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§0. Introduction.

In [7], tom Dieck has defined the equivariant unitary cobordism ring Ug
for any compact Lie group G. Ug-theory seems to be a strong tool in the
theory of the differentiable transformation group.

We are concerned only with the case of G = Z,, the cyclic group of order
2, and throughout in this paper, the letter G stands for Z,. Let O%(G) be
the bordism ring of U-manifolds with involution. T. tom Dieck has shown
that elements of O%(G) are detected by G-equivariant characteristic numbers.
More precisely we construct a ring homomorphism

@: U — Inv. Lim. R(G)[[¢,, ---, t:1]
and its localization
@, : U — Inv.Lim. Q[[¢t, -, t,1].

Then the restriction of @ on U% is injective. We shall recapitulate this fact
in (1.1) for the sake of completeness, and we give the explicit form of @, in
(8.1) and its relation to @ in (3.2).

As corollaries of (1.1) and (3.2), the following results will be proved in §4.

THEOREM (0.1). Let [M, T]e 0%G). The normal bundle vr of a connected
component of the fixed point set F in M naturally has a complex structure.
Assume the following two conditions:

(i) For each connected component F, vp is trivial,

(ii) dimgvr is independent of F and equals a constant n.
Then X[F1€2"U and there are two elements of Ux, [N] and [L] such that

M, T]=[CPQ), cJ"INI+[G, ¢J[L]  in O%(G)

where [CP(l), ] O%(G) is the class of CP(1) with the tnvolution [z, z,] —
[z, —2.] and [G, 0] € O%(G) is the class of G with the natural involution
1—-—1.

THEOREM (0.2). Let [M,T]1€0%G). If M is a Kdhler manifold, and T
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preserves the given metric, then

S(=DHY (=1 = Z(@2) " ch 3 b(Er)(2)7* td (F), [F1)

where H%' is the vector space over C spanned by the harmonic forms of type
(0, 1) which is considered to be an element of R(G), and H®*(—1) is the value
of its trace on (—1), b, is the dual K-theory characteristic class, |vp|=dimvp,
and Pr is the conjugate bundle of vr.

Theorem (0.2) is conjectured by Conner in [6], p. 115, and is proved im-
plicitly by Atiyah-Singer-Segal in by using the localization theorem in
Kg-theory. In a special case of (0.1), we get the following theorem of Conner-
Floyd [5].

THEOREM (Conner-Floyd). Let M be a U-manifold of dim 2n and let T be
an involution of M which is compatible with the U-structure. If T has only
isolated fixed points, then the number of the fixed points is a form of 2™k and
[M]=Fk[CP)]"* tn Ux/2Ux.

This theorem is an immediate corollary of Theorem (0.1) and also of
Theorem (0.2) if M is a Kdhler manifold and T preserves the given metric,
k= ; (—1D'H%(—1).

The author wishes to thank Prof. T. Matsumoto for his advices during
the preparation of manuscript.

§ 1. Equivariant characteristic numbers.

Let £€;(X) be the semi-ring of G-vector bundles over a G-space X. We
consider an equivariant analogy of Atiyah’s y-operation [1]. In &4(X), we
have the exterior power operations A*. Thus if & is a G-vector bundle of
dim k2, we have the G-vector bundles A%(¢), i=0, 1, ---. These have the follow-
ing formal properties (in &¢(X))

) 2x=1, 2) Z@==x, 3) F(x+y)=Z¥0N1(y),

4) 2(x)=0 for i>dim x.

Introducing an indeterminate ¢, we put 2,(x) = 22*(x)t*. Let Ags(X) denote
the multiplicative unit group of formal power series in ¢ with coefficients in
Kz X) and leading term 1. Then 1) and 3) assert that A4, defines a ring
homomorphism &g(X)— As(X). Hence we get a homomorphism 2,: Kg(X)—
Ag(X). Taking the coefficients of 2, this define the operations 2°: Ks(X)—
K (X). Now we introduce the operations af: K;(X)— Kg(X) by

af(0)t" = Aejy-o(x—e(x))

where ¢(x) is the dimension of x. Moreover we define the dual operations
b7 : Ko(X)— Ks(X) by
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(L4+aftt-aftzt )7 =1+ bit-Hb§12+ -

Now let ©%(G) be the geometric bordism ring of U-manifolds with involution
which is compatible with the given U-structure [6]. From now on, we repre-
sent an element of O%(G) in a form [M, T] where M is a U-manifold and T
is a compatible involution on M. As M is a U-manifold, we have the K-
theory Gysin homomorphism p,: Kz(M)— Kg(pt) = R(G), induced by the collaps-
ing map to a point, p: M—pt. Let r, be the stable tangent bundle of M
with the given complex structure, we call {p, (bi(zy) - bf(zn))} equivariant
K-theory characteristic numbers of [M, T]. For brevity we write b§(x)b%(x)
- b?j(x) in the form &g --- b?j(x).

Before defining @, we comment on the structure of Ugz Let V, be the
1-dimensional complex vector space with the G-action: z— —z. The equi-
variant cobordism euler class of the G-vector bundle ,: V,—pt which we
denote {, belongs to U% Let i: O%(G)—U¥ be the map obtained by the
Pontrjagin-Thom construction, then i is injective and U¥ is generated by {
over (O%(G)) and U@ is zero (tom Dieck [7).

NoOTATION. We use the symbol w(iy, -+, i;) in the following sense. Let
ty, ty, -+ and xy, x,, .-~ be two infinite sequences of indeterminates, and put

As= f[ A4x. 8+ %8+ ) = R[[ty, ---, t;]] where R is the polynomial ring over
i=1

Z with variables x,, x,, ---. Substituting #;=0, we obtain f;: R[[t, --+, ;1] —
R[[t, -+, t;.;]]. Since f(A,) = A,_,, the family A; determines an element A
in Inv. Lim. R[[#, -+, ¢;:]]. Then A= 3 x;, - Xi; @(iy, o+, 1), where (iy, -+, 1;) is
a series of non-negative integers, and w(i;, ---,1;) is the inverse limit of the
smallest symmetric polynomials which involve the term ¢ -« £,

Now we are prepared to define Q.

DEFINITION. We define a map @: U% —Inv. Lim. R(G)[[ty, ---, t;]] as fol-
lows. For [M, T] < 0%(G), -

O[M, T= X pi(bsy, ==, bif(Ta))w(iy, -, 1))
where 7, is the stable tangent bundle of M, and for { = U%,
() =1A—mW
where 7 is the generator of R(G) and W is a power series of the form
1
2 (2@, -, ).

THEOREM (1.1). @ is well defined. It is a ring homomorphism, and for
each integer n, the restriction of @ on U% is injective.

Theorem (1.1) is essentially due to tom Dieck [7]. For the sake of com-
pleteness we shall give its proof in §4.
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REMARK (1.2). If M is a Kdhler manifold and 7T is an involution which
preserves the given metric, then the first term of @ ([M, TJ) equals 33 (—1)!H%¢,
where H%' is the vector space over C spanned by the harmonic forms of
type (0, 7). For the proof, we recall the first term of @ ((M, T]) being p, (1).
Consider the following commutative diagram

P
K¢(M) ——— R(G)

sl s

Ke(ty) ——> R(G)

where ¢ is the K-theory Thom isomorphism. We see that p, (1) =75, (A_,74%)
(A_y7y is the K-theory Thom class of z,), and this is the topological index
of d-operator [2]. By the equivariant index theorem of Atiyah-Singer, this
is equal to the analytical index of J-operator: X (—1)'H%",

§ 2. Calculation of @ in two cases.
PROPOSITION (2.1). i) For [M, T] e 0%(G) where T is a trivial G-action,
O([M, T])=2{chby - b;(74) td (M), [M]1) (i, -+, 1;)

where td (M) 1is the todd class of M and [M7] is the homology fundamental
class of M.
ii) For [M,T] < O0%G) where T is a free G-action,

O([M, T =+ Zch by, - biyzwyr) td (M/T), IM/T 1) 0@y, -, i))

where M/T 1is the orbit space of [M, T].

PrROOF. i) The assertion follows immediately from the definition con-
sidering the fact that 4¢ =b; in the trivial case (b; denote the ordinary dual
K-theory class), and for any x K(M), p, (x)=<ch xtd (M), [M]).

ii) At first we recall the bordism ring of U-manifolds with free involu-
tion: U«(BG). There is a spectral sequence such that E,=U,& H«(BG) and
it converges to Ux(BG). This spectral sequence collapses and hence E,= E..
Therefore Ux(BG) is generated over Ux by [G, o] and [S*™ ', a], n=1, 2, ---,
where S ! is the (2n—1)-dim. sphere and a is the antipodal involution. Con-
sider the natural map k: Ux(BG)— 0%(G). Obviously £([S?* !, a])=0. Hence
any element [M, T] in 0%(G) with T free involution is equal to an element
which has the form [N][G, o], where N has trivial G-action and o operates
on G by 1——1. Therefore we can assume [M, T]1=[N][G, o], and hence
[M3=2[N] in Ux. Since the characteristic numbers of M are all twice of
those of M/T, [M]=2[M/T] in Uy, hence [M/T1=[N]. So that @[ M, T])
=Q([NDNO(G, ) =0([M/THND(G, 6]) and we have only to calculate @([G,
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). DG, o)) equals p,(1) and we accomplish the proof by the following
lemma.

LEMMA. Let 1< Kg(G) be the element represented by the vector bundle
CxG—G, where C is the complex plane with trivial G-action, then p,(1)=
1+ € R(G).

PrRoor. Let V, be the 1-dim. complex vector space with the G-action
z— —z. Imbed G into V, equivariantly, G— {1, —1} C V,, and take an equi-
variant neighborhood. Let S? be the one-point compactification of V, and
g: S*—S?\ S? the map collapsing the outside of the above neighborhood.
G operate S?V S* by permutation of the factors, and ¢ is equivariant. Con-
sidering the following commutative diagram, we obtain the result.

*

q
Ke(S?V §?) ———— Ks(S?)

T,

where the vertical maps are the Thom isomorphisms.

§3. The localization of @ and some application.

DEFINITION (3.1). We define a map @, : U¥ —Inv. Lim. Q[[¢,, -+, t;]] where
() is the rational number field, as follows. )
1

For LeU% @, 0)=2W (W=3(—-2 1, -, D).
For [M, T] e 0%(G),

") OUM,TD=
o L. N A
2 W) h IS bent B0, ~5) TR ( ) wd(F), [FD)

where |vp| is dimevr, ©7 is the stable tangent bundle of F with the given
complex structure, and the evaluation is applied after expanding the right
hand side into the power series of ?;, {,, .

NOTE. Let c(vp), c(rr) be the total Chern classes of vr, 77 and c(vy)
zl;[(l—i—yj), c(z'p):];I(1+x,-) formally, then the right hand side of (*) can be

written as follows,

_ 1 1 1 1
2.1, T D)= §< NIy o emim 1y 1= =i g1) " 19 e L 3>—

THEOREM (3.2). The map @y is well defined. It is a ring homomorphism
from U¥% to Inv.Lim. Q[[t,, ---, t;1] and the following diagram commutes.
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U% 2 Inv. Lim. R(G) [[t,, - , t:]]
-
Inv. Lim. QCL¢y, ---, £,1]

The proof of the above theorem will be given in §4. The rest of this
section is devoted to the proof of the Theorems (0.1) and (0.2).
PRrROOF OF THEOREM (0.1). From the assumption and the definition of @,

O.(M, T D) =@CW) " Z<ch by -+ bif(zp) td (F), [F1) w(y, -, 1)) .

But by the Theorem (3.2), @, ([M, T]) < Inv. Lim. Z[[{,, ---, ¢t,]1], and so for all
@iy, =y 1), §<ch biy - by (zp) td(F), [F1> € 2"Z. Hence all of the dual K-theory

characteristic numbers of > [F] are divisible by 2®. From the theorem of
Hattori-Stong [8], there is an element [N] & Ux such that 33(F]1=2"[N] in
U. Now,

Q. (LCPQL), eI IND =2 (W) ™ ch by, -+ b; (zy) td (N), INDw(iy, -+, 1))
=2 CW)TZLch by - by (e ) td(F), [F Doy, -+, 1))

o,

=0, ([M,T]).

Hence O(LM, T]—-[CP(1), zJ"[N]) is in the ideal generated by (1+7), there-
fore the K-theory characteristic numbers (ordinary) of [M]1—[CP(1)]"[N]}
are all divisible by 2. Again by the theorem of Hattori-Stong, we see that
there is an element [L] e Ux such that [M]—[CP(1)J*[N]1=2[L], and from
the (2.1) ii), we see O([M, T1—[CPQ), zJ"[LN]) =G, s1[L]).
Thus the theorem follows.

PROOF OF THEOREM (0.2). According to Remark (1.2), the first term of
O([M, T]) equals 3 (—1)H" & R(G), and from Theorem (3.2), its evaluation
on (—1) is equal to the first term of @,([M, T]) which is

2@ F I ch ZoER)1L/2) td (F), LF1> . Q.E.D.

NOTE (3.3). Let

be the exact sequence mentioned in [6], p. 63. Now U, is generated by
[CPyl, M, by [D*—pt] and [CPQ)], and U,(BG) by [S! a] which is the
class of the 1-dim. sphere with the antipodal involution. Hence ©%(G) is
generated over Z by [CP(1)], [CP(1)][G, ¢] and [CP(1), z], that is for any
element x in OY(G), x is represented as A[CP(1)]+B[CP(1)][G, ¢]+C[CP(1),
7] where A, B, C are integers. Now by a simple calculation we see that
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O([CP(1)])=1-2w(1),
O([CPILG, o) = (1+n(1—2w(1)),
O([CP(1), z])=Inv. Lim. H(1—27]ts+j§z 1—n)iti).

Hence B is decided by the first term of @(x), and A and C are decided by
@.(x). Let S, (n is an even integer=4) be the algebraic curve in CP(2)
defined by the equation zP+2z;}+27 =0 and let T be the involution [z, z,, 25}
—[z, 2,, —25] on S,. Then [S,, T]< ©0Y(G) and we have

O,([S,, T])=n/2+nw(l)+higher order terms,
and the first term of @(S,, T]) equals
H"—H% = (4n—n?)/44(n*—2n)/4 6D .
Then, comparing the coefficients, we have the following eqtiation
LSn, T1=(n/2)[CPQ), t]+(n(n—2)/4)[G, ¢1LCP(1)]
in 0Y(G).

REMARK. Prof. N. Shimada informed to me that Theorem (0.1) is obtained
from the structure of Ux(BG). (See [9].)

§4. Proof of (1.1) and (3.2).

In this section we prove the Theorems (1.1) and (3.2). Let {a;} be the K-
theory characteristic classes (Atiyah’s y-operation [I]). Then K(BU)
=Z[a,, a,, ---]. A map X: U¥X)—Hom (K(BU), K*(X)) is defined as follows.
For xe U*(X) which is represented by a map f: S *AX*—MU,, 1(x) is
the following composed map.

J ¢ o
K(BU) — K(BU,) — KMU,) — K(S*" *NX*)= K*(X)

where j is the inclusion BU,C BU, ¢ is the K-theory Thom isomorphism.
By the coalgebra structure of K(BU), that is, 4: K(BU)— K(BU)RQ K(BU)
with A(ak)=i+§kai®aj, Hom (K (BU), K*(X)) forms a ring, and X is a ring
homomorphism. When X is BG, the classifying space of G, X is injective
(tom Dieck [7]). Let a be the bundling map: U¥—U*(BG), it is injective
(7). Now for any element x of U¥, Z(a(x)(a; -+ a;;) € K*(BG), and by the
faciggddzo and/gott periodicity, it is considered an element of K°(BG)
= R(G), where R(G) is the completion of R(G) in I(G)-adic topology (I(G)
denotes @e\augmentation ideal of R(G)). We define a map @' : U} —
Inv. Lim. R(G)[[t,, ---, t;1] by the following equation,

@/(X) = Ex(a(x))(ail oo aij>a)(ilr HR) 7’.7) .
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Since X and a are both injective, the restriction cﬁg’ on U% for each integer
n is injective. The natural inclusiN(G)CR(G) induces the inclusion
J:Inv. Lim. R(G)[[Y,, -+, t,J]—Inv. Lim. R(G)[[t,, -, t;]]. The following lemma
gives the proof of Theorem (1.1).

LEMMA (4.1). jo® and @’ coincide.

PROOF. i) For { = U Since { is the equivariant euler class of the
bundle 7,: V,—pt, a(l) is the 1l-dim.Conner-Floyd class of the bundle 7:
V. XcEG — BG, where EG— BG is the universal G-bundle. Consider the com-

mutative diagram,

~

I* ~
K*(BG) R*VeA EGH/G) KxMU)
\ 1 f* f
XA—=7) K*(BG)= K*(BU)

(V¢ is the one-point compactification of V') where f is the classifying map
of the bundle %, s is the zero-cross-section, and the vertical maps are the
Thom isomorphisms. As 7 is a line bundle, a;(y) =0 for i >1, and a,()=7—1.
Since »*=1 and (1—7)*=2(1—7), we can calculate as follows,

() =A—7) Ty, - ai,(Pwliy, -+, iy)
1
= 1—7) (@@ e, -, 1)
i
=(1—p) D (-1, -, 1)
=1-nW.

ii) For [M, T]e 0%(G). Fix an equivariant embedding of M into a G-
module (over C) V, and let v be the equivariant normal bundle. We have
the following two vector bundles

s*

)JXGEG —_—> MXGEG N
VXsEG — BG.

Let T(v) be the Thom space of v, g: V°—T(v) the map collapsing the out-
side of the disk bundle of v, and gAl: VAEGY/G—-TWANEG*/G. Now as
in §1, we put A=3>ay - a0, -+, 1;) and for a vector bundle & A(§)
=>a; a,-j(E)a)(il, -+, 1;) and similarly B(§) =2 by, «+- b; (§)w(iy, -, 7;). Then,
AE)B(E)=1 and A(&+n) = AE)A(y), B(&+n)=B(&)B(y). Moreover for an
element x < U(?), we have X(x)(a; -+ a;;) € K(?) and we put Alx) =2 x(x)(a,, -
a;)o(iy, -+, iy). Let
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b, UM GEG) —> UXTW)NEG*/G)
oy UX(BG) —> U*(VeAGEG™)
&y K*¥(Mx cEG) —> K*(TOW)AEG*/G)
¢y : K*(BG) —> K*(VeAGLEGH)
be the Thom7isomorphisms, then we have
AX) AV X GEG) = ¢7' A(py(x))  for xe U*BG),
AN AW X GEG) = ¢t A(p (%)) for x€ UM XzEG)

(Thom isomorphisms are applied on each coefficients of w(iy, ---, i;)). Now by
the definition of a, we see easily that aoi ([M, TJ) equals ¢3'og*Alogd,(1)
e U*(BG), where 1 € UM XzEG) is the unit. Then

Q'(CM, TDA(V X cEG) = A($3' 0 g* AN1o ¢ () A(V X GEG)
= ¢y A(g* N109,(1))
= ¢y og*Alo A($,(1))
=¢3ylog*Alo ¢, A(v X cEG)
=30 q*N1o ¢ (B(ry X gEG)A(MX V)X cEG))
=70 g* Nlo ¢ (B(ty X cEG)op* X 10 A(V X ;EG))

(where pXx1: MxszEG— BG, p: M— pt,
the collapsing map)
=¢yroq* Alo ¢ (B(zy X cEG))A(V X gEG) .
Hence
Q' ([M, T])=¢3'og*N1od,B(rty XcEG).

But consider the following commutative diagram

o *AL
KMXgEG) —> K(T(v)/\EG'*/G)q——» K(VNEG*Y/G) <— K(BG)

cl cl cl cl

KeM) —>  Ke(T()) —>  Ke(V°) <~— R(G)
where the lower sequence represents the Kg-theory Gysin homomorphism,
and C is the isomorphism of Atiyah and Segal [4]. Since C(b§(&)) =b,(&XcEG),
we obtain

O'([M, TD) = p, (0%, - 0% (za))wliy, -, i) .
. Q.E.D.

Next we go on to the proof of Theorem (3.2). We consider the localized ring
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U*(BG)[C™'], where C is the euler class of the canonical line bundle » over
BG, which is equal to a({). Let A: U*(BG)— U*(BG)[C™'] be the natural
map. For [M, T] e 0¥%G), Aocaoci([M, T]) s UX(BG)[C*] can be written by
the term of the fixed point set and its normal bundle in M as follows (tom
Dieck [7])),

Aoaci(CM, T]) = ;e(vp@m)“/ZF

where F ranges over the components of the fixed point set, vz is the normal
bundle of F in M, vr Q7 is the tensor bundle over FX BG, e(vr Qn)c U*(F X BG)
is its euler class, and Zr € Ux(F) is the fundamental class, and finally ---/Zr
represents the evaluation on Zp.

Now we consider the localized ring Inv.Lim. 1{(6\)[[@, S A K ISR
Since @(C):(I;QW and W is invertible, it is eq%l\to the ring localized at
(1—n>./§ince R(G)= Z+Inv.Lim. Z/2"Z, and in R(G[(1—n)'], 1+7=0, we
have R(G)[(1—»)']=Q, where @, is the 2-adic completed rational number
field. Let @; be the composed map: U} -2, U*(BG)—A—+U*(BG)[C‘1]——>

Inv. Lim. Q,[[¢,, ---, t;]], then it is a ring homomorphism and the following
diagram commutes. ’

U¥ 2 Inv. Lim. ROt - , t,1]
n=—1
Q;

Inv. Lim. Q,[[¢,, -+, t:11

The proof of Theorem (3.2) is contained in the following lemma.
LEMMA (4.2). Let j: QC Q, be the inclusion, then @ and joc@; coincide.
PROOF. Let V=V§HEH VH be a G-module (over C), where V,, V, are the
trivial and non-trivial part respectively. For [M, T] < 0%(G), assume that M
is embedded in V. Let F be a connected component of the fixed point set,
then FC Vi, We put as follows

v : the normal bundle of M in V,
v, : the normal bundle of F in V¥,
vp: the normal bundle of F in M.
If we write v|r=v,+pr, we have prtvr=FXV. Thus
e(wr®n) ' =CMe(pr@7)
in U¥X(FxXBG)[C'].

The element e(pr@n)/zr of U¥(BG) is represented by the following com-
posed map,
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VeABG* —> T(u) AF* ABGY —> Tw) AT(or @ 7)

~

INg
S MUAMU —> MU

where ¢: V —>T(w,)AF* is a product of the usual collapsing map onto the
Thom space and the projection onto F, s: FXBG—T(pr®7) is the zero cross-
section and f, g are the classifying maps of the bundles v,, pr @7 respectively.
Now let p: F— pt be the collapsing map and d: F— FXF the diagonal, and

finally V¢ ql»T(uo) —q-z-> Tw)ANF* be the decomposition of ¢g. Consider the
following diagram (the two left squares commute and the vertical maps are
all Thom isomorphisms).

K*BG) - POl gwrxBG) — P>l gx(rx FxBG) K*(Fx Fx BG)
&, P, &, P,
. - q¥ o , ASE
K*(V¢A BGY) E*T(o) A BG)y=——————K*T(v)) A F* NBG") ~=———— K¥(T(,® pr 1))

In the above diagram, since K*(FFX BG)=K*(F)RK*(BG), p, X1 is defined.
For x= K* (FXFXBG), we have

priogfogfol As*odx=p Rlod*x1lopslol As*od,x
=P QUd* X U(x)A(v, D pr))

where A(?) denotes the K-theory euler class.
Now we use the notations A( ), B( ) as in the proof of (1.1). Then by
the definition of «, we have,

O.(IM, T = SHOE) Mpitogrogi ol ns* o At pr&7)

=3 (A=W) " 1p, 1 (Alwy+pr Q1) A0r 1))
=2(A=—W) ™ p, Q@1 (Blry+vr Q0Aor @) AV X cEG)
=2 (A=) 1p, 1 (Blzy+vr@n)Aor Q)W
=ZA=n P ®1 Blrutrvr@nAor@n)) .

Now formally,

Bzp) =11 22 b:(zptt,

dim g

Br@m=1120bvp) (1+(;77t— Dt )il} <'1'3r'<771— )

Kor®@n)=—nmer oG- 7 )
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and we put »= —1, then the lemma follows. Q.E.D.
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Tsuda College

References

M. F. Atiyah, Immersions and embeddings of manifolds, Topology, 1 (1962),
125-132.

M. F. Atiyah and 1. M. Singer, The index of elliptic operators, I, Ann. of Math.,
87 (1968), 484-530; III. Ann. of Math., 87 (1968), 546-604.

M. F. Atiyah and G. B. Segal, The index of elliptic operators 1I, Ann. of Math,,
87 (1968), 531-545.

M. F. Atiyah and G.B. Segal, Equivariant K-theory and completions, J. Differ-
ential Geometry, 3 (1969), 1-18.

P.E. Conner and E.E. Floyd, Periodic maps which preserves a complex struc-
ture, Bull. Amer. Math. Soc., 70 (1964), 574-579.

[ 6] P.E. Conner, Seminar on periodic map, Lecture Note in Math., 46, Springer,

[7]
[8]
£9]

1970.

T. tom Dieck, Bordism of G-manifolds and integrality theorems, Topology, 9
(1970), 345-358.

A. Hattori, Integral characteristic numbers for weakly almost complex mani-
folds, Topology 5 (1966), 259-280.

N. Shimada, Bordism algebras of periodic transformations, Lecture Note 131,

Cobordism ring, Research Institute for Mathematical Sciences, Kyoto University,
1971, 44-56.




	On the $K$ -theoretic ...
	\S 0. Introduction.
	\S 1. Equivariant characteristic ...
	\S 2. Calculation of $\Phi$ ...
	\S 3. The localization ...
	\S 4. Proof of (1.1) and ...
	References


