On the K-theoretic characteristic numbers of weakly almost complex manifolds with involution

By Tomoyoshi YOSHIDA

(Received April 21, 1971) (Revised May 25, 1972)

§ 0. Introduction.

In [7], tom Dieck has defined the equivariant unitary cobordism ring U_G for any compact Lie group G. U_G -theory seems to be a strong tool in the theory of the differentiable transformation group.

We are concerned only with the case of $G=Z_2$, the cyclic group of order 2, and throughout in this paper, the letter G stands for Z_2 . Let $\mathcal{O}_*^{U}(G)$ be the bordism ring of U-manifolds with involution. T. tom Dieck has shown that elements of $\mathcal{O}_*^{U}(G)$ are detected by G-equivariant characteristic numbers. More precisely we construct a ring homomorphism

$$\Phi: U_G^* \longrightarrow \text{Inv. Lim. } R(G)[[t_1, \dots, t_s]]$$

and its localization

$$\Phi_L: U_G^* \longrightarrow \text{Inv. Lim. } Q[[t_1, \dots, t_s]].$$

Then the restriction of Φ on U_G^n is injective. We shall recapitulate this fact in (1.1) for the sake of completeness, and we give the explicit form of Φ_L in (3.1) and its relation to Φ in (3.2).

As corollaries of (1.1) and (3.2), the following results will be proved in § 4. Theorem (0.1). Let $[M, T] \in \mathcal{O}_*^{\nu}(G)$. The normal bundle ν_F of a connected component of the fixed point set F in M naturally has a complex structure. Assume the following two conditions:

- (i) For each connected component F, ν_F is trivial,
- (ii) $\dim_{\mathcal{C}} \nu_F$ is independent of F and equals a constant n. Then $\sum [F] \in 2^n U$ and there are two elements of U_* , [N] and [L] such that

$$[M, T] = [CP(1), \tau]^n [N] + [G, \sigma][L]$$
 in $\mathcal{O}_*^{\mathcal{U}}(G)$

where $[CP(1), \tau] \in \mathcal{O}_*^{V}(G)$ is the class of CP(1) with the involution $[z_1, z_2] \to [z_1, -z_2]$ and $[G, \sigma] \in \mathcal{O}_*^{V}(G)$ is the class of G with the natural involution $1 \to -1$.

THEOREM (0.2). Let $[M, T] \in \mathcal{O}_*^{V}(G)$. If M is a Kähler manifold, and T

preserves the given metric, then

$$\textstyle \sum_i (-1)^i H^{0,i}(-1) = \sum_F (2)^{-|\nu_F|} \langle \mathop{\mathrm{ch}} \, \sum_k b_k(\bar{\nu}_F)(2)^{-k} \mathop{\mathrm{td}} \, (F), \, \lceil F \rceil \rangle$$

where $H^{0,i}$ is the vector space over C spanned by the harmonic forms of type (0, i) which is considered to be an element of R(G), and $H^{0,i}(-1)$ is the value of its trace on (-1), b_k is the dual K-theory characteristic class, $|\nu_F| = \dim_C \nu_F$, and $\bar{\nu}_F$ is the conjugate bundle of ν_F .

Theorem (0.2) is conjectured by Conner in [6], p. 115, and is proved implicitly by Atiyah-Singer-Segal in [2] by using the localization theorem in K_G -theory. In a special case of (0.1), we get the following theorem of Conner-Floyd [5].

THEOREM (Conner-Floyd). Let M be a U-manifold of $\dim 2n$ and let T be an involution of M which is compatible with the U-structure. If T has only isolated fixed points, then the number of the fixed points is a form of 2^nk and $[M] = k[CP(1)]^n$ in $U_*/2U_*$.

This theorem is an immediate corollary of Theorem (0.1) and also of Theorem (0.2) if M is a Kähler manifold and T preserves the given metric, $k = \sum_{i} (-1)^{i} H^{0,i}(-1)$.

The author wishes to thank Prof. T. Matsumoto for his advices during the preparation of manuscript.

§ 1. Equivariant characteristic numbers.

Let $\mathcal{E}_G(X)$ be the semi-ring of G-vector bundles over a G-space X. We consider an equivariant analogy of Atiyah's γ -operation [1]. In $\mathcal{E}_G(X)$, we have the exterior power operations λ^i . Thus if ξ is a G-vector bundle of dim k, we have the G-vector bundles $\lambda^i(\xi)$, $i=0,1,\cdots$. These have the following formal properties (in $\mathcal{E}_G(X)$)

- 1) $\lambda^{0}(x) = 1$, 2) $\lambda^{1}(x) = x$, 3) $\lambda^{i}(x+y) = \sum \lambda^{j}(x)\lambda^{i-j}(y)$,
- 4) $\lambda^i(x) = 0$ for $i > \dim x$.

Introducing an indeterminate t, we put $\lambda_t(x) = \sum \lambda^i(x)t^i$. Let $A_G(X)$ denote the multiplicative unit group of formal power series in t with coefficients in $K_G(X)$ and leading term 1. Then 1) and 3) assert that λ_t defines a ring homomorphism $\mathcal{E}_G(X) \to A_G(X)$. Hence we get a homomorphism $\lambda_t \colon K_G(X) \to A_G(X)$. Taking the coefficients of λ_t , this define the operations $\lambda^i \colon K_G(X) \to K_G(X)$. Now we introduce the operations $a_i^g \colon K_G(X) \to K_G(X)$ by

$$a_i^G(x)t^i = \lambda_{t/1-t}(x-\varepsilon(x))$$

where $\varepsilon(x)$ is the dimension of x. Moreover we define the dual operations $b_i^G: K_G(X) \to K_G(X)$ by

$$(1+a_1^Gt+a_2^Gt^2+\cdots)^{-1}=1+b_1^Gt+b_2^Gt^2+\cdots$$

Now let $\mathcal{O}_*^{\mathcal{U}}(G)$ be the geometric bordism ring of U-manifolds with involution which is compatible with the given U-structure [6]. From now on, we represent an element of $\mathcal{O}_*^{\mathcal{U}}(G)$ in a form [M,T] where M is a U-manifold and T is a compatible involution on M. As M is a U-manifold, we have the K-theory Gysin homomorphism $p_!: K_G(M) \to K_G(pt) = R(G)$, induced by the collapsing map to a point, $p: M \to pt$. Let τ_M be the stable tangent bundle of M with the given complex structure, we call $\{p_!(b_{i_1}^G(\tau_M) \cdots b_{i_j}^G(\tau_M))\}$ equivariant K-theory characteristic numbers of [M,T]. For brevity we write $b_{i_1}^G(x)b_{i_2}^G(x) \cdots b_{i_j}^G(x)$ in the form $b_{i_1}^G \cdots b_{i_j}^G(x)$.

Before defining Φ , we comment on the structure of U_G . Let V_1 be the 1-dimensional complex vector space with the G-action: $z \to -z$. The equivariant cobordism euler class of the G-vector bundle $\eta_1 \colon V_1 \to pt$ which we denote ζ , belongs to U_G^2 . Let $i \colon \mathcal{O}_*^{U}(G) \to U_G^*$ be the map obtained by the Pontrjagin-Thom construction, then i is injective and U_G^* is generated by ζ over $i(\mathcal{O}_*^{U}(G))$ and U_G^{odd} is zero (tom Dieck [7]).

NOTATION. We use the symbol $\omega(i_1,\cdots,i_j)$ in the following sense. Let $t_1,\,t_2,\,\cdots$ and $x_1,\,x_2,\,\cdots$ be two infinite sequences of indeterminates, and put $A_s=\prod\limits_{i=1}^s\left(1+x_1t_i+x_2t_i+\cdots\right)\in R[[t_1,\,\cdots,\,t_s]]$ where R is the polynomial ring over Z with variables $x_1,\,x_2,\,\cdots$. Substituting $t_s=0$, we obtain $f_s:R[[t_1,\,\cdots,\,t_s]]\to R[[t_1,\,\cdots,\,t_{s-1}]]$. Since $f_s(A_s)=A_{s-1}$, the family A_s determines an element A in Inv. Lim. $R[[t_1,\,\cdots,\,t_s]]$. Then $A=\sum\limits_{i=1}^s x_{i_1}\cdots x_{i_j}$ $\omega(i_1,\,\cdots,\,i_j)$, where $(i_1,\,\cdots,\,i_j)$ is a series of non-negative integers, and $\omega(i_1,\,\cdots,\,i_j)$ is the inverse limit of the smallest symmetric polynomials which involve the term $t_1^{i_1}\cdots t_j^{i_j}$.

Now we are prepared to define Φ .

DEFINITION. We define a map $\Phi: U_G^* \to \text{Inv. Lim. } R(G)[[t_1, \dots, t_s]]$ as follows. For $[M, T] \in \mathcal{O}_*^{U}(G)$,

$$\Phi(\llbracket M, T \rrbracket) = \sum p_!(b_{i_1}, \cdots, b_{i_j}(\tau_M))\omega(i_1, \cdots, i_j)$$

where τ_M is the stable tangent bundle of M, and for $\zeta \in U_G^2$,

$$\Phi(\zeta) = (1-\eta)W$$

where η is the generator of R(G) and W is a power series of the form

$$\sum (-2)^i \omega(\overbrace{1,\,\cdots,\,1}^i)$$
 .

THEOREM (1.1). Φ is well defined. It is a ring homomorphism, and for each integer n, the restriction of Φ on U_G^n is injective.

Theorem (1.1) is essentially due to tom Dieck [7]. For the sake of completeness we shall give its proof in § 4.

530 T. Yoshida

REMARK (1.2). If M is a Kähler manifold and T is an involution which preserves the given metric, then the first term of Φ ([M, T]) equals $\sum (-1)^i H^{0,i}$, where $H^{0,i}$ is the vector space over C spanned by the harmonic forms of type (0, i). For the proof, we recall the first term of Φ ([M, T]) being $p_1(1)$. Consider the following commutative diagram

$$K_{G}(M) \xrightarrow{p_{1}} R(G)$$

$$\downarrow \phi \qquad \qquad \downarrow \qquad \qquad \downarrow \\
K_{G}(\tau_{M}) \xrightarrow{\tilde{p}_{1}} R(G)$$

where ϕ is the K-theory Thom isomorphism. We see that $p_!(1) = \tilde{p}_!(\Lambda_{-1}\tau_M)$ $(\Lambda_{-1}\tau_M)$ is the K-theory Thom class of τ_M , and this is the topological index of $\bar{\partial}$ -operator [2]. By the equivariant index theorem of Atiyah-Singer, this is equal to the analytical index of $\bar{\partial}$ -operator: $\sum (-1)^i H^{0,i}$.

$\S 2$. Calculation of Φ in two cases.

PROPOSITION (2.1). i) For $[M, T] \in \mathcal{O}_*^{\mathcal{V}}(G)$ where T is a trivial G-action,

$$\Phi([M, T]) = \sum \langle \operatorname{ch} b_{i_1} \cdots b_{i_i}(\tau_M) \operatorname{td}(M), [M] \rangle \omega(i_1, \cdots, i_j)$$

where td(M) is the todd class of M and [M] is the homology fundamental class of M.

ii) For $[M, T] \in \mathcal{O}_*^{\mathcal{U}}(G)$ where T is a free G-action,

$$\Phi([M, T]) = (1+\eta) \sum \langle \operatorname{ch} b_{i_1} \cdots b_{i_j}(\tau_{M/T}) \operatorname{td}(M/T), [M/T] \rangle \omega(i_1, \cdots, i_j)$$

where M/T is the orbit space of [M, T].

- PROOF. i) The assertion follows immediately from the definition considering the fact that $b_i^g = b_i$ in the trivial case $(b_i$ denote the ordinary dual K-theory class), and for any $x \in K(M)$, $p_1(x) = \langle \operatorname{ch} x \operatorname{td}(M), [M] \rangle$.
- ii) At first we recall the bordism ring of U-manifolds with free involution: $U_*(BG)$. There is a spectral sequence such that $E_2 = U_* \otimes H_*(BG)$ and it converges to $U_*(BG)$. This spectral sequence collapses and hence $E_2 = E_{\infty}$. Therefore $U_*(BG)$ is generated over U_* by $[G, \sigma]$ and $[S^{2n-1}, a]$, $n=1, 2, \cdots$, where S^{2n-1} is the (2n-1)-dim. sphere and a is the antipodal involution. Consider the natural map $k: U_*(BG) \to \mathcal{O}_*^{\mathcal{V}}(G)$. Obviously $k([S^{2n-1}, a]) = 0$. Hence any element [M, T] in $\mathcal{O}_*^{\mathcal{V}}(G)$ with T free involution is equal to an element which has the form $[N][G, \sigma]$, where N has trivial G-action and σ operates on G by $1 \to -1$. Therefore we can assume $[M, T] = [N][G, \sigma]$, and hence [M] = 2[N] in U_* . Since the characteristic numbers of M are all twice of those of M/T, [M] = 2[M/T] in U_* , hence [M/T] = [N]. So that $\Phi([M, T]) = \Phi([N])\Phi([G, \sigma]) = \Phi([M/T])\Phi([G, \sigma])$ and we have only to calculate $\Phi([G, T])$

 σ]). $\Phi([G, \sigma])$ equals $p_1(1)$ and we accomplish the proof by the following lemma.

LEMMA. Let $1 \in K_G(G)$ be the element represented by the vector bundle $\mathbb{C} \times G \to G$, where \mathbb{C} is the complex plane with trivial G-action, then $p_1(1) = 1 + \eta \in R(G)$.

PROOF. Let V_1 be the 1-dim. complex vector space with the G-action $z \to -z$. Imbed G into V_1 equivariantly, $G \to \{1, -1\} \subset V_1$, and take an equivariant neighborhood. Let S^2 be the one-point compactification of V_1 and $q: S^2 \to S^2 \vee S^2$ the map collapsing the outside of the above neighborhood. G operate $S^2 \vee S^2$ by permutation of the factors, and q is equivariant. Considering the following commutative diagram, we obtain the result.

$$K_G(S^2 \vee S^2) \xrightarrow{q^*} K_G(S^2)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$K_G(G) \xrightarrow{p_1} K_G(pt)$$

where the vertical maps are the Thom isomorphisms.

\S 3. The localization of Φ and some application.

DEFINITION (3.1). We define a map $\Phi_L: U_G^* \to \text{Inv. Lim. } Q[[t_1, \dots, t_s]]$ where Q is the rational number field, as follows.

For
$$\zeta \in U_G^2$$
, $\Phi_L(\zeta) = 2W$ $(W = \sum (-2)^i \omega(1, \dots, 1))$.
For $[M, T] \in \mathcal{O}_{*}^{U}(G)$,

(*)
$$\Phi_L(\lceil M, T \rceil) =$$

$$\sum_{F} (2W)^{-|\nu_{F}|} \left\langle \operatorname{ch} \prod_{s} \sum_{i} b_{i}(\tau_{F}) t_{s}^{i} \sum_{i} b_{j}(\nu_{F}) \left(\frac{-t_{s}}{1-2t_{s}} \right)^{j} \sum_{k} b_{k}(\bar{\nu}_{F}) \left(\frac{1}{2} - \right)^{k} \operatorname{td}(F), [F] \right\rangle$$

where $|\nu_F|$ is $\dim_C \nu_F$, τ_F is the stable tangent bundle of F with the given complex structure, and the evaluation is applied after expanding the right hand side into the power series of t_1, t_2, \cdots .

NOTE. Let $c(\nu_F)$, $c(\tau_F)$ be the total Chern classes of ν_F , τ_F and $c(\nu_F) = \prod_j (1+y_j)$, $c(\tau_F) = \prod_i (1+x_i)$ formally, then the right hand side of (*) can be written as follows,

$$\Phi_{L}([M, T]) = \sum_{F} \left\langle \prod_{s} \prod_{i} \frac{1}{1 + t_{s}(e^{x_{i}} - 1)} \cdot \frac{1}{1 - e^{-x_{i}}} \prod_{j} \frac{1}{1 - t_{s}(e^{y_{j}} + 1)} \cdot \frac{1}{1 + e^{-y_{j}}}, [F] \right\rangle.$$

THEOREM (3.2). The map Φ_L is well defined. It is a ring homomorphism from U_s^* to Inv. Lim. $Q[[t_1, \dots, t_s]]$ and the following diagram commutes.

The proof of the above theorem will be given in $\S 4$. The rest of this section is devoted to the proof of the Theorems (0.1) and (0.2).

PROOF OF THEOREM (0.1). From the assumption and the definition of Φ_{Lr}

$$\Phi_L(\llbracket M, T \rrbracket) = (2W)^{-n} \sum \langle \operatorname{ch} b_{i_1} \cdots b_{i_j}(\tau_F) \operatorname{td}(F), \llbracket F \rrbracket \rangle \omega(i_1, \cdots, i_j).$$

But by the Theorem (3.2), $\Phi_L([M,T]) \in \text{Inv. Lim. } Z[[t_1,\cdots,t_s]]$, and so for all (i_1,\cdots,i_j) , $\sum_F \langle \operatorname{ch} b_{i_1}\cdots b_{i_j}(\tau_F)\operatorname{td}(F), [F] \rangle \in 2^n Z$. Hence all of the dual K-theory characteristic numbers of $\sum [F]$ are divisible by 2^n . From the theorem of Hattori-Stong [8], there is an element $[N] \in U_*$ such that $\sum [F] = 2^n [N]$ in U. Now,

$$\begin{split} \boldsymbol{\Phi}_{L}(\llbracket CP(1), \, \tau \rrbracket^{n} \llbracket N \rrbracket) &= \sum (W)^{-n} \langle \operatorname{ch} \, b_{i_{1}} \cdots b_{i_{j}}(\tau_{N}) \operatorname{td}(N), \, \llbracket N \rrbracket \rangle \boldsymbol{\omega}(i_{1}, \, \cdots, \, i_{j}) \\ &= \sum (2W)^{-n} \sum_{F} \langle \operatorname{ch} \, b_{i_{1}} \cdots b_{i_{j}}(\tau_{F}) \operatorname{td}(F), \, \llbracket F \rrbracket \rangle \boldsymbol{\omega}(i_{1}, \, \cdots, \, i_{j}) \\ &= \boldsymbol{\Phi}_{L}(\llbracket M, \, T \rrbracket) \, . \end{split}$$

Hence $\Phi([M, T] - [CP(1), \tau]^n[N])$ is in the ideal generated by $(1+\eta)$, therefore the K-theory characteristic numbers (ordinary) of $[M] - [CP(1)]^n[N]$ are all divisible by 2. Again by the theorem of Hattori-Stong, we see that there is an element $[L] \in U_*$ such that $[M] - [CP(1)]^n[N] = 2[L]$, and from the Proposition (2.1) ii), we see $\Phi([M, T] - [CP(1), \tau]^n[N]) = \Phi([G, \sigma][L])$. Thus the theorem follows.

PROOF OF THEOREM (0.2). According to Remark (1.2), the first term of $\Phi([M,T])$ equals $\Sigma(-1)^iH^{0,i}\in R(G)$, and from Theorem (3.2), its evaluation on (-1) is equal to the first term of $\Phi_L([M,T])$ which is

$$\textstyle\sum_F (2)^{-\lceil \nu_F \rceil} \langle \mathop{\mathrm{ch}} \sum_k b_k (\tilde{\nu}_F) (1/2)^k \mathop{\mathrm{td}} (F), \, \lceil F \rceil \rangle \,. \qquad \qquad \mathrm{Q. \, E. \, D.}$$

Note (3.3). Let

$$0 \longrightarrow U_n \longrightarrow \mathcal{O}_n^U(G) \longrightarrow \mathcal{M}_n \longrightarrow U_{n-1}(BG) \longrightarrow 0$$

be the exact sequence mentioned in [6], p. 63. Now U_2 is generated by [CP(1)], \mathcal{M}_2 by $[D^2 \to pt]$ and [CP(1)], and $U_1(BG)$ by $[S^1, a]$ which is the class of the 1-dim. sphere with the antipodal involution. Hence $\mathcal{O}_2^y(G)$ is generated over Z by [CP(1)], $[CP(1)][G, \sigma]$ and $[CP(1), \tau]$, that is for any element x in $\mathcal{O}_2^y(G)$, x is represented as $A[CP(1)] + B[CP(1)][G, \sigma] + C[CP(1), \tau]$ where A, B, C are integers. Now by a simple calculation we see that

$$\begin{split} & \varPhi(\lceil CP(1) \rceil) = 1 - 2\omega(1) \,, \\ & \varPhi(\lceil CP(1) \rceil \lceil G, \, \sigma \rceil) = (1 + \eta)(1 - 2\omega(1)) \,, \\ & \varPhi(\lceil CP(1), \, \tau \rceil) = \text{Inv. Lim. } \prod_s (1 - 2\eta t_s + \sum_{f=2} (1 - \eta)^j t_s^j) \,. \end{split}$$

Hence B is decided by the first term of $\Phi(x)$, and A and C are decided by $\Phi_L(x)$. Let S_n (n is an even integer ≥ 4) be the algebraic curve in CP(2) defined by the equation $z_1^n + z_2^n + z_3^n = 0$ and let T be the involution $[z_1, z_2, z_3] \to [z_1, z_2, -z_3]$ on S_n . Then $[S_n, T] \in \mathcal{O}_2^V(G)$ and we have

$$\Phi_L([S_n, T]) = n/2 + n\omega(1) + \text{higher order terms}$$
,

and the first term of $\Phi([S_n, T])$ equals

$$H^{0,0}-H^{0,1}=(4n-n^2)/4+(n^2-2n)/4$$
 ([6]).

Then, comparing the coefficients, we have the following equation

$$[S_n, T] = (n/2)[CP(1), \tau] + (n(n-2)/4)[G, \sigma][CP(1)]$$

in $\mathcal{O}_2^U(G)$.

REMARK. Prof. N. Shimada informed to me that Theorem (0.1) is obtained from the structure of $U_*(BG)$. (See [9].)

\S 4. **Proof of** (1.1) and (3.2).

In this section we prove the Theorems (1.1) and (3.2). Let $\{a_i\}$ be the K-theory characteristic classes (Atiyah's γ -operation [1]). Then K(BU) = $Z[a_1, a_2, \cdots]$. A map $\chi: U^*(X) \to \operatorname{Hom}(K(BU), K^*(X))$ is defined as follows. For $x \in U^k(X)$ which is represented by a map $f: S^{2n-k} \wedge X^+ \to MU_n$, $\chi(x)$ is the following composed map.

$$K(BU) \xrightarrow{j} K(BU_n) \xrightarrow{\phi} \tilde{K}(MU_n) \xrightarrow{f^*} \tilde{K}(S^{2n-k} \wedge X^+) = K^k(X)$$

where j is the inclusion $BU_n \subset BU$, ϕ is the K-theory Thom isomorphism. By the coalgebra structure of K(BU), that is, $\Delta: K(BU) \to K(BU) \otimes K(BU)$ with $\Delta(a_k) = \sum_{i+j=k} a_i \otimes a_j$, Hom $(K(BU), K^*(X))$ forms a ring, and χ is a ring homomorphism. When X is BG, the classifying space of G, χ is injective (tom Dieck [7]). Let α be the bundling map: $U_G^* \to U^*(BG)$, it is injective ([7]). Now for any element x of U_G^* , $\chi(\alpha(x))(a_{i_1} \cdots a_{i_j}) \in K^*(BG)$, and by the fact $U_G^{odd} = 0$ and Bott periodicity, it is considered an element of $K^0(BG) = R(G)$, where R(G) is the completion of R(G) in R(G)-adic topology (R(G)) denotes the augmentation ideal of R(G)). We define a map $\Phi': U_G^* \to I$ Inv. Lim. R(G)- $[[t_1, \cdots, t_s]]$ by the following equation,

$$\Phi'(x) = \sum \chi(\alpha(x))(a_{i_1} \cdots a_{i_j})\omega(i_1, \cdots, i_j)$$
.

T. Yoshida

Since χ and α are both injective, the restriction of Φ' on U_G^n for each integer n is injective. The natural inclusion $R(G) \subset \widehat{R(G)}$ induces the inclusion $j: \text{Inv. Lim. } R(G)[[t_1, \dots, t_s]] \to \text{Inv. Lim. } \widehat{R(G)}[[t_1, \dots, t_s]]$. The following lemma gives the proof of Theorem (1.1).

LEMMA (4.1). $j \circ \Phi$ and Φ' coincide.

PROOF. i) For $\zeta \in U_G^2$. Since ζ is the equivariant euler class of the bundle $\eta_1: V_1 \to pt$, $\alpha(\zeta)$ is the 1-dim. Conner-Floyd class of the bundle $\eta: V_1 \times_G EG \to BG$, where $EG \to BG$ is the universal G-bundle. Consider the commutative diagram,

$$K^*(BG)$$
 S^*
 $\widetilde{K}^*(V^c \wedge EG^+/G)$
 f^*
 $K^*(BU)$
 $K^*(BG)$
 $K^*(BU)$

 (V^c) is the one-point compactification of V) where f is the classifying map of the bundle η , s is the zero-cross-section, and the vertical maps are the Thom isomorphisms. As η is a line bundle, $a_i(\eta) = 0$ for i > 1, and $a_1(\eta) = \eta - 1$. Since $\eta^2 = 1$ and $(1-\eta)^2 = 2(1-\eta)$, we can calculate as follows,

$$\begin{split} \varPhi'(\zeta) &= (1-\eta) \sum a_{i_1} \cdots a_{i_j}(\eta) \omega(i_1, \, \cdots, \, i_j) \\ &= (1-\eta) \sum (a_1(\eta))^i \omega(\overline{1, \, \cdots, \, 1}) \\ &= (1-\eta) \sum (\eta-1)^i \omega(\overline{1, \, \cdots, \, 1}) \\ &= (1-\eta) W \, . \end{split}$$

ii) For $[M, T] \in \mathcal{O}_*^{V}(G)$. Fix an equivariant embedding of M into a G-module (over C) V, and let ν be the equivariant normal bundle. We have the following two vector bundles

$$\nu \times_{G} EG \longrightarrow M \times_{G} EG$$
,
 $V \times_{G} EG \longrightarrow BG$.

Let $T(\nu)$ be the Thom space of ν , $q: V^c \to T(\nu)$ the map collapsing the outside of the disk bundle of ν , and $q \wedge 1: V^c \wedge EG^+/G \to T(\nu) \wedge EG^+/G$. Now as in § 1, we put $A = \sum a_{i_1} \cdots a_{i_j} \omega(i_1, \cdots, i_j)$ and for a vector bundle ξ , $A(\xi) = \sum a_{i_1} \cdots a_{i_j}(\xi) \omega(i_1, \cdots, i_j)$ and similarly $B(\xi) = \sum b_{i_1} \cdots b_{i_j}(\xi) \omega(i_1, \cdots, i_j)$. Then, $A(\xi)B(\xi)=1$ and $A(\xi+\eta)=A(\xi)A(\eta), \ B(\xi+\eta)=B(\xi)B(\eta).$ Moreover for an element $x \in U(?)$, we have $\chi(x)(a_{i_1} \cdots a_{i_j}) \in K(?)$ and we put $A(x) = \sum \chi(x)(a_{i_1} \cdots a_{i_j}) \omega(i_1, \cdots, i_j)$. Let

$$\phi_{\nu}: U^{*}(M \times_{G} EG) \longrightarrow \widetilde{U}^{*}(T(\nu) \wedge EG^{+}/G)$$

$$\phi_{V}: U^{*}(BG) \longrightarrow \widetilde{U}^{*}(V^{c} \wedge_{G} EG^{+})$$

$$\phi_{\nu}: K^{*}(M \times_{G} EG) \longrightarrow \widetilde{K}^{*}(T(\nu) \wedge EG^{+}/G)$$

$$\phi_{V}: K^{*}(BG) \longrightarrow \widetilde{K}^{*}(V^{c} \wedge_{G} EG^{+})$$

be the Thom isomorphisms, then we have

$$A(x)A(V\times_G EG) = \phi_{\overline{\nu}}^{-1}A(\phi_V(x)) \qquad \text{for } x \in U^*(BG),$$

$$A(x)A(\nu\times_G EG) = \phi_{\overline{\nu}}^{-1}A(\phi_V(x)) \qquad \text{for } x \in U^*(M\times_G EG)$$

(Thom isomorphisms are applied on each coefficients of $\omega(i_1,\cdots,i_j)$). Now by the definition of α , we see easily that $\alpha\circ i$ ([M,T]) equals $\phi_V^{-1}\circ q^*\wedge 1\circ \phi_{\nu}(1)$ $\in U^*(BG)$, where $1\in U^0(M\times_G EG)$ is the unit. Then

$$\begin{split} \varPhi'(\llbracket M,\,T \rrbracket) A(V \times_G EG) &= A(\phi_{\overline{v}}^{-1} \circ q^* \wedge 1 \circ \phi_{\nu}(1)) A(V \times_G EG) \\ &= \psi_{\overline{v}}^{-1} A(q^* \wedge 1 \circ \phi_{\nu}(1)) \\ &= \psi_{\overline{v}}^{-1} \circ q^* \wedge 1 \circ A(\phi_{\nu}(1)) \\ &= \psi_{\overline{v}}^{-1} \circ q^* \wedge 1 \circ \psi_{\nu} A(\nu \times_G EG) \\ &= \psi_{\overline{v}}^{-1} \circ q^* \wedge 1 \circ \psi_{\nu} (B(\tau_M \times_G EG) A((M \times V) \times_G EG)) \\ &= \psi_{\overline{v}}^{-1} \circ q^* \wedge 1 \circ \psi_{\nu} (B(\tau_M \times_G EG) \circ p^* \times 1 \circ A(V \times_G EG)) \\ &= \psi_{\overline{v}}^{-1} \circ q^* \wedge 1 \circ \psi_{\nu} (B(\tau_M \times_G EG) \circ p^* \times 1 \circ A(V \times_G EG)) \\ &\qquad (\text{where } p \times 1 : M \times_G EG \to BG, \ p : M \to pt, \\ &\qquad \text{the collapsing map}) \\ &= \psi_{\overline{v}}^{-1} \circ q^* \wedge 1 \circ \psi_{\nu} (B(\tau_M \times_G EG)) A(V \times_G EG) \;. \end{split}$$

Hence

$$\Phi'([M, T]) = \psi_{V}^{-1} \circ q^* \wedge 1 \circ \psi_{\nu} B(\tau_{M} \times_{G} EG)$$
.

But consider the following commutative diagram

$$K(M \times_{G} EG) \longrightarrow \widetilde{K}(T(\nu) \wedge EG^{+}/G) \stackrel{q^{*} \wedge 1}{\longrightarrow} \widetilde{K}(V^{c} \wedge EG^{+}/G) \longleftarrow K(BG)$$

$$C \uparrow \qquad \qquad C \uparrow \qquad \qquad C \uparrow \qquad \qquad C \uparrow$$

$$\widehat{K_{G}(M)} \longrightarrow \widehat{K_{G}(T(\nu))} \longrightarrow \widehat{K_{G}(V^{c})} \longleftarrow \widehat{R(G)}$$

where the lower sequence represents the K_G -theory Gysin homomorphism, and C is the isomorphism of Atiyah and Segal [4]. Since $C(b_i^G(\xi)) = b_i(\xi \times_G EG)$, we obtain

$$\Phi'([M, T]) = \sum p_1 (b_{i_1}^G \cdots b_{i_j}^G(\tau_M)) \omega(i_1, \cdots, i_j).$$
 Q. E. D.

Next we go on to the proof of Theorem (3.2). We consider the localized ring

T. Yoshida

 $U^*(BG)[C^{-1}]$, where C is the euler class of the canonical line bundle η over BG, which is equal to $\alpha(\zeta)$. Let $\Lambda: U^*(BG) \to U^*(BG)[C^{-1}]$ be the natural map. For $[M, T] \in \mathcal{O}_*^{\mathcal{V}}(G)$, $\Lambda \circ \alpha \circ i([M, T]) \in U^*(BG)[C^{-1}]$ can be written by the term of the fixed point set and its normal bundle in M as follows (tom Dieck [7]),

$$\Lambda \circ \alpha \circ i([M, T]) = \sum_{F} e(\nu_F \bigotimes \eta)^{-1}/Z_F$$

where F ranges over the components of the fixed point set, ν_F is the normal bundle of F in M, $\nu_F \otimes \eta$ is the tensor bundle over $F \times BG$, $e(\nu_F \otimes \eta) \in U^*(F \times BG)$ is its euler class, and $Z_F \in U_*(F)$ is the fundamental class, and finally \cdots/Z_F represents the evaluation on Z_F .

Now we consider the localized ring Inv. Lim. $\widehat{R(G)}[[t_1, \cdots, t_s]][\Phi(\zeta)^{-1}]$. Since $\Phi(\zeta) = (1-\eta)W$ and W is invertible, it is equal to the ring localized at $(1-\eta)$. Since $\widehat{R(G)} = Z + \text{Inv. Lim. } Z/2^nZ$, and in $\widehat{R(G)}[(1-\eta)^{-1}]$, $1+\eta=0$, we have $\widehat{R(G)}[(1-\eta)^{-1}] = Q_2$ where Q_2 is the 2-adic completed rational number field. Let Φ'_L be the composed map: $U_G^* \xrightarrow{\alpha} U^*(BG) \xrightarrow{\Lambda} U^*(BG)[C^{-1}] \xrightarrow{} \text{Inv. Lim. } Q_2[[t_1, \cdots, t_s]]$, then it is a ring homomorphism and the following diagram commutes.

The proof of Theorem (3.2) is contained in the following lemma.

LEMMA (4.2). Let $j: Q \subset Q_2$ be the inclusion, then Φ'_L and $j \circ \Phi_L$ coincide. PROOF. Let $V = V_0^{k_0} \oplus V_1^{k_1}$ be a G-module (over C), where V_0 , V_1 are the trivial and non-trivial part respectively. For $[M, T] \in \mathcal{O}_*^{\mathcal{U}}(G)$, assume that M is embedded in V. Let F be a connected component of the fixed point set, then $F \subset V_0^{k_0}$. We put as follows

 ν : the normal bundle of M in V,

 ν_0 : the normal bundle of F in $V_0^{k_0}$,

 ν_F : the normal bundle of F in M.

If we write $\nu|_F = \nu_0 + \rho_F$, we have $\rho_F + \nu_F = F \times V_1^{k_1}$. Thus

$$e(\nu_F \otimes \eta)^{-1} = C^{-k_1} e(\rho_F \otimes \eta)$$

in $U^*(F \times BG)[C^{-1}]$.

The element $e(\rho_F \otimes \eta)/z_F$ of $U^*(BG)$ is represented by the following composed map,

$$V^{c} \wedge BG^{+} \longrightarrow T(\nu_{0}) \wedge F^{+} \wedge BG^{+} \longrightarrow T(\nu_{0}) \wedge T(\rho_{F} \otimes \eta)$$

$$\xrightarrow{\tilde{f} \wedge \tilde{g}} MU \wedge MU \longrightarrow MU$$

where $q:V^c \to T(\nu_0) \wedge F^+$ is a product of the usual collapsing map onto the Thom space and the projection onto F, $s:F \times BG \to T(\rho_F \otimes \eta)$ is the zero cross-section and f, g are the classifying maps of the bundles ν_0 , $\rho_F \otimes \eta$ respectively. Now let $p:F \to pt$ be the collapsing map and $d:F \to F \times F$ the diagonal, and finally $V^c \xrightarrow{q_1} T(\nu_0) \xrightarrow{q_2} T(\nu_0) \wedge F^+$ be the decomposition of q. Consider the following diagram (the two left squares commute and the vertical maps are all Thom isomorphisms).

In the above diagram, since $K^*(F \times BG) = K^*(F) \otimes K^*(BG)$, $p_! \otimes 1$ is defined. For $x \in K^*$ $(F \times F \times BG)$, we have

$$\phi_1^{-1} \circ q_1^* \circ q_2^* \circ 1 \wedge s^* \circ \phi_4 x = p_1 \otimes 1 \circ d^* \times 1 \circ \phi_3^{-1} \circ 1 \wedge s^* \circ \phi_4 x$$
$$= p_1 \otimes 1 (d^* \times 1(x) \lambda(\nu_0 \oplus \rho_F))$$

where $\lambda(?)$ denotes the K-theory euler class.

Now we use the notations $A(\),\ B(\)$ as in the proof of (1.1). Then by the definition of $\alpha,$ we have,

$$\begin{split} \boldsymbol{\Phi}_{L}'([M, T]) &= \sum_{F} (\boldsymbol{\Phi}(\zeta))^{-k_{1}} \phi_{1}^{-1} \circ q_{1}^{*} \circ q_{2}^{*} \circ 1 \wedge s^{*} \circ \phi_{4} A(\nu_{0} + \rho_{F} \otimes \eta) \\ &= \sum ((1 - \eta)W)^{-k_{1}} p_{1} \otimes 1 \ (A(\nu_{0} + \rho_{F} \otimes \eta)\lambda(\rho_{F} \otimes \eta)) \\ &= \sum ((1 - \eta)W)^{-k_{1}} p_{1} \otimes 1 \ (B(\tau_{M} + \nu_{F} \otimes \eta)\lambda(\rho_{F} \otimes \eta))A(\boldsymbol{V}_{1}^{k_{1}} \times_{G} EG) \\ &= \sum ((1 - \eta)W)^{-k_{1}} p_{1} \otimes 1 \ (B(\tau_{M} + \nu_{F} \otimes \eta)\lambda(\rho_{F} \otimes \eta))W^{k_{1}} \\ &= \sum ((1 - \eta)^{-k_{1}} p_{1} \otimes 1 \ (B(\tau_{M} + \nu_{F} \otimes \eta)\lambda(\rho_{F} \otimes \eta)). \end{split}$$

Now formally,

$$\begin{split} B(\tau_F) &= \prod_s \sum_i b_i(\tau_F) t_s^i \,, \\ B(\nu_F \otimes \eta) &= \prod_s \sum_i b_i(\nu_F) \Big(\frac{\eta t_s}{1 + (\eta - 1) t_s}\Big)^i \prod_s \Big(\frac{1}{1 + (\eta - 1) t_s}\Big)^{\dim F} \,, \\ \lambda(\rho_F \otimes \eta) &= (1 - \eta)^{\dim \rho_F} \sum_i b_i(\bar{\nu}_F) \Big(\frac{\eta}{1 - \eta}\Big)^i \end{split}$$

and we put $\eta = -1$, then the lemma follows.

Q. E. D.

Tsuda College

References

- [1] M. F. Atiyah, Immersions and embeddings of manifolds, Topology, 1 (1962), 125-132.
- [2] M. F. Atiyah and I. M. Singer, The index of elliptic operators, I, Ann. of Math., 87 (1968), 484-530; III. Ann. of Math., 87 (1968), 546-604.
- [3] M. F. Atiyah and G. B. Segal, The index of elliptic operators II, Ann. of Math., 87 (1968), 531-545.
- [4] M. F. Atiyah and G. B. Segal, Equivariant K-theory and completions, J. Differential Geometry, 3 (1969), 1-18.
- [5] P. E. Conner and E. E. Floyd, Periodic maps which preserves a complex structure, Bull. Amer. Math. Soc., 70 (1964), 574-579.
- [6] P. E. Conner, Seminar on periodic map, Lecture Note in Math., 46, Springer, 1970.
- [7] T. tom Dieck, Bordism of G-manifolds and integrality theorems, Topology, 9 (1970), 345-358.
- [8] A. Hattori, Integral characteristic numbers for weakly almost complex manifolds, Topology 5 (1966), 259-280.
- [9] N. Shimada, Bordism algebras of periodic transformations, Lecture Note 131, Cobordism ring, Research Institute for Mathematical Sciences, Kyoto University, 1971, 44-56.