J. Math. Soc. Japan Vol. 24, No. 4, 1972

Regular congruences on Croisot-Teissier and Baer-Levi semigroups

By Bruce W. MIELKE

(Received May 24, 1971) (Revised April 11, 1972)

Clifford and Preston have defined a class of Croisot-Teissier semigroups of type (p, q) which are simple with a minimal right ideal when p = q ([1] 8.2). In this paper, we define a modified class of Croisot-Teissier semigroups (1.3) which are simple with a minimal right ideal for all $q \leq p$ (1.9). The generalized Baer-Levi semigroups ([1] 8.1) are shown to be right simple generalized Croisot-Teissier semigroups under the new definition (1.5).

In the concluding sections, we investigate group and band congruences on these semigroups. We find a set, E, which is contained in the kernel of every group congruence (2.3), and also find necessary and sufficient conditions for E to be the kernel of such a congruence (2.11). Using this result, we show that a Baer-Levi semigroup has a non-trivial group congruence if and only if p > q (2.14).

Finally, we relate band congruences on simple semigroups with a minimal right ideal to the ordering of the \mathcal{L} -classes under the usual ordering (3.3), and after investigating this structure in Baer-Levi semigroups (3.5), we show they have only trivial band congruences. This is sufficient to show that the only regular congruences on Baer-Levi semigroups are group congruences (3.6).

The terminology and notation will be that of Clifford and Preston [1].

§ 1. Generalized Croisot-Teissier semigroups.

In this section we discuss a class of simple semigroups with a minimal right ideal, which are generalized Baer-Levi semigroups ([1] 8.1). Clifford and Preston ([1] 8.2) have defined Croisot-Teissier semigroups of type (p, q) which are simple with a minimal right ideal in the case p = q. We will modify their definition to obtain a class of generalized Groisot-Teissier semigroups of type (p, q) $(p \ge q)$, each member of which is simple with a minimal right ideal.

(1.1) DEFINITION ([1] vol. II, p. 86). Let p and q be infinite cardinals

with $p \ge q$, and let X be a set with $|X| \ge p$. Suppose $\mathcal{E} = \{\mathcal{E}_i : i \in I\}$ is a set of distinct equivalences on X such that each quotient set X/\mathcal{E}_i , $i \in I$, is of cardinal p. A subset $B \subseteq X$ will be said to be *well-separated by* \mathcal{E} if i) |B|= p, and ii) $\mathcal{E}_i \cap (B \times B) = \mathcal{A}_B$, the identity relation on B, for all $i \in I$.

(1.2) DEFINITION. Let p, q, X and \mathcal{E} be as in (1.1). Let B be a subset of X which is well-separated by \mathcal{E} . Then B is said to be *q*-well-separated by \mathcal{E} if C_i , the collection of all \mathcal{E}_i -classes of X which do not intersect B, has cardinal less than or equal to q, for each $i \in I$.

When \mathcal{E} is clear from the context, we will simply say that B is q-well-separated.

(1.3) DEFINITION. a. Let p, q, X and \mathcal{E} be as in (1.1). For each $i \in I$, let T_i^* denote the collection of all maps t_i of X into X for which i) $t_i \circ t_i^{-1} = \mathcal{E}_i$, and ii) there exists a subset $B (= B(t_i))$, in general depending upon t_i of X with B q-well-separated by \mathcal{E} , and $Xt_i \subseteq B$ with $|B \setminus Xt_i| = q$.

b. If X contains a q-well-separated subset B, then $T_i^* \neq \Box$ for any $i \in I$. In this case, we denote by $CT^*(X, \mathcal{E}, p, q)$ the union of the sets T_i^* for all $i \in I$.

A set X, with a collection of equivalences \mathcal{E} , may have a subset wellseparated by \mathcal{E} which is not q-well-separated by \mathcal{E} when p > q. For example, we let X be a set of infinite cardinal p and $A \subseteq X$ with $B = X \setminus A$, for which |A| = |B| = p. Let $\mathcal{E}_1 = \mathcal{A}_X$, the identity relation on X, and let $\mathcal{E}_2 = (A \times A) \cup \mathcal{A}_B$, where \mathcal{A}_B is the identity relation on B. Then for q < p, X has no subset qwell-separated by $\mathcal{E} = \{\mathcal{E}_1, \mathcal{E}_2\}$. It is clear, however, that B is well-separated by \mathcal{E} .

The proof of Lemma (1.4) is almost identical to that of [1] Lemma 8.9.

(1.4) LEMMA. Any set of mappings $CT^*(X, \mathcal{E}, p, q)$ forms, under composition, an idempotent free semigroup in which each T_i^* is a right ideal.

Using (1.3) and (1.4), one easily checks the following:

(1.5) COROLLARY. Let $S = CT^*(X, \mathcal{E}, p, q)$. Then if \mathcal{E} consists of exactly one equivalence relation, S is right simple. Furthermore, if $\mathcal{E} = \{\Delta_X\}$, where Δ_X is the identity relation on X, then S is a Baer-Levi semigroup of type (p, q).

(1.6) DEFINITION. The semigroup $CT^*(X, \mathcal{E}, p, q)$ will be known as a generalized Croisot-Teissier semigroup of type (p, q), or simply a Croisot-Teissier semigroup.

We note the following for the reader's convenience.

(1.7) NOTE. Clifford and Preston ([1] 8.2) define the Croisot-Teissier semigroup of type (p, q), denoted $CT(X, \mathcal{E}, p, q)$, as follows:

a. Let p, q, X and \mathcal{E} be as in (1.1). For each $i \in I$, let T_i denote the collection of all maps t_i of X into X for which i) $t_i \circ t_i^{-1} = \mathcal{E}_i$, and ii) there exists a subset B (= $B(t_i)$, in general depending upon t_i) of X with B well-

separated by \mathcal{E} , and $Xt_i \subseteq B$ with $|B \setminus Xt_i| = q$.

b. If X contains a well-separated subset B, then $T_i \neq \Box$ for any $i \in I$. In this case, $CT(X, \mathcal{E}, p, q)$ is the union of the sets T_i for all $i \in I$.

It is easily checked that $CT^*(X, \mathcal{E}, p, q) \subset CT(X, \mathcal{E}, p, q)$ (\subset indicates proper containment), for $p \neq q$, and that $CT^*(X, \mathcal{E}, p, p) = CT(X, \mathcal{E}, p, p)$.

The following is an example of $CT^*(X, \mathcal{E}, p, q)$ with \mathcal{E} having more than one element.

(1.8) EXAMPLE. [6] Let X be a set, |X| = p, where p is an infinite cardinal. Let x, $y \in X$, $x \neq y$, and define $\mathcal{E}_1 = \{(x, y), (y, x)\} \cup \mathcal{A}_X$. Let $\mathcal{E}_2 = \mathcal{A}_X$. If $B = X \setminus \{x\}$, then for any infinite $q \leq p$, B is q-well-separated by $\mathcal{E} = \{\mathcal{E}_1, \mathcal{E}_2\}$. Thus $CT^*(X, \mathcal{E}, p, q)$ exists for all infinite $q \leq p$.

The next theorem is the main result of this section, and it is proven in much the same way as [1] Theorem 8.11.

(1.9) THEOREM. Each semigroup $CT^*(X, \mathcal{E}, p, q)$ is a simple idempotent free semigroup which is the union of its minimal right ideals T_i^* , $i \in I$.

§2. Group congruences.

In this section we will give a necessary condition for $CT^*(X, \mathcal{E}, p, q)$ to have a group congruence (2.5). This condition will also be necessary and sufficient in the case $CT^*(X, \mathcal{E}, p, q)$ is right simple (2.12). A sufficient condition for $CT^*(X, \mathcal{E}, p, q)$ to have a non-trivial group congruence will also be given (2.11).

We first quote a theorem which will be the basis for our investigation.

(2.1) THEOREM ([4] Theorem (1.9)). Let S be a simple semigroup with a minimal right ideal. Then if S has a group congruence ρ , the kernel E of ρ is a unitary subsemigroup such that

i) E is a right cross section $(E \cap aS \neq \Box)$, for all $a \in S$),

ii) For $a \in S$, a = ae for some $e \in E$,

iii) If $xEy \cap E \neq \Box$ for $x, y \in S$, then $xEy \subseteq E$.

Conversely, if E is a unitary subsemigroup of S satisfying i)-iii), then there exists a group congruence ρ with E as its kernel.

(2.2) DEFINITION. Let $S = CT^*(X, \mathcal{E}, p, q)$, and let $a \in S$. Then we say a subset Y_a of X is fixed by a, if Y_a is q-well-separated by \mathcal{E} and a restricted to Y_a is the identity map. We say that a has a fixed set if there exists a set Y_a fixed by a.

We note the following relation between $E = \{e \in S : e \text{ has a fixed set}\}$ and the kernel of any group congruence on $CT^*(X, \mathcal{E}, p, q)$.

(2.3) PROPOSITION. Let $S = CT^*(X, \mathcal{E}, p, q)$ and U be the kernel of any group congruence on S. Then $E \subseteq U$.

PROOF. Let σ be a group congruence on S with the kernel U. Let $e \in E$, then e fixes some q-well-separated subset Y of X. Clearly, there exists $a \in S$ such that Xa = Y, so that ae = a, and $(ae, a) \in \sigma$. But S/σ is a group, therefore $e \in U$ and $E \subseteq U$.

We will now find necessary and sufficient conditions for E to be the kernel of a group congruence. Combining (2.1) and (2.3) we have:

(2.4) LEMMA. If S, E, and U are as in (2.3), and if $\langle E \rangle$ is the subsemigroup of S generated by E, then $\langle E \rangle \subseteq U$.

(2.5) PROPOSITION. Let $S = CT^*(X, \mathcal{E}, p, q)$. If S has a non-trivial group congruence, then p > q.

PROOF. Suppose p = q, and S has a non-trivial group congruence ρ with kernel U. Let $E = \{e \in S : e \text{ has a fixed set}\}$, then the subsemigroup $\langle E \rangle$ of S generated by E is contained in U. We will show that $\langle E \rangle = S$, and hence ρ will be a trivial congruence contrary to our assumption.

Let $a \in S$, we will show that there exists e_1 , $e_2 \in E$ such that $a = e_1 e_2 \in \langle E \rangle$. Clearly $a \in T_i^*$ for some $i \in I$, so that there exists A, a p-well-separated subset of X, such that $Xa \subseteq A$ and $|A \setminus Xa| = p$. Let $W \subseteq A \setminus Xa$ with $|W| = |(A \setminus Xa) \setminus W| = p$. If C_i is the collection of \mathcal{E}_i -classes of X which do not intersect W, then clearly $|\mathcal{C}_i| = p$. Therefore, since p is an infinite cardinal, there exists a one-to-one map d of \mathcal{C}_i into $(A \setminus Xa) \setminus W$, such that

(*) $|[(A \setminus Xa) \setminus W] \setminus C_i d| = p.$

Define e_1 on any x in an \mathcal{E}_i -class contained in \mathcal{L}_i by letting xe_i be the image of the \mathcal{E}_i -class of x under d. Let $we_1 = w$ for all $w \in W$. Since W is a well-separated subset of X, every \mathcal{E}_i -class intersects W in exactly one element. Therefore if $(w, w') \in \mathcal{E}_i$ for some $w \in W$, and we let $w'e_1 = w$, then e_1 is a well-defined map on all of the \mathcal{E}_i -classes which intersect W. It follows that $Xe_1 = C_i d \cup W$, and hence $|A \setminus Xe_1| = p$. It is also true that $e_1 \circ e_1^{-1} = C_i$, so that $e_1 \in T_i^*$. Clearly W is a set fixed by e_1 , and thus $e_1 \in E$. Since $e_1 \circ e_1^{-1}$ $=\mathcal{E}_i=a\circ a^{-1}$, if we define e_2 on Xe_1 by $xe_1e_2=xa$, then e_2 is well-defined on Xe_1 , in fact, e_2 is a one-to-one map of Xe_1 onto Xa. For each $xe_1 \in Xe_1$, we extend e_2 to the \mathcal{E}_i -class $\overline{xe_1}$ of xe_1 by $(\overline{xe_1})e_2 = xa$. Since Xe_1 is well-separated by \mathcal{E} , this extension is well defined. From (*) it is clear that $|A \setminus (Xe_1 \cup Xa)|$ = p, and therefore there exists $Y \subseteq A \setminus (Xe_1 \cup Xa) = F$, with $|Y| = |F \setminus Y| = |F|$ = p. If \mathcal{G} is the collection of all \mathcal{E}_i -classes of X which do not intersect $Xe_1 \cup Y$, clearly $|\mathcal{G}| = p$, and since p is an infinite cardinal, there exists d', a one-to-one map of \mathcal{G} into $F \setminus Y$, with $|(F \setminus Y) \setminus \mathcal{G}d'| = p$. If x is an \mathcal{E}_i -class in \mathcal{G}_i , let xe_2 be the image of the \mathcal{E}_i -class of x under d'. Finally, for $y \in Y$, let $ye_2 = y$, and if $(y, y') \in \mathcal{E}_i$ for $y \in Y$, let $y'e_2 = y$. Then we have $|A \setminus Xe_2| = y$. $|((F \setminus Y) \setminus \mathcal{G}d') \cup Xe_1| = p$, and $e_2 \circ e_2^{-1} = \mathcal{E}_i$, so that $e_2 \in T_i^* \subseteq S$. Clearly $e_2 \in E$ with fixed set Y. Thus combining all of the above, we have $a = e_1 e_2 \in \langle E \rangle$, and hence every element of S is in $\langle E \rangle \subseteq U$ and ρ is a trivial congruence.

(2.6) DEFINITION. Let $S = CT^*(X, \mathcal{E}, p, q)$. If C and D are q-well-separated subsets of X, and $i, j \in I$, then the set

 $\mathcal{M}(C, D, i, j) = \{c \in C : \text{ there is } d \in D \text{ with } (c, d) \in \mathcal{E}_i \cap \mathcal{E}_j\}$

is said to be the (i, j)-mesh of C with D.

(2.7) CONDITION G. Let $S = CT^*(X, \mathcal{E}, p, q)$. Then S is said to satisfy condition G if and only if p > q and, for any $i, j \in I$ and for any subsets C and D of X which are q-well-separated by \mathcal{E} , the set $\mathcal{M}(C, D, i, j)$ is q-well-separated by \mathcal{E} .

An example of a Croisot-Teissier semigroup that satisfies condition G is given in (1.8).

We will now use a series of lemmas to prove the main result.

(2.8) LEMMA. If $S = CT^*(X, \mathcal{E}, p, q)$ satisfies condition G, then $E = \{e \in S: e \text{ has a fixed set}\}$ is a subsemigroup of S.

PROOF. Let $a, b \in E$ with sets Y_a and Y_b fixed by a and b respectively. Assume further that $a \in T_i^*$ and $b \in T_j^*$ for some $i, j \in I$. Then, since Y_a and Y_b are q-well-separated, $Y_{ab} = \mathcal{M}(Y_b, Y_a, i, j)$ is q-well-separated (2.7). We now show that Y_{ab} is a fixed set for ab. Let $y \in Y_{ab}$, then there exists a $y' \in Y_a$ with $(y, y') \in \mathcal{E}_i \cap \mathcal{E}_j$. Clearly, since $a \in T_i^*$ and $y' \in Y_a$, a fixed set for a, ya = y'a = y'. Similarly, since $b \in T_j^*$ and $y \in Y_{ab} \subseteq Y_b$, a fixed set for b, we have y'b = yb = y. But then, combining these equations, we have yab= y'b = y. Thus we have shown that Y_{ab} is a fixed set for ab, and hence, $ab \in E$, and E is a subsemigroup of S.

(2.9) LEMMA. If S, E are as in (2.8), then E is unitary in S.

PROOF. First we show that E is left unitary. Suppose $a \in E$ and $ab \in E$, and suppose further that $a \in T_i^*$ and $b \in T_j^*$. Since T_i^* is a right ideal, $ab \in T_i^*$. Then there are sets Y_a and Y_{ab} fixed by a and ab respectively. As in the proof of (2.8), we see that $Y_b = \mathcal{M}(Y_{ab}, Y_a, i, j)$ is a q-well-separated subset of X. We will show that $b \in E$ by showing that Y_b is a fixed set for b. Let $y \in Y_b$, then there exists $y' \in Y_a$ with $(y, y') \in \mathcal{E}_i \cap \mathcal{E}_j$. We now proceed as we did in (2.8) to get ya = y'a = y', and yb = y'b. But then, since Y_{ab} is a fixed set for ab, we have y = yab = y'b = yb. Thus Y_b is a fixed set for b. Therefore, if $a \in E$ and $ab \in E$ for any $b \in S$, we have $b \in E$ and E is left unitary.

Finally we show E is right unitary. Let $ab \in E$ and $b \in E$, and suppose $a \in T_i^*$ and $b \in T_j^*$. Then as T_i^* is a right ideal, we have $ab \in T_i^*$. Since $ab \in E$ and $b \in E$, there exist Y_{ab} and Y_b , subsets of X fixed by ab and b respectively. It is easily checked that if A and B are any q-well-separated subsets of X which are both contained in the same q-well-separated subset of X, then $A \cap B$ is a q-well-separated subset of X. It follows that Y =

 $Y_{ab} \cap Y_b$ is a q-well-separated subset of X, since $Y_{ab} \subseteq Xab \subseteq Xb$. We also know that Xa is a q-well-separated subset of X, so that $Y_a = \mathcal{M}(Xa, Y, i, j)$ is q-well-separated by (2.7). We now show that Y_a is a fixed set for a. If $y \in Y_a$, then there exists $y' \in Y$ such that $(y, y') \in \mathcal{E}_i \cap \mathcal{E}_j$. We proceed as in (2.8) to get ya = y'a, yab = y'ab = y', and yb = y'b = y'. Now since $y \in Xa$, there exists $y'' \in X$ such that y = y''a, and combining all of these equations, we have y'ab = y' = y'b = yb = y''ab. But since $ab \in T_i^*$, it follows that $(ab) \circ (ab)^{-1}$ $= \mathcal{E}_i$, and therefore $(y', y'') \in \mathcal{E}_i$. We also have $a \in T_i^*$ and hence ya = y'a =y''a = y. Thus Y_a is a fixed set for a. We have shown that if $ab \in E$ and $b \in E$ for some $a \in S$, then $a \in E$, and E is right unitary. Our result follows.

We recall that in (2.1) we showed that a unitary subsemigroup of a simple semigroup S with a minimal right ideal was the kernel of a group congruence on S if and only if it satisfied conditions i)-iii) in the following lemma.

- (2.10) LEMMA. If S and E are as in (2.8), then E satisfies:
- i) E is a right cross-section $(E \cap T_i^* \neq \Box)$, for all $i \in I$),
- ii) For $a \in S$, a = ae for some $e \in E$,
- iii) If $aEb \cap E \neq \Box$ for $a, b \in S$, then $aEb \subseteq E$.

PROOF. Conditions i) and ii) are easily checked. To show condition iii), we let $a \in T_i^*$ and $b \in T_i^*$ for which $aEb \cap E \neq \Box$. We will show $aEb \subseteq E$. Let e_1 , $e_2 \in E$ such that $e_2 = ae_1b \in aEb \cap E$. Clearly $e_2 \in T_i^*$, and we may assume that $e_1 \in T_k^*$ for some $k \in I$. If $e \in E \cap T_m^*$ for any $m \in I$, then we show that $aeb \in E$. Let Y, Y_1 , and Y_2 be subsets of X fixed by e, e_1 , and e_2 respectively. If $(Y_2)_i^* = \{ \bar{x} \in X/\mathcal{E}_i : \bar{x} \cap Y_2 = \Box \}$, then it is clear that since $a \in T_i^*$ and Y_2 is q-well-separated, $|Xa \setminus Y_2a| = |(Y_2)_i^*| \leq q$. But $Y_2a \subseteq Xa$, which is q-well-separated, and hence it is easily checked that Y_2a is q-wellseparated. Let $Z_1' = \mathcal{M}(Y_2 a, Y_1, j, k)$, then by condition G, $|Y_2 a \setminus Z_1'| \leq q$. It is also clear that if $Z_1 = \{ y \in Y_2 : ya \in Z_1' \}$, then $|Y_2 \setminus Z_1| = |Y_2a \setminus Z_1'| \le q$, and hence Z_1 is q-well-separated. Let $y \in Z_1$, then there is $y' \in Y_1$ for which $(ya, y') \in \mathcal{E}_j \cap \mathcal{E}_k$. Then, since $e_1 \in T_k^*$ and $b \in T_j^*$, we have $yae_1 = y'e_1$ and yab = y'b. We combine these equations to get $y = ye_2 = yae_1b = y'e_1b = y'b = yab$. so that Z_1 is a fixed set for ab. Now let $Z_2' = \mathcal{M}(Z_1', Y, j, m)$, then Z_2' is qwell-separated, and as above, if $Z_2 = \{ y \in Z_1 : ya \in Z_2' \}$, then Z_2 is q-wellseparated. But if $y \in Z_2$, then there exists $y' \in Y$ with $(ya, y') \in \mathcal{E}_j \cap \mathcal{E}_m$. It follows that y = yab since $y \in Z_1$, a fixed set for ab, and that y' = y'e since $y' \in Y$, a fixed set for e. We combine these equations, and y = yab = y'b =y'eb = yaeb follows since $(ya, y') \in \mathcal{E}_j \cap \mathcal{E}_m$. Therefore we have shown that Z_2 is a fixed set for *aeb*, so that $aeb \in E$, and our result follows.

(2.11) THEOREM. Let $S = CT^*(X, \mathcal{E}, p, q)$, then $E = \{e \in S : e \text{ has a fixed set}\}$ is the kernel of a group congruence on S if and only if S satisfies condition

Regular congruences

G. Moreover, in this case, E is the kernel of the minimum group congruence on S.

PROOF. Combining (1.9), (2.1), and (2.8)-(2.10), we see that E is the kernel of some group congruence on S, if S satisfies condition G. In [4] Theorem (2.1) it is shown that if ρ is a group congruence with kernel E', then for any $a \in S$, $a\rho = E'aE'$. Let E_1 and E_2 be the kernels for group congruences ρ_1 , and ρ_2 on S respectively with $E_1 \subseteq E_2$. If $(a, b) \in \rho_1$, then $E_1aE_1 = E_1bE_1$, so that $a = e_1be_2$ where e_1 , $e_2 \in E_1$. But then e_1 , $e_2 \in E_2$ and $a \in E_2bE_2 = b\rho_2$, thus $\rho_1 \subseteq \rho_2$. By (2.3) we have E is contained in the kernel of every group congruence on S, therefore it is the kernel of the minimum group congruence on S.

Suppose E is the kernel of a group congruence on S. Let Y and Z be q-well-separated subsets of X. We will show that for all $i, j \in I, \mathcal{M}(Z, Y, i, j)$ is q-well-separated, i.e., S satisfies condition G. Let $Y_1 \subset Y$ and $Z_1 \subset Z$ such that $|Y \setminus Y_1| = |Z \setminus Z_1| = q$. Clearly Y_1 and Z_1 are q-well-separated, and hence there exists $e_i \in T_i^* \cap E$ with fixed set Z_1 and $e_j \in T_j^* \cap E$ with fixed set Y_1 . Since E is a subsemigroup (2.1), $e_j e_i \in E$, hence $e_j e_i$ has a fixed set Y*, and $Y^* = Y^* e_j e_i \subseteq X e_i$. We also have $Z_1 \subseteq X e_i$, thus Y^* and Z_1 are q-well-separated subsets of the same q-well-separated set Xe_i , and therefore $Y' = Y^* \cap Z_1$ is a q-well-separated set. Let $Y_1' = \{ y \in Y' : ye_j \in Y_1 \}$. We have $Y'e_j \subseteq Xe_j$ is qwell-separated and $Y_1 \subseteq Xe_j$ is q-well-separated, hence $Y_1'e_j = Y'e_j \cap Y_1$ is qwell-separated. But $Y_1 \subseteq Y^*$, therefore $Y_1 e_j e_i = (Y_1 e_j) e_i = Y_1$, and Y_1 is qwell-separated. Let $y \in Y_1'$, then $y \in Y^*$, a fixed set for $e_j e_i$, and $y \in Z_1$, a fixed set for e_i , so that $(ye_j)e_i = y = ye_i$, and $(y, ye_j) \in \mathcal{E}_i$ since $e_i \in T_i^*$. It is also clear from the definition of Y_1' that $ye_j \in Y_1$, a fixed set for e_j , so that $ye_j = (ye_j)e_j$. But $e_j \in T_j^*$, therefore $(y, ye_j) \in \mathcal{E}_j$. It follows that $(y, ye_j) \in \mathcal{E}_j$. $\mathcal{E}_i \cap \mathcal{E}_j$, and since $y \in Z$ and $ye_j \in Y$, we have $Y_1' \subseteq \mathcal{M}(Z, Y, i, j)$. Finally, since Y_1' is q-well-separated, $\mathcal{M}(Z, Y, i, j)$ must be q-well-separated. By (2.5) p > q, and we have our result.

(2.12) LEMMA. Let $S = CT^*(X, \mathcal{E}, p, q)$ be right simple, then S satisfies condition G if and only if p > q.

PROOF. Assume p > q. Since S is right simple, we can write $\mathcal{E} = \{E_1\}$. Then for all C, D, q-well-separated subsets of X, it is clear that $\mathcal{M}(C, D, 1, 1)$ is q-well-separated, since p > q. Thus S satisfies condition G.

If S satisfies condition G, then p > q.

(2.13) THEOREM. If $S = CT^*(X, \mathcal{E}, p, q)$ be right simple, then S has a nontrivial group congruence if and only if p > q.

And

(2.14) COROLLARY. A Baer-Levi semigroup of type (p, q) has a non-trivial group congruence if and only if p > q.

We recall the following:

B.W. MIELKE

(2.15) THEOREM ([6]). Let S be a right simple idempotent-free semigroup and let $E \subseteq S$. Then E is the kernel of some group congruence ρ on S if and only if E is a subsemigroup of S which is unitary in S and satisfies the condition $EaE \subseteq aE$ for every $a \in S$. Moreover, for all $a \in S$, aE is the ρ -class of a.

Combining (2.11) and (2.15), we get:

(2.16) COROLLARY. If S is a Baer-Levi semigroup of type (p, q) where p > q, and ρ is any congruence on S with $\rho \subseteq \gamma$, the minimum group congruence on S, then for $(a, b) \in \rho$, $D = \{x \in X : xa \neq xb\}$ has cardinal less than or equal to q.

PROOF. We know that the kernel of γ is $E = \{e \in S : e \text{ has a fixed set}\}$ from (2.11). If $(a, b) \in \rho$, then $(a, b) \in \gamma$. But then aE = bE, by (2.15), also, $|X \setminus (Xa \cap Xb)| = q$, and $|Xa \cap Xb| = p$. Since S is right simple, there exists $e \in S$ such that ae = a. Then $e \in E$ and so $a = ae \in aE = bE$. Hence there exists $e_1 \in E$ such that $a = be_1$. Therefore there exists $Y_1 \subseteq X$ such that Y_1 is fixed by e_1 . We put $\{x \in X : xb \in Y_1\} = Y_2$. Then we can prove that $|X \setminus Y_2|$ $\leq q$ and $|Y_2| = p$. Also we can check that xa = xb for every $x \in Y_2$. Hence $D \subseteq X \setminus Y_2$ and so $|D| \leq |X \setminus Y_2| \leq q$.

We conclude this section with an example and the following proposition which can easily be verified (c. f., proof of [1] Theorem 8.11).

(2.17) PROPOSITION. Let $S = CT^*(X, \mathcal{E}, p, q)$ with Y and Z subsets of X, q-well-separated by \mathcal{E} . If a is a one-to-one map of Y into Z for which $|Z \setminus Ya| = q$, then for any $i \in I$, a can be extended to $a_i \in T_i^*$.

The following is an example of a Croisot-Teissier semigroup which does not satisfy condition G, and has no non-trivial group congruence.

(2.18) EXAMPLE ([1] vol. II, p. 87). Let X be the Cartesian product $T \times T$ where T is a set of infinite cardinal p. We may write $X = \{(t_1, t_2) : t_1, t_2 \in T\}$. If $(t_1, t_2), (t_1', t_2') \in X$, we say $(t_1, t_2)\mathcal{E}_i(t_1', t_2')$ if and only if $t_i = t_i'$ where i = 1, 2. The set $Y = \{(t, t) : t \in T\}$ is a subset of X which is q-well-separated by $\mathcal{E} = \{\mathcal{E}_1, \mathcal{E}_2\}$, so that $S = CT^*(X, \mathcal{E}, p, q)$ exists for all $q \leq p$. One may easily find a q-well-separated subset Z of X for which $\mathcal{M}(Y, Z, 1, 2) = \Box$, and thus S does not satisfy condition G. We will show that the subsemigroup $\langle E \rangle$, generated by $E = \{e \in S : e \text{ has a fixed set}\}$, is all of S, i. e., $S = \langle E \rangle$, and by (2.11), it is clear that S not only does not satisfy condition G, but by (2.4), S² has no non-trivial group congruence.

Let $a \in S$, then we will show $a = e_1e_2$ where $e_1, e_2 \in E$ (c. f., (2.5)). We may assume without loss in generality that $a \in T_1^*$. We may define a as follows: $(t_1, t_2)a = ((t_1)y_1, (t_1)y_2)$ where y_i is a one-to-one map of T into T with $|T \setminus Ty_i| = q$ for i = 1, 2. Note that the image of (t_1, t_2) under a does not depend on t_2 . Let $T' \subseteq T$ for which $|T \setminus T'| = q$, and define $(t_1, t_2)e_1 = (t_1, (t_1)y_2)$, for all $t_1 \in T'$. We extend e_1 to all of X by letting $T'' \subseteq T \setminus T'$ with |T''| = q $|(T \setminus T') \setminus T''| = q$ and defining z_1 to be a one-to-one map of $T \setminus T'$ onto T'', so that if $t_1 \in T \setminus T'$, we let $(t_1, t_2)e_1 = ((t_1)z_1, (t_1)y_2)$. Clearly $e_1 \in T_1^*$, and for $t_1 \in T'$, $(t_1, (t_1)y_2)e_1 = (t_1, (t_1)y_2)$, i. e., e_1 has a fixed set. Note that we may extend z_1 to be a one-to-one map of T onto $T' \cup T''$ by defining $(t)z_1 = t$ for $t \in T'$. Under this definition, we have $(t_1, t_2)e_1 = ((t_1)z_1, (t_1)y_2)$ for all $(t_1, t_2) \in X$. Define e_2^* on Xe_1 by $((t_1)z_1, (t_1)y_2)e_2^* = ((t_1)y_1, (t_1)y_2)$, clearly e_2^* is a one-to-one map of q-well-separated set Xe_1 onto q-well-separated set Xa. By definition of $S = CT^*(X, \mathcal{E}, p, q)$, there exists a q-well-separated set A such that $Xa \subseteq A$ and $|A \setminus Xa| = q$, thus by (2.17), e_2^* may be extended to an element e_2 of T_2^* . By the definition it is also clear that e_2 fixes Xa and that $e_1e_2 = a$. This is the desired result.

§ 3. Band congruences.

In this section, we will concentrate mainly on the minimum band congruence on a right simple semigroup. (In particular, on the minimum band congruence on $CT^*(X, \mathcal{E}, p, q)$ when \mathcal{E} consists of exactly one equivalence.) This study is motivated by the following theorem.

(3.1) THEOREM ([4] (2.8) Theorem). Let S be a simple semigroup with a minimal right ideal. For any $a \in S$, let γ_a be the minimum group congruence on aS (a right simple subsemigroup of S), and β_a be the minimum band congruence on aS. If π is the congruence generated by $\bigcup_{a \in S} (\gamma_a \cap \beta_a)$, then π is the minimum completely simple congruence on S. Moreover, if ρ is a regular congruence on S, then $\pi \subseteq \rho$ and ρ/π is a congruence on S/ π . Let θ be the map of C, the lattice of regular congruences on S, to C', the lattice of congruences on S/ π defined by $\rho \theta = \rho/\pi$. Then θ is a lattice isomorphism of C onto C'.

First we characterize the minimum band congruence β on simple semigroups with a minimal right ideal. In such semigroups, $\beta \subseteq \mathcal{R}$ ([1] vol. II, pp. 93-4, ex. 1).

(3.2) LEMMA. Let ρ be a band congruence on S, a simple semigroup with a minimal right ideal. If $a, b \in S$ such that $S^1a \supseteq S^1b$ and $a\mathfrak{R}b$, then $a\rho^{\mathfrak{g}} = b\rho^{\mathfrak{g}}$, where $\rho^{\mathfrak{g}}$ is the natural homomorphism of S onto S/ρ induced by ρ .

PROOF. Since S/ρ is simple with minimal right ideal and regular, S/ρ is completely simple by ([1] Theorem 8.14). Then by ([1] Corollary 2.49), S/ρ is the union of its minimal left ideals. These ideals are of the form $S^1\rho^{\mu}a\rho^{\mu} = (S^1a)\rho^{\mu} = L_{a\rho^{\mu}}$ for all $a \in S$. If $a, b \in S$ such that $S^1a \supseteq S^1b$, then $L_{a\rho^{\mu}} = (S^1a)\rho^{\mu} \supseteq (S^1b)\rho^{\mu} = L_{b\rho^{\mu}}$. Therefore $L_{a\rho^{\mu}} = L_{b\rho^{\mu}}$ since \mathcal{L} is an equivalence relation. If, in addition, $a\mathcal{R}b$, then clearly $R_{a\rho^{\mu}} = R_{b\rho^{\mu}}$, and $a\rho^{\mu} = L_{a\rho^{\mu}} \cap R_{a\rho^{\mu}} = L_{b\rho^{\mu}} \cap R_{b\rho^{\mu}} = b\rho^{\mu}$. The last equality holds because every element of S/ρ is an idempotent and each \mathcal{H} -class contains at most one idempotent ([1] Lemma 2.15).

(3.3) PROPOSITION. Let S be a simple semigroup with a minimal right ideal, and let ρ be the congruence on S generated by the relation $\alpha = \{(a, b) \in S \times S : a \Re b \text{ and there is } c \in R_a = R_b \text{ for which } S^1 c \cap S^1 a \neq \Box \text{ and } S^1 c \cap S^1 b \neq \Box \},$ then $\rho = \beta$.

REMARK. α is clearly a reflexive and symmetric relation.

PROOF. Let $(a, b) \in \alpha$, then there exists $c \in R_a$ such that $S^1 c \cap S^1 a \neq \Box$ and $S^1 c \cap S^1 b \neq \Box$. Let $x \in S^1 c \cap S^1 a$ and $y \in S^1 c \cap S^1 b$. Clearly $ax, ay \in aS$ $= R_a = R_b = R_c$. We also have $S^1 a x \subseteq S^1 x \subseteq S^1 c \cap S^1 a$ and $S^1 a y \subseteq S^1 y \subseteq$ $S^1 c \cap S^1 b$. It follows by (3.2) that $a\beta^{\mu} = (ax)\beta^{\mu} = c\beta^{\mu} = (ay)\beta^{\mu} = b\beta^{\mu}$ and $(a, b)^{\mu} \in \beta$, hence $\rho \subseteq \beta$.

In order to show $\beta \subseteq \rho$, we show S/ρ is a band. Let $a \in S$, then $(a, a^2) \in \alpha$, since $a^2 \in aS = R_a$ by [1] Lemma 8.13, and $S^1a^2 \cap S^1a \neq \Box$. Hence $(a, a^2) \in \rho$. Thus, every element of S/ρ is idempotent, ρ is a band congruence and $\beta \subseteq \rho$. Whence $\beta = \rho$.

Since Baer-Levi semigroups are right simple, thus simple with a minimal right ideal, we need only know how their \mathcal{L} -classes are ordered, under the usual ordering, $L_a \leq L_b$ if and only if $S^1a \subseteq S^1b$, to describe β using (3.3).

We know that for every right simple, idempotent-free semigroup $S; a, b \in S$, $L_a = L_b$ if and only if a = b ([1] vol. II, p. 85, ex. 1). We now give necessary and sufficient conditions for $L_a < L_b$ on a Baer-Levi semigroup.

(3.4) LEMMA. Let S be a Baer-Levi semigroup of type (p, q) on a set X. If $L_b > L_a$ for $a, b \in S$, then $Xb \supset Xa$ and $|Xb \setminus Xa| = q$.

PROOF. Let $L_b > L_a$. There is thus a $c \in S$ such that cb = a and we have $Xb \supseteq Xa$. Since b is one-to-one, it follows directly that $(X \setminus Xc)b = Xb \setminus Xcb = Xb \setminus Xa$. Thus $|Xb \setminus Xa| = |X \setminus Xc| = q$.

(3.5) THEOREM. Let $a, b \in S$, a Baer-Levi semigroup of type (p, q) on a set X. Then $L_b > L_a$ if and only if $Xb \supset Xa$ and $|Xb \setminus Xa| = q$.

PROOF. The necessity follows from (3.4).

Conversely, suppose $Xb \supset Xa$ and $|Xb \setminus Xa| = q$. Since b is a one-to-one function of X onto $Xb \supset Xa$, one can define an inverse function, denoted by b^{-1} , from Xb onto X in the obvious fashion: $(xb)b^{-1} = x$. The restriction of b^{-1} to Xa is a one-to-one function of Xa into X. Therefore ab^{-1} is a one-to-one function of Xa into X. Therefore ab^{-1} is a one-to-one function of X into itself. But ab^{-1} is in S since $|X \setminus Xab^{-1}| = |(X \setminus Xab^{-1})b| = |Xb \setminus Xa| = q$. It now follows that $a = (ab^{-1})b \in Sb$, and hence $L_a < L_b$.

(3.6) THEOREM. If S is a Baer-Levi semigroup, then S has no non-trivial band congruence.

PROOF. Let S be a Baer-Levi semigroup of type (p, q) on a set X. Let a, b be arbitrary elements of S. We will show that a and b are related under any band congruence on S.

CASE 1. If p > q, then since $|X \setminus Xa| = |X \setminus Xb| = q$, $q \le |X \setminus (Xa \cap Xb)| \le q+q=q$ and $|Xa \cap Xb| = p$. Let $Y \subset Xa \cap Xb$ with |Y| = p and $|(Xa \cap Xb) \setminus Y| = q$. It is clear that $|X \setminus Y| = |Xa \setminus Y| = |Xb \setminus Y| = q$, so that there exists $c \in S$ such that Xc = Y. By (3.5), $L_c < L_a$ and $L_c < L_b$. Then by the definition of α in (3.3), $(a, b) \in \alpha \subseteq \beta$, the minimum band congruence on S. Thus (a, b) are related by every band congruence on S.

CASE 2. If p = q, then we may have $|Xa \cap Xb| = p$, in which case the proof in case 1 still holds if q is replaced by p. On the other hand, we may have $|Xa \cap Xb| < p$. In this case, we let $Y_1, Y_2 \subseteq X$ be such that $Xa \cap Xb \subseteq$ $Y_1 \subseteq Xa$ and $Xa \cap Xb \subseteq Y_2 \subseteq Xb$ with $|Xa \setminus Y_1| = |Xb \setminus Y_2| = |Y_1| = |Y_2| = p$. One can easily check the existence of c, $d_1, d_2 \in S$ for which $Xc = Y_1 \cup Y_2$, $Xd_1 = Y_1$, and $Xd_2 = Y_2$. Then $L_{d_1} < La$, $L_{d_1} < L_c$ and $L_{d_2} < L_b$, $L_{d_2} < L_c$. It is now clear from (3.3) that $(a, c) \in \alpha$ and $(b, c) \in \alpha$. Therefore $(a, c) \in \beta$ and $(b, c) \in \beta$, but β is an equivalence relation, hence $(a, b) \in \beta$. Thus a and b are related under every band congruence on S.

Since a and b are arbitrary in either case, all elements of S are related under any band congruence on S. Thus the only band congruence on S is the universal relation, and we have the theorem.

We recall the following:

(3.7) THEOREM ([4] (2.5) Theorem). Let S be a right simple semigroup. If τ is a group congruence on S, and if σ is a band congruence on S, then $S/(\tau \cap \sigma)$ is regular. Moreover, if ρ is a regular congruence on S, then $\rho = \tau \cap \sigma$ where τ is a group congruence on S and σ is a band congruence on S. In this case, τ and σ are uniquely determined by ρ .

(3.8) THEOREM. Let S be a Baer-Levi semigroup of type (p, q), then S has a non-trivial regular congruence ρ , if and only if p > q, in which case ρ is a group congruence.

PROOF. This theorem follows immediately from (2.14), (3.6) and (3.7).

We have characterized the minimum band congruence β (3.3), on a simple, idempotent free semigroup S, with a minimal right ideal. The following is an elaboration of this construction.

We recall:

(3.9) DEFINITION ([1] vol. I, p. 18). If ρ is any relation on a set S, which is reflexive and symmetric, then ρT , the transitive closure of ρ is the collection of all pairs (a, b) for which there exists a finite sequence $a = x_0, x_1, \dots, x_n = b$ with $(x_{i-1}, x_i) \in \rho$ for $i = 1, 2, \dots, n$.

(3.10) LEMMA. Let S be a simple semigroup with a minimal right ideal. Then $\beta = \alpha C^{**T}$, where $\alpha = \{(a, b) \in S \times S : (a, b) \in \mathcal{R}, and there exists <math>c \in R_a = R_b$ for which $S^1c \cap S^1a \neq \Box$ and $S^1c \cap S^1b \neq \Box\}$ and $\alpha C^{**} = \{(a, b) \in S \times S : a = su, b = sv \text{ for some } (u, v) \in \alpha \text{ and } s \in S^1\}.$ PROOF. We recall that by (3.3), β is the smallest congruence containing α . It is also true that if $\alpha C^* = \{(a, b) \in S \times S : a = sut \text{ and } b = svt$ for some $(u, v) \in \alpha$ and s, $t \in S^1\}$, then αC^*T is the smallest congruence containing α ([1] Lemma 10.3). We will show that for a simple, idempotent free semigroup with a minimal right ideal, $\alpha C^* = \alpha C^{**}$. Clearly it is true that $\alpha C^{**} \subseteq \alpha C^*$. Let $(a, b) \in \alpha C^*$, then a = sut, and b = svt, where $(u, v) \in \alpha$ and s, $t \in S^1$. Thus there exists $c \in R_u = R_v$ for which $S^1 c \cap S^1 u \neq \Box$ and $S^1 c \cap S^1 v = \Box$. We recall that by [1] Lemma 8.13, we have $R_u = uS$, and it follows that $ct \in R_{ut} = R_{vt} = R_u$. It is also clear that $S^1 ct \cap S^1 ut \neq \Box$, and $S^1 ct \cap S^1 vt \neq \Box$, hence $(ut, vt) \in \alpha$. But then a = su' and b = sv', where u' = ut and v' = vt, and therefore $(u', v') \in \alpha$. We now have $(a, b) \in \alpha C^{**}$, so that $\alpha C^* \subseteq \alpha C^{**}$ and the result follows.

We note the following lemma which is easily proven.

(3.11) LEMMA. Let $S = CT^*(X, \mathcal{E}, p, q)$. If $a, b \in S$ with $L_a < L_b$, then $Xa \subset Xb$ and $|Xb \setminus Xa| = q$. (c. f., (3.5))

We recall that Baer-Levi semigroups have no non-trivial band congruences. The following is an example of a right simple, idempotent free semigroup with a non-trivial band congruence.

(3.12) EXAMPLE. Let $S = CT^*(X, \mathcal{E}, p, q)$ where p > q and $\mathcal{E} = \{\mathcal{E}_1\}$, where \mathcal{E}_1 is defined by the following: let $Y \subseteq X$ with $|Y| = |X \setminus Y| = p$, and let $\theta: Y \to X \setminus Y = Z$ be a one-to-one map of Y onto Z. Let $\mathcal{E}_1 = \{(y, \theta(y))\}_{y \in Y} \cup \{(\theta(y), y)\}_{y \in Y} \cup \mathcal{A}_X$. Note that both Y and Z are q-well-separated by \mathcal{E} , thus $S = CT^*(X, \mathcal{E}, p, q)$ exists. We will now proceed to verify that β is non-trivial by checking the following two claims.

a) Let α be as defined in (3.10). If $(a, b) \in \alpha$ and $|Xa \cap Z| \leq q$, then $|Xb \cap Z| \leq q$. To show this we let $(a, b) \in \alpha$ with $|Xa \cap Z| \leq q$. Then there exists $c \in S$ such that $S^1c \cap S^1a \neq \Box$ and $S^1c \cap S^1b \neq \Box$, and thus there exists $s_i \in S^1$, for i=1, 2, 3, 4, such that $s_1c = s_2a$ and $s_3c = s_4b$. Since $s_1c = s_2a$, $L_{s_1c} \leq L_a$, and hence by (3.11), we have $Xs_1c \subseteq Xa$. Also by (3.11), we get $|Xc \setminus Xs_1c| \leq q$, and as a consequence of this, we see that $|Xa \cap Z| \leq q$ implies that $|Xc \cap Z| \leq q$. We apply this argument again to see that $|Xc \cap Z| \leq q$ implies $|Xb \cap Z| \leq q$, the desired result.

b) Let α be as defined in (3.10). If $(a, b) \in \alpha C^{**}T$ with $|Xa \cap Z| \leq q$, then $|Xb \cap Z| \leq q$. This follows by an argument similar to that used in a), and by finite induction.

We conclude that if $a, b \in S$ with $Xa \subseteq Y$ and $Xb \subseteq Z$, then we have $|Z \cap Xa| = 0 < q$ and $|Z \cap Xb| = |Xb| = p$, so that by b), we have $(a, b) \notin \beta$. Thus β is non-trivial.

We note that S is right simple, therefore has a non-trivial minimum group congruence γ . Let $T = \Lambda \times S$ be the direct product of S and a non-

trivial, left zero semigroup Λ (c. f., [4] (1.10) Example). T is simple with a minimal right ideal. If $(\lambda, a), (\mu, b) \in T$, let $(\lambda, a)\beta'(\mu, b)$ if and only if $\lambda = \mu$ and $a\beta b$. Clearly β' is a congruence on T, and if $(\lambda, a) \in T, \lambda^2 = \lambda$ and $a\beta a^2$, therefore $(\lambda, a)^2 = (\lambda^2, a^2)\beta'(\lambda, a)$, so that β' is a band congruence on T. Similarly, for $(\lambda, a), (\mu, b) \in T$, let $(\lambda, a)\gamma'(\mu, b)$ if and only if $a\gamma b$, then γ' is a group congruence on T (c. f., [4] (1.10) Example). It is clear that $\pi = \gamma' \cap \beta'$ is the minimum completely simple congruence on T (3.1). We also note that since Λ is non-trivial, T/π is not right simple, and that since $\beta \subset \mathcal{R}, T/\pi$ is not left simple.

Rhode Island College

Bibliography

- [1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, vol. I, II, Math. Surveys 7, Amer. Math. Soc., 1961, 1967.
- [2] M. R. Croisot, Demi-groupes simples inversifs à gauche, C. R. Acad. Sci. Paris, 239 (1954), 845-847.
- [3] Kenneth M. Kapp and Hans Schneider, Completely O-Simple Semigroups, W. A. Benjamin, New York, 1969.
- [4] Bruce W. Mielke, Regular congruences on a simple semigroup with a minimal right ideal, to appear, Publ. Math. Debrecen.
- [5] Tôru Saitô and Shigeo Hori, On semigroups with minimal left ideals and without minimal right ideals, J. Math. Soc. Japan, 10 (1958), 64-70.
- [6] Marianne Teissier, Sur les demi-groupes ne contenant pas d'élément idempotent, C. R. Acad. Sci. Paris, 237 (1953), 1375-77.