|\det s|_{A}\int_{P(1()_{F}\backslash P()()_{A}}\times\times\Phi_{i}(M, s, g)\overline{\varphi_{i}(g)}d\dot{g}$ ,

where

(4.2) $\Phi_{i}(M, s, g)=\int_{0_{\vee p^{1}}^{\prime}\backslash r^{\prime}}\cdot A^{1}\varphi_{i}(g_{1}hg)\Theta(\rho(g_{1}h)\iota(g)r(s_{1})M)dg_{1}$ .

‘Since $\Theta(\rho(\gamma)M)=\Theta(\lambda(\gamma)M)=\Theta(M)$ for $\gamma\in Jt_{F}^{\times}$ , the integrand in (4.2) is, as a
function of $g_{1}$ , left $JC_{F^{1}}$ -invariant, and the integral is independent of a choice

’of $h$ . We see easily that $\Phi_{i}(M, s, g)$ is, as a function of $g$, left $JC_{F}^{\times}$-invariant.
LEMMA 3. $\phi_{M}(s)$ is a continuous function on $GL_{2}(A)_{+}$ , and $\phi_{M}(\sigma s)=\phi_{M}(s)$

for all $\sigma\in GL_{2}(F)_{+}$ and $s\in GL_{2}(A)_{+}$ .
PROOF. Since $x\rightarrow g^{-1}xhg$ is an automorphism of $X_{14}$ , the mapping $(h, g, s_{1})$

$\rightarrow\rho(h)\iota(g)r(s_{1})M$ is a continuous mapping of $JC_{A}^{\times}\times X_{A}^{\times}\times SL_{2}(A)$ into $S(JC_{A})$ .
Hence $\Theta(\rho(h)’(g)r(s_{1})M)$ is a continuous function of $h,$ $g,$ $s_{1}$ (for a fixed $\xi$ ,
$\rho(h)\iota(g)r(s_{1})M(\xi)$ is a continuous function of $h,$ $g,$ $s_{1}$ and $\Theta(M)$ is uniformly
convergent onacompact subset of S$(JC_{A}))$ . Since P $(JC^{\times})_{F}\backslash P(JC^{\times})_{A}andJC_{F}^{1}\backslash JC_{A}^{1}$

are compact, the integrand in (4.1) is bounded if $s$ stays in a compact set of
$GL_{2}(A)_{+}$ . It implies that $\phi_{M}$ is continuous.

Let $\sigma$ be an element in $GL_{2}(F)_{+}$ of the form $\left(\begin{array}{lllll} & & & a & 0\\ & & & 0 & 1\end{array}\right)$ . We can find an
element $\delta$ in $JC_{F}^{\times}$ such that $n(\delta)=a$ . Substituting $\delta h$ for $h$ and then replacing
$g_{1}$ by $\delta g_{1}\delta^{-1}$ in (4.2), we see that $\Phi_{t}(M, \sigma s, g)=\Phi_{i}(M, s, g)$ . Hence $\phi_{M}(\sigma s)=\phi_{M}(s)$ .
Assume now that $\sigma\in SL_{2}(F)$ . By Lemma 1, if $s=(^{de_{0^{ts}}}$ $01)s_{1}=s_{2}\left(\begin{array}{lllll} & & & dets & 0\\ & & & 0 & 1\end{array}\right)$ ,

we have $\rho(g_{1}h)\iota(g)r(s_{1})M=\rho(g_{1}h)r(s_{1})\iota(g)M=r(s_{2})\rho(g_{1}h)\iota(g)M$, and by Proposi-
tion 1, $\Theta(r(s_{2})\rho(g_{1}h)\iota(g)M)$ remains invariant if we replace $s_{2}$ by $\sigma s_{2}$ . Hence
$\Phi_{i}(M, \sigma s, g)=\Phi_{i}(M, s, g)$ and $\phi_{M}(\sigma s)=\phi_{M}(s)$ . This proves the lemma.

2. An element $s=(s_{v})$ in $GL_{2}(A)$ belongs to $GL_{2}(A)_{+}$ if and only if $\det s_{v}$
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is positive for all real places $v$ ramified in $\sigma X$ . From this it follows that
$GL_{2}(A)=GL_{2}(F)GL_{2}(A)_{+}$ . By Lemma 3 $\phi_{M}$ can be extended to a function on
$GL_{2}(A)$ invariant under the left translations by elements of $GL_{2}(F)$ . Obviously
$\phi_{M}$ is then continuous on $GL_{2}(A)$ .

Consider an arbitrary continuous function $\phi$ on $GL_{2}(F)\backslash GL_{2}(A)$ . For a
fixed $s,$ $\phi(s)$ is a function of $a\in A$ , invariant under the translation
$ a\rightarrow a+\alpha$ for $\alpha\in F$. Let $\psi$ be as in \S 2, No. 3. Every character of $A/F$ can
be written as $a\rightarrow\psi(\alpha a)$ with $\alpha\in F$. Hence the Fourier coefficients of the
above function are

$\hat{\phi}(a, s)=\int_{A/F}\phi(s)\psi(-\alpha a)da$ ,

$\prime da$ being the Haar measure of $A$ such that the total volume of $A/F$ is 1. We
see that

$t(4.3)$ $\hat{\phi}(\alpha, s)=\hat{\phi}(1,$ $s)$ for $\alpha\in F^{x}$

Let us now prove that
84.4) $\phi_{M}(s)=\sum_{\alpha\in F}\hat{\phi}_{M}(\alpha, s)$

for $M\in S(JC_{A})$ . Assume first that $s\in GL_{2}(A)_{+}$ . The term by term integration
of (4.2) gives (this is permitted, since $\Theta(\rho(h)\iota(g)r(s_{1})M)$ converges uniformly
while $(h, g, s_{1})$ stays in a compact subset of $JC_{A}^{\times}\times JC_{A}^{\times}\times SL_{2}(A))$

$\Phi_{i}(M, s, g)=\int_{j\zeta\backslash }JC_{A^{1}}\varphi_{i}(g_{1}hg)r(s_{1})M(0)dg_{1}p^{1}$

’

$+\sum_{\xi-.r_{F}^{\times}}\int_{J\zeta_{F^{1}}}\backslash Jr_{A^{1}}\varphi_{i}(g_{1}hg)r(s_{1})\iota(g)M(\xi g_{1}h)dg_{1}$ .

-Here the second term can be written as

$\xi J(\sum_{F}\times/Jc_{F^{1}}\int_{Ji_{A^{1}}}\varphi_{i}(g_{1}\xi hg)r(s_{1})\iota(g)M(g_{1}\xi h)dg_{1}$ .

Therefore, putting

$’(4.5)$ $\phi_{0}(s)=\sum_{i=1}^{N}|\det s|_{A}\int_{P(x^{\times})_{F\backslash }}P(JC^{x})\int_{Ji_{F}^{1\backslash _{\backslash ^{X^{1}}A}}}A$

$\varphi_{i}(g_{1}hg)r(s_{1})M(0)\overline{\varphi_{i}(g)}dg_{1}d\dot{g}$ ,

and

$\}(4.6)$ $\phi_{1}(s)=\sum_{i=1}^{N}|\det s|_{A}\int_{P(\zeta^{\times})_{F\backslash }}\vee 1P(x^{\times})\int_{j\zeta}AA^{1}$

$\varphi_{i}(g_{1}hg)r(s_{1})\iota(g)M(g_{1}h)\overline{\varphi_{i}(g)}dg_{1}d\dot{g}$ ,
we have
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(4.7) $\phi_{M}(s)=\phi_{0}(s)+\sum_{F^{X}\alpha-\perp}\phi_{1}(\left(\begin{array}{ll}\alpha & 0\\0 & 1\end{array}\right)s)$ .

Here we have put $F_{+}^{\times}=F^{\times}\cap n(JC_{F}^{\times})$ .
By the same reasoning as before, the Fourier coefficients of $\phi_{M}$ can be

calculated term by term. If $s=s_{2}\left(\begin{array}{ll}dets & 0\\0 & 1\end{array}\right)$ , we have

$\int_{A/F}\Phi_{i}(M,$
$\left(\begin{array}{ll}1 & a\\0 & 1\end{array}\right)s,$ $g)\psi(-\alpha a)da$

$=_{\xi}\sum_{y_{F}}\int_{\Lambda/p}\int_{j(}F^{1}\backslash x_{A^{1}}\varphi_{i}(g_{1}hg)r(s_{2})\rho(g_{1}h)\iota(g)M(\xi)$

$\psi(an(\xi)-aa)dg_{1}da$ .
This is not $0$ if and only if there exists an element $\xi$ in $JC_{F}$ with $\alpha=n(\xi)$ ,

and if $\alpha=n(\xi)$ for $\xi\in JC_{F}^{x}$ , then it equals

$\int_{J_{A^{1}}^{\prime}}\varphi_{i}(g_{1}hg)\rho(g_{1}h)r(s_{1})\iota(g)M(\xi)dg_{1}$

$=\int_{x_{A^{1}}}\varphi_{i}(\xi g_{1}hg)r(s_{1})\iota(g)M(\xi g_{1}h)dg_{1}$

$=\int_{JC_{A^{1}}}\varphi_{i}(g_{1}\xi hg)r(s_{1})\iota(g)M(g_{1}\xi h)dg_{1}$ .

From this we see that $\hat{\phi}_{M}(0, s)=\phi_{0}(s)$ and

(4.8) $\phi_{M}(\alpha, s)=\{0\phi_{1}(\left(\begin{array}{ll}\alpha & 0\\0 & 1\end{array}\right)s)$

if $\alpha\in F_{+}^{\times}$ ,

otherwise.

Hence (4.4) (for $s\in GL_{2}(A)_{+}$ ) follows from (4.7).

If $s$ is not in $GL_{2}(A)_{+}$ , find an element $\beta$ in $F^{\times}$ such that $s^{\prime}=(_{0}^{\beta}$ $01)s$

$\in GL_{2}(A)_{+}$ . Then $\phi_{M}(s^{\prime})=\phi_{M}(s)$ and $\hat{\phi}_{M}(\alpha, s^{\prime})=\hat{\phi}_{M}(\alpha\beta, s)$ by (4.3) so that (4.4)
is valid for $s$ . Putting $\alpha=\beta^{-1}$ in the above equality, we see that $\hat{\phi}_{M}(1, s)=0$

if $s\not\in GL_{2}(A)_{+}$ (cf. (4.8)).
LEMMA 4. $ 1f\pi$ is not a representation of dimension 1, we have $\hat{\phi}_{M}(0, s)=0$.
PROOF. For $\varphi\in \mathcal{V}$ , put

$H\varphi(g)=\int_{x_{F^{1}}\backslash r_{A^{1}}}J\varphi(g_{1}g)dg_{1}$ .

It is easy to see that $ H\varphi$ is a continuous function on $C\kappa_{A}^{\times}$ belonging to
$L_{0}^{2}(\eta, JC_{1\wedge}^{\times})$ . Furthermore, $ H\varphi$ is right K-finite. Hence $H\varphi\in \mathcal{A}(\eta, JC_{A}^{\times})$ . Since
$\varphi\rightarrow H\varphi$ commutes with the right translation, either $H(\mathcal{V})=0$ or the repre-
sentation of $\mathcal{H}(JC_{A}^{\times})$ in $H(\mathcal{V})$ is equivalent to $\pi$ . In the latter case $\pi$ is neces-
sarily one-dimensional representation, for $H\varphi(g)$ depends only on $n(g)$ . Hence
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we have $H(\mathcal{V})=\{0\}$ , and $\hat{\phi}_{M}(0, s)=\phi_{0}(s)=0$ by (4.5).
3. In the notation in No. 2, we put $W_{M}(s)=\hat{\phi}_{M}(1, s)$ . Evidently

$W_{M}(\left(\begin{array}{ll}1 & a\\0 & 1\end{array}\right)s)=\psi(a)W_{M}(s)$

for $a\in A$ . Remark that $\hat{\phi}_{M}(1, s)$ is $\phi_{1}(s)$ if $s\in GL_{2}(A)_{+}$ and $0$ otherwise. In
view of (4.6) and (3.8) we obtain

(4.9) $W_{M}(s)=\left\{\begin{array}{l}|dets|_{A}\int_{\iota}\chi_{A^{1}}\omega_{b}(g_{1}h)r(s_{1})M(g_{1}h)dg_{1} ifs\in GL_{2}(A)_{+}\\0 ifs\not\in GL_{2}(A)_{+}.\end{array}\right.$

It follows from (3.11) and (3.12) that

$W_{M}=W_{\tilde{M}}=W\overline{x}_{\mathfrak{d}^{M}}$ ,
if we put

$\tilde{M}(x)=\int_{K^{1}}M(k_{1}xk_{1^{-1}})dk_{1}$ ,

$\overline{\chi}_{b}*M(x)=\int_{K^{1}}\chi_{\mathfrak{d}}(k_{1})M(k_{1}x)dk_{1}$ .

For this reason we may limit ourselves to the functions $M$ such that $M=\tilde{M}$

$=\overline{x}_{\mathfrak{d}}*M$.
In a special case where the multiplicity of $\mathfrak{d}$ in $\mathcal{L}(\mathfrak{d})$ is 1, we still obtain

(4.9) if we put

(4.10) $\varphi(g)\phi_{M}(s)=\dim \mathfrak{d}|\det s|_{A}\int_{oc_{F}^{1}\backslash x_{A^{1}}}\varphi(g_{1}hg)\Theta(\rho(g_{1}h)r(s_{1})\iota(g)M)dg_{1}$

for $s\in GL_{2}(A)_{+}$ and for $M\in S(JC_{A})$ such that $\tilde{M}=M$, where $\varphi$ is any non-zero
function in $\mathcal{L}(\mathfrak{d})$ and $g$ is any element in $<x_{A}^{\times}$ with $\varphi(g)\neq 0$ (cf. (3.9)).

4. Let $S_{1}(J_{A})$ be the subspace of $S(JC_{A})$ spanned by all $M$ satisfying
the following conditions.

i) $M(x)=\Pi M_{v}(x_{v})$ with $M_{v}\in S(JC_{v})$ .
ii) $\tilde{M}=M$.

iii) $\overline{\chi}_{\mathfrak{d}}*M=M$.
iv) If $F_{v}=R$ and $X_{v}$ is a division quaternion algebra over $R,$ $JC_{v}$ is

identified with the set of all matrices of the form ( $\frac{b}{a}$) with $a,$ $b\in C$.
We have $n(x)=\det x$ for $x\in X_{v}$ . Assume that $\pi_{v}$ is written as

$\pi_{v}(g)=n(g)^{r}\rho_{n}(g)$

( $r\in C,$ $\rho_{n}=the$ n-th symmetric tensor representation of $GL_{2}(C)$ ) and that
$\psi_{v}(\alpha)=\exp(2\pi iu_{v}\alpha)$ with $u_{v}\in R$ . Let $\chi_{n}$ be the character of $\rho_{n}$ . Then $M_{t}$.
is of the form
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$M_{v}(x)=\exp(-2\pi|u_{v}|n(x))P(n(x))\chi_{n}(x^{c})$

for $x\in X_{v},$ $P$ being a polynomial.
v) If $F_{v}=R$ or $C$ and $\sigma X_{v}=M_{2}(F_{v})$ , and if $\psi_{v}(\alpha)=\exp(2\pi iu_{v}tr_{F_{v}/R}(\alpha))$

with $u_{v}\in R,$ $M_{v}$ is of the form

$ M_{v}(x)=\exp$ ( $-\pi d_{v}|u_{v}|$ tr $(x{}^{t}\overline{x})$) $P(x)$ ,

where $d_{v}=[F_{v} : R]$ and $P(x)$ is $a$ polynomial of $\xi_{ij},$ $\xi_{ij}$ if $x=\left(\begin{array}{ll}\xi_{11} & \xi_{12}\\\xi_{21} & \xi_{22}\end{array}\right)$ .

5. Let $\mathcal{V}^{*}$ be the space spanned by all $\rho(\left(\begin{array}{ll}a & 0\\0 & 1\end{array}\right))\phi_{M}$ for $M\in S_{1}(JC_{A})$

and $a\in E,$ $E$ being a representative system of A $/(A^{\times})^{2}$ . By (4.4) the mapping
$\phi_{M}(s)\rightarrow W_{M}(s)=\hat{\phi}_{M}(1, s)$ is injective and commutes with the right translation.

Let $\mathcal{W}^{*}$ be the space spanned by all $\rho(\left(\begin{array}{ll}a & 0\\0 & 1\end{array}\right))W_{M}$ for $M\in S_{1}(JC_{A})$ and $a\in E$.
PROPOSITION 2. $ 1f\pi$ is not one-dimensional, $\mathcal{V}^{*}$ is a subspace of $\mathcal{A}_{0}(\eta$ ,

$CL_{2}(A))$ .
PROOF. In \S 5 we shall see that $\mathcal{W}^{*}$ is invariant under $\rho(\mu)$ for all

$\mu\in \mathcal{H}(GL_{2}(A))$ and the representation of $\mathcal{H}(GL_{2}(A))$ in $\mathcal{W}^{*}$ is admissible. This
implies the conditions (3.1) and (3.2) for all functions in $\mathcal{V}^{*}$ . So far we see
that $\phi_{M}$ is continuous on $GL_{2}(A)$ , left $GL_{2}(F)$-invariant and cuspidal $(i$ . $e$ .
$\hat{\phi}_{M}(0, s)=0)$ . Therefore it is enough to prove that $\phi_{M}$ satisfies (3.3) and (3.4)
\langle then, every right translate of $\phi_{M}$ will also satisfy these conditions).

Let $z$ be in A. Since

$zs=\left(\begin{array}{lll}z^{2} & dets & 0\\ & 0 & 1\end{array}\right)\left(\begin{array}{ll}Z^{- 1} & 0\\0 & z\end{array}\right)s_{1}$ ,

$r$(( $0^{- 1}z$ $z0$)) $M=|z^{-1}|_{A}\rho(z^{-1})M$ ,

we see that $\Phi_{t}(M, zs, g)=|z^{-1}|_{A}\eta(z)\Phi_{i}(M, s, g)$ and hence that $\phi_{JI}(zs)=\eta(z)\phi_{M}(s)$

(cf. (4.1), (4.2)).
To prove (3.4) in our case, we may assume that $\Omega$ is a compact subset

of $GL_{2}(A)_{+}$ and $a$ varies within $A_{+}^{\times}=n(JC_{A}^{\times})$ . Let us substitute $(_{0}^{a}$ $01)s$ for $s$

in (4.1). Write $s=\left(\begin{array}{ll}dets & 0\\0 & 1\end{array}\right)s_{1}$ and let $h$ be an element in $JC_{A}^{\times}$ such that

$n(h)=a\det s$ . If $s$ varies in $\Omega$ and $g$ varies in a compact fundamental domain
$\Omega_{1}$ of $P(JC^{\times})_{F}$ in $P(JC^{X})_{A},$ $\iota(g)r(s_{1})M$ stays in a compact subset of $S(JC_{A})$ . By

[11, Lemma 5] there exists a function $M_{0}$ in $S(JC_{A})$ such that

$|\iota(g)r(s_{1})M(x)|\leqq M_{0}(x)$

for all $x\in Jf_{A},$ $s\in\Omega,$ $g\in\Omega_{1}$ . On the other hand, the functions $\varphi_{i}$ are bounded
on $Jc_{\wedge}^{x_{1}}$ . Hence we get an estimate



Theta series and automorphic forms 657

$|\phi_{M}(\left(\begin{array}{ll}a & 0\\0 & 1\end{array}\right)s)|\leqq c_{1}|n(h)|_{A}\int_{Jc_{F^{1}}\backslash r_{A}^{1}}\ovalbox{\tt\small REJECT}\Theta(\rho(g_{1}h)M_{0})dg_{1}$ ,

$*c_{1}$ being a constant independent of $a$ and $s$ . Now (3.4) is a consequence of
-cthe following lemma.

LEMMA 5. Let $c$ be a constant $>0$ , and $M$ an element in $S(J(A)$ . Then
$u\Theta(\rho(h)M)$ is bounded for all $h\in cX_{A}^{\times}$ such that $|n(h)|_{A}>c$ .

PROOF. Assume first that $F$ is a number field. Let $S_{\infty}$ be the set of all
archimedean places in $F$ and put

$JC_{\infty}=\prod_{v\in S_{\infty}}X_{v}$ . We can assume that $M(x)=$

$M_{\infty}(x_{\infty})_{v}\prod_{\sim^{s_{\infty}}}M_{v}(x_{v})$ , where $M_{\infty}\in S(JC_{\infty})$ and $M_{v}$ is the characteristic function of

. a $0_{v}$ -lattice $L_{v}$ in $J_{v}$ , and almost all $L_{v}$ are $\mathfrak{Q}_{v}$ . Clearly $\Theta(\rho(h)M)$ does not
change if we replace $h$ by $\delta h$ for $\delta\in JC_{F}^{\times}$ . Let $J_{A}^{0}$ be the group of all $g\in Jl_{A}^{\times}$

with $|n(h)|_{A}=1$ . Identify an element $\alpha\in R^{\times}$ with an element $g\in<X_{A}^{\times}$ such
that $g_{v}=1$ for $v\not\in S_{\infty}$ and $ g_{v}=\alpha$ for $v\in S_{\infty}$ . We have $J\zeta_{A}^{\times}=R^{\times}JC_{A}^{0}$ and $JC_{F}^{\times}\backslash JC_{A^{0}}$

is compact. Hence we may assume that $h=\alpha\in R^{x}$ applying [11, Lemma 5]
Again.

Let $L$ be the set of all $\xi\in JC_{F}$ such that $\xi\in L_{v}$ for all $v\not\in S_{\infty}$ . Projecting
$L$ to $JC_{\infty}$ , we get a Z-lattice in $JC_{\infty}$ . We have

$\Theta(\rho(\alpha)M)=\sum_{\xi--L}M_{\infty}(\alpha\xi)$ .

Let $M_{\infty}^{\prime}$ be the Fourier transform of $M_{\infty}$ and $L^{\prime}$ the dual lattice of $L$ . By
nyPoisson’s formula

$\sum_{\xi\in L}M_{\infty}(a\xi)=|\alpha|^{-m}\sum_{\xi\in p}M_{\infty}^{\prime}(\alpha^{-1}\xi)$ ,

$*$

$m$ being the dimension of $JC_{\infty}$ over $R$ . Letting $|\alpha|\rightarrow\infty$ , the right hand side

converges to a constant multiple of $\int M_{\infty}^{\prime}(x_{\infty})dx_{\infty}$ . This proves our assertion.

If $F$ is a function field, it is easy to show that the support of $\rho(h)M$ is
contained in a fixed compact subset of $JC_{A}$ for all $h$ with $|n(h)|_{A}>c$ . Then
the lemma follows immediately.

\S 5. Whittaker spaces.

1. We shall prove that the representation of $\mathcal{H}(GL_{2}(A))$ in $\mathcal{W}^{*}$ introduced
in \S 4, No. 4 is admissible, and determine its equivalence class.

From the definition of $W_{M}$ and (3.10) it follows that, if $M(x)=\Pi M_{v}(x_{v})$

is an element of $S_{1}(JC_{A})$ , then we have

$\backslash (5.1)$

$W_{M}(s)=\prod_{v}W_{M_{v}}(s_{v})$ ,

where
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(5.2) $W_{Mv}(s)=|\det s|_{F_{v}}\int\ovalbox{\tt\small REJECT}\omega_{\mathfrak{h}}(g_{1}h)r_{v}(s_{1})M_{v}(g_{1}h)dg_{1}$

for $s=\backslash s_{1}\in GL_{2}(F_{v})_{\prec}.,$ $h$ being an element of J.; with $n(h)=\det s_{r}$

and

(5.3) $W_{M_{v}}(s)=0$ for $s$ ei $GL_{2}(F_{v})_{+}$ .

Clearly we have

(5.4) $W_{Mv}(ss^{\prime})=W_{r_{v}(s^{\prime})M_{v}}(s)$ for $s^{\prime}\in SL_{2}(F_{v})$ .

Let $\eta_{v}$ be as in \S 4, No. 1. By the same proof as in Proposition 2 we get

(5.5) $W_{M_{v}}(sz)=\eta_{v}(z)W_{M_{v}}(s)$ for $z\in F_{v^{\times}}$ .

Denote by $S_{1}(JC_{v})$ the space of all $M_{v}\in S(JC_{v})$ satisfying

$M_{v}(k_{1}xk_{1^{-1}})=M_{v}(x)$ $(k_{1}\in K_{v}^{1})$ , $\overline{\chi}_{\iota_{v}}*M_{v}=M_{v}$

as well as the conditions iv), v) in \S 4, No. 4. Let $\mathcal{W}_{v}^{*}$ be the space spanned‘

by all $\rho()W_{M_{v}}$ for $M_{v}\in S_{1}(JC_{v})$ and $\alpha\in E_{v},$ $E_{v}$ being a representative-

system of $F_{v^{\times}}/(F_{v^{\times}})^{2}$ . Let $M_{v^{0}}$ be the characteristic function of $\mathfrak{Q}_{v}$ and write
$W_{v}^{0}=W_{Mv}$ for $M_{v}=M_{v^{0}}$ . We shall prove in Lemma 7 that, for almost all $v$ ,
$W_{v}^{0}$ is invariant under the right translations by elements of $GL_{2}(\mathfrak{o}_{v})$ . By
(5.1) we see that $\mathcal{W}^{*}$ is the restricted tensor product of $\mathcal{W}_{v}^{*}$ with respect to $\cdot$

$\{W_{v}^{0}\}$ and that, if we let $\mathcal{H}(GL_{2}(A))$ (resp. $\mathcal{H}(GL_{2}(F_{v}))$ ) act on $\mathcal{W}^{*}$ (resp. $\mathcal{W}_{v}^{*}$ )
by right translation, the representation of $\mathcal{H}(GL_{2}(A))$ in $\mathcal{W}^{*}$ is the tensor
product of the representations of $\mathcal{H}(GL_{2}(F_{v}))$ in $\mathcal{W}_{v}^{*}$ (granted that $\mathcal{W}^{*}$ or
$\mathcal{W}_{v}^{*}$ is invariant under this action, which we are going to prove).

$\pi$ being as in \S 4, No. 1, write $\pi=\otimes\pi_{v}$ . Let $S$ be the set of all places
in $F$ ramified in $JC$ .

PROPOSITION 3. $\mathcal{W}_{v}^{*}$ is invariant under the action of $\mathcal{H}(GL_{2}(F_{v}))$ and the
representation $\rho_{v}$ of $\mathcal{H}(GL_{2}(F_{v}))$ in $\mathcal{W}_{v}^{*}$ is admissible. If $v\not\in S$ and $\pi_{v}$ is infinite
dimensional, $\rho_{v}$ is equivalent to $\pi_{v}$ . If $v\in S,$ $\rho_{v}$ is equivalent to $\pi_{v}^{*}$ ( $\S 2,$ No. 2).

The proof of this proposition will be given in No. $2-No$ . $11$ . Since all
the arguments in the following are purely local, we write for simplicity $r$

for $r_{v}$ . $\mathfrak{d}_{v}$ denotes always an irreducible representation of $K_{v}^{1}$ contained in
the restriction of $\pi_{v}$ to $K_{v}^{1}$ .

2. In No. $2-No$ . $6,$ $v$ denotes a non-archimedean place in $F$ unramified in
$JC$ so that $JC_{v}=M_{2}(F_{v})$ and $JC_{v}^{\times}=GL_{2}(F_{v})$ . Assume first that $\pi_{v}=\pi(\mu_{1}, \mu_{2})$

with quasi-characters $\mu_{1},$ $\mu_{2}$ of $F_{v^{\times}}$ such that $\mu_{1}\mu_{2}^{-1}$ is neither $||_{r_{v}}$ nor $||_{Fv}^{-1}$ .
By Godement [3, No. 16] the spherical function $\omega_{\iota_{v}}$ is obtained in the-
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-following way.*) Let $T,$ $\zeta$ be as in \S 1, No. 3 (take $F$ to be $F_{v}$ ). Put $U=$

$\mathcal{T}\cap K_{v^{1}}$ ; then $JC_{v^{\times}}=TK_{v}^{1}$ . If we put

$x_{\mathfrak{y}_{v}}^{\zeta}(tk)=\zeta(t)\int_{U}\zeta(u^{-1})\chi_{\mathfrak{y}_{v}}(uk)du$

for $t\in T$ and $k\in K_{v}^{1}$ , we have

$\downarrow(5.6)$ $\omega_{\mathfrak{d}v}(g)=\int_{Kv^{1}}x_{bv}^{\zeta}(k_{1}gk_{1}^{-1})dk_{1}$

for $g\in JC_{v}^{\times}$ . Here $dk_{1}$ (resp. $du$ ) is the Haar measure of $K_{v}^{1}$ (resp. $U$ ) with
the total volume 1.

Let us calculate $W_{M}$ for $M\in S_{1}(J\zeta_{v})$ . We put $T^{1}=T\cap JC_{v}^{1}$ . For $\alpha\in F_{v^{x}}$

:set $h=\left(\begin{array}{ll}\alpha & 0\\0 & 1\end{array}\right)$ . Since $M(k_{1}xk_{1^{-1}})=M(x)$ and $\overline{\chi}_{\iota_{v}}*M=M$, we have

$|\alpha|_{F_{v}^{-1}}W_{M}(\left(\begin{array}{ll}\alpha & 0\\0 & 1\end{array}\right))=\int_{Ji_{v^{1}}}\omega_{\mathfrak{d}_{v}}(hg_{1})M(hg_{1})dg_{1}$

$=\int_{x_{v}^{1}}x_{bv}^{\zeta}(hg_{1})M(hg_{1})dg_{1}$

$=\int_{T^{1}/U}\int_{K_{v^{1}}}\int_{U}\zeta(ht_{1}u^{-1})x_{\iota_{v}}(uk_{1})M(ht_{1}k_{1})di_{1}dk_{1}du$

$=\int_{T^{1}/U}\int_{U}\zeta(ht_{1}u^{-1})M(ht_{1}u^{-1})dt_{1}du$

$=\int_{\tau^{1}}\zeta(ht_{1})M(ht_{1})dt_{1}$ .

Here $dt_{1}$ is the left invariant measure of $T^{1}$ and $dt_{1}=di_{1}du$ . If we write
$rt_{1}=(_{0}^{1}$ $\beta 1$) $\left(\begin{array}{ll}\gamma & 0\\0 & \gamma^{-1}\end{array}\right),$ we have $ dt_{1}=|\gamma|_{F_{v}^{-2}}d\beta d^{\times}\gamma$ . Then the last expression in

the above equals

$\mu_{1}(\alpha)|\alpha|_{F_{v}^{-1/2}}\int_{F_{v}^{x}}\int_{F_{v}}\mu_{1}\mu_{2}^{-1}(\gamma)M(\left(\begin{array}{ll}a\gamma & \beta\\ 0 & \gamma^{-1}\end{array}\right))d\beta d_{7}^{\times}$ .

Therefore, if $s=\left(\begin{array}{ll}a & 0\\0 & 1\end{array}\right)s_{1}$ with $\det s=\alpha$ , we get

$\iota(5.7)$ $ W_{M}(s)=\mu_{1}(a)|\alpha|_{F_{v}^{1/2}}\int_{F_{v}^{\times}}\int_{F_{v}}\mu_{1}\mu_{2}^{-1}(\gamma)r(s_{1})M((0a\gamma\gamma^{-1))d\beta d^{\times}\gamma}\beta$ .

For $M\in S(JC_{v})$ and $(\alpha_{1}, \alpha_{2})\in F_{v}\times F_{v}$ , we put

$ f(M)(a_{1}, \alpha_{2})=\int_{F_{v}}M(\left(\begin{array}{ll}a_{1} & \xi\\ 0 & \alpha_{2}\end{array}\right))d\xi$ .

$*)$ In [3, No. 16] the space $\mathfrak{H}^{\zeta}$ of the induced representation consists of all con-
tinuous functions on $GL_{2}(F_{v})$ satisfying $f(tg)=\zeta(t)f(g)$ $(t\in T)$ . The space $\mathcal{B}(\mu_{1}, \mu_{2})$

$e$ of $\pi(\mu_{1}, \mu_{2})$ is the space of all locally constant functions in $\mathfrak{H}^{\zeta}$ . However, the spherical
functions of both representations are the same, for all $K_{v^{1}}- finite$ functions in $\mathfrak{H}^{\zeta}$ are

-Alocally constant.
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Clearly $f(M)\in S(F_{v}\oplus F_{v})$ . Denote by $r_{0}$ the Weil representation of $ SL_{2}(F_{v}\rangle$ $4$

in $S(F_{v}\oplus F_{v})$ (with respect to the character $\psi_{v}$ of $F_{v}$ ). By [5, Prop. 1.6] $r_{\mathbb{C}\backslash }$.
can be extended to a representation of $GL_{2}(F_{v})$ such that

$r_{0}(\left(\begin{array}{ll}\alpha & 0\\0 & 1\end{array}\right))m(a_{1}, a_{2})=m(a\alpha_{1}, \alpha_{2})$

for $m\in S(F_{v}\oplus F_{v})$ .
LEMMA 6. For $M\in S(JC_{v})$ and $s_{1}\in SL_{2}(F_{v})$ we have

$f(r(s_{1})1lf)=r_{0}(s_{1})f(M)$ .

The proof is immediate.
It follows from Lemma 6 and (5.7) that

(5.8) $W_{M}(s)=\mu_{1}(\det s)|\det s|_{F_{v}^{1/0}}\cdot\int_{F_{v}}1$

so that $TV_{M}$ is contained in the space $W(\mu_{1}, \mu_{2} ; \psi_{v})$ in the notation in [5, \S 3]..
By the assumption on $\mu_{1},$ $\mu_{2}$ this space is the Whittaker space of $\pi(\mu_{1}, \mu_{2})1$

(cf. [5, Prop. 3.5]).

For $s_{1}\in SL_{2}(F_{v})$ and $M\in S_{1}(JC_{v})$ , we have $\rho(s_{1})W_{K}=W_{N}$ with $N=r(s_{1})M$,
and $S_{1}(JC_{v})$ is invariant under $r(s_{1})$ , because $r(s_{1})$ commutes with $\rho(k_{1})and^{\{}$

$\lambda(k_{1})$ for $k_{1}\in K_{v}^{1}$ (Lemma 1). By (5.4) and (5.5) the space $\mathcal{W}_{v^{*}}$ spanned by all,

$\rho(\left(\begin{array}{ll}\alpha & 0\\0 & 1\end{array}\right))W_{M}$ ( $M\in S_{1}(JC_{v})$ and $\alpha\in E_{v}$ ) is invariant under $\rho(s)$ for all
$s\in GL_{2}(F_{v})$ . $\mathcal{W}_{v}^{*}$ is clearly non-zero. Since $W(\mu_{1}, \mu_{2} ; \psi_{v})$ is irreducible, we
have $\mathcal{W}_{v}^{*}=W(\mu_{1}, \mu_{2} ; \psi_{v})$ and hence $\rho_{v}$ is equivalent to $\pi(\mu_{1}, \mu_{2})$ .

3. Let $\pi_{v}$ be $\pi(\mu_{1}, \mu_{2})$ with quasi-characters $\mu_{1},$ $\mu_{2}$ of $F_{v^{\times}}$ such that
$\mu_{1}\mu_{2}^{-1}=||_{Fv}^{-1}$ . Write $\mu_{1}(\alpha)=x(\alpha)|\alpha|_{F_{v}^{-1/2}},$ $\mu_{2}(\alpha)=\chi(\alpha)|\alpha|_{F^{1}v^{/2}}$ . Then $\pi_{v}$ is the $\cdot$

one-dimensional representation $\chi_{\circ n}$ . Obviously $\mathfrak{d}_{v}$ is the identity representa-
tion and $\omega_{b_{v}}(g)=x(n(g))$ . By a simple calculation we again obtain (5.8) for
$\lrcorner\backslash l\in S_{1}(JC_{v})$ . As in No. 2, we see that $\mathcal{W}_{v}^{*}$ is an invariant subspace of
$W(\mu_{1}, \mu_{2} ; \psi_{v})$ . Consequently $\rho_{v}$ is admissible.

4. For almost all $v$ , the restriction of $\pi_{v}$ to $K_{v}$ contains the identity
representation. By [5, Lemma 3.9], if $JC_{v}^{\times}=GL_{2}(F_{v})$ and $v$ is non-archimedean,
such a $\pi_{v}$ is of the form $\pi(\mu_{1}, \mu_{2})$ with unramified ( $=trivial$ on $0_{v}^{x}$ ) quasi-
characters $\mu_{1},$ $\mu_{2}$ of $F_{v^{\times}}$ .

LEMMA 7. Assume that $\pi_{v}=\pi(\mu_{1}, \mu_{2})$ with unramified quasi-characters $\mu_{1},$ .
$\mu_{2}$ of $Fv$ . Let $\mathfrak{a}_{v}$ be the conductor of $\psi_{v}$ . Put

$L_{v}=0_{v}e_{11}+0_{v}e_{12}+\mathfrak{a}_{v}e_{21}+\mathfrak{a}_{v}e_{22}$ ,

$e_{ij}$ being a 2 by 2 matrix such that $(i, j)$ -coeff cient is 1 and the other coefficients;
are $0$ . If $N$ is the characteristic function of $L_{v}$ , then $r(s_{1})N=N$ for $s_{1}\in SL_{2}(0_{v}).$ .

Furthermore, if $M=\int_{K_{0}^{1}}\lambda(k_{1})Ndk_{1}$ , then $\rho(s)W_{M}=W_{M}$ for $s\in GL_{2}(0_{v})$ .
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PROOF. $GL_{2}(0_{v})$ is generated by $\left(\begin{array}{lll} & \alpha & 0\\ & 0 & a^{-1}\end{array}\right),$ $(_{0}^{1}$ $\beta 1),$ $\left(\begin{array}{lll} & 0 & 1\\ & -1 & 0\end{array}\right),$ $\left(\begin{array}{lll} & \alpha & 0\\ & 0 & 1\end{array}\right)(\alpha\in$

$Q_{v^{\times}}\beta\in 0_{v})$ . We note that $L_{v}$ is a $\mathfrak{v}_{v}$ -lattice and $n(x)\in \mathfrak{a}_{v}$ for all $x\in L_{v}$ . It

follows from definition that $r(s)N=N$ if $s=\left(\begin{array}{lll} & \alpha & 0\\ & 0 & \alpha^{-1}\end{array}\right)$ or $(_{0}^{1}$ $\beta 1)$ . Let $L_{v}^{*}$ be

the set of all $x\in JC_{v}$ such that tr $(xL_{v})\subset \mathfrak{a}_{v}$ . Evidently $L_{v}^{*}=\mathfrak{a}_{v}e_{11}+0_{v}e_{12}+\mathfrak{a}_{v}e_{21}$

$+\mathfrak{o}_{v}e_{22}$ and the Fourier transform $N^{\prime}$ of $N$ is the characteristic function of
$L_{v}^{*}$ up to a positive constant. Hence $r(\left(\begin{array}{lll} & 0 & 1\\ & -1 & 0\end{array}\right))N(x)=N^{\prime}(x^{\iota})=cN(x)$ . Since

$r(\left(\begin{array}{lll} & 0 & 1\\ & -1 & 0\end{array}\right))N=r(-1)N=N,$ $c$ must be 1. This proves the first assertion.

By Lemma 1, i), the same assertion is valid also for $M$. It follows from (5.8)

that

$W_{M}(s\left(\begin{array}{lll} & \alpha & 0\\ & 0 & 1\end{array}\right))=\mu_{1}(\det s)|\det s|_{F_{v}^{1/2}}$

$\int\mu_{1}\mu_{2}^{-1}(\gamma)r_{0}(s)f(\rho$ ( $ 0\alpha$
$10$) $ M)(\gamma, \gamma^{-1})d^{\times}\gamma$ .

If $a\in 0_{v}^{\times}$ , we have $\rho(\left(\begin{array}{lll} & a & 0\\ & 0 & 1\end{array}\right))M=M$ so that $\rho(\left(\begin{array}{lll} & a & 0\\ & 0 & 1\end{array}\right))W_{M}=W_{M}$ . Together

with what we have proved above, this proves the second assertion.
5. We assume now that $\pi_{v}=\sigma(\mu_{1}, \mu_{2})$ with quasi-characters $\mu_{1},$ $\mu_{2}$ of $F_{v^{\times}}$

such that $\mu_{1}\mu_{2}^{-1}=||_{F_{v}}$ . Write $\mu_{1}(\alpha)=x(a)|\alpha|_{F^{1}v^{\prime 2}},$ $\mu_{2}(a)=\chi(\alpha)|\alpha|_{Fv}^{-1/2}$ . In the
notation in \S 1, No. 3, put $\mathcal{V}=\mathcal{B}(\mu_{1}, \mu_{2})$ and $\mathcal{V}_{s}=\mathcal{B}_{S}(\mu_{1}, \mu_{2})$ .

We first note that the restriction of $\pi_{v}$ to $K_{v^{1}}$ does not contain the identity
representation. If this is not true, there would be a non-zero function $f$ in
$\mathcal{V}_{s}$ invariant under $K_{v^{1}}$ . By [5, \S 3]

$\langle\varphi_{1}, \varphi_{2}\rangle=\int_{Kv}\varphi_{1}(k)\varphi_{2}(k)dk$

is a non-degenerate bilinear form on $\mathcal{B}(\mu_{1}, \mu_{2})\times \mathcal{B}(\mu_{1^{-1}}, \mu_{2^{-1}})$ invariant under
the right translation, and $\mathcal{B}_{S}(\mu_{1}, \mu_{2})$ is the space of all $\varphi\in \mathcal{B}(\mu_{1}, \mu_{2})$ orthogonal
to the function $ x^{-1}\circ\det$ in $\mathcal{B}(\mu_{1}^{-1}, \mu_{2}^{-1})$ . Hence

$\int_{Kv}\chi^{-1}(\det k)f(k)dk=\int_{0_{v^{\times}}}\chi^{-1}(\alpha)f(\left(\begin{array}{lll} & a & 0\\ & 0 & 1\end{array}\right))d^{\times}\alpha=0$ .

It implies that $f(1)=0$ so that $f$ is identically $0$ . This is a contradiction.
Let $\mathcal{V}(\mathfrak{d}_{v})$ be the space of all $f\in \mathcal{V}$ such that

$\int_{K_{v}^{1}}\chi_{\iota_{v}}(k_{1}^{-1})\rho(k_{1})f=f$ ,

and put $\mathcal{V}_{s}(\mathfrak{d}_{v})=\mathcal{V}_{s}\cap \mathcal{V}(\mathfrak{d}_{v})$ . By the above remark $\mathfrak{d}_{v}$ is not the identity
representation. On the other hand, the representation of $GL_{2}(F_{v})$ in $\mathcal{V}/\mathcal{V}_{\epsilon}$

is equivalent to $x\circ det$ , whose restriction to $K_{v^{1}}$ is the identity representation.
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Hence $\mathcal{V}(\mathfrak{d}_{v})=\mathcal{V}_{s}(\mathfrak{d}_{v})$ . From the definition of spherical functions it follows

that (5.6) is still valid in our case.
As in No. 2, we have $W_{M}\in W(\mu_{1}, \mu_{2} ; \psi_{v})$ for $M\in S_{1}(JC_{v})$ . By [5, Prop.

3.6] $W_{M}$ belongs to the Whittaker space $W(\sigma(\mu_{1}, \mu_{2});\psi_{v})$ of $\sigma(\mu_{1}, \mu_{2})$ if

(5.9) $\int_{Fv}f(M)(\xi_{1},0)d\xi_{1}$

$=\int_{F_{v}\times Fv}M(\left(\begin{array}{ll}\xi_{1} & \xi_{2}\\0 & 0\end{array}\right))d\xi_{1}d\xi_{2}=0$ .

This condition is certainly satisfied by $M\in S_{1}(JC_{v})$ , for

$\int_{F_{v}\times F_{v}}M(\left(\begin{array}{ll}\xi_{1} & \xi_{2}\\0 & 0\end{array}\right))d\xi_{1}d\xi_{2}$

$=\int_{F_{V}\times F_{V}}\int_{\kappa_{V}^{1}}M(\left(\begin{array}{ll}\xi_{1} & \xi_{l}\\0 & 0\end{array}\right)k_{1})\chi_{\iota_{v}}(k_{1})dk_{1}d\xi_{1}d\xi_{2}$

$=\int\int M((\xi^{\prime}$ $\xi_{20^{\prime}))\chi_{\mathfrak{y}_{v}}(k_{1})dk_{1}d\xi_{1}^{\prime}d\xi_{2}^{\prime}}=0$ ,

since $\int\chi_{\mathfrak{d}_{0}}(k_{1})dk_{1}=0$ . By the same reasoning as in No. 2, we see that $\mathcal{W}_{v}^{*}$

is the Whittaker space of $\sigma(\mu_{1}, \mu_{2})$ so that $\rho_{v}$ is equivalent to $\sigma(\mu_{1}, \mu_{2})$ .
6. Let us assume that $\pi_{v}$ is absolutely cuspidal, and is realized in its

Kirillov model ([5, \S 2]). The representation space of $\pi_{v}$ is then the space
$S(F_{v^{\times}})$ of all locally constant functions of compact support on $F_{v^{\times}}$ . Let $\Psi$ be
any non-trivial additive character of $F_{v}$ . We may assume that

$\pi_{v}$ (( $ 0\alpha$
$\beta 1$)) $\varphi(\xi)=\Psi(\beta\xi)\varphi(\alpha\xi)$ ,

$\pi_{v}(\left(\begin{array}{ll}\alpha & 0\\0 & \alpha\end{array}\right))\varphi(\xi)=\eta_{v}(\alpha)\varphi(\xi)$

for $a\in F_{v^{\times}},$ $\beta\in F_{v}$ and $\varphi\in S(F_{v^{x}})$ . Hence $\pi_{v}$ is determined by the action of
$\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ .

$\mu$ being a character of $F_{v^{\times}}$ , we set

$\hat{\varphi}(\mu)=\int_{F_{v}^{\times}}\varphi(\xi)\mu(\xi)d^{\times}\xi$

for $\varphi\in S(F_{v^{\times}})$ . Transforming the action of $\pi_{v}(g)(g\in JC_{v^{x}})$ by the mapping
$\varphi\rightarrow\hat{\varphi}$ , we obtain (cf. [5, Prop. 2.10])

(5.10) $\pi_{v}($( $ 0\alpha$
$01$) $)\hat{\varphi}(\mu)=\mu^{-1}(\alpha)\hat{\varphi}(\mu)$ ,

(5.11) $\pi_{v}($ ( $10$ $\beta 1$) $)\hat{\varphi}(\mu)=\int_{F_{v}^{x}}\mu(\xi)\Psi(\beta\xi)\varphi(\xi)d^{\times}\xi$ ,
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(5.12) $\pi_{v}(\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right))\hat{\varphi}(\mu)=C(\mu)\hat{\varphi}(\mu^{-1}\eta_{v^{-1}})$

with a constant $C(\mu)$ depending only on $\mu$ .
Here we sketch a proof. (5.10) and (5.11) are immediate. To see (5.12),

let $\nu$ be a character of $0_{v}^{\times}$ and $\varphi_{\nu}$ an element in $S(F_{v^{\times}})$ such that $\varphi_{\nu}(\xi)=\nu^{-1}(\xi)$

if $\xi\in 0_{v}^{\times}$ and $0$ outside of $\zeta\backslash _{v^{\times}}$ . If bl is a prime element in $F_{v}$ , the functions
$\pi_{v}(\left(\begin{array}{ll}\varpi^{-n} & 0\\0 & 1\end{array}\right))\varphi_{\nu}$ (for all integers $n$ and for all characters $\nu_{-}^{-}ofo_{v^{\times}}$ ) form a

basis of $S(F_{v^{\times}})$ . Let $\nu_{0}$ be the restriction of $\eta_{v}$ to $0_{v}^{\times}$ . Write $w=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ .
Since $w\left(\begin{array}{ll}a^{-1} & 0\\0 & 1\end{array}\right)w^{-1}=\left(\begin{array}{ll}\alpha & 0\\0 & \alpha\end{array}\right)\left(\begin{array}{ll}a & 0\\0 & 1\end{array}\right)$ , we have

$\pi_{v}(\left(\begin{array}{ll}\alpha & 0\\0 & 1\end{array}\right))\pi_{v}(w)\varphi_{\nu}=\nu\nu_{0}(\alpha)\pi_{v}(w)\varphi_{\nu}$

for $\alpha\in 0_{v}^{\times}$ . Therefore, we can write
$\pi_{v}(w)\varphi_{\nu}=\sum_{n}C_{n}(\nu^{-1}\nu_{0}^{-1})\pi_{v}(\left(\begin{array}{ll}\varpi^{-n} & 0\\0 & 1\end{array}\right))\varphi_{\nu-1\nu 0^{-1}}$ .

Taking the Fourier transforms of the both sides, we get

$\pi_{v}(w)\hat{\varphi}_{\nu}(\mu)=\sum_{n}C_{n}(\nu\nu_{0})\mu(\varpi^{n})\hat{\varphi}_{\nu^{-1}\nu 0^{-1}}(\mu)$ .

Clearly $\hat{\varphi}_{\nu^{-1}\nu_{0^{-1}}}(\mu)=\hat{\varphi}_{\nu}(\eta_{v}^{-1}\mu^{-1})$ and this is not $0$ if and only if the restriction
$\mu_{0}$ of $\mu$ to $0_{v}^{\times}$ equals $\nu^{-1}\nu_{0}^{-1}$ . Hence, if we put

$C(\mu)=\Sigma C_{n}(\mu_{0})\mu(\varpi^{n})$ ,

(5.12) holds for $\varphi=\varphi_{\nu}$ . It is now easy to see that (5.12) holds for all
$\pi_{v}(\left(\begin{array}{ll}\varpi^{-n} & 0\\0 & 1\end{array}\right))\varphi_{\nu}$ .

In the following we take $\psi_{v}$ for $\Psi$ . It is shown in [5, Prop. 2.21.2] that
the hermitian form

$(\varphi_{1}, \varphi_{2})=\int_{p_{v}}\varphi_{1}(\xi)\overline{\varphi_{2}(\xi)}d^{\times}\xi$

on $S(F_{v^{\times}})$ is invariant under $\pi_{v}$ . Write $\mathcal{V}=S(F_{v^{\times}})$ and define $\mathcal{V}(\mathfrak{d}_{v})$ as in No.
5. Let $\{\varphi_{i}\}_{i=1}^{N}$ be an orthonormal basis of $\mathcal{V}(\mathfrak{d}_{v})$ . By definition

$\omega_{b}v(g)=\sum_{i--1}^{N}\int_{K_{v^{1}}}(\pi_{v}(k_{1}g)\varphi_{i}, \varphi_{i})\chi_{b}v(k_{1}^{-1})dk_{1}$ .

Hence, if $M\in S_{1}(JC_{v})$ , we have

(5.13) $W_{M}(g)=|\det s|_{F_{v}}\sum_{i=1}^{N}\int_{J_{v^{1}}}(\pi_{v}(g_{1}h)\varphi_{i}, \varphi_{i})r(s_{1})M(g_{1}h)dg_{1}$ ,

where $s=$ ( $0^{ts}$

$0$) $s_{1}$ and $n(h)=\det s$ .
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As in No. 2 we see that $\mathcal{W}_{V}^{*}$ is invariant under $\rho(s)$ for $s\in GL_{2}(F_{v})$ . For
$W\in \mathcal{W}_{v}^{*}$ and $\xi\in F_{v^{x}}$ , put $\varphi_{W}(\xi)=W($( $ 0\xi$ $01$) $)$ .

LEMMA 8. $\varphi_{W}\in S(Fv)$ for $W\in \mathcal{W}_{v}^{*}$ .
PROOF. It is enough to prove this in case $W=W_{M}$ for $M\in S_{1}(J\zeta_{v})$ . Then

it follows immediately from (5.13) that $\varphi_{W}$ is locally constant and the support
of $\varphi_{W}$ is contained in a compact set of $F_{v}$ . We now prove that $\varphi_{W}=0$ in a
neighbourhood of $0$ . We shall prove in Lemma 14 that $\mathfrak{d}_{v}$ is not the identity
representation. Hence

$M(O)=\int_{Kv^{1}}\chi_{bv}(k_{1})M(0)dk_{1}=0$

and hence there exists a neighbourhood $V$ of $0$ in $\chi_{v}$ on which $M$ is identi-
cally $0$ .

It is easy to see (cf. the proof of [5, Prop. 2.20]) that the support of the
function $(\pi_{v}(g)\varphi, \varphi)$ is compact modulo $F_{v^{\times}}$ , if $\varphi\in S(F_{v^{\times}})$ . Hence there is a
compact set $C$ in $JC_{v}^{\times}$ such that $F_{v^{\times}}C$ contains the support of $(\pi_{v}(g)\varphi_{i}, \varphi_{i})$ for
$i=1,$ $N$.

Set $s=h=\left(\begin{array}{llll} & & \alpha & 0\\ & & 0 & 1\end{array}\right)$ in (5.13). $g_{1}h$ is written in the form $(_{0}^{\delta}$ $\delta 0)k_{1}(0\gamma$ $\beta 1\rangle$

with $k_{1}\in K_{v}^{1}$ . Then $\alpha=\gamma\delta^{2}$ . Assume that $k_{1}$ ( $ 0\gamma$ $\beta 1)\in C$. Then $\gamma$ is contained

in a compact subset of $F_{v^{x}}$ . Consequently, we can find a small neighbour-
hood $V^{\prime}$ of $0$ in $F_{v}$ such that if $\alpha\in V^{\prime}$ , then $\delta C$ is contained in $V$ so that
$M(g_{1}h)=0$ , and hence $\varphi_{W}(\alpha)=0$ . $q$ . $e$ . $d$ .

By Lemma 8, $W\rightarrow\varphi_{W}$ is a linear mapping of $\mathcal{W}_{v}^{*}$ into $S(F_{v^{x}})$ . It, is easily

seen that

(5.14) $\varphi_{X}(\xi)=\psi_{v}(\beta\xi)\varphi_{W}(\alpha\xi)$ if $X=\rho($( $ 0\alpha$
$\beta 1$)$)W$ .

We now assert that

(5.15) $\pi_{v}(s)\varphi_{W}=\varphi_{\rho(s)W}$ for $s\in GL_{2}(F_{v})$ .

In view of (5.14) it is enough to prove (5.15) for $s=w=\left(\begin{array}{lll} & & 0 1\\ & & --1^{-}0\end{array}\right)$ . To do this,.

let us calculate $\hat{\varphi}_{W}$ . If $W=W_{M}$ , we have

(5.16) $\hat{\varphi}_{W}(\mu)=\int_{r_{v}^{\times}}\mu(\xi)d^{x}\xi$

$\int_{Jc_{v}^{I}}\sum_{i=1}^{N}|\xi|_{F_{v}}$ ( $\pi_{v}$ ($g_{1}$ ( $ 0\xi$ $01$)) $\varphi_{i},$ $\varphi_{i}$) $M(g_{1}\left(\begin{array}{llll} & & \xi & 0\\ & & 0 & 1\end{array}\right))dg_{1}$

$=\int_{j(}\mu(\det g)v^{\times}|\det g|_{F_{v}}\sum_{l=1}^{N}(\pi_{v}(g)\varphi_{i}, \varphi_{i})M(g)dg$ .

LEMMA 9. Let $dx$ be the self-dual measure of $Jf_{v}$ (with respect to $\langle x, y\rangle$

$=\psi_{v}(tr(xy)))$ and $dg$ the Haar measure of $JC_{v}^{\times}$ such that $|\det g|_{F_{v}^{2}}dg$ coincides.
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with $dx$ on $eX_{v}^{\times}$ . Then we have

(5.17) $\int_{j\zeta^{X}}v|\det g|_{p_{v}}\mu(\det g)(\pi_{v}(g)\varphi_{1}, \varphi_{2})\psi_{v}(trg)dg$

$=C(\mu)(\varphi_{1}, \varphi_{2})$

for $\varphi_{1},$
$\varphi_{2}\in S(F_{v^{\times}})$ .

PROOF. We follow the method in [5, Lemma 13.1.1]. Write $g=\left(\begin{array}{ll}\gamma_{11} & \gamma_{12}\\\gamma_{21} & \gamma_{22}\end{array}\right)$
)

in the form
$g=\left(\begin{array}{ll}\delta & 0\\0 & \delta\end{array}\right)$ ( $10$ $-\beta_{1^{\prime}}$) $(0\gamma$ $0)w(110$ $\beta 1)$

if $\gamma_{21}\neq 0$ . If $ d\alpha$ is the self-dual measure of $F_{v}$ (with respect to $\langle\alpha, \beta\rangle=\psi_{v}(\alpha\beta)\rangle$

and if $ d^{\times}a=|\alpha|_{F_{v}^{-1}}d\alpha$ , then $ dg=|\gamma|_{F_{v}^{-1}}d\beta d\beta^{\prime}d^{\times}\gamma d^{\times}\delta$ . In the above notatiom
we have

$(\pi_{v}(g)\varphi_{1}, \varphi_{2})=\eta_{v}(\delta)(\pi_{v}($( $ 0\gamma$

$0$)$w(110$ $\beta_{1}))\varphi_{1},$ $\pi_{v}((10$ $\beta_{1^{\prime}}))\varphi_{2})$ .
Put

$f_{1}=\pi_{v}$ (( $ 0\gamma$

$0$)$w(110$ $\beta 1)$ ) $\varphi_{1}$ , $f_{2}=\pi_{v}((01$ $\beta_{1^{\prime}}))\varphi_{2}$ .

By $(5.10)-(5.12)$ we have

$\hat{f}_{1}(\mu^{\prime})=\mu^{J-1}(\gamma)C(\mu^{\prime})\int_{F_{v}^{x}}\mu^{\prime-1}\eta_{v^{-1}}(\xi)\psi_{v}(\xi\beta)\varphi_{1}(\xi)d^{\times}\xi$ ,

$\hat{f}_{2}(\mu^{\prime})=\int_{F_{v}^{X}}\mu^{\prime}(\xi)\psi_{v}(\xi\beta^{\prime})\varphi_{2}(\xi)d^{\times}\xi$ .

If $ d\mu$ is the dual-measure of $ d^{\times}\alpha$ ,

$(f_{1}, f_{2})=\int\hat{f}_{1}(\mu^{\prime})\overline{\hat{f}_{2}(\mu^{\prime}})d\mu^{\prime}$

Therefore, the left hand side of (5.17) equals

$\int[\int|\delta^{2}\gamma|_{F_{v}}\mu(\delta^{2}\gamma)\eta_{V}(\delta)\mu^{\prime-1}(\gamma)C(\mu^{\prime})$

$\{\int\mu^{\prime- 1}\eta_{v^{-1}}(\xi)\psi_{v}(\xi\beta)\varphi_{1}(\xi)d^{x}\xi\}\{\int\mu^{\prime}(\xi)\psi_{v}(\xi\beta^{\prime})\varphi_{2}(\xi)d^{x}\xi\}$

$\psi_{v}(\delta(\beta^{\prime}-\beta))d\mu^{\prime}]|\gamma|_{F_{v^{-1}}}d\beta d\beta^{\prime}d^{\times}\gamma d^{x}\delta$ .

Now we have (by Fourier’s inversion formula)

$\int\int\mu^{\prime}(\xi)\varphi_{2}(\xi)\psi_{v}(\xi\beta^{\prime})\psi_{v}(-\delta\beta^{\prime})d^{\times}\xi d\beta^{\prime}=|\delta|_{F_{v^{-1}}}\mu^{\prime}(\delta)\varphi_{2}(\delta)$ ,

$\int\int\mu;\eta_{v}(\xi)\varphi_{1}(\xi)\psi_{v}(\xi\beta)\psi_{v}(-\delta\beta)d^{x}\xi d\beta=|\delta|_{F_{v}^{-1/- 1- 1}}\mu\eta_{v}(\delta)\varphi_{1}(\delta)$
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so that (after a change of a variable) the left hand side of (5.17) equals

$\int\mu\mu^{\prime- 1}(\gamma)C(\mu^{\prime})d\mu^{\prime}d^{\times}\gamma\int\varphi_{1}(\delta)\overline{\varphi_{2}(\delta)}d^{\times}\delta$ .

Write $\mu(\epsilon\varpi^{n})=\nu(\epsilon)t^{n}$ and $\mu^{\prime}(\epsilon\varpi^{n})=\nu^{\prime}(\epsilon)t^{\prime n}$ with characters $\nu,$
$\nu^{\prime}$ of $0_{v}^{x}$ and

complex numbers $t,$
$t^{\prime}$ of absolute value 1. Put $ c=\int_{0_{v^{\times}}}d^{x}\epsilon$ . If $\gamma=\epsilon\varpi^{m}$ for

$\epsilon\in 0_{v}^{\times}$ , then

$\int\mu\mu^{\prime- 1}(\gamma)C(\mu^{\prime})d\mu^{\prime}=1/c\sum_{\nu^{\prime}}\int_{|t^{\prime}|-- 1}\nu\nu^{\prime- 1}(\epsilon)(tt^{\prime- 1})^{m}\sum_{n}C_{n}(\nu^{\prime})t^{\prime n}dt^{\prime}$

$=1/c\sum_{\nu^{\prime}}\nu\nu^{\prime- 1}(\epsilon)t^{m}C_{m}(\nu^{\prime})$ .

Hence, integrating it by $ d^{\times}\gamma$ , we get

$1/c\sum_{m}\int_{0_{v^{\times}}}\sum_{\nu}\nu\nu^{J-1}(\epsilon)t^{m}C_{m}(\nu^{\prime})d^{\times}\epsilon=\sum_{m}t^{m}C_{m}(\nu)=C(\mu)$ .

This proves the lemma.
We assume in the following that $dg$ is normalized as in Lemma 9, though

the final result is independent of this normalization. Putting $W^{\prime}=\rho(w)W$

in (5.16) in place of $W$ , we obtain

$\hat{\varphi}_{W^{\prime}}(\mu)=\int_{\kappa_{v}^{x}}\mu(\det g)|\det g|_{F_{v}}\Sigma(\pi_{v}(g)\varphi_{i}, \varphi_{i})M^{\prime}(g^{\ell})dg$ .
Since

$M^{\prime}(g^{\iota})=\int_{\kappa_{v}^{x}}M(h)\psi_{v}(tr(hg^{\iota}))|\det h|_{F_{v}^{2}}dh$ ,

we get (replacing $g$ by $gh^{\iota^{-1}}$ )

$\hat{\varphi}_{W},(\mu)=\iint|\det(gh)|_{F_{v}}\mu(\det(gh^{-1}))$

$\sum_{l}(\pi_{v}(gh^{\iota^{-1}})\varphi_{i}, \varphi_{i})A\nu l(h)\psi_{v}(trg)dhdg$

$=C(\mu)\int|\det h|_{F_{v}}\mu^{-1}(\det h)$

$\sum_{l}(\pi_{v}(h^{t^{-1}})\varphi_{i}, \varphi_{i})M(h)dh$ (by Lemma 9)

$=C(\mu)\hat{\varphi}_{W}(\mu^{-1}\eta_{v^{-1}})$ .
This proves (5.15) for $s=w$ .

(5.15) shows in particular that the space of all $W\in \mathcal{W}_{v}^{*}$ such that $\varphi_{W}=0$

is $GL_{2}(F_{v})$-invariant. If $\varphi_{W}=0$, then $\pi_{v}(s)\varphi_{W}=\varphi_{\rho(\epsilon)W}=0$ and hence
$W(\left(\begin{array}{ll}\xi & 0\\0 & 1\end{array}\right)s)=0$ for all $s\in GL_{2}(F_{v})$ . Therefore, the mapping $W\rightarrow\varphi_{W}$ is injec-



Theta series and automorphic forms 667

tive. Its image is a non-zero $\pi_{v}$ -invariant subspace of $S(F_{v^{\times}})$ so that it must
be the whole space. It follows that $\mathcal{W}_{v}^{*}$ is the Whittaker space of $\pi_{v}$ and
that $\rho_{v}$ is equivalent to $\pi_{v}$ .

7. We assume that $v$ is non-archimedean and ramified in $J$ so that $\chi_{t}$

is now a division quaternion algebra over $F_{v}$ . In this case $\pi_{v}$ is an irreduci-
ble finite dimensional representation of $JC_{v}^{\times}$ . Let $\chi$ be the character of $\pi_{v}$ .
It follows from definition that

$\omega_{bv}(g)=\int_{x_{v}^{1}}\chi_{b_{v}}(k_{1^{-1}})\chi(k_{1}g)dk_{1}$

and hence that, if $M\in S_{1}(JC_{v})$ ,

$W_{M}(s)=|\det s|_{F_{v}}\int_{K_{v}^{1}}\ovalbox{\tt\small REJECT}\chi(g_{1}h)r(s_{1})M(g_{1}h)dg_{1}$

for $s=s_{1}$ and for $h\in J_{v}^{\times}$ with $n(h)=\det s$ . Note that $JC_{v}^{1}=K_{v}^{1}$ .

Let $U$ be the space of functions on $JC_{v}^{\times}$ spanned by all the coefficients of
$\pi_{v}$ . Let $\Omega$ be the representation of $JC_{v^{\times}}$ in $U$ defined by right translation:

$\Omega(g)f(h)=f(hg)$ for $f\in U$ .
$\Omega$ is the direct sum of $d$ copies of $\pi_{v}$ , if $d=\dim\pi_{v}$ .

For $M\in S_{1}(JC_{v}),$ $f\in U,$ $g\in JC_{v}^{\times}$ and $x\in\sigma\chi_{v}$ we put

$\varphi_{M,f}(g, x)=\int_{Ji_{v}^{1}}f(gg_{1})M(xg_{1})dg_{1}$ .

Since $f,$ $M$ are locally constant, this integral is in substance a finite sum and
$\varphi_{M,f}(g, x)\in U$ for a fixed $x$ . Furthermore, we have $\varphi_{M,f}(gg_{1}, x)=\varphi_{M,f}(g, xg_{1}^{-1})$

or $\Omega(g_{1})\varphi_{M,f}(g, x)=\varphi_{M,f}(g, xg_{1}^{-1})$ for $g_{1}\in JC_{v}^{1}$ . Hence $\varphi_{M,f}(g, x)$ is (as a U-
valued function of x) an element of $S(X_{v}, \Omega)$ in the notation in \S 3, No. 2.
If we write $r_{9}$ for the Weil representation of $GL_{2}(F_{v})$ in $S(X_{v}, \Omega)$ , we get

$r_{9}(s)\varphi_{M,f}=|\det s|_{F_{v}}\varphi_{\rho(h)r(s_{1})M,9(h)f}$ ,

where $s_{1}$ and $h$ are the same as before. Denote by $\mathcal{V}_{1}$ the space spanned
by $r_{9}(s)\varphi_{M,\chi}$ for all $s\in GL_{2}(F_{v})$ and $M\in S_{1}(dC_{v})$ . Let $L$ be the linear map of
$S(J_{v}, \Omega)$ into $C$ defined by

$L(\varphi)=(\varphi(1))(1)$

for $\varphi\in S(<X_{v}, \Omega)$ (this is the value of the function $\varphi(1)(g)$ in $U$ at $g=1$ ). Let
$\mathcal{V}_{2}$ be the space of all $\varphi\in S(<X_{v}, \Omega)$ such that $L(r_{9}(s)\varphi)=0$ for all $s\in GL_{2}(F_{v})$ .
Clearly $\mathcal{V}_{2}$ is $GL_{2}(F_{v})$ -invariant. We see at once that

$L(r_{\rho}(s)\varphi_{M,\chi})=W_{M}(s)$ .
It follows that the space $\mathcal{W}_{v}^{*}$ coincides with the space of $L(r_{\rho}(s)\varphi)$ for all
$\varphi\in \mathcal{V}_{1}$ and that the representation $\rho_{t}$ , of $GL_{2}(F_{v})$ in $\mathcal{W}_{v\sim}^{*}$ is equivalent to the
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representation of $GL_{2}(F_{v})$ in $\mathcal{V}_{1}/\mathcal{V}_{1}\cap \mathcal{V}_{2}$ induced by $r_{\rho}$ . Consequently, $\rho_{v}$

is the direct sum of representations equivalent to $\pi_{v}^{*}$ (cf. \S 3, No. 2). By the
uniqueness of the Whittaker space ([5, Th. 2.14]) we see that $\mathcal{W}_{v}^{*}$ is irreduci-
ble and $\rho_{v}$ is equivalent to $\pi_{v}^{*}$ .

Here we prove a lemma which will be used in \S 6. $\mathfrak{p}$ denotes a prime
ideal in $0_{v}$ and $\mathfrak{Q}_{v}$ a maximal order in $\sigma X_{v}$ .

LEMMA 10. Assume that the restriction of $\pi_{v}$ to $K_{v}$ contains the identity
representation. Then $\pi_{v}$ is of the form $\chi_{v}$ on, $\chi_{v}$ being an unramified quasi-
character of $Fv$ . Let $\mathfrak{a}_{v}$ be the conductor of $\psi_{v}$ . $1fM$ is the characteristic
-function of the two-sided $\mathfrak{Q}_{v}$ -ideal $L_{v}$ of norm $\mathfrak{a}_{v}$ , then $\rho(s)W_{M}=W_{M}$ for all

$s=(_{\gamma}^{\alpha}$
$\beta\delta$) in $GL_{2}(\mathfrak{o}_{v})$ such that $\gamma\in \mathfrak{p}$ .

PROOF. Since $K_{v}$ is a normal subgroup of $JC_{v^{\times}}$ and $JC_{v}^{X}/K_{v}$ is abelian, $\pi_{v}$

must be one-dimensional. Therefore we can write $\pi_{v}=x_{v}\circ n$ . That $\chi_{v}$ is
unramified is obvious. Under the assumption of the lemma we get $W_{M}(s)$

$=r_{\rho}(s)M(1)$ with $\Omega=\pi_{v}$ . By definition we have $r_{g}(s)M=M$ if $s=(_{0}^{\alpha}$ $\beta\delta)$ is

in $GL_{2}(0_{v})$ . It is well known that the set of all $x\in X_{v}$ such that tr $(xL_{v})\subset a_{v}$

is $\mathfrak{a}_{v}L_{v}^{-1}\mathfrak{P}^{-1}=L_{v}\mathfrak{P}^{-1},$ $\mathfrak{P}$ being a prime ideal of $\mathfrak{Q}_{v}$ . Hence the Fourier trans-
form $M^{\prime}$ of $M$ is a constant multiple of the characteristic function of $L_{v}\mathfrak{P}^{-1}$

Then $r_{9}(w)M=M^{\prime}$ is invariant under $r_{\rho}($( $10$
$-\gamma 1$) $)$ for all $\gamma\in \mathfrak{p}$ . Since the

group of all elements $\left(\begin{array}{llll} & & \alpha & \beta\\ & & \gamma & \delta\end{array}\right)$ in $GL_{2}(0_{v})$ with $\gamma\in \mathfrak{p}$ is generated by the ele-

ments of the form ( $\beta\delta$) and $\left(\begin{array}{llll} & & 1 & 0\\ & & \gamma & 1\end{array}\right)$ , this proves our assertion.

8. In No. $8-No$ . $11,$ $v$ is assumed to be archimedean. In this section we
.assume that $F_{v}=R$ or $C,$ $Jt_{v}=M_{2}(F_{v})$ and $\pi_{v}$ is infinite dimensional and of
the form $\pi(\mu_{1}, \mu_{2})$ with quasi-characters $\mu_{1},$ $\mu_{2}$ of $F_{v^{\times}}$ .

Note that the representation $\pi_{v}$ of $\mathcal{H}(JC_{v}^{\times})$ is induced by a unitary repre-
sentation (which we again denote by $\pi_{v}$ ) of $JC_{v}^{\times}$ in a Hilbert space $\mathcal{L}_{v}$ .
Obviously $\omega_{b_{v}}$ is uniquely determined by the values of

$\int\omega_{b_{v}}(g)f(g)dg=tr(E(b_{v})\pi_{v}(f))$

for $f\in \mathcal{H}(JC_{v}^{\times})$ so that $\omega_{bv}$ depends only on the representation of $\mathcal{H}(J\zeta_{v}^{x})$ in
the space of $K_{v^{1}}- finite$ vectors in $\mathcal{L}_{v}$ (here $K_{v^{1}}$ is $SO_{2}(R)$ if $F_{v}=R$ and $SU_{2}(C)$

if $F_{v}=C$ ). From this we see that (5.6) is still valid in our case.
Let $r_{0}$ be the Weil representation of $SL_{2}(F_{v})$ in $S(F_{v}\oplus F_{v})$ with respect to

-the character $\psi_{v}$ of $F_{v}$ . As in No. 2, if $M(x)=\exp(-\pi d_{v}|u_{v}|tr(x^{t}\overline{x}))P(x)$ is
in $S_{1}(JC_{v})$ , we get
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65.18) $W_{M}(s)=\mu_{1}(\det s)|\det s|_{Fv^{1/2}}$

$\int_{F_{v}^{X}}\mu_{1}\mu_{2}^{-1}(\gamma)r_{0}(s)f(M)(\gamma, \gamma^{-1})d^{\times}\gamma$ ,

for $s\in GL_{2}(F_{v})$ , where
$|(5.19)$ $f(M)(a_{1}, a_{2})=\exp(-\pi d_{v}|u_{v}|(a_{1}\overline{\alpha}_{1}+a_{2}\overline{\alpha}_{2}))P_{0}(\alpha_{1}, \alpha_{2})$ ,

$ P_{0}(\alpha_{1}, a_{2})=\int_{F_{v}}\exp(-\pi d_{v}|u_{v}|\xi\overline{\xi})P(\left(\begin{array}{ll}a_{1} & \xi\\ 0 & a_{2}\end{array}\right))d\xi$ .

Clearly $P_{0}$ is a polynomial of $\alpha_{1},$ $\alpha_{2},\overline{\alpha}_{1},\overline{\alpha}_{2}$ .
For $m\in S(F_{v}\oplus F_{v})$ , put

$ f^{\prime}(m)(\alpha_{1}, a_{2})=\int_{F_{v}}m(a_{1}, \xi)\psi_{v}(\alpha_{2}\xi)d\xi$ .
If $m$ is of the form

$m(\alpha_{1}, \alpha_{2})=\exp(-\pi d_{v}|u_{v}|(a_{1}\overline{\alpha}_{1}+\alpha_{2}\overline{\alpha}_{2}))Q(\alpha_{1}, \alpha_{2})$ ,

where $Q$ is a polynomial of $\alpha_{1},\overline{a}_{1},$ $\alpha_{2},\overline{\alpha}_{2}$ , then $f^{\prime}(m)$ is written as
$f^{\prime}(m)(a_{1}, \alpha_{2})=\exp(-\pi d_{v}|u_{v}|(\alpha_{1}\overline{\alpha}_{1}+\alpha_{2}\overline{\alpha}_{2}))Q^{\gamma}(a_{1}, a_{2})$ ,

$Q^{\prime}$ being another polynomial of $\alpha_{1},\overline{\alpha}_{1},$ $\alpha_{2},\overline{\alpha}_{2}$ . By [5, Prop. 1.6] we have

$f^{\prime}(r_{0}(s)m)(\alpha_{1}, a_{2})=f^{\prime}(m)((\alpha_{1}, \alpha_{2})s)$

for $s\in GL_{2}(F_{v})$ . From this it follows that $f(M)(M\in S_{1}(JC_{v}))$ is $SO_{2}(R)-$ or
$SU_{2}(C)- finite$ according as $F_{v}=R$ or $C$, if each group is made to act on $f(M)$

through $r_{0}$ . Hence $W_{M}$ belongs to the space $W(\mu_{1}, \mu_{2};\psi_{v})$ , which is the
Whittaker space of $\pi(\mu_{1}, \mu_{2})$ (cf. [5, Th. 5.13] for $F_{v}=R$ and [5, Th. 6.3] for
$F_{v}=C)$ .

LEMMA 11. Let $\mathfrak{g}_{1}$ be the Lie algebra of $SL_{2}(F_{v})$ . Then, $S_{1}(JC_{v})$ is invariant
under $r(X)$ for all $X\in \mathfrak{g}_{1}$ .

PROOF. Since $r(s)$ commutes with $\rho(k_{1})$ and $\lambda(k_{1})(k_{1}\in K_{v^{1}})$ , it is sufficient
to show that the space $\mathcal{M}$ of all functions of the form $M(x)=\exp(-\pi d_{v}|u_{v}|$

tr $(x^{t}\overline{x}))P(x),$ $P$ being an arbitrary polynomial of $\xi_{ij},\overline{\xi}_{ij}$ , is invariant under

$r(X)$ . Assume first that $F_{v}=R$ . $\mathfrak{g}_{1}=@\mathfrak{l}_{2}(R)$ is spanned by $X_{1}=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ , $X_{2}$

$=\left(\begin{array}{ll}0 & 1\\0 & 0\end{array}\right),$ $X_{3}=\left(\begin{array}{ll}0 & 0\\1 & 0\end{array}\right)$ . $M$ being as above, we have

$r(X_{1})M(x)=[(d/da)r(\exp aX_{1})M(x)]_{\alpha=0}$

$=[(d/da)(e^{a}M(e^{\alpha}x))].-0$ ,

$r(X_{2})M(x)=[(d/d\alpha)r(\exp\alpha X_{2})M(x)]_{\alpha=0}$

$=[(d/d\alpha)(\psi_{v}(\alpha n(x))M(x))]_{\alpha=0}$ .
A direct calculation shows that $r(X_{1})M$ and $r(X_{2})M$ are again in $\mathcal{M}$ . Since
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$Ad(w)X_{2}=-X_{3}$ , we have only to show that $\mathcal{M}$ is invariant under $r(w)$ or
that $\mathcal{M}$ is invariant under the Fourier transformation $M\rightarrow M^{\prime}$ . This is easy
to prove. The proof is the same in case $F_{v}=C$, q. e. d.

Let $\mathfrak{g}$ be the Lie algebra of $GL_{2}(F_{v})$ . By Lemma 11, (5.4) and (5.5) the
space of all $W_{M}(1tf\in S_{1}(JC_{v}))$ is invariant under $\rho(X)$ for $X\in \mathfrak{g}$ . If $F_{v}=R$ ,
$\mathcal{W}_{v}^{*}$ is spanned by all $W_{f}$ $(M\in S_{1}(JC_{v}))$ and their right translates by

$\epsilon=\left(\begin{array}{ll}-1 & 0\\0 & 1\end{array}\right)$ . It is obviously invariant under $\rho(\epsilon)$ and $\rho(X)$ for $X\in \mathfrak{g}$ . If

$F_{v}=C,$ $\mathcal{W}_{v}^{*}$ is the space of all $W_{M}(M\in S_{1}(JC_{v}))$ . In either case $\mathcal{W}_{v^{*}}$ is in-
variant under $\rho(f)$ for all $f\in \mathcal{H}(J\zeta_{v^{\times}})$ (cf. [5, Lemma 5.4]) so that $\mathcal{W}_{V}^{*}=W(\mu_{1}$ ,
$\mu_{2}$ ; $\psi_{v}$ ). Hence $\rho_{v}$ is equivalent to $\pi(\mu_{1}, \mu_{2})$ .

9. Let the assumptions be the same as in No. 8 except that $\pi_{v}=\pi(\mu_{1}. \mu_{2})$

is now finite dimensional. Since $\pi_{v}$ is induced by a unitary representation,
$\pi_{v}$ is necessarily one-dimensional. Consequently we may assume that $\mu_{1}\mu_{2}^{-1}$

$=||_{F_{v^{- 1}}}$ , and putting $\chi(\alpha)=\mu_{2}(\alpha)|\alpha|_{F_{v^{-1/2}}}$ , we get $\pi_{v}=x$ on. $\mathfrak{d}_{v}$ is the identity
representation and $\omega_{\mathfrak{d}_{v}}(g)=x(n(g))$ . We see that (5.18) is still valid for
$\Lambda l\in S_{1}(JC_{v})$ . As in No. 8, we infer that $\mathcal{W}_{v}^{*}$ is an invariant subspace of
$W(\mu_{1}, \mu_{2} ; \psi_{v})$ . Hence $\rho_{v}$ is admissible.

10. We assume that $F_{v}=R,$ $JC_{v}=M_{2}(R)$ and $\pi_{v}=\sigma(\mu_{1}, \mu_{2})$ with quasi-
characters $\mu_{1},$ $\mu_{2}$ of $R^{x}$ such that $\mu_{1}\mu_{2}^{-1}(\alpha)=\alpha^{P}(sgn\alpha)$ for a positive integer
$p$ . In this case $K_{v^{1}}=SO_{2}(R)$ . Write $\mathfrak{d}_{v}$ as

$\mathfrak{d}_{v}(\left(\begin{array}{llll}\theta cos & & sin & \theta\\-sin & \theta & cos & \theta\end{array}\right))=e^{in\theta}$ .

By [5, Th. 5.11] $\mathfrak{d}_{v}$ is contained in the restriction of $\sigma(\mu_{1}, \mu_{2})$ if and only if
$n\geqq P+1$ or $n\leqq-p-1$ and $n\equiv p+1(mod 2)$ . If this condition is satisfied, $\mathfrak{d}_{v}$

is not contained in the restriction to $K_{v^{1}}$ of the representation of $\mathcal{H}(JC_{v}^{x})$ in
$\mathcal{B}(\mu_{1}, \mu_{2})/\mathcal{B}_{s}(\mu_{1}, \mu_{2})$ . It follows that (5.6) is still valid in this case. Hence we
obtain again (5.18).

By [5, Cor. 5.14] $W_{M}$ is in the Whittaker space $W(\sigma(\mu_{1}, \mu_{2});\psi_{v})$ of $\sigma(\mu_{1}$ ,
$\mu_{2})$ if and only if

(5.20) $\int_{\infty}^{\infty}\alpha_{1}^{i}\partial^{\partial^{j_{2}}}\alpha^{j}f(M)(\alpha_{1},0)d\alpha_{1}=0$

for all $\cdot$ $(i, j)$ such that $i+j=p-1,$ $i\geqq 0,$ $j\geqq 0$ .
We now prove (5.20) for $M\in S_{1}(JC_{v})$ . Differentiating (5.19) by $\alpha_{2}$ , we get

$\partial_{\alpha^{j}}^{\partial_{--f(M)(\alpha_{1}}^{j_{2}}}0)=\sum_{k=0}^{r}C_{jk}\int^{\infty}\exp(-\pi|u_{v}|(a_{1}^{2}+\xi^{2}))^{\partial^{j-}}-P((0\alpha_{1}$ $\xi 0))d\xi$

with

$C_{jk}=\left\{\begin{array}{l}( )(-\pi|u_{v}|)^{k/2}k!/(k/2)[ ifk\equiv 0(mod2),\\0 ifk\not\equiv 0(mod2)\end{array}\right.$
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(we write $P(x)=P(\left(\begin{array}{ll}\xi_{11} & \xi_{12}\\\xi_{21} & \xi_{22}\end{array}\right))$ ). Since $M\in S_{1}(JC_{v})$ , we have

$ P(x)=1/2\pi\int_{0^{2.r}}P(xk_{1})e^{in\theta}d\theta$

so that

$\frac{\partial^{j-k}}{\partial\xi_{22}^{j-k}}P(x)=1/2\pi\int_{0}^{2\pi}(-\sin\theta\partial\xi-\partial_{21}+\cos\theta\partial^{-}\xi\underline{\partial_{22}})^{j- k}P(xk_{1})e^{in\theta}d\theta$ .

Putting $x=\left(\begin{array}{ll}a_{1} & \xi\\ 0 & 0\end{array}\right)$ and $(\alpha_{1}, \xi)k_{1}=(\alpha, \beta)$ , we can write

$\int_{-\infty}^{\infty}a_{1}^{i}\frac{\partial^{j}}{\partial\alpha_{2}^{j}}f(M)(a_{1},0)d\alpha_{1}$

$=1/2\pi\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{0^{2r}}\exp(-\pi|u_{v}|(a^{2}+\beta^{2}))(\alpha\cos\theta+\beta\sin\theta)^{i}$

$\sum_{k}C_{jk}(-\sin\theta_{\overline{\partial}\xi}^{\partial_{21}}--+\cos\theta\partial\xi\underline{\partial_{22}})^{j-k}P($($0a$
$\beta 0$) $)e^{in\theta}d\theta dad\beta$ .

This is a linear combination of the integrals of the form

$\int_{0^{2\pi}}\cos^{t}\theta\sin^{m}\theta e^{in\theta}d\theta$

with $l\geqq 0,$ $m\geqq 0,$ $l+m\leqq i+j=p-1$ . It is easy to see that these integrals all
vanish if $|n|\geqq p+1$ . Hence we get (5.20).

We infer, as in No. 8, that $\mathcal{W}_{v}^{*}$ is the Whittaker space of $\sigma(\mu_{1}, \mu_{2})$ and
$\rho_{v}$ is equivalent to $\sigma(\mu_{1}, \mu_{2})$ .

11. We assume that $F_{v}=R$ and $JC_{v}$ is a division quaternion algebra over
$R$ . We use the notation in \S 4, No. 4, iv). Let $\chi$ be the character of $\pi_{v}$ .
Since the restriction of $\pi_{v}$ to $K_{v}^{1}=JC_{v}^{1}$ is irreducible, $\mathfrak{d}_{v}$ is necessarily this
restriction. Hence

(5.21) $\omega_{b_{v}}(g)=x(1)\int_{Jr_{v}^{1}}\chi(k_{1}^{-1})\chi(k_{1}g)dk_{1}$ .

Let $\omega$ be a quasi-character of $C^{\times}$ defined by

$\omega(z)=(z\overline{z})^{r- 1/2}z^{n+1}$

and $S_{1}(C)$ the space of all functions $m$ on $C$ of the form

$m(z)=\exp(-2\pi|u_{v}|z\overline{z})P(z,\overline{z})$ ,

where $P(z,\overline{z})$ is a polynomial of $z$ and $\overline{z}$ such that $ P(zu, zu)=\omega(u^{-1})P(z,\overline{z}\rangle$

for all $u\in C$ with uti $=1$ . $P(z,\overline{z})$ is then written as $P(z,\overline{z})=P(z\overline{z})\overline{z}^{n+1},$ $P$

being an arbitrary polynomial.
Let $f$ be a linear mapping of $S_{1}(JC_{v})$ onto $S_{1}(C)$ defined by
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$f(M)(z)=\exp(-2\pi|u_{v}|z\overline{z})P(z\overline{z})\overline{z}^{n+1}$

for $M(x)=\exp(-2\pi|u_{v}|n(x))P(n(x))\chi_{n}(x^{\prime})$ . The following lemma can be easily
proved by using [5, Lemma 5.20.1].

LEMMA 12. Let $r_{\omega}$ be the Weil representation of $GL_{2}(R)_{+}$ in $S(C, \omega)$ with
respect to the additive character $\psi_{v}(tr_{C/R}(z))$ of C. Then we have

$r_{a)}(s)f(M)=f(r(s)M)$

for all $M\in S_{1}(JC_{v})$ and $s\in SL_{2}(R)$ .
Let $s$ be in $GL_{2}(R)_{+}$ and $h$ (resp. a) an element in $JC_{v^{x}}$ (resp. $C^{x}$ ) such

that $\det s=n(h)=a\overline{a}$ . Write $s=\left(\begin{array}{ll}dets & 0\\0 & 1\end{array}\right)s_{1}$ . By (5.21) and Lemma 12 we get

$W_{M}(s)=|\det s|_{R}\chi(1)\int v1\int_{r_{v}^{1}}\backslash \chi(k_{1}^{-1})\chi(k_{1}g_{1}h)r(s_{1})M(g_{1}h)dk_{1}dg_{\iota}$

$=|\det s|_{R}^{1/2}\chi(1)r_{\omega}(s_{1})f(M)(a)\omega(a)$

$\iint\chi(k_{1^{-1}})\chi(k_{1}g_{1}h)\chi(h^{-1}g_{1^{-1}})dk_{1}dg_{1}$

$=|\det s|_{R^{1/2}}\omega(a)r_{\omega}(s_{1})f(M)(a)$

$=r_{\omega}(s)f(M)(1)$ .
It is proved in [5, Lemma 5.12, Th. 5.13] that the‘functions $r_{\omega}(s)m(1)(m\in S_{1}(C))$

and their right translates by $\epsilon=\left(\begin{array}{ll}-1 & 0\\0 & 1\end{array}\right)$ generate the Whittaker space of
$\pi_{v}^{*}=\sigma(\mu_{1}, \mu_{2})$ for

$\mu_{1}(\alpha)=|\alpha|_{R}^{r+n\cdot\succ 1/2}$ , $\mu_{2}(\alpha)=|\alpha|_{R}^{r- 1/2}(sgn\alpha)^{n}$ .
It implies that $\mathcal{W}_{v}^{*}$ coincides with this Whittaker space and that $\rho_{v}$ is equi-
valent to $\pi_{v}^{*}$ .

For a later application we remark the following. Put $M(x)$

$=\exp(-2\pi|u_{v}|n(x))\chi_{n}(x^{p})$ . Let $\mathfrak{g}$ be the Lie algebra of $GL_{2}(R)$ (identified with
$M_{2}(R))$ . We regard $U=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right),$ $V_{+}=\left(\begin{array}{ll}1 & i\\i & -1\end{array}\right),$ $V_{-}=\left(\begin{array}{ll}1 & -i\\-i & -1\end{array}\right)$ as elements

in $\mathfrak{g}\otimes_{R}C$. For an integer $p\geqq 0$ , put

$\varphi_{n+2p+2}=\left\{\begin{array}{l}\rho(V_{+})^{p}W_{M}\\\rho(V_{+})^{p}\rho(( )\end{array}\right.$

$)W_{M}$

$ififu_{v}>0u^{v}<0’$

,

$[\rho(V_{-})^{p}\rho(\left(\begin{array}{ll}-1 & 0\\0 & 1\end{array}\right))W_{l}$, if $u_{v}>0$ ,

$\varphi_{- n- 2p- 2}=|\rho(V_{-})^{p}W_{M}$

if $u_{v}<0$ .
Then, these functions form a basis of $\mathcal{W}_{v^{*}}$ and
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$\rho(U)\varphi_{m}=im\varphi_{m}$ for $m=\pm(n+2),$ $\pm(n+4),$ $\cdots$

Thus we have seen that, in all cases, the assertion of Proposition 3 is true.
12. PROPOSITION 4. The notation being the same as in Proposition 3, assume

rhat $\pi$ is not one-dimensional. Then, $\pi_{v}$ is infinite dimensional for all $v\not\in S$ .
PROOF. Assume that $\pi_{v}$ is finite dimensional (hence one-dimensional) for

a place $v\not\in S$ . We use the notation in No. 3 or No. 9. The only proper
invariant subspace of $W(\mu_{1}, \mu_{2} ; \psi_{v})$ is the Whittaker space $W(\sigma(\mu_{1}, \mu_{2});\psi_{v})$ of
$\sigma(\mu_{1}, \mu_{2})$ . We shall show that $\mathcal{W}_{v}^{*}$ is not contained in this subspace so that
$\mathcal{W}_{v^{*}}=W(\mu_{1}, \mu_{2} ; \psi_{v})$ .

Let $v$ be non-archimedean. By (5.8) and [5, Prop. 3.4, Prop. 3.6] $W_{M}(M$

$\in S_{1}(JC_{v}))$ is in $W(\sigma(\mu_{1}, \mu_{2});\psi_{v})$ if and only if

(5.22) $\int f(M)(0, \xi)d\xi=\int\int M(\left(\begin{array}{ll}0 & \xi^{\prime}\\0 & \xi\end{array}\right))d\xi d\xi^{\prime}=0$ .

The characteristic function $M_{v}^{0}$ of $\mathfrak{Q}_{v}$ is in $S_{1}(JC_{v})$ , but does not satisfy this
condition.

Let $v$ be archimedean. By [5, Cor. 5.14] and its analogue in the case of
$C$, we see that (5.22) is a necessary and sufficient condition for $W_{M}\in W(\sigma(\mu_{1}$ ,
$\mu_{2});\psi_{v})$ . The function $M(x)=\exp(-\pi d_{v}|u_{v}|tr(x{}^{t}\overline{x}))$ is contained in $S_{1}(JC_{v})$ ,

but does not satisfy this condition.
From this it follows that $\mathcal{W}_{v^{*}}$ has a one-dimensional constituent. Put

$\mathcal{U}_{v}=W(\sigma(\mu_{1}, \mu_{2});\psi_{v})$ and let $\mathcal{U}$ be the restricted tensor product of $\mathcal{W}_{v’}^{*}$

$(v^{\prime}\neq v)$ and $\mathcal{U}_{v}$ . $\mathcal{W}^{*}/\mathcal{U}$ is isomorphic to the restricted tensor product of
$\mathcal{W}_{v^{\prime}}^{*}(v^{\prime}\neq v)$ and a one-dimensional space $\mathcal{W}_{v^{*}}/\mathcal{U}_{v}$ .

On the other hand, by Proposition 2, $\mathcal{V}^{*}$ is an invariant subspace of
$\mathcal{A}_{0}(\eta, GL_{2}(A))$ so that $\mathcal{V}^{*}$ is a direct sum of irreducible subspaces. Since the
representations of $\mathcal{H}(GL_{2}(A))$ in $\mathcal{W}^{*}$ and $\mathcal{V}^{*}$ are equivalent, the representa-

tion of $\mathcal{H}(GL_{2}(A))$ in $\mathcal{W}^{*}/\mathcal{U}$ is a direct sum of irreducible representations,
each of which is equivalent to a constituent of $\mathcal{A}_{0}(\eta, GL_{2}(A))$ . Let $\sigma=\otimes\sigma_{v^{\prime}}$

be any one of them. From what we have seen, $\sigma_{v}$ must be one-dimensional.
This is impossible (cf. [5, pp. 353-354]). $q$ . $e$ . $d$ .

We resume Proposition 3 and Proposition 4 as follows.
THEOREM 1. Let $J\zeta$ be a division quaternion algebra over a global field $F$

and $S$ the set of all places in $F$ ramified in $J\zeta$ . Let $\pi=\otimes\pi_{v}$ be an irreducible
constituent of the representation $\rho$ of $\mathcal{H}(JC_{A}^{\times})$ in $\mathcal{A}(\eta, JC_{A}^{\times}),$

$\eta$ being a character

of $A^{\times}/F^{\times}$ . For $v\in S$ , let $\pi_{v}^{*}$ be as in \S 2, No. 2 and define an admissible
representation $\pi^{*}$ of $\mathcal{H}(GL_{2}(A))$ by

$\pi^{*}=\bigotimes_{v\not\in S}\pi_{v}\bigotimes_{v\in S}\pi_{v}^{*}$ .

In the same notation {
$-\neg as_{-\lrcorner}$ in \S $4,$ $-’\sim No$ . 1, let $\mathcal{V}^{*_{\cup}}be$ the space spanned by all
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$\rho(\left(\begin{array}{ll}a & 0\\0 & 1\end{array}\right))\phi_{M}$ for $\lrcorner\eta’ l\in S_{1}(JC_{4}1)$ and $a\in E,$ $E$ being a representative system of
$A^{\times}/(A^{\times})^{2}$ .

Assume that $\pi$ is not one-dimensional. Then $\mathcal{V}^{*}$ is an invariant subspace

of $\mathcal{A}_{0}(\eta, GL_{2}(A))$ and the representation of $\mathcal{H}(GL_{2}(A))$ in $\mathcal{V}^{*}$ is equivalent to $\pi^{*}$ .

\S 6. An application to the holomorphic automorphic forms.

1. In this section, $F$ is a totally real algebraic number field. We denote
by $\mathfrak{p}$ non-archimedean places in $F$ and by $v$ (exclusively) archimedean places
in $F$. Also we write $A_{\infty}$ (resp. $A_{r}$) the archimedean (resp. $non- archimedean$) $|$

part of $A$ .
Let $\mathfrak{g}_{v}$ be the Lie algebra of $GL_{2}(F_{v})$ and $\mathfrak{U}_{v}$ the universal enveloping:

algebra of $\mathfrak{g}_{v}\bigotimes_{J\ell}C$. The universal enveloping algebra $U$ of $GL_{2}(A_{\infty})$ is identifiedi

with $\bigotimes_{v}\mathfrak{U}_{v}$ . In the notation in \S 5, No. 11, regard

$D=(1/4)(V_{+}V_{-}+V_{-}V_{+})-(1/2)U^{2}$

as an element in $\mathfrak{U}_{v}$ . Put

$D_{v}=\bigotimes_{v^{\prime}}X_{v}$
, with $X_{v^{\prime}}=\left\{\begin{array}{l}D ifv^{\prime}=v,\\1 ifv\neq v.\end{array}\right.$

For an integer $m$ , let $\sigma_{m}$ be the representation of $SO_{2}(R)$ defined by

$\sigma_{m}(\left(\begin{array}{ll}cos\theta & sin\theta\\-sin\theta & \theta cos\end{array}\right))=e^{im\theta}$ .

Let $m_{v}$ be an integer $\geqq 2$ and $\mathfrak{n}$ an integral $0$-ideal. We denote by $U_{\mathfrak{p}}(\mathfrak{n})^{1}$

the group of all $\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)$ in $GL_{2}(0_{\mathfrak{p}})$ such that $\gamma\equiv 0(mod \mathfrak{n}0_{\mathfrak{p}})$ . Let $\mathcal{A}_{0}(GL_{2}(A))$ .

be the space of all continuous functions $\varphi$ on $GL_{2}(F)\backslash GL_{2}(A)$ satisfying the $\cdot$

conditions (3.1), (3.2), (3.4) and (C) in \S 3. Consider the space $H$ of all $\varphi$ in.
$\mathcal{A}_{0}(GL_{2}(A))$ satisfying the following conditions.

$\rho(D_{v})\varphi=(1/2)((m_{v}-1)^{2}-1)\varphi$ ,

$\rho(k)\varphi=\Pi\sigma_{mv}(k_{v})\varphi$ for $k\in\Pi U_{\mathfrak{p}}(n)\Pi SO_{2}(F_{v})$ ,

$\rho(z)\varphi=\Pi(sgnz_{v})^{m_{Q1}}\varphi$ for $z\in A_{\infty}^{\times}$ .
Evidently $H$ is invariant under $\rho(z)$ for $z\in A^{x}$ , and $\rho$ defines a representationi
$\rho_{4}$ of $A^{\times}$ in $H$ trivial on $F^{\times}(\prod 0_{\mathfrak{p}^{\times}})(A_{\infty}^{\times})^{0},$ $(A_{\infty}^{\times})^{0}$ being the group of all $z\in A_{\infty}^{\times}$

such that $z_{v}>0$ . Consequently $\rho_{A}$ is actually a representation of a finite
quotient group of $A^{x}$ so that it is a direct sum of one-dimensional repre-
sentations. Let $Y$ be the set of all quasi-characters $\eta$ of $A^{\times}/F^{\times}$ such that
$\eta_{v}(a)=(sgn\alpha)^{m_{v}}$ and $\eta_{\mathfrak{p}}$ is unramified. It follows from the above argument
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-that $H$ is contained in $\mathcal{B}$ , where $\mathcal{B}$ is the sum of the spaces $\mathcal{A}_{0}(\eta, GL_{2}(A))$

for $\eta\in$ Y.
Let $\varphi$ be a non-zero element in $H$. Write $\varphi=\sum\varphi_{i},$ $\varphi_{i}\neq 0,$ $\varphi_{i}\in \mathcal{V}_{i},$ $\mathcal{V}_{i}$

being a certain irreducible subspace of $\mathcal{B}$ . It is immediate to see that, if
$\pi=\otimes\pi_{\mathfrak{p}}\otimes\pi_{v}$ is the representation of $\mathcal{H}(GL_{2}(A))$ in any one of $\mathcal{V}_{i},$ $\pi$ has to
satisfy the following conditions.

$\}(6.1)$ $\pi_{v}$ is equivalent to $\sigma(\mu_{1}, \mu_{2})$ , where $\mu_{1}$ and $\mu_{2}$ are quasi-characters
of $F_{v^{x}}$ such that $\mu_{1}(a)=|\alpha|^{(m_{v}- 1)/2},$ $\mu_{2}(a)=|\alpha|^{-(m_{v}- 1)/2}(sgn\alpha)^{m_{v}}$ .

( $(6.2)$ The restriction of $\pi_{\mathfrak{p}}$ to $U_{\mathfrak{p}}(\mathfrak{n})$ contains the identity representation.

2. LEMMA 13. Let $\mu_{1},$ $\mu_{2}$ be quasi-characters of $F_{\mathfrak{p}^{\times}}$ . Assume that $\pi_{\mathfrak{p}}$ is
infinite dimensional and of the form $\pi(\mu_{1}, \mu_{2})$ or $\sigma(\mu_{1}, \mu_{2})$ . Then, the restriction

$\ovalbox{\tt\small REJECT} of\pi_{\mathfrak{p}}$ to $U_{\mathfrak{p}}(\mathfrak{p})$ contains the identity representation if and only if $\mu_{1},$ $\mu_{2}$ are
unramified. Suppose this condition is satisfied. If $\pi_{\mathfrak{p}}=\pi(\mu_{1}, \mu_{2})$ , the space of
$U_{\mathfrak{p}}(\mathfrak{p})$ -invariant vectors is spanned by two linearly independent vectors $\varphi_{1},$ $\varphi_{2}$ ,

. where $\varphi_{1}$ is $GL_{2}(0,)$-invariant and $\varphi_{2}=\pi_{\mathfrak{p}}($($01$ $\varpi^{0}$) $)\varphi_{1}$ . If $\pi_{\mathfrak{p}}=\sigma(\mu_{1}, \mu_{2})$ , the

space of $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant vectors is of dimension 1.
PROOF. First consider the case $\pi_{\mathfrak{p}}=\pi(\mu_{1}, \mu_{2})$ and let $\pi_{\mathfrak{p}}$ act on the space

$\mathcal{B}(\mu_{1}, \mu_{2})$ (\S 1, No. 3). Let $\varphi$ be a $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant function in $\mathcal{B}(\mu_{1}, \mu_{2})$ . Since
$(T\cap GL_{2}(0_{\mathfrak{p}}))\backslash GL_{2}(0_{\mathfrak{p}})/U_{\mathfrak{p}}(\mathfrak{p})$ is represented by two elements $\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ ,

$\varphi$ is determined by its values at these elements. If $\varphi\neq 0$ , at least one of
.these two values is not $0$ . On the other hand, if $\alpha,$

$\delta\in 0_{p}^{\times}$ , we have

$\varphi(\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right))=\varphi(\left(\begin{array}{ll}a & 0\\0 & \delta\end{array}\right))=\mu_{1}(\alpha)\mu_{2}(\delta)\varphi(\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right))$ ,

$\varphi(\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right))=\varphi(\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)\left(\begin{array}{ll}\alpha & 0\\0 & \delta\end{array}\right))=\mu_{1}(\delta)\mu_{2}(a)\varphi(\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right))$ .

‘Therefore $\mu_{1},$ $\mu_{2}$ must be trivial on $0_{\mathfrak{p}}^{\times}$ . Assuming this is the case, let $\varphi_{1}$ be
. an element in $\mathcal{B}(\mu_{1}, \mu_{2})$ such that $\varphi_{1}(u)=1$ for all $u\in GL_{2}(0_{\mathfrak{p}})$ . Then $\varphi_{2}$

$=\rho(\left(\begin{array}{ll}1 & 0\\0 & \varpi\end{array}\right))\varphi_{1}$ is $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant. Since

$\varphi_{2}(\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right))=\mu_{2}(\varpi)|\varpi|_{F\mathfrak{p}^{-1/2}}$ $\varphi_{2}(\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right))=\mu_{1}(\varpi)|\varpi|_{F_{\mathfrak{p}}^{1/2}}$

$\varphi_{1}$ and $\varphi_{2}$ are linearly independent.
Next assume that $\mu_{1}\mu_{2}^{-1}=||_{F_{\mathfrak{p}}}$ and $\pi_{\mathfrak{p}}=\sigma(\mu_{1}, \mu_{2})$ acts on the space $\mathcal{B}_{S}(\mu_{1}$ ,

$\mu_{2})$ . As is seen above, if $\mathcal{B}_{S}(\mu_{1}, \mu_{2})$ contains a non-zero $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant vector,
$\mu_{1}$ and $\mu_{2}$ must be trivial on $\mathfrak{d}_{p^{x}}$ . In this case, a function $\varphi\in \mathcal{B}(\mu_{1}, \mu_{2})$ is in
$\mathcal{B}_{S}(\mu_{1}, \mu_{2})$ if and only if

$t(6.3)$ $\int_{GL_{2^{(0}\mathfrak{p})}}\varphi(k)dk=0$ .
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If ($\beta$ is $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant, an easy calculation shows that (6.3) is reduced to

$\varphi(\left(\begin{array}{llll} & & 0 & 1\\ & & 1 & 0\end{array}\right))+|\varpi|_{F_{\mathfrak{p}}}\varphi(\left(\begin{array}{llll} & & 1 & 0\\ & & 0 & 1\end{array}\right))=0$ .

Hence there is exactly one $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant function $\varphi$ satisfying (6.3). Thiss
proves our assertion.

LEMMA 14. Let $\pi_{\mathfrak{p}}$ be absolutely cuspidal. Then the restriction of $\pi_{\mathfrak{p}}$ to’
$U_{\mathfrak{p}}(\mathfrak{p})\cap K_{\mathfrak{p}}^{1}$ does not contain the identity representation.

PROOF. The notation being the same as in \S 5, No. 5, take for $\Psi$ a
character of $F_{\mathfrak{p}}$ whose conductor is $0_{P}$ . Let $\varphi$ be a $(U_{\mathfrak{p}}(\mathfrak{p})\cap K_{p^{1}})$ -invariant

function in $S(F_{\mathfrak{p}^{\times}})$ . Since $\varphi(\xi)=\pi_{\mathfrak{p}}($ ( $10$ $\beta 1$) $)\varphi(\xi)=\Psi(\beta\xi)\varphi(\xi)$ for all $\beta\in 0_{\mathfrak{p}}$ , the-

support of $\varphi$ is contained in $\mathfrak{o}_{\mathfrak{p}}$ . Putting $\pi_{\mathfrak{p}}(w)\varphi=\varphi^{\prime}$ , we get $\pi_{\mathfrak{p}}(\left(\begin{array}{llll} & & 1 & -\gamma\\ & & 0 & 1\end{array}\right))\varphi^{\prime}$

$=\varphi^{\prime}$ for all $\gamma\in \mathfrak{p}$ , for $w\left(\begin{array}{llll} & & 1 & 0\\ & & \gamma & 1\end{array}\right)=(_{0}^{1}$ $-\gamma 1$) $u$). Consequently, the support of $\varphi^{f}$

is contained in $\mathfrak{p}^{-1}$ . By (5.12) we have

(6.4) $\hat{\varphi}^{\prime}(\mu)=C(\mu)\hat{\varphi}(\mu^{-1}\eta_{\mathfrak{p}}^{-1})$

for all characters $\mu$ of $F_{\mathfrak{p}^{x}}$ . Write $\mu(\epsilon\varpi^{n})=\nu(\epsilon)t^{n}$ , where $\nu$ is a character of‘
$0_{\mathfrak{p}^{x}}$ and $t$ is a complex number of absolute value 1. Then we have

$\hat{\varphi}^{\prime}(\mu)=\sum_{n--1}^{\infty}t^{n}\int_{0,^{\times}}\varphi^{\prime}(\varpi^{n}\epsilon)\nu(\epsilon)d\epsilon$ ,

$\hat{\varphi}(\mu^{-1}\eta_{\mathfrak{p}}^{-1})=\sum_{n=0}^{\infty}t^{-n}\eta_{\mathfrak{p}}(\varpi)^{-n}\int_{0_{J}^{\times}}\varphi(\varpi^{n}\epsilon)\nu^{-1}\nu_{0}^{-1}(\epsilon)d\epsilon$ ,

$C(\mu)=\sum_{n=-\infty}^{-2}t^{n}C_{n}(\nu)$ ,

because $C_{n}(\nu)=0$ if $n\geqq-1$ by [5, Prop. 2.23]. Putting these expressions $in\not\in$

(6.4), we get an equality which holds for all $\nu$ and $t$ . This is possible only

if $\varphi^{\prime}=\varphi=0$ . This proves the lemma.
3. From now on we assume that $\mathfrak{n}$ is square-free. Let $\mathcal{U}_{0}$ be the sum

of all irreducible subspaces $\mathcal{V}$ in $\mathcal{B}$ such that the representation $\pi$ of
$\mathcal{H}(GL_{2}(A))$ in $\mathcal{V}$ satisfies (6.1), (6.2) and $\pi_{\mathfrak{p}}$ is a special representation for all
$\mathfrak{p}$ dividing $\mathfrak{n}$ . Put $H_{0}=H\cap \mathcal{U}_{0}$ . $\mathcal{V}$ being as above, $\mathcal{V}\cap H$ is one-dimensional
(Lemma 13 and [5, Lemma 3.9]) so that $\dim H_{0}$ is the number of irreducible $\cdot\cdot$

subspaces contained in $\mathcal{U}_{0}$ .
Let us write for a moment $H=H(\mathfrak{n}),$ $H_{0}=H_{0}(\mathfrak{n})$ . Denote by $\mathfrak{p}_{j}(j=1,2,$ .

, $\nu$ ) all the prime divisors of $\mathfrak{n}$ and by $\varpi_{j}$ a prime element of $\mathfrak{p}_{j}$ . For $a_{-}$

subset $B$ of $A=\{1,2, \cdots \nu\}$ , we put

$\mathfrak{n}_{B}=\prod_{j\backslash B}\mathfrak{p}_{j}$
, $p_{B}=\prod_{jB}$( $01$

$\varpi_{j}^{0}$).
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It follows from Lemma 13 that

$H(\mathfrak{n})=\sum_{B_{L}^{\prime}A}\sum_{C\overline{-}A-B}\rho(p_{C})H_{0}(\mathfrak{n}_{B})$ ,

where the sum is direct. In other words, $H(\mathfrak{n})$ is the direct sum of $H_{0}(\mathfrak{n})$ and
the space spanned by the right translates of elements in $H_{0}(\mathfrak{m}),$ $\mathfrak{m}$ being a
proper divisor of $\mathfrak{n}$ . $H_{0}(\mathfrak{n})$ (to be precise, the intersection of $H_{0}(\mathfrak{n})$ and
$\mathcal{A}_{0}(\eta, GL_{2}(A)))$ has been introduced in Miyake [6] as the orthogonal comple-
ment of the space

$\sum_{B\subsetneqq A}\sum_{C\subset A-B}\rho(p_{c})H(\mathfrak{n}_{B})$
. We call any function in $H_{0}(\mathfrak{n})$ properly

of level $\mathfrak{n}$ .
4. Assuming that $\nu+[F:Q]$ is even, let $<X$ be a definite quaternion algebra

of discriminant $\mathfrak{n}$ over $F$.
Denote by $\mathcal{B}^{\prime}$ the sum of $\mathcal{A}(\eta, \epsilon X_{A}^{\times})$ for $\eta\in$ Y. Let $\mathcal{V}^{\prime}$ be an irreducible

subspace in $\mathcal{B}^{\prime}$ and $\pi$ the representation of $\mathcal{H}(JC_{A}^{\times})$ in $\mathcal{V}^{\prime}$ . Let $\mathcal{U}^{\prime}$ be the
sum of all $\mathcal{V}^{\prime}$ such that

(6.5) $\pi_{v}$ is equivalent to the representation $g\rightarrow n(g)^{-(m_{v}- 2)/2}\rho_{mv-2}(g)$ ,

(6.6) the restriction of $\pi_{\mathfrak{p}}$ to $K_{\mathfrak{p}}$ contains the identity representation.

Then it follows from Lemma 10 that, if $\mathfrak{p}$ divides $\mathfrak{n}$ , we have $\pi_{\mathfrak{p}}=\chi_{\mathfrak{p}}\circ n$ with
an unramified character $\chi_{\mathfrak{p}}$ of $F_{\mathfrak{p}^{\times}}$ , and hence $\pi_{\mathfrak{p}}$ is trivial on $K_{\mathfrak{p}}$ .

Denote by $\mathfrak{d}$ the irreducible representation of $K^{1}$ of the form $\otimes \mathfrak{d}_{\mathfrak{p}}\otimes \mathfrak{d}_{v}$ ,
where $\mathfrak{d}_{v}$ is equivalent to $\rho_{mv-2}$ (we identify $K_{v}^{1}$ with $SU_{2}(C)$ . cf. \S 4, No. 4)
and $\mathfrak{d}_{\mathfrak{p}}$ is the identity representation. $\pi$ being as above, $\mathfrak{d}$ is contained in the
restriction of $\pi$ to $K^{1}$ with the multiplicity 1.

Set $J\zeta_{\infty}^{\times}=\Pi JC_{v^{\times}},$ $J\zeta_{\infty}^{1}=\Pi JC_{v}^{1}$ and define the representation $\Lambda$ of $JC_{\infty}^{\times}$ by

(6.7) $\Lambda(g)=\bigotimes_{v}(n(g)^{-(m_{v}- 2)/2}\rho_{mv-2}(g_{v}))$ .

Let $H^{1}$ be the space of all $\varphi$ in $\mathcal{U}^{\prime}$ invariant under $\rho(k)$ for all $k\in\prod K_{\mathfrak{p}}$ .
It is easy to see that $H^{\prime}$ is the space of all functions $\varphi$ on $JC_{F}^{\times}\backslash c\kappa_{A}^{\times}$ satisfying
the following conditions:

i) $\rho(k)\varphi=\varphi$ for $k\in\prod K_{\mathfrak{p}}$ ,
ii) $\varphi\rightarrow\rho(k)\varphi$ defines a representation of $JC_{\infty}^{\times}$ equivalent to a direct sum

of $\Lambda$ .
We consider the space $U$ spanned by all matrix coefficients of $\Lambda$ and the

representation $\lambda$ of $JC_{\infty}^{\times}$ in $U$ defined by left translation. If $l=\dim\Lambda,$ $\lambda$ is a
direct sum of 1 copies of $\Lambda$ (since $\Lambda$ is unitary). There is an isomorphism
of $H^{\prime}$ onto the space of all functions $\varphi^{\prime}$ on $JC_{F}^{\times}\backslash JC_{A}^{x}$ taking values in $U$ such
that

$\varphi^{\prime}(hkg)=\lambda(g^{-1})\varphi^{\prime}(h)$ for $g\in J(\infty\times,$ $k\in\Pi K_{\mathfrak{p}},$ $h\in JC_{A}^{x}$ .
This isomorphism is given by $\varphi\rightarrow\varphi^{\prime},$ $(\varphi^{\prime}(h))(g)=\varphi(hg)$ .
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We fix an arbitrary irreducible subspace $V$ of $U$ and denote by $H^{\prime\prime}$ the
space of all $\varphi$ in $H^{\prime}$ such that $\varphi^{\prime}$ takes its values in $V$ .

5. Let $\mathfrak{a}_{\mathfrak{p}}$ be the conductor of $\psi_{\mathfrak{p}}$ . Write $\psi_{v}(\alpha)=\exp(2\pi iu_{v}\alpha)$ . Let $L_{\mathfrak{p}}$

denote a two-sided $\mathfrak{Q}_{\mathfrak{p}}$ -ideal of norm Op if $\mathfrak{p}$ divides $\mathfrak{n}(\mathfrak{Q}_{\mathfrak{p}}$ is the maximal order
in JCp) and $L_{\mathfrak{p}}=0\mathfrak{p}e_{11}+0_{\mathfrak{p}}e_{12}+\mathfrak{a}_{\mathfrak{p}}e_{21}+\mathfrak{a}_{\mathfrak{p}}e_{22}$ if $\mathfrak{p}$ does not divide $\mathfrak{n}$ . Put

$M(x)=\Pi M_{\mathfrak{p}}(x_{p})\Pi M_{v}(x_{v})$ for $x\in JC_{A}$ ,

where

$M_{\mathfrak{p}}=\int_{K\mathfrak{p}^{1}}\lambda(k_{1})N_{\mathfrak{p}}dk_{1}$ ,

$N_{\mathfrak{p}}$ being the characteristic function of $L_{\mathfrak{p}}(M_{\mathfrak{p}}=N_{\mathfrak{p}}$ if $\mathfrak{a},$ $=0\mathfrak{p}$ or if $\mathfrak{p}$ divides
n) and

$M_{v}(x_{v})=\exp(-2\pi|u_{v}|n(x_{v}))^{\chi_{m_{v}- 2}}(x_{v}^{t})$ .
Let $e$ be an element in $A^{\times}$ such that $e_{v}=-1$ whenever $u_{v}<0$ and all other
components are 1.

Let $\varphi$ be in $H^{\prime\prime}$ and $g$ in $JC_{\iota}^{x_{1}}$ . If $s$ is an element in $GL_{2}(A)$ such that
$\det s=\uparrow\iota(h)$ for $h\in JC_{A}^{x}$ , we denote by $\phi_{\varphi,g}(s)$ the right hand side of (4.10) in
\S 4, where $M$ is the function defined just above. Extend $\phi_{\varphi,g}$ to a function
on $GL_{2}(A),$ $GL_{2}(F)$ -invariant on the left.

Put $\theta_{\varphi,g}(s)=\phi_{\varphi,g}(s\left(\begin{array}{ll}e & 0\\0 & 1\end{array}\right))$ . Let $\{\varphi_{i}\}_{i=1}^{n}$ be a basis of $H^{\prime\prime}$ and $\{g_{t}\}_{i=1}^{n}$ a set

of elements in $J_{A}^{\times}$ such that $\det(\varphi_{i}(g_{j}))\neq 0$ . Our aim is to prove the follow-
ing theorem, which may be viewed as a generalization of Eichler $[1, 2]$ .

THEOREM 2. If $m_{v}>2$ for all $v,$ $H_{0}$ is spanned by $\theta_{\varphi t,g_{f}}(i, j=1, \cdots, n)$ .
The proof will be given in No. $6-No$ . $10$ .
6. Let $\pi=\otimes\pi_{P}\otimes\pi_{v}$ be an irreducible constituent of $\mathcal{U}^{\prime}$ . Then $\pi_{v}^{*}$ is

equivalent to $\sigma(\mu_{1}, \mu_{2})$ defined in (6.1), and for all $\mathfrak{p}$ dividing $n$ , we have
$\pi_{\mathfrak{p}}=x_{\mathfrak{p}}\circ n$ so that $\pi_{\mathfrak{p}}^{*}=\sigma(\chi_{\mathfrak{p}}||_{F_{\mathfrak{p}}}^{1/2}, \chi_{\mathfrak{p}}||_{F_{\mathfrak{p}}^{-1/2}})$ (cf. \S 2, No. 2). Therefore, by
Theorem 1,

$\pi^{*}=\bigotimes_{t\dagger \mathfrak{n}}\pi_{\mathfrak{p}}\bigotimes_{\downarrow 1\mathfrak{n}}\pi_{\mathfrak{p}}^{*}\bigotimes_{v}\pi_{v}^{*}$

is an irreducible constituent of $\mathcal{U}_{0}$ if $\pi$ is not one-dimensional. Denote by
$\mathcal{V}^{*}$ the space of $\pi^{*}$ defined in \S 4, No. 4.

Let $\mathcal{U}^{\prime}(\pi)$ be the sum of all irreducible subspaces $\mathcal{V}^{\prime}$ in $\mathcal{U}^{\prime}$ such that
the representation of $\mathcal{H}(JC_{A}^{\times})$ in $\mathcal{V}^{\prime}$ is equivalent to $\pi$ . Fix an irreducible
subspace $\mathcal{V}^{\prime}$ in $\mathcal{U}^{\prime}(\pi)$ . Take any non-zero element $\varphi$ in $\mathcal{V}^{\prime}\cap H^{\prime}$ and an ele-
ment $g$ in $J\zeta_{A}^{\times}$ such that $\varphi(g)\neq 0$ . Obviously $\varphi$ satisfies

$\int_{A^{1}}\chi_{\mathfrak{d}}(k_{1^{-1}})\rho(k_{1})\varphi dk_{1}=\varphi$ .

By definition we have $\theta_{o,g}=\varphi(g)\rho(\left(\begin{array}{ll}e & 0\\0 & 1\end{array}\right))\phi_{M},$ $\phi_{M}$ being as in (4.10), and
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hence $\hat{\theta}_{\varphi,g}(1, s)=\varphi(g)\rho(\left(\begin{array}{lllll} & & & e & 0\\ & & & 0 & 1\end{array}\right))W_{M}(s)$ (\S 4, No. 2). It follows from Lemma 7,

Lemma 10 and the remark at the end of \S 5, No. 10 that $\theta_{\varphi,g}$ is a non-zero
element in $\mathcal{V}^{*}\cap H_{0}$ (that $W_{M}$ is non-zero is clear in view of the argument
in \S 5). In the same notation, it is easy to see that

$\hat{\theta}_{\mathcal{O},g}(1, s)=\Phi(g)\rho(\left(\begin{array}{lllll} & & & e & 0\\ & & & 0 & 1\end{array}\right))W_{M}(s)$ for all $\Phi\in \mathcal{U}^{\prime}(\pi)\cap H^{\prime},$ $g\in X_{A}^{\times}$ .

Therefore, Theorem 2 follows if we prove that

\langle 6.8) every irreducible constituent of $\mathcal{U}_{0}$ is equivalent to $\pi^{*}$ for
some irreducible constituent $\pi$ of $\mathcal{U}^{\prime}$ , and

$|(6.9)$ $\pi$ being as in (6.8), we have $\mathcal{U}^{\prime}(\pi)\cap H^{\prime\prime}\neq\{0\}$ .
(6.8) will be a special case of [5, Th. 16.1] at the time its proof is com-

pleted. For the present we use [8, Prop. 4.1] instead.
7. For all $\mathfrak{p}$ prime to $\mathfrak{n}$ , denote by $\mathcal{H}_{\mathfrak{p}^{0}}$ the subalgebra of $\mathcal{H}(GL_{2}(F_{\mathfrak{p}}))$

consisting of all right and left $GL_{2}(0_{\mathfrak{p}})$ -invariant elements, and put

$\mathcal{H}^{0}=\bigotimes_{t\{\mathfrak{n}}\mathcal{H}_{\mathfrak{p}^{0}}$ .

For all $\mathfrak{p}$ dividing $\mathfrak{n}$ , let $\xi_{\mathfrak{p}}$ be an elementary idempotent in $\mathcal{H}(GL_{2}(F_{\mathfrak{p}}))$ such
that $\xi_{\mathfrak{p}}*f_{\mathfrak{p}}=f_{\mathfrak{p}},$ $f_{\mathfrak{p}}$ being the characteristic function of $U_{\mathfrak{p}}(\mathfrak{n})$ , and let $\xi_{\mathfrak{p}^{\gamma}}$ be
the characteristic function of $K_{p}$ . Then

$f\rightarrow f\otimes(\bigotimes_{\mathfrak{p}1\mathfrak{n}}\xi_{\mathfrak{p}}\bigotimes_{v}\overline{\sigma}_{m_{v}})$

and
$f\rightarrow f\otimes(\bigotimes_{\mathfrak{p}1\mathfrak{n}}\xi_{\mathfrak{p}^{\prime}}\bigotimes_{v}\overline{\chi}_{\iota_{v}})$

define embeddings of $\mathcal{H}^{0}$ into $\mathcal{H}(GL_{2}(A))$ and $\mathcal{H}(J_{A}^{\times})$ , respectively. We identify
$\mathcal{H}^{0}$ with the images of these embeddings. In this way $\mathcal{H}^{0}$ is made to act on
$\mathcal{A}_{0}(GL_{2}(A))$ as well as on $\mathcal{A}(J\zeta_{A}^{\times})$ . It is obvious that $H,$ $H_{0},$ $H^{\gamma},$

$H^{\prime\prime}$ are invari-
ant under $\rho(f)$ for $f\in \mathcal{H}^{0}$ . Writing $T(f)$ (resp. $T_{0}(f),$ $T^{\prime}(f),$ $T^{\prime\prime}(f)$ ) for the
restriction of $\rho(f)$ to $H$ (resp. $H_{0},$ $H^{\prime},$ $H^{r;}$ ), we obtain representations $T,$ $T_{0}$ ,
$\tau/,$ $T^{\prime\prime}$ of $\mathcal{H}^{0}$ . We see immediately that $T^{\prime}$ is equivalent to the direct sum
of 1 copies of $T^{\prime\prime}$ .

8. $H^{\prime\prime}$ is isomorphic to the space $M(1, \{m_{v}-2\})$ defined in Shimizu [8,

\S 2.2] (if $\check{\varphi}(g)=\varphi(g^{-1}),$ $\varphi\rightarrow\check{\varphi}^{\prime}$ gives the isomorphism). Also $T^{\prime\prime}$ is equivalent
to the representation $\mathfrak{T}$ defined in the same place, if $\mathfrak{T}$ is restricted to $\mathcal{H}^{0}$ .

On the other hand, $H$ is isomorphic to the space of holomorphic cusp
forms introduced in Shimura [9]. Put $U(\mathfrak{n})=\prod_{\mathfrak{p}}U_{\mathfrak{p}}(\mathfrak{n})GL_{2}(A_{\infty})$ and let $s_{i}(i=1$ ,

$\ldots$ $q$ ) be the representatives in $GL_{2}(A)$ of $GL_{2}(F)\backslash GL_{2}(A)/U(\mathfrak{n})$ . Put $\Gamma_{i}$

$=GL_{2}(F)\cap s_{i}U(\mathfrak{n})s_{\iota^{-1}}$ . Let $\mathfrak{F}$ be the set of all $z=(z_{v})$ with $z_{v}\in C,$ ${\rm Im} z_{v}\neq 0$ .
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For $s\in GL_{2}(A)$ we set

$s(z)=$ ,

$j(s, z)=\prod_{t^{\backslash }}|\det s_{v}|^{m_{v/2}}(\gamma_{v}z_{v}+\delta_{v})^{-m_{0}}$ if $s_{v}=(\gamma\alpha_{v^{v}}\beta_{v}\delta^{v})$ .

Let $S_{i}$ be the space of all $f$ satisfying the following conditions.
i) $f$ is holomorphic on $\mathfrak{F}$

ii) $f(\sigma(z))=f(z)j(\sigma, z)^{-1}$ for $\sigma\in\Gamma_{i}$ .
iii) $\Pi_{v}|{\rm Im} z_{v}|^{m_{v}/2}|f(z)|$ is bounded on $\mathfrak{F}$ .

Let $S$ be the direct product of $S_{1}$ , $\cdot$ .. , $S_{q}$ . We can assume that $s_{i}\in GL_{2}(A_{f})_{-}$

For $\varphi\in H$, put
$f_{i}(z)=j(s, z_{0})^{-1}\varphi(s_{i}s)$ ,

where $z_{0}=$ $(\sqrt{}^{-}-1, \cdot.. , \sqrt{-1})$ and $s$ is an element in $GL_{2}(A_{\infty})$ such $that_{\sim}s(z_{0})=z$ .
Then $\varphi\rightarrow(f_{1}, f_{q})$ gives an isomorphism of $H$ onto $S$ . Furthermore, the
representation $T$ of $\mathcal{H}^{0}$ in $H$ is equivalent to the representation $\mathfrak{T}$ defined in
[9, \S 3], if it is restricted to $\mathcal{H}^{0}$ .

9. We assert that $T_{0}$ is equivalent to $T^{\prime\prime}$ . It is sufficient to show that
$trT_{0}(f)=trT^{\prime\prime}(f)$ for all $f\in \mathcal{H}^{0}$ (cf. [8, \S 4.4]). In the notation in No. 3.
$H_{0}(n_{B})$ is invariant under $T(f)$ and $\rho(p_{C})$ commutes with $T(f)$ . Consequently
we have

(6.10) tr $(T(f)|H(\mathfrak{n}))=\sum_{B_{c}A}2^{*(A-B)}$ tr $(T(f)|H_{0}(\mathfrak{n}_{B}))$ ,

where $T(f)|H_{0}(\mathfrak{n}_{B})$ is the restriction of $T(f)$ to $H_{0}(\mathfrak{n}_{B})$ and $\#(A-B)$ is the
number of elements in $A-B$ . On the other hand, the repeated application
of [8, Prop. 4.1] yields

(6.11) $trT^{\prime\prime}(f)=\sum_{BA}(-2)^{*(A-B)}tr(T(f)|H(\mathfrak{n}_{B}))$ .

Substituting (6.10) in (6.11), we see that tr $T^{\prime\prime}(f)=tr(T(f)|H_{0}(\mathfrak{n}))$ , as asserted.
10. LEMMA 15. Let $\mu_{1},$ $\mu_{2}$ be unramified quasi-characters of $F_{p^{\times}}$ and let

$\varphi$ be a $GL_{2}(0_{\mathfrak{p}})$ -invariant element in the representation space of $\pi(\mu_{1}, \mu_{2})$ . Then
$\varphi$ is an eigenfunction of $\rho(f)$ for all $f\in \mathcal{H}_{\mathfrak{p}^{0}}$ . Let $f_{1}$ (resp. $f_{2}$ ) be the charac-
teristic function of

$GL_{2}(0_{\mathfrak{p}})GL_{2}(\mathfrak{o}_{\mathfrak{p}})$ $(resp$ . $GL_{2}(0_{\mathfrak{p}}))$ .

If $\rho(f_{i})\varphi=c_{i}\varphi(i=1,2)$ , then

$\mu_{1}(\varpi)+\mu_{2}(\varpi)=|\varpi|_{F_{\mathfrak{p}}}^{1/2}c_{1}$ ,

$\mu_{1}(\varpi)\mu_{2}(\varpi)=c_{2}$ .
The proof is straightforward if we let $\pi(\mu_{1}, \mu_{2})$ act on the space $\mathcal{B}(\mu_{1}, \mu_{2})$ .
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Take an irreducible subspace $\mathcal{W}$ of $\mathcal{U}_{0}$ and let $\sigma=\otimes\sigma_{\mathfrak{p}}\otimes\sigma_{v}$ be the repre-
sentation of $\mathcal{H}(GL_{2}(A))$ in $\mathcal{W}$ . If $\varphi\in \mathcal{W}\cap H_{0},$

$\varphi$ is an eigenfunction of $\rho(f))$

for all $f\in \mathcal{H}^{0}$ . Write $\rho(f)\varphi=c_{f}\varphi$ for $f\in \mathcal{H}^{0}$ . Since $T_{0}$ is equivalent to $T^{\prime\prime},.$.

there exists a non-zero function $\varphi^{\prime\prime}$ in $H^{\prime\prime}$ such that $\rho(f)\varphi^{\prime\prime}=c_{f}\varphi^{\prime\prime}$ for alk
$f\in \mathcal{H}^{0}$ . It follows from Lemma 15 that there exists an irreducible repre-
sentation $\pi=\otimes\pi_{\mathfrak{p}}\otimes\pi_{v}$ of $\mathcal{H}(JC_{A}^{\times})$ contained in $\mathcal{U}^{\prime}$ such that $\pi_{\mathfrak{p}}$ is equivalent
to $\sigma_{\mathfrak{p}}$ for all $\mathfrak{p}$ prime to $\mathfrak{n}$ . Note that $\pi_{v^{*}}$ is equivalent to $\sigma_{v}$ . By [6, Corol-
lary of Th. $1]^{*)},$ $\pi^{*}$ is necessarily equivalent to $\sigma$ . Also it is clear that $\varphi^{\prime\prime}$

is contained in $\mathcal{U}^{\prime}(\pi)\cap H^{\prime\prime}$ . This proves (6.8) and (6.9), and completes the $\cdot$

proof of Theorem 2.
11. We discuss a case where the situation seems the simplest. Assume $\cdot$

that
i) $[F:Q]$ is even,

ii) the class number of $F$ is 1,
iii) every totally positive unit in $F$ is a square of a unit in $F$.

Furthermore, we make a particular choice of $\psi$ . Let $\psi_{Q}$ be an additive
character of the adele of $Q$ trivial on $Q$ such that $\psi_{Q,\infty}(\alpha)=e^{2\pi i\alpha}$ and the con-
ductor of $\psi_{Q,p}$ is $Z_{p}$ for all rational primes $p$ . Put $\psi(x)=\psi_{Q}(tr_{F/Q}(x))$ . It
implies that $u_{v}=1$ and $\mathfrak{a}_{\mathfrak{p}}\supset 0\mathfrak{p}$ .

Put $\Gamma_{1}=GL_{2}(0)$ and let $S_{1}$ be as in No. 8. Let $c\chi$ be a definite quaternion
algebra of discriminant $0$ over $F$. Fix a maximal order $\mathfrak{Q}$ in $JC$ and define $\cdot$

the isomorphisms $\theta_{\mathfrak{p}}$ of $JC_{\mathfrak{p}}$ onto $M_{2}(F_{\mathfrak{p}})$ as in \S 1, No. 8 (so that $K_{\mathfrak{p}}=\mathfrak{Q}_{\mathfrak{p}^{\times}}$ ). It
can be shown that if $p$ is the class number of $\mathfrak{Q},$ $JC_{F}^{\times}\backslash J_{A}^{\times}/\Pi K_{\mathfrak{p}}J_{\infty}^{\times}$ is repre-
sented by the elements $x_{1}$ , $\cdot$ .. , $x_{p}$ in $J_{A}^{1}$ .

Let $V$ be as in No. 4 and $\{\omega_{1}, --, \omega_{\iota}\}$ a basis of $V$ . Take elements $g_{1},$ .
, , $g_{\iota}$ in $J_{\infty}^{1}$ such that $\det(\omega_{\lambda}(g_{\mu}))\neq 0$ . Put $M^{\prime}(x)=\prod_{\mathfrak{p}}M_{\mathfrak{p}}(x_{\mathfrak{p}})$ .

By Theorem 2 we see that, if $m_{v}>2$ for all $v,$ $S_{1}$ is spanned by $f_{ij\lambda\mu}$ .
( $i,$ $j=1$ , , $p;\lambda,$ $\mu=1$ , $\cdot$ .. , l) whose restrictions to $\mathfrak{F}^{0}=\{z\in \mathfrak{F}|{\rm Im} z_{v}>0\}$ are
given by

$f_{ij\lambda\mu}(z)=\sum_{\xi\llcorner x_{F}}\omega_{\lambda}(\xi^{\iota}g_{\mu})M^{\prime}(x_{j^{-1}}\xi x_{i})$

$\prod_{v}[n(\xi_{v})^{(m_{v}- 2)/2}\exp(2\pi in(\xi_{v})z_{v})]$ .

If $\mathfrak{X}_{i}$ is the right $\mathfrak{Q}$ -ideal such that $\mathfrak{X}_{i\mathfrak{p}}=x_{i\mathfrak{p}}\mathfrak{Q}_{\mathfrak{p}}$ and if $\mathfrak{a}=\prod \mathfrak{a}_{\mathfrak{p}}$ , then the sup-
port of $M^{\prime}(x_{j}^{-1}\xi x_{i})$ is contained in $\mathfrak{a}\mathfrak{X}_{j}\chi_{i^{-1}}$ , and its value depends only on.
$\xi mod \mathfrak{X}_{j}\mathfrak{X}_{i^{-1}}$ .

REMARK. Let $F$ be an algebraic number field of finite degree and $\mathfrak{d}$ the
$*)$ It asserts that, if $\sigma_{i}(i=1,2)$ are irreducible constituents of $\mathcal{A}_{0}(\eta_{i}, GL_{2}(A)),$.

respectively and if $\sigma_{1v}$ is equivalent to $\sigma_{2v}$ for almost all $v$ including all archimedeam
valuations, then $\sigma_{1}$ is equivalent to $\sigma_{2}$ .
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different of $F$. It is proved in Hecke, Vorlesungen \"uber die Theorie der
algebraischen Zahlen, Satz 176 (as to a generalization to the function field
case, see J. V. Armitage, On a theorem of Hecke in number fields and func-
tion fields, Inventiones Math., 2(1967), 238-246) that there exists a $\gamma\in F^{\times}$ such
that $\mathfrak{d}\gamma$ is a square of an ideal in F. $\psi_{Q}$ being the same as in \S 6, No. 11,
define a character $\psi$ of $A/F$ by

$\psi(x)=\psi_{Q}(tr_{F/Q}(\gamma x))$ .

Then the conductor ap of $\psi_{\mathfrak{p}}$ is $\mathfrak{d}^{-1},\gamma \mathfrak{p}^{-1}$ and hence it is a square of an ideal
in $F_{\mathfrak{p}}$ . In the discussions in \S 6, No. 5, we can start with this particular
character $\psi$ . In this case, however, there is an alternative and simpler way
of defining $\theta_{\varphi,g}$ or of defining $M$ (cf. \S 6, No. 5). Namely, for every $\mathfrak{p}$, we
may take $M_{\mathfrak{p}}$ to be the characteristic function of the two-sided $\mathfrak{Q}_{\mathfrak{p}}$ -ideal $L_{\mathfrak{p}}$

of norm $\mathfrak{a}_{\mathfrak{p}}$ (if $\mathfrak{a}_{\mathfrak{p}}=b_{\mathfrak{p}}^{2}$ , then $L_{\mathfrak{p}}=b_{\mathfrak{p}}\mathfrak{Q}_{\mathfrak{p}}$ ). The statement in \S 6, No. 11 can be
modified accordingly. The space $S_{1}$ can be spanned by $f_{ij\lambda/\ell}(i,$ $j=1,$ $\cdots$ , $p$ ;
$i,$ $\mu=1$ , $\cdot$ .. , 1) whose restrictions to $\{z\in \mathfrak{F}|\gamma_{v}{\rm Im} z_{v}>0\}$ are given by

$f_{ij\lambda\mu}(z)=_{\xi}\sum_{x_{J^{Lt_{i^{- 1}}}}}\omega_{\lambda}(\xi^{\iota}g_{\mu})$

$\times\prod_{v}[n(\xi_{v})^{(m_{v}- 2)/2}\exp(2\pi i\gamma_{v}n(\xi_{v})z_{v})]$ .

Here $L$ is a two-sided $\mathfrak{Q}$ -ideal of norm $(\ddagger$ .

College of General Education,
University of Tokyo
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