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\S 1. Introduction.

Consider a sequence of abstract Cauchy problems

$(d/dt)u_{n}(t)\in A_{n}(t)u_{n}(t)$ $(t\geqq 0),$ $u_{n}(0)=x_{n},$ $n=0,1,2,$ $\cdots$ (1.1)

in an arbitrary Banach space $X$. Here $A_{n}(f)$ is for each $t$ a multi-valued
function defined on a subset of $X$ . We shall show that under suitable hypo-
theses, if $x_{n}$ converges to $x_{0}$ and if $A_{n}(t)$ converges to $A_{0}(t)$ (in a sense to be
made precise below), then $u_{n}(t)$ converges to $u_{0}(t)$ .

We first deal with the case when the multi-valued function $A_{n}$ does not
depend on $t$ and determines a strongly continuous semigroup of Lipschitzian
operators on a subset of $X$ . In Section 3, using a generation theorem of
Crandall and Liggett [4], we obtain $non,linear$ generalizations of the Trotter-
Neveu-Kato approximation theorem for semigroups. These extend results of
a number of authors, including Brezis and Pazy [2], Mermin [14], Miyadera
[15], and Miyadera and \^Oharu [17]. Moreover, our result is best possible in
the sense that our sufficient condition is necessary in the linear case.

In Section 4 we establish existence and uniqueness criteria for a special
class of time dependent multi-valued Cauchy problems of the form

$(d/dt)u(t)\in A(t)u(t)$ $(t\geqq 0)$ , $u(O)=x$ (1.2)

in a Hilbert space. We also prove an approximation theorem in this situation.
Finally, using existence theorems of Crandall and Liggett [4] and Martin

[12], we establish in Section 5 approximation theorems for a class of problems

of the form (1.1) in an arbitrary Banach space setting.

\S 2. Notation.

Let $X$ be a Banach space with norm $\Vert\cdot\Vert$ . When $X$ is a Hilbert space, its
inner product will be denoted by $\langle\cdot, \rangle$ . $\lim$ [resp. ” w-lim”] refers to limit
in the norm [resp. weak] topology of X. $\mathcal{P}(X)$ denotes the set of all subsets
of X. $R$ denotes the real numbers, $R^{+}$ the nonnegative reals, $Z^{+}$ the non-
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negative integers, and $N$ the positive integers. $cl(S)$ denotes the closure of
a set $S$.

For $A,$ $B\subset X\times X,$ $k\in R$ set

$A^{-1}=\{(y, x):(x, y)\in A\}$ , $kA=\{(x, ky):(x, y)\in A\}$ ,

$A+B=\{(x, y+z):(x, y)\in A, (x, z)\in B\}$ ,

$\mathcal{D}(A)=$ { $x:(x,$ $y)\in A$ for some $y$},

$R(A)=$ { $y:(x,$ $y)\in A$ for some $x$ }, $Ax=\{y:(x, y)\in A\}$ ,

$A|D=\{(x, y)\in A:x\in D\}$ where $D\subset X$ ,

$|D|=\inf\{\Vert x\Vert : x\in D\}$ where $D\subset X$ .
We do not distinguish between (single-valued or multi-valued) functions

and their graphs; for instance, we identify the identity operator on $X$ with
the diagonal: $I=\{(x, x):x\in X\}$ . We do not distinguish between the singleton
$\{x\}\in \mathcal{P}(X)$ and the element $x$ . For $C_{n}\in X,$

$n\in Z^{+},\varliminf_{n\infty}C_{n}\supset C_{0}$ means for

each $x_{0}\in C_{0}$ , there is an $x_{n}\in C_{n}$ for each $n\in N$ such that $\lim_{n\rightarrow\infty}x_{n}=x_{0}$ .
Let $C\in X$. A function $T:C\rightarrow X$ is Lipschitzian if and only if there is a

constant $K$ such that $\Vert Tx-Ty\Vert\leqq K||x-y\Vert$ for all $x,$ $y\in C$. The smallest pos-
sible value of $K$ will be denoted by $\Vert T\Vert_{Lip}$ .

A set $A\subset X\times X$ is called dissipative if and only if for each $\alpha>0,$ $(I-\alpha A)^{-1}$

is a function and $\Vert(I-\alpha A)^{-1}\Vert_{Lip}\leqq 1$ . If $X$ is a real Hilbert space, then $ A\subset$

$X\times X$ is dissipative if and only if for all $(x_{i}, y_{i})\in A,$ $i=1,2,$ $\langle x_{1}-x_{2},$ $ y_{1}-y_{2}\succ$

$\leqq 0$ . In other words, $A$ is dissipative if and only if $-A$ is monotone. Also,
in the general Banach space case, $A$ is dissipative if and only if $-A$ is
accretive, and a characterization of dissipativity can be given in terms of
the duality map (or the semi-inner products) of $X$ (cf. Kato [10, p. 141]).

\S 3. Nonlinear semigroups in a Banach space.

Let $X$ be a Banach space, let $C\subset X$, and let $\omega\in R$. $T=\{T(t):t\in R^{+}\}$ is
a strongly continuous semigroup of type $\omega$ on $C$, or $T\in Q_{\omega}(C)$ for short, if and
only if for all $s,$ $t\in R^{+},$ $x\in C$ ,

(i) $T(t):C\rightarrow C$ ,
(ii) $T(t)T(s)x=T(t+s)x,$ $T(O)x=x$ ,

(iii) $NT(t)\Vert_{Lip}\leqq d^{vt}$ ,
(iv) $\lim_{t\rightarrow 0}T(t)x=x$ .
Crandall and Liggett [4] recently established the following definitive

generation theorem for semigroups of type $\omega$ .
THEOREM 3.1. Let $A\subset X\times X,$ $\omega\in R$ be such that $A-\omega I$ is dissipative and
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$R(I-a(A-\omega 1))\supset C$ for all sufficiently small $\alpha>0$ , where $C=cl(\mathcal{D}(A))$ . Then
$A$ determines a semigroup $T\in Q_{\omega}(C)$ given by the exponential formula

$T(t)x=\lim_{n\rightarrow\infty}(I-tn^{-1}A)^{-n_{X}}$

for all $x\in C,$ $t\in R^{\prime}-$ .
For our approximation theorems we shall make the following hypothesis.
$(*)$ Let $\omega\in R$ . For each $n\in Z^{+}$ let $A_{n}\subset X\times X$, let $C_{n}=cl(\mathcal{D}(A_{n}))$ , and

suppose $A_{n}-\omega I$ is dissipative and $R(I-a(A.-\omega l))\supset C$. for $0<\alpha<\alpha_{0}$ , where
$\alpha_{0}$ is independent of $n$ .

In addition to $(*)$ we shall make assumptions about the sense in which
$A_{n}$ is to converge to $A_{0}$ . Our conclusion will then be:

$(**)$ Let $T_{n}=\{T_{n}(t):t\in R^{+}\}\in Q_{\omega}(C_{n})$ be the semigroup determined by $A_{n}$

as in Theorem 3.1. Then
$\lim_{n\rightarrow\infty}T_{n}(t)x_{n}=T_{0}(t)x_{0}$ (3.1)

whenever $x_{n}\in C_{n},$
$\lim_{n-}x_{n}=x_{0}\in C_{0}$ ; moreover, the convergence is uniform for $t$

in compact subsets of $R^{+}$ .
Here are our main results on semigroups.
THEOREM 3.2. Let $(*)$ hold. Suppose that $\lim_{\Uparrow r}C_{n}\supset C_{0}$ ; and if $x_{n}\in C_{n}$ ,

$x_{0}\in C_{0}$ , and $\varliminf_{n}x_{n}=x_{0}$ , then

$\lim_{\mathfrak{n}\rightarrow\infty}(1-\alpha(A_{n}-\omega I))^{-1}x_{n}=(I-\alpha(A_{0}-\omega I))^{-1}x_{0}$ (3.2)

for $0<\alpha<\alpha_{1},$ $\alpha_{1}$ being independent of $n$ . Then $(**)$ holds.
THEOREM 3.3. Let $(*)$ hold. Suppose $C_{n}\supset C_{0}$ for each $n\in N$ and that

$\varliminf_{n}(I-\alpha(A_{n}-\omega I))^{-1}x_{0}=(I-\alpha(A_{0}-\omega 1))^{-1}x_{0}$ (3.3)

for all $x_{0}\in C_{0}$ and $0<\alpha<\alpha_{1},$ $\alpha_{1}$ being independent of $n$ . Then $(**)$ holds.
Note that

$(I-\alpha(A_{n}-\omega 1))^{-1}=\beta(I-\alpha\beta A)^{-1}$

where $\beta=(1+\alpha\omega)^{-1}$ , and so (3.2) holds if and only if

$\lim_{n-}(I-\alpha A_{n})^{-1}x_{n}=(I-\alpha A_{0})^{-1}x_{0}$ (3.2)

for all $x_{n},$ $x_{0}$ as in $(**)$ and $0<\alpha<\alpha_{2}$ , where $\alpha_{2}$ is independent of $n$ . The
reason for preferring (3.2) to (3.2) is to emphasize that the study of the
general case $(i. e. T_{n}\in Q_{\omega}(C_{n}))$ reduces to the contraction case $(i. e. T_{n}\in Q_{0}(C_{n}))$ ,
or, equivalently, it suffices to treat the case that each $A_{n}$ is dissipative.

We shall show that Theorem 3.3 is a special case of Theorem 3.2.
In the linear case ( $i$ . $e$ . when each $A_{n}$ and $T_{n}(t)$ are linear and each $C_{n}=X$ ),

(3.1) (with $x_{n}=x_{0}$ for all n) implies (3.3), which in turn implies (3.2). This
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can be seen by noting the formula

$\alpha(I-aA_{n})^{-1}x=\int_{0^{\infty}}e^{-t/a}T_{n}(t)xdt$

-for $ 0<\alpha<1/\omega$ (or $ 0<\alpha$ if $\omega\leqq 0$) and using the dominated convergence theo-
$\tau em$ (cf. Chernoff [3], Goldstein [6, p. 39]). It follows that (3.1) is necessary
and sufficient for (3.3) (and also for (3.2)) in the linear case. In this sense,
then, Theorem 3.2 gives the “ best ” sufficient condition for $(**)$ to hold.

First we prove that Theorem 3.3 is a special case of Theorem 3.2. Let
$B_{n}=A_{n}-\omega I$. Whenever $x_{n}\in C_{n},\lim_{n\rightarrow\infty}x_{n}=x_{0}\in C_{0}$ , we have

1 $(I-\alpha B_{n})^{-1}x_{n}-(I-\alpha B_{0})^{-1}x_{0}\Vert\leqq\Vert(I-\alpha B_{n})^{-1}x_{n}-(I-\alpha B_{n})^{-1}x_{0}\Vert$

$+\Vert(I-aB_{n})^{-1}x_{0}-(1-\alpha B_{0})^{-1}x_{0}\Vert=J_{1}+J_{2}$ ,

where $ J_{1}\leqq\Vert x_{n}-x_{0}\Vert$ and $J_{2}\rightarrow 0$ as $ n\rightarrow\infty$ by hypothesis. Hence the hypotheses
of Theorem 3.3 imply those of Theorem 3.2, which is what we sought to
show.

The point of considering the more complicated condition (3.2) rather than
$t(3.3)$ is to allow the sets $C_{n}$ to vary as much as possible.

Now we prove Theorem 3.2. The idea of the proof is to deduce the
theorem from the Crandall-Liggett generation theorem (Theorem 3.1) by
viewing a convergent sequence of semigroups on $X$ as a single semigroup
on the space of convergent sequences in $X$. This idea goes back to Kisytski
$\}[11]$ .

Let
$\mathcal{X}=$ { $\underline{x}=\{x_{n}\}_{1}^{\infty}\subset X:\lim_{n\rightarrow\infty}x_{n}$ exists}.

ee is a (nonreflexive) Banach space with norm $\Vert|\underline{x}|\Vert=\sup_{n}\Vert x_{n}\Vert$ . Define $\mathcal{A}\subset \mathcal{X}$

$\times \mathcal{X}$ by: $(\underline{x}, \underline{y})\in \mathcal{A}$ (where $\underline{x}=\{x_{n}\}_{1}^{\infty},$ $\underline{y}=\{y_{n}\}_{1}^{\infty}\in \mathcal{X}$) if and only if $x_{n}\in \mathcal{D}(A_{n})$ ,
$y_{n}\in A_{n}x_{n}$ for all $n\in N$ and $\lim_{n\rightarrow\infty}x_{n}\in C_{0}$ . Let $B_{n}=A_{n}-\omega I,$ $\mathcal{B}=\mathcal{A}-\omega I$. It is

easy to see that $(I-\alpha \mathcal{B})^{-1}$ is a function for each $\alpha>0$ . To show that $\mathcal{B}$ is
dissipative, let $\alpha>0,$ $\underline{x},$ $\underline{y}\in\Re(I-\alpha \mathcal{B})$ ; then

$\Vert|(I-\alpha \mathcal{B})^{-1}\underline{x}-(I-\alpha \mathcal{B})^{-1}\underline{y}\Vert|=\sup_{n}\Vert(I-a\mathcal{B}_{n})^{-1}x_{n}-(I-\alpha \mathcal{B}_{n})^{-1}y_{n}\Vert$

$\leqq\sup_{n}\Vert x_{n}-y_{n}\Vert=\Vert|\underline{x}-\underline{y}\Vert|$

since each $B_{n}$ is dissipative. Hence $\mathcal{B}$ is dissipative on $\mathcal{X}$ .
Next we show that $R(I-a\mathcal{B})\supset c$ for all sufficiently small $\alpha>0$ , where

$C=cl(\mathcal{D}(\mathcal{B}))=cl(\mathcal{D}(\mathcal{A}))$ . By hypothesis there is an $a_{2}>0$ such that $\Re(I-aB_{n})$

$\supset C_{n}$ and (3.2) holds for $n\in Z^{+}$ and $0<\alpha<a_{2}$ . (Just take $a_{2}=\min(\alpha_{0},$ $\alpha_{1}).$)

Let $\underline{x}\in C$ and $0<a<\alpha_{2}$ be given. For each $n\in N$ choose $y_{n}=(I-\alpha B_{n})^{-1}x_{n}$
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$\in \mathcal{D}(A_{n})$ . Then $\underline{y}=\{y_{n}\}_{1}^{\infty}$ is convergent by (3.2), and hence $\underline{y}\in \mathcal{X}$ . Thus

there is a $\underline{y}\in \mathcal{D}(\mathcal{A})$ such that $(I-a\mathcal{B})^{-1}x=\underline{y}$ . It follows from Theorem 3.1
that $\mathcal{A}$ determines a semigroup $\mathcal{T}=\{\mathcal{T}(t):t\in R^{+}\}\in Q_{\omega}(C)$ . We have $\mathcal{T}(t)\underline{x}=$

$\{T_{n}(t)x_{n}\}_{1}^{\infty}$ for $t\in R^{+},\underline{x}\in C$. Since $9(t)\underline{x}\in \mathcal{X}$ , it follows that(3.1) holds when-
ever $\underline{x}\in C$ and $x_{0}=\lim_{nr}x_{n}$ .

We next show that if $x_{n}\in C_{n}$ and $\lim_{n\rightarrow\infty}x_{n}=x_{0}\in C_{0}$ , then $\underline{x}=\{x_{n}\}_{1}^{\infty}\in C$. Let
$\epsilon>0$ be given. For each $n\in Z^{+}$ choose $y_{n}=(I-t_{n}B_{n})^{-1}x_{n}\in \mathcal{D}(A_{n})$ ; here $\{t_{n}\}_{0}^{\infty}$

is a sequence of positive numbers which will be chosen presently.
Let $N_{1}=N_{1}(\epsilon, \underline{x})$ be such that $\Vert x_{n}-x_{0}\Vert<\epsilon/3$ for $n>N_{1}$ . Chooes and fix

$\sigma=\sigma(\epsilon, x_{0})>0$ such that $\Vert(I-\sigma B_{0})^{-1}x_{0}-x_{0}\Vert<\epsilon/3$ ; this can be done by $[4_{r}$

Lemma 1.2 (ii)]. Choose $N_{2}=N_{2}(\epsilon, \underline{x})$ such that $\Vert(1-\sigma B_{n})^{-1}x_{n}-(I-\sigma B_{0})^{-1}x_{0}|_{1}^{|1}$

$<\epsilon/3$ for $n>N_{2}$ ; this can be done by (3.2). It follows that

$\Vert(I-\sigma B_{n})^{-1}x_{n}-x_{n}\Vert\leqq\Vert(I-\sigma B_{n})^{-1}x_{n}-(I-\sigma B_{0})^{-1}x_{0}\Vert$

$+\Vert(I-\sigma B_{0})^{-1}x_{0}-x_{0}\Vert+\Vert x_{n}-x_{0}\Vert<\epsilon$

for $n>N_{3}=\max(N_{1}, N_{2})$ . For $1\leqq n\leqq N_{\$}$ choose $t_{n}>0$ so small (by [4, $Lemma_{-}$

$1.2$ (ii)]) that $\Vert(I-f_{n}B_{n})^{-1}x_{n}-x_{n}\Vert<\epsilon$ , and set $ t_{n}=\sigma$ for $n=0$ and for $n>N_{s-}$

It follows that $\underline{y}=\{y_{n}\}_{1}^{\infty}\in \mathcal{X}$ (since $\lim_{n-\infty}y_{n}=\varliminf_{n}(1-\sigma B_{n})^{-1}x_{n}=(1-\sigma B_{0})^{-1}x_{0}=y_{0}$),

$z_{n}=t_{n}^{-1}((I-t_{n}B_{n})^{-1}x_{n}-x_{n})\in B_{n}y_{n}$ for all $n\in Z^{+}$ , and $\lim_{n-\infty}z_{n}=\sigma^{-1}((1-\sigma B_{0})^{-1}x_{0^{\tau}}$

$-x_{0})\in B_{0}y_{0}$ , so that actually $\underline{y}\in \mathcal{D}(\mathcal{B})=\mathcal{D}(\mathcal{A})$ . Furthermore,

$\Vert|\underline{y}-\underline{x}\Vert|=\sup_{n}\Vert(I-t_{n}B_{n})^{-1}x_{n}-x_{0}\Vert\leqq\epsilon$

by the above estimates. Since $\epsilon>0$ is arbitrary, it follows that $\underline{x}\in C$, and-
in fact, $C=cl(\mathcal{D}(\mathcal{A}))$ .

(We note, parenthetically, that we cannot take $y_{n}=(I-\sigma B_{n})^{-1}x_{n}$ for all
$n\in Z^{+}$ and some $\sigma>0$ . To see this let $X=R$ and define $A_{n}=B_{n}$ by $A_{n}(x)_{J}$

$=-x/n$ for $|x|\leqq n,$ $A_{n}(x)=-n^{2}x+(n^{2}-1)x|x|^{-1}$ for $|x|>n$ . Then all the
hypotheses of Theorems 3.2 and 3.3 hold, and for $\underline{x}\in \mathcal{X},\lim_{n\rightarrow\infty}(I-\sigma A_{n})^{-1}x_{n}=$

$(I-\sigma A_{0})^{-1}x_{0}$ for each $\sigma>0$ , $\lim_{\sigma\sim}(I-\sigma A_{n})^{-1}x_{n}=x_{n}$ for each $\sigma>0$ , and yet-

$i_{\geqq 0}^{nf\sup_{n}}\Vert(I-\sigma A_{n})^{-1}x_{n}-x_{n}\Vert\geqq 1$ if $x_{n}\geqq n+1$ for some $n\in N.$)

It only remains to prove the uniformity assertion in $(**)$ . To that end,,.
let $\epsilon>0,$ $\tau>0,\underline{x}\in C$ be given. Then by the strong continuity of ET,

$|\Uparrow \mathcal{T}(t)\underline{x}-\mathcal{T}(s)\underline{x}_{1}^{\dagger}\Vert<\epsilon/3$

for $0<s,$ $ t\leqq\tau$ and $|t-s|<2\delta=2\delta(\epsilon,\underline{x}, \tau)$ . Next,

$\Vert T_{n}(t)x_{n}-T_{0}(t)x_{0}\Vert<\epsilon/3$

for $N>N_{t}=N(t, \epsilon,\underline{x})$ since $\mathcal{T}(t)\underline{x}\in X$ . Therefore
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$\Vert T_{n}(s)x_{n}-T_{0}(s)x_{0}\Vert$

$\leqq\Vert T_{n}(s)x_{n}-T_{n}(t)x_{n}\Vert+\Vert T_{n}(t)x_{n}-T_{n}(t)x_{0}\Vert+\Vert T_{n}(t)x_{0}-T_{n}(s)x_{0}\Vert<\epsilon$

if $0\leqq s,$ $t\leqq\tau,$ $|s-t|<2\delta$ , and $n>N_{t}$ . Let $k\in N$ be such that $(k-1)\delta<t\leqq k\delta$

and let $N=\max\{N_{0}, N_{\delta}, \cdot.. , N_{k\delta}\}$ . Then we have

$\Vert T_{n}(s)x_{n}-T_{0}(s)x_{0}\Vert<\epsilon$

whenever $0\leqq s\leqq\tau,$ $n>N$ ; and $N$ depends only on $\epsilon,$ $\underline{x}$, and $\tau$ . This com-
pletes the proof.

REMARK 3.4. Much of the literature on nonlinear semigroups deals with
Banach spaces with certain smoothness properties. For instance, many
.authors only consider spaces with a uniformly convex dual. However, the
space $\mathcal{X}$ we constructed in the above proof is always a “ bad” space (viz. it
is nonreflexive), no matter how “ good ” the space $X$ is. Thus our proof
depends crucially on the availability of a generation theorem which takes
place in an arbitrary Banach space.

In the following result we replace condition (3.2) (or (3.3)) by a condition
of the form: $\lim_{n\rightarrow\infty}A_{n}y_{0}=A_{0}y_{0}$ for sufficiently many $y_{0}\in \mathcal{D}(A_{0})$ ; the above limit

must be carefully interpreted since each $A_{n}$ is in general multi-valued.
THEOREM 3.5. Let $(*)$ hold. Let $D\subset \mathcal{D}(A_{0})$ be such that $cl(D)=C_{0}$ ,

$R(I-a(A_{0}-\omega I)|D)$ is dense in $C_{0}$ for all sufficiently small $\alpha>0$ , and $D\subset \mathcal{D}(A_{n})$

for each $n\in N$. Suppose that for each $y_{0}\in D$ , each $s$ ufficiently small $a>0$ ,
and each $x_{0}\in(I-a(A_{0}-\omega I))y_{0}$ , there is an $x_{n}\in(I-a(A_{n}-\omega I))y_{0}$ such that
Jim $x_{n}=x_{0}$ . Then $(**)$ holds.

This follows from Theorem 3.3, once we show that (3.3) holds for all
sufficiently small $a>0$ and all $x_{0}\in D_{\alpha}$ , where each $D_{\alpha}$ is dense in $C_{0}$ . Again
Aet $B_{n}=A_{n}-\omega I,$ $n\in Z^{+}$ . Let $a>0$ be sufficiently small, and let $D_{\alpha}=$

$R(I-\alpha B_{0}|D)$ . Then $D_{\alpha}$ is dense in $C_{0}$ by hypothesis. Moreover, for each
$x_{0}\in D_{\alpha}$, choose $y_{0}\in D$ such that $x_{0}\in(I-\alpha B_{0})y_{0}$ . Next choose $x_{n}\in(I-\alpha B_{n})y_{0}$

such that $\lim_{n\rightarrow\infty}x_{n}=x_{0}$ . Then

$\Vert(I-aB_{n})^{-1}x_{0}-(I-aB_{0})^{-1}x_{0}\Vert=\Vert(I-aB_{n})^{-1}x_{0}-(I-aB_{n})^{-1}x_{n}\Vert$

$\leqq\Vert x_{n}-x_{0}\Vert\rightarrow 0$ as $ n\rightarrow\infty$ ,

.and thus (3.3) holds.
REMARK 3.6. The scope of Theorems 3.2 and 3.3 is wider than that of

Theorem 3.5. This is true even in the linear case, since there exists a
:sequence of skew-adjoint (linear) operators $\{A_{n} : n\in Z^{+}\}$ on a Hilbert space
$X$ such that $\lim_{n\rightarrow\infty}(I-\alpha A_{n})^{-1}x_{0}=(I-aA_{0})^{-1}x_{0}$ for all $x_{0}\in X$ and all $a\in R\backslash \{0\}$ ,

but nevertheless $\mathcal{D}(A_{0})\cap\bigcup_{n=1}^{\infty}\mathcal{D}(A_{n})=\{0\}$ (cf. Goldstein [7]).
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We conclude this section with a result on the convergence of the solutions
of the Cauchy problems (1.1) with $A_{n}(t)$ not depending on $t$ .

THEOREM 3.7. Let $X$ be reflexive. Let the hypotheses of Theorem 3.2 (or

3.3 or 3.5) hold. Assume additionally that $A_{n}\subset X\times X$ is closed.
(i) If $x_{n}\in \mathcal{D}(A_{n}),$ $u_{n}(\cdot)$ defined by $u_{n}(t)=T_{n}(t)x_{n}$ is the unique function

satisfying: $u_{n}(\cdot)$ is Lipschitz continuous on compact intervals in $R^{+},$ $n_{n}(\cdot)$ is
strongly differentiable $a$ . $e.,$ $u_{n}(0)=x_{n}$ , and $(d/dt)u_{n}(t)\in A_{n}u_{n}(t)a$ . $e$ .

(ii) If $x_{n}\in \mathcal{D}(A_{n})$ for all $n\in Z^{+}$ and $\lim x_{n}=x_{0}$ , then $\lim u_{n}(t)=u_{0}(t)$ for– $ n\rightarrow\infty$

all $t\in R^{+}$ , the convergence being uniform for $t$ in compact subsets of $R^{+}$ .
(i) is due to Crandall and Liggett [4, Theorem II], Miyadera [30, Theorem

1]; (ii) follows immediately from Theorem 3.2 (or 3.3 or 3.5). We note, as
did Crandall and Liggett [4], that we need not assume that $X$ is reflexive if
instead we assume that each $A_{n}$ is single-valued and either linear or con-
tinuous. In fact, in the continuous case, we have the following result.

THEOREM 3.8. Let $\{A_{n}\}_{0^{\infty}}$ be a sequence of continuous operators defined on
all of $X$ such that $A_{n}-\omega I$ is dissipative for some real $\omega$ and all $n\in Z^{+}$ . The
Cauchy problem

$(d/dt)u_{n}(t)=A_{n}u_{n}(t)$ , $u_{n}(0)=x_{n}$

has a unique strongly continuously differentiable solution $u_{n}$ : $R^{+}\rightarrow X$ for each
$x_{n}\in X$ and each $n\in Z^{+}$ . $1f$

$\varliminf_{n\infty}(I-\alpha(A_{n}-\omega I))^{-1}x_{0}=(I-\alpha(A_{0}-\omega I))^{-1}x_{0}$

for all $x_{0}\in X$ and $0<a<a_{0},$ $\alpha_{0}$ being independent of $x_{0}$ , then

$\lim_{nr}u_{n}(t)=u_{0}(t)$

for each $t\in R^{+}$ whenever $\varliminf_{n\infty}x_{n}=x_{0}$ ; here $u_{n}$ is as above. Moreover, the con-
vergence is uniform for $t$ in compact subset of $R^{\vdash}$ .

The proof is the same as that of Theorem 3.2, only instead of using the
Crandall-Liggett generation theorem, we use one due to Martin [13] and
Webb [22]. We omit the details.

\S 4. Some time dependent multi-valued equations in Hilbert space.

Let $H$ be a real Hilbert space. A dissipative subset of $H\times H$ is maximal
if it is not properly contained in any other dissipative set.

THEOREM 4.1. Let $\omega\in R$ . Let $A\subset H\times H$ be such that $A-\omega I$ is maximaf
dissipative. Let $F:R^{+}\times \mathcal{D}(A)\rightarrow H$ satisfy a global Lipschitz condition:

$\Vert F(t, x)-F(s, y)\Vert\leqq K\{\Vert x-y\Vert+|t-s|\}$
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for some constant $K$ and all $(t, x),$ $(s, y)\in R^{+}\times \mathcal{D}(A)$ . Then the initial value
problem

$(d/dt)u(t)\in Au(t)+F(t, u(t))$ $(t\in R^{+})$ , (4.1)

$u(0)=x\in \mathcal{D}(A)$ (4.2)

has a unique solution $u:R^{+}\rightarrow H$ in the following sense:
(i) $u$ is Lipschitz continuous on compact subintervals of $R^{+},$ $u(R^{+})\subset \mathcal{D}(A)$ ,

$u(0)=x$,

(ii) $u$ has a strongly right continuous right derivative satisfying

$(d^{+}/dt\ovalbox{\tt\small REJECT}_{-})u(t)\in Au(t)-F(t, u(t))$ $(t\in R^{-!^{\sim}})$ ,

(iii) the strong derivative $(d/dt)u(t)$ exists and is strongly continuous on
$R^{+}$ except for at most countably many values of $t$ .

The idea behind the proof is the trivial classical trick which converts a
nonautonomous ordinary differential equation to an autonomous one (see $e$ . $g.$ ,
[21, p. 34]).

Define $F(t, x)=F(-t, x)$ for $t<0,$ $x\in \mathcal{D}(A)$ . Let $H_{1}=H\times R$. Vectors in
$H_{1}$ will be denoted by column vectors such as $,$

$x\in H,$ $t\in R$. With respect

to the inner product

$\langle,$ $\rangle_{1}=\langle x, y\rangle+ts$ ,

$H_{1}$ becomes a real Hilbert space. The corresponding norm will be denoted by
$\Vert\cdot\Vert_{1}$ . Define $D\subset H_{1}\times H_{1}$ by

$D=\{(,$ $):x\in \mathcal{D}(A),$ $t\in R,$ $y\in Ax+F(t, x)\}$ .

Then for $(,$ $)\in D,$ $i=1,2$ , our hypotheses imply

$\langle-,$ $-\}_{1}$

$=\langle x_{1}-x_{2}, z_{1}-z_{2}\rangle+\langle x_{1}-x_{2}, F(t_{1}, x_{1})-F(t_{2}, x_{2})\rangle$

for some $z_{i}\in Ax_{i},$ $i=1,2$

$\geqq-\omega\Vert x_{1}-x_{2}\Vert^{2}-2K(\Vert x_{1}-x_{2}\Vert^{2}+|t_{1}-t_{2}|^{2})$

$\geqq-\sigma\Vert-\Vert_{1}^{2}$

where $\sigma=\omega+2K$. Hence $B-\sigma I$ is dissipative. Moreover, it is maximal dis-
sipative by a perturbation theorem of Crandall and Pazy [5, p. 403]. It fol-
lows from a generation theorem of Crandall and Pazy [5], [181 that $D$ deter-
mines a semigroup $S=\{S(t):t\in R^{+}\}\in Q_{\omega}(cl(\mathcal{D}(A)))$ given by the exponential



566 J. A. GOLDSTEIN

formula of Theorem 3.1. Moreover, it follows easily from the properties that

Crandall and Pazy [5], [18] established for $S$ that if we set $(^{u(t)}t)=S(t)\left(\begin{array}{lll} & & x\\ & & 0\end{array}\right)$

with $x\in \mathcal{D}(A)$ , then $u$ is the unique solution of (4.1), (4.2) in the sense of (i),

\langle ii), and (iii).
The next result is a generalization of Theorem 4.1 to the case when $F$

is multi-valued.
THEOREM 4.2. Let $\omega\in R$ . Let $A\subset H\times H$ be such that $A-\omega 1$ is maximal

dissipative. Let $F:K^{F}\times S\rightarrow \mathcal{P}(H)$ where $\mathcal{D}(A)\subset S\subset H$ satisfy:
(F1) There are constants $M_{1},$ $M_{2}$ , a nondecreasing function $k_{1}$ on $R^{+}$ satisfy-

ing $k_{1}(r)<1$ for each $r\in R^{+}$ , and a function $k_{2}$ on $R\cdot\times R^{t}$ to $Ir$ such that
(i) for each $f_{i}\in l\Gamma,$ $x_{i}\in S,$ $y_{i}\in F(t_{i}, x_{i}),$ $i=1,2,$ $\langle x_{1}-x_{2}, y_{1}-y_{2}\rangle\geqq-M_{1}\{\Vert x_{1}$

$-x_{2}\Vert^{2}+|t_{1}-t_{2}|^{2}\}$ ,
(ii) for each $t_{i}\in R^{+},$ $x_{i}\in \mathcal{D}(A),$ $z_{i}\in Ax_{t},$ $y_{i}\in F(t_{i}, x_{i}),$ $i=1,2,$ $\Vert y_{1}-y_{2}\Vert\leqq$

$M_{2}\{|t_{1}-t_{2}|+\Vert x_{1}-x_{2}\Vert\}+k_{1}(\Vert x_{1}\Vert+\Vert x_{2}\Vert)\Vert z_{1}-z_{2}\Vert+k_{2}(t_{1}, t_{2})$ .
(F2) For each $t\in R^{+}and$ each $y\in H$, there is a sequence $\{n_{\iota}\}$ in $R^{+}$ tend-

ing to infinity, and there is a sequence $\{x_{i}\}$ in $S$ such that $y\in F(t, x_{i})+n_{i}x_{i}$ ,
$i\in N$. Then the initial value problem (4.1), (4.2) has a unique solution $u$ in the
sense of (i), (ii), and (iii) of Theorem 4.1.

The proof is similar to that of Theorem 4.1, but a little more complicated.
One shows that $D-\tau 1$ is dissipative, where $\tau$ is a suitable constant. To show
that $D-\tau I$ is maximal dissipative, one uses a perturbation theorem of Brezis,
Crandall and Pazy [1, p. 233]. We omit the details.

REMARK 4.3. Condition (F2) is superfluous if $F$ is single-valued by [5,
p. 403]. It follows that Theorem 4.1 is a special case of Theorem 4.2.

The next two theorems are approximation theorems in the situation of
Theorem 4.1. (We omit the analogous result based on Theorem 4.2.) The
basic situation is described as follows:

$(+)$ Let $\omega\in R$. For each $n\in Z^{+}$ let $A_{n}cH\times H$ be such that $A_{n}-\omega I$ is
maximal dissipative. For each $n\in Z^{+}$ let $F_{n}$ : $Ir\times \mathcal{D}(A_{n})\rightarrow H$ satisfy a global
Lipschitz condition:

$\Vert F(t, x)-F(s, y)\Vert\leqq K\{\Vert x-y\Vert+|t-s|\}$

for some constant $K$ (independent of n) and all $(t, x),$ $(s, y)\in R^{+}\times \mathcal{D}(A_{n})$ .
Our conclusion will be:
$(++)$ For $n\in Z^{+}$ let $u_{n}$ be the unique solution of the initial value problem

$(d/dt)u_{n}(t)\in A_{n}u_{n}(t)+F_{n}(t, u_{n}(t))$ $(t\in 1\Gamma),$ $u_{n}(0)=x_{n}\in \mathcal{D}(A_{n})$ (4.3)

in the sense of Theorem 4.1. If $\lim_{n-\infty}x_{n}=x_{0}$ , then $\varliminf_{n}u_{n}(t)=u_{0}(t)$ for all $t\in R^{+}$,

the convergence being uniform on compact subsets of W.
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Note that if $(+)$ holds, then $u_{n}$ as described in $(++)$ exists by Theorem
4.1.

THEOREM 4.3. Let $(+)$ hold. Suppose that $\varliminf_{n\infty}C_{n}\supset C_{0}$ (where $C_{n}=cl(\mathcal{D}(A_{n}))$)

and suppose that

$\lim_{n\sim\infty}(I-\alpha(A_{n}+F_{n}(t, )-\sigma I))^{-1}x_{0}=(I-\alpha(A_{0}+F_{0}(t, )-\sigma I))^{-1}x_{0}$

for all $x_{0}\in C_{0}$ and all sufficiently small $a>0$ ; here $\sigma=2K+\omega$ . Then $(++)$

holds.
Let $F_{n}(t, x)=F_{n}(-t, x)$ for $t<0,$ $x\in \mathcal{D}(A_{n})$ , and let $H_{1}$ be as in the proof

of Theorem 4.1. Define $D_{n}cH_{1}\times H_{1}$ by $D_{n}=\{(,$ $):x\in \mathcal{D}(A_{n}),$ $t\in R$,

$y\in A_{n}x+F_{n}(t, x)\}$ . Let $E_{n}=D_{n}-\sigma I$. Then $E_{n}$ is maximal dissipative by the

proof of Theorem 4.1. It is easy to see that $(,$ $)\in(I-aE_{n})$ if and only

if $s=t-a,$ $y\in x-a(A_{n}x+F_{n}(t, x)-\sigma x)$ ; hence $(I-\alpha E_{n})^{-1}=$ where $t=$

$x+\alpha,$ $z\cong(1-\alpha\sigma)^{-1}(I-\beta(A_{n}+F_{n}(t, )-\sigma I))^{-1}y$ ; here $\beta=\alpha(1-a\sigma)^{-1}$ . It follows
from Theorem 3.2 that the semigroup determined by $D_{n}$ converges strongly
to the semigroup determined by $D_{0}$ . Since these semigroups govern (4.3), the
conclusion of the theorem follows easily (cf. the last sentence of the proof
of Theorem 4.1).

THEOREM 4.4. Let $(+)$ hold. Let $DC\mathcal{D}(A_{0})$ be such that $cl(D)=C_{0}$

$(=cl(\mathcal{D}(A_{0}))),$ $R(I-\alpha(A_{0}-\omega I)|D)$ is dense in $C_{0}$ for all sufficiently small $a>0$,
and $D\in \mathcal{D}(A_{n})$ for each $n\in N$. Suppose that for each $y_{0}\in D$ , each sufficiently
small $a>0$ , and each $x_{0}\in(I-\alpha(A_{0}-\omega I))y_{0}$ , there is an $x_{n}\in(I-a(A_{n}-\omega I))x_{0}$

such that $\lim_{n\rightarrow\infty}x_{n}=x_{0}$ . Suppose further that $\lim_{n\rightarrow\infty}F_{n}(t, x_{0})=F_{0}(t, x_{0})$ for each $t\in R^{i}$

and each $x_{0}\in D$ . Then $(++)$ holds.
The proof is essentially the same as that of Theorem 4.3, but it is based

on Theorem 3.5 rather than Theorem 3.2. We omit the details.

\S 5. Time dependent equations in an arbitrary Banach space.

The proof of the approximation theorems of Section 3 can be easily
adapted to the case of time dependent evolution equations. The existence
theorem we shall use is the following result of Crandall and Liggett [4,

Appendix to Section 1].

THEOREM 5.1. Let $\omega\in R$ . For each $t\in J=[0, T]$ let $A(t)\subset X\times X$ be such
that $A(t)-\omega I$ is dissipative. In addition, assume the following conditions.

(i) $\mathcal{D}(A(t))$ is independent of $t$ .
(ii) $R(I-\alpha(A(t)-\omega))\supset C=cl(\mathcal{D}(A(O)))$ for $0<\alpha<\alpha_{0}$ and $t\in J$.

(iii) $|A(t)x|\leqq|A(\tau)x|+|t-\tau|L(\Vert x\Vert)(1+|A(\tau)x|)$ for $t,$ $\tau\in J,$ $x\in \mathcal{D}(A(O))$ .
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(iv) $\Vert(I-\alpha(A(f)-\omega I))^{-1}x-(I-a(A(\tau)-\omega I))^{-1}x\Vert\leqq\alpha|t-\tau|L(\Vert x\Vert+|A(\tau)x|)$

for $t,$ $\tau\in J,$ $0<\alpha<\alpha_{0},$ $x\in \mathcal{D}(A(0))$ .
Here $L:R^{\prime}\rightarrow R^{4}$ is an increasing function. Then

$U(t, s)x=\varliminf_{n\infty i}\prod_{1=}^{n}[I+(t-s)n^{-1}(A(s+i(t-s)n^{-1})-\omega I)]^{-1}x$

exists for $x\in C$ and $0\leqq s\leqq t\leqq T$ . Here the product is an ordered product:

$\prod_{i1}^{n}T_{i}x=T_{n}T_{n- 1}\cdots T_{1}x$. For $x\in C$ and $0\leqq r\leqq s\leqq t\leqq T$ we have
(a) $U(t, s):C\rightarrow C$ ,

(b) $U(t, s)U(s, r)x=U(t, r)x,$ $U(t, t)x=x$ ,

(c) $\Vert U(t, s)\Vert_{Lip}\leqq e^{\omega(t- s)}$ ,
(d) $\lim_{t\rightarrow S}U(t, r)x=U(s, r)x$.
$U=\{U(t, x):0\leqq s\leqq t\leqq T\}$ is called the evolution operator determined by

$A(\cdot)$ . $u$ defined by $u(t)=U(f, O)x$ is the candidate for the unique solution of
(1.2), although (1.2) need not have a solution in general, even if $A(t)$ does
not depend on $t$ . (For counterexamples see [4, Section 4].)

THEOREM 5.2. For each $n\in Z^{+}$ and each $t\in J=[0, T]$ , let $A_{n}(t)\subset X\times X$

be such that all the hypotheses of Theorem 5.1 hold with $\omega,$
$L$ , and $\alpha_{0}$ not

depending on $n$ . Let $C_{n}=cl(\mathcal{D}(A_{n}(t)))$ , assume $\lim_{n\rightarrow\infty}C_{n}\supset C_{0}$ , and suppose that for
$x_{n}\in C_{n},\lim_{n-\infty}x_{n}=x_{0}\in C_{0}$ we have

$\varliminf_{n}(I-\alpha(A_{n}(t)-\omega I))^{-1}x_{n}=(1-\alpha(A_{0}(t)-\omega I))^{-1}x_{0}$ (5.1)

for $f\in J,$ $0<\alpha<\alpha_{0}$ . Finally assume that if $x_{n}\in \mathcal{D}(A_{n}(0)),$
$\lim_{n-\infty}x_{n}\in C_{0}$ , and $t\in J$,

then there is a $y_{n}\in A_{n}(0)x_{n}$ such that $\lim_{n-}y_{n}$ exists if and only if there is a
$z_{n}\in A_{n}(t)x_{n}$ such that $\lim_{n-\infty}z_{n}$ exists. Let $U_{n}=\{U_{n}(t, s):0\leqq s\leqq t\leqq T\}$ be the evolu-

tion operator determined by $A_{n}(\cdot)$ . Then

$\lim_{nr}U_{n}(t, s)x_{n}=U_{0}(t, s)x_{0}$ (5.2)

whenever $x_{n}\in C_{n},$
$\lim_{n-}x_{n}=x_{0}$ ; moreover, the limit is uniform in $t$ on $[s, T]$ .

We shall use the notation of the proof of Theorem 3.2. For $t\in J$ define
$\mathcal{A}(t)\subset \mathcal{X}\times \mathcal{X}$ by: $(\underline{x}, y)\in \mathcal{A}(t)$ (where $\underline{x},$ $\underline{y}\in \mathcal{X}$) if and only if $x_{n}\in \mathcal{D}(A_{n}(t))$ ,
$y_{n}\in A_{n}(t)x_{n}$ for all $n\in N$, and $\lim_{n-\infty}x_{n}\in C_{0}$ . Let $\mathcal{B}(t)=\mathcal{A}(t)-\omega I$ ; then it follows

from the proof of Theorem 3.2 that $\mathcal{B}(t)$ is dissipative and $ R(I-\alpha \mathcal{B}(t))\supset$

$C=cl(\mathcal{D}(\mathcal{B}(O)))$ for all sufficiently small $\alpha>0$. Moreover, $\mathcal{D}(\mathcal{B}(t))$ is independent
of $t$ by the last hypothesis of the theorem.

Next, let $N(B)=\inf\{\Vert|\underline{x}\Vert|:\underline{x}\in B\}$ for $BC\mathcal{H}$ . For $t,$ $\tau\in J,\underline{x}\in \mathcal{D}(\mathcal{A}(O))$ we
have
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$N(\mathcal{A}(t)\underline{x})=\sup_{n}|A_{n}(t)x_{n}|$

$\leqq\sup_{n}(|A_{n}(\tau)x_{n}|+|t-\tau|L(\Vert x_{n}\Vert)(1+|A_{n}(\tau)x_{n}|))$ by (iii)

$\leqq N(\mathcal{A}(\tau)\underline{x})+|t-\tau|L(\Vert|\underline{x}\Vert|)(1+N(\mathcal{A}(\tau)\underline{x}))$ .
Next, for $t,$ $\tau\in J,$ $0<\alpha<\alpha_{0}$ , and $\underline{x}\in \mathcal{D}(\mathcal{A}(O))$ we have

$\Vert|(I-\alpha \mathcal{B}(t))^{-1}\underline{x}-(I-a\mathcal{B}(\tau))^{-1}\underline{x}\Vert|$

$=\sup_{n}\Vert(I-aB_{n}(t))^{-1}x_{n}-(I-\alpha B_{n}(\tau))^{-1}x_{n}\Vert$

$\leqq\sup_{n}(a|t-\tau|L(\Vert x_{n}\Vert+|A_{n}(\tau)x_{n}|))$ by (iv)

$\leqq\alpha|t-\tau|+L(|\Vert\underline{x}_{1}^{1}\Vert+N(\mathcal{A}(\tau)\underline{x}))$ .

It follows from Theorem 5.1 that $\mathcal{U}=\{\mathcal{U}(t, s):0\leqq s\leqq t\leqq T\}$ , the evolution
operator determined by $\mathcal{A}(\cdot)$ , exists and satisfies $(a)-(d)$ .

We have $\mathcal{U}(t, s)\underline{x}=\{U_{n}(t, s)x_{n}\}_{1^{\infty}}$ for $\underline{x}\in C$, and thus (5.2) holds for $\underline{x}\in C$

(with $x_{0}=\lim_{n\rightarrow\infty}x_{n}$). The rest of the proof is very much like that of Theorem
3.2, so it will be omitted.

The next approximation theorem will be one in which the solution of
the Cauchy problems exist and converge. We shall require an existence
theorem of Martin [12], which is a generalization of an earlier result of
Kato [8]. The basic assumption is as follows.

(\S ) $(a)$ Let $\{A(t):t\in J=[0, T]\}$ be a family of (single-valued) functions
on $X$ such that $A(t)-\omega(t)I$ is dissipative, where $\omega$ is continuously differentiable$\cdot$

on $J,$ $R(I-\alpha(A(t)-\omega(t)I))=X$ for all $\alpha>0$ , and $D=\mathcal{D}(\mathcal{A}(t))$ does not depend $\cdot$

on $t$.
$(\beta)$ Furthermore, if $\{x_{n}\}_{1}^{\infty}\subset D,\lim_{n\rightarrow\infty}x_{n}=x_{0},$ $\sup_{n}\Vert A(t)x_{n}\Vert<\infty$ , then $x_{0}\in D$

and w-$\lim_{n\rightarrow\infty}A(t)x_{n}=A(t)x_{0}$ .
$(\gamma)$ There is a constant $K$ such that if $Q$ is a bounded subset of $D$ with

$\sup\{\Vert A(t)x\Vert : t\in J, x\in Q\}<\infty$ , then for every $\epsilon>0,$ $\beta>0$ there exists a $\delta=$

$\delta(\epsilon, \beta, Q)>0$ such that

I $x-y-b(A(t)x-A(t)y)\Vert\leqq(1+Kb)\Vert x-y\Vert\perp\epsilon b$

for $0<b\leqq\delta,$ $\Vert x-y\Vert>\beta,$ $x,$ $y\in Q,$ $t\in J$.
THEOREM 5.3 [12]. Let (\S ) hold. Suppose further there is a continuous

function $d:J\times J\times R^{\prime}-\rightarrow R^{+}$ such that $d(t, s, )$ is nondecreasing for each $t,$ $s\in J$

and such that

$\Vert A(t)x-A(s)x\Vert\leqq|t-s|d(t, s, \Vert x\Vert)$ $(1+\Vert A(t)x\Vert)$

for all $t,$ $s\in J,$ $x\in D$ . Then there exists an evolution opera $torU$ satisfying (a).
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(b), (d) of Theorem 5.1 and

$(c^{\prime})$ $\Vert U(t, s)\Vert_{Lip}\leqq\exp(\int_{1}^{t}\omega(\tau)d\tau)$ for $0\leqq s\leqq t\leqq T$.

If $s\in J,$ $x\in D$, then $u(\cdot)=U(\cdot, s)x$ is the unique weakly continuously differenti-
able solution of

$u_{w}^{\prime}(t)=A(t)u(t)$ $(s\leqq t\leqq T),$ $u(s)=x$

[here $u_{w}^{\prime}$ denotes the weak derivative of $u$]; furthermore, $A(\cdot)u(\cdot)$ is Bochner
integrable,

$ u(t)=x+\int_{\epsilon^{t}}A(\tau)u(\tau)d\tau$

for all $t\in[s, T]$ , and the strong derivative $u^{\prime}(t)$ exist for almost all $t$ and
$u^{\prime}(t)=A(t)u(t)a$ . $e$. in $[s, T]$ .

This theorem was proved by Kato [8] assuming that $x*$ is uniformly
convex, but not assuming $(\beta),$ $(\gamma)$ . The above version, due to Martin [12], is
a generalization of Kato’s result since a dissipative operator $A$ satisfying
$R(I-\alpha A)=X$ for all $\alpha>0$ automatically satisfies $(\beta),$ $(\gamma)$ if $x*$ is uniformly
convex (cf. [8, p. 512], [12, p. 416]). However, as Kato has noted, a linear
dissipative operator $A$ satisfying $R(I-\alpha A)=X$ for all $\alpha>0$ need not satisfy

\langle $\beta$)
$,$

$(\gamma)$ if $X$ is an arbitrary Banach space.
THEOREM 5.4. For each $n\in Z^{+}$ let $\{A_{n}(t):f\in J\}$ be a family of operators

satisfying the hypothesis of Theorem 5.3 with $\omega,$ $K,$ $\delta,$ $d$ being independent of
$n$ . Denote $\mathcal{D}(A_{n}(t))$ by $D_{n}$ . Assume

(i) $\lim_{n-\infty}(1-\alpha(A_{n}(t)-\omega(t)1))^{-1}x_{0}=(I-\alpha(A_{0}(t)-\omega(t)I))^{-1}x_{0}$ for all $x_{0}\in X,$ $t\in J$,

$a>0$ ,
(ii) if for $n\in N,$ $t\in J,$

$x_{n}\in D_{n},\lim_{n\rightarrow\infty}x_{n}=x_{0}$ exists and $\sup_{n}\Vert A_{n}(t)x_{n}\Vert<\infty$ ,

then $x_{0}\in D_{0}$ and $\lim_{n\rightarrow\infty}A_{n}(t)x_{n}=A_{0}(t)x_{0}$ . Then $\lim_{n\rightarrow\infty}U_{n}(t, s)x_{n}=U_{0}(t, s)x_{0}$ , uniformly

for $t\in[s, T]$ , where $U_{n}$ is the evolution operator determined by $A_{n}(\cdot)$ , whenever
$\{x_{n}\}_{1^{\infty}}$ is a sequence in $X$ converging to $x_{0}$ and satisfying: for each $\epsilon>0$ there
is a convergent sequence $\{x_{n}^{e}\}_{1}^{\infty}$ such that $\Vert x_{n}-x_{n}^{\epsilon}\Vert<\epsilon,$ $x_{n}\in D_{n}$ for all $n\in N$,

and $\sup_{n}\Vert A_{n}(0)x_{n}^{\epsilon}\Vert<\infty$ .
The unsatisfactory feature of the above theorem is condition (ii) which

is rather restrictive. Theorem 5.4, like all of our other approximation theo-
rems, is deduced from an existence theorem (Theorem 5.3 in this case) by
viewing a convergent sequence of evolution operators on $X$ as a single evolu-
tion operator on $\mathcal{X}$ . We omit the details of proof except for the observation
that the dual space of $\mathcal{X}$ is

$\mathcal{X}^{*}=$ { $\underline{\phi}:\{\phi_{n}\}_{0^{\infty}}\subset X^{*}:$ $\Vert|\underline{\phi}\Vert|=\sum_{n-0}^{\infty}$ I $\phi_{n}\Vert<\infty$ },

and for $\underline{\phi}\in X^{*},$ $\underline{x}\in \mathcal{X}$ ,
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$\underline{\phi}(\underline{x})=\sum_{n=1}^{\infty}\phi_{n}(x_{n})+\phi_{0}(\lim_{n\rightarrow\infty}x_{n})$ .

This follows from a representation theorem of Singer [19], [20].

We thank Robert H. Martin, $Jr.$ , for showing us how to fix up an error
in an early version of the proof of Theorem 5.4.

Finally, our method of proof in the linear case yields the following result.
THEOREM 5.5. For each $n\in Z^{+}$ let $\{A_{n}(f):t\in J\}$ be a family of linear

operators on $X$ satisfying $(\alpha)$ of (\S ), where $\omega$ does not depend on $n$ . Suppose
$B_{n}=A_{n}(\cdot)(I-(A_{n}(0)-\omega_{0}I))^{-1}$ is strongly continuously differentiable on $J$, where
$\omega_{0}=\sup\{|\omega(t)| : t\in J\}$ ; and the $s$ trong derivative of $B_{n}$ is bounded independent
of $t\in J,$ $n\in Z^{+}$ . Finally assume that

$\lim_{n\rightarrow\infty}(I-a(A_{n}(t)-\omega(t)I))^{-1}x=(I-\alpha(A_{0}(t)-\omega(t)I))^{-1}x$

for all $x\in X,$ $t\in J$. Let $U_{n}$ denote the evolution operator determined by $A_{n-}$

Then
$\lim_{n\rightarrow\infty}U_{n}(t, s)x_{n}=U_{0}(t, x)x_{0}$ ,

uniformly for $t\in[s, T]$ , whenever $\{x_{n}\}_{1^{\infty}}$ is a convergent sequence in $X$ with
limit $x_{0}$ . Let $\{f_{1}\}_{0}^{\infty}$ be a boundedly convergent sequence of continuous X-valued
functions on $J$, and let $\lim_{n\rightarrow\infty}x_{n}=x_{0}$ . Then

$\lim_{n\rightarrow\infty}u_{n}(t)=u_{0}(t)$

for $t\in[s, T]$ , where $u_{n}$ is the unique mild solution of
$u_{n}^{\prime}(t)=A_{n}(t)u_{n}(t)+f_{n}(t)$ $(s\leqq t\leqq T),$ $u_{n}(s)=x_{n}$ ;

and the convergence is uniform if the convergence of $\{f_{n}\}_{1^{\infty}}$ is uniform.
“ Mild solution ‘’ means solution of the associated integral equation. This

theorem complements some approximation theorems of Kato [9].

REMARKS. (1) After this paper was submitted we learned of some related
preprints. Brezis and Pazy [25] overlaps with Section 3. Fitzgibbon [27],
[28] and Crandall and Pazy [26] overlap with Section 5. Our proofs are
quite different from those of the above authors. We thank these authors
for sending us their papers, and we thank Crandall and Pazy for some useful
comments concerning the present paper.

(2) If $T_{n}(t)=\lim_{mr}(I-tm^{-1}A_{n})^{-1}$ and if (3.1) holds, then we cannot expect

(3.2) to hold since $T_{n}$ does not determine $A_{n}$ uniquely (cf. [4]). Thus the
sufficient condition (3.2) cannot be necessary in general. However, if the
dual space $x*$ is uniformly convex, then $T_{n}$ determines $A_{n}$ uniquely (cf.
Brezis [24]), and the necessity of (3.2) might be valid in this case. B\’enilan
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[23] established the necessity of (3.2) in the Hilbert space case.
(3) Finally, in the case when both $X$ and $x*$ are uniformly convex,

Martin [29] has characterized the generators $G$ of semigroups $T\in Q_{\omega}(C)$

\langle where $C$ is a closed subset of $X$ ) having the property that $cl(\mathcal{D}(G))=C$.

Department of Mathematics
Tulane University
New Orleans, Louisiana 70118
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