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\S 1. Introduction.

The symmetric group $S_{5}$ of degree five and the two dimensional projective
special linear group $PSL(2,11)$ over the field of eleven elements are doubly
transitive permutation groups of degree five and eleven, respectively, in which
the stabilizer of two points is isomorphic to the symmetric group $S_{3}$ of degree
three.

Let $\Omega$ be the set of points 1, 2, $\cdot$ .. , $n$ , where $n$ is odd. Let $\mathfrak{G}$ be a doubly
transitive permutation group in which the stabilizer $\mathfrak{G}_{1,2}$ of the points 1 and
2 has even order and a Sylow 2-subgroup $\mathfrak{K}$ of $\mathfrak{G}_{1,2}$ is cyclic. In the case $\mathfrak{G}_{1,2}$

is cyclic, Kantor-O’Nan-Seitz and the author proved independently that $\mathfrak{G}$

contains a regular normal subgroup ([5] and [8]). In this paper we shall
study the case $\mathfrak{G}_{1,2}$ is not cyclic. Let $\tau$ be the unique involution in $\mathfrak{K}$ . By
a theorem of Witt ([10, Th. 9.4]) the centralizer $C_{\mathfrak{G}}(\tau)$ of $\tau$ in $\mathfrak{G}$ acts doubly
transitively on the set $\Im(\tau)$ consisting of points in $\Omega$ fixed by $\tau$ .

The purpose of this paper is to prove the following theorem.
THEOREM. Let $\mathfrak{G},$ $\mathfrak{G}_{1,2},$ $\tau$ and $\Im(\tau)$ be as above. Assume that all Sylow

subgroups of $\mathfrak{G}_{1,2}$ are cyclic, the image of the doubly transitive permutation
representatio $7l$ of $C_{\mathfrak{G}}(\tau)$ on $\Im(\tau)$ contains a regular normal subgroup and that
$\mathfrak{G}$ does not contain a regular normal subgroup. If $\mathfrak{G}$ has two classes of
involutions, then $\mathfrak{G}$ is isomorphic to $S_{5}$ and $n=5$ . If $\mathfrak{G}$ has one class of in-
volutions and $\tau$ is not contained in the center of $\mathfrak{G}_{1,2}$ , then $\mathfrak{G}$ is isomorphic to
$PSL(2,11)$ and $n=11$ .

In [7] we proved this theorem in the case that the order $\mathfrak{G}_{1,2}$ equals $2p$

for an odd prime number $p$ .
Let X be a subset of a permutation group. Let $\Im(X)$ denote the set of all

the fixed points of ee and let $\alpha(\mathfrak{X})$ be the number of points in $\Im(\mathfrak{X})$ . The other
notion is standard.

\S 2. On the degree of $\mathfrak{G}$ .
Let $\mathfrak{G}$ be a doubly transitive permutation group on $\Omega=\{1,2, \cdots , n\}$ .

Let $\mathfrak{G}_{1}$ and $\mathfrak{G}_{1,2}$ be the stabilizers of the point 1 and the points 1 and 2,
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respectively. In this paper we assume that a Sylow 2-subgroup St $(\neq 1)$ of
$\mathfrak{G}_{1,2}$ is cyclic. Let us denote the unique involution in St by $\tau$ . By the Burn-
side argument $\mathfrak{G}_{1,2}$ has a normal 2-complement $\mathfrak{H}$ Let $I$ be an involution
with the cycle structure $(1, 2)$ $\cdots$ . Then 1 is contained in $N_{Q}(\mathfrak{G}_{1,2})$ and we have
the following decomposition of $\mathfrak{G}$ :

$\mathfrak{G}=\mathfrak{G}_{1}+\mathfrak{G}_{1}I\mathfrak{G}_{1}$ .
By Frattini argument it may be assumed that $I$ nQrmalizes St. Let $d$ be the
number of elements in $\mathfrak{G}_{1,2}$ inverted by $I$. Let $g(2)$ and $g_{1}(2)$ denote the
numbers of involutions in $\mathfrak{G}$ and $\mathfrak{G}_{1}$ , respectively. Then the following equality
is obtained:

(2.1) $g(2)=g_{1}(2)+d(n-1)$ .
(See [4] or [6].)

Let $\tau$ fix $i(i\geqq 2)$ points of $\Omega$ , say 1, 2, $\cdot$ .. , $i$ . By a theorem of Witt ([10,

Th. 9.4]) $C_{\mathfrak{G}}(\tau)$ acts doubly transitively on $\Im(\tau)$ . Let $\chi_{1}(\tau)$ and $\chi(\tau)$ be the
kernel of this permutation representation and its image, respectively. In
general, let X be a subgroup of $\mathfrak{G}_{1,2}$ satisfying the condition of Witt. Then
$N_{Q}(\#)$ acts doubly transitively on $\Im(\mathfrak{X})$ . Let $\chi_{1}(X)$ and $\chi(\mathfrak{X})$ be the kernel of
this permutation representation and its image, respectively. Let us denote
$[\mathfrak{G}_{1,2} : C_{\mathfrak{G}_{1,2}}(\tau)]$ by $\gamma$ .

Let us assume that $n$ is odd. Let $g_{1}^{*}(2)$ be the number of involutions in
$\mathfrak{G}_{1}$ which fix only the point 1. Then from (2.1) the following equality is
obtained:

(2.2) $g_{1}^{*}(2)n+\gamma n(n-1)/i(i-1)=g_{1}^{*}(2)+\gamma(n-1)/(i-1)+d(n-1)’$.
It follows from (2.2) that $d>g_{1}^{*}(2)$ and $ n=i(\beta i-\beta+\gamma)/\gamma$ , where $\beta=d-g_{1}^{*}(2)$

equals the number of involutions with cycle structures $(1, 2)$ $\cdots$ which are
conjugate to $\tau$ .

Next let us assume that $n$ is even. Let $g^{*}(2)$ be the number of involutions
in $\mathfrak{G}$ which fix no point of $\Omega$ . Then the following equality is obtained:

(2.3) $g^{*}(2)+\gamma n(n-1)/i(i-1)=\gamma(n-1)/(i-1)+d(n-1)$ .
Since $\mathfrak{G}$ is doubly transitive on $\Omega,$ $g^{*}(2)$ is a multiple of $n-1$ . It follows
from (2.3) that $d(n-1)>g^{*}(2)$ and $ n=i(\beta i-\beta+\gamma)/\gamma$ , where $\beta=d-g^{*}(2)/(n-1)$

equals the number of involutions with the cycle structures $(1, 2)$ $\cdots$ which are
conjugate to $\tau$ (see [7]).

Let $\mathfrak{K}_{0}$ be the set of elements in $\mathfrak{K}$ inverted by 1. For an element $K$ of
$R_{0}$ , let $\mathfrak{D}(IK)$ be the set of elements in $\mathfrak{H}$ inverted by $IK$ and $d(IK)$ be the
number of elements in $\mathfrak{D}(1K)$ .

LEMMA 1. $d=\sum_{K\subset S_{0}}d(1K)$ and $d(IK)$ is odd.
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PROOF. Let $KH$ be an element of $\mathfrak{G}_{1,2}=\mathfrak{K}\mathfrak{H}$ inverted by $I$. Then $(KH)^{1}$

$=H^{-1}K^{-1}=K^{-1}KH^{-1}K^{-1}=K^{I}H^{I}$ . Therefore $K^{I}=K^{-1}$ and $H^{IK}=H^{-1}$ . This
proves the first assertion. For the second, see [2, Lem. 10.4.1].

LEMMA 2. Every involution in $I\mathfrak{G}_{1_{J}2}$ is conjugate to I or $ I\tau$ and $\mathfrak{G}$ has one
or two classes of involutions.

PROOF. For an element $K$ of $\mathfrak{K}_{0}$ every involution in $IK\mathfrak{H}$ is conjugate
to $IK$. Every involution in $I\mathfrak{K}_{0}$ is conjugate to $I$ or $ I\tau$ and every involution
in $G$ is conjugate to an involution in $I\mathfrak{G}_{1,2}$ since $\mathfrak{G}$ is doubly transitive. This
proves the lemma.

LEMMA 3. $d$ is even and so is $\beta$ if $|\mathfrak{K}_{0}|>2$ .
PROOF. Trivial.
LEMMA 4. Assume $|\mathfrak{K}|>2$ . Then let $\mathfrak{V}$ be a subgroup of $\mathfrak{K}$ of order 4.

If $\langle \mathfrak{V}, I\rangle$ is dihedral, then $\langle \mathfrak{V}, J\rangle$ dihedral for every involution $J(\neq\tau)$ in $N_{\mathfrak{G}}(\mathfrak{V})$ .
PROOF. Since a Sylow 2-subgroup of $\mathfrak{G}_{1,2}$ is cyclic, $\alpha(\langle I, \mathfrak{V}\rangle)=\alpha(\langle J, \mathfrak{V}\rangle)$

$\leqq 1$ . A doubly transitive permutation group $\mathfrak{M}$ of odd degree such that the
stabilizer $\mathfrak{M}_{1,2}$ of two points is of odd order has one class of involutions since
all involutions are conjugate in $I^{\prime}\mathfrak{M}_{1,2}$ , where $I^{\prime}$ is an involution of $\mathfrak{M}$ with
the cycle structure $(1, 2)$ $\cdots$ . From this and Lemma 2 $I\chi_{1}(\mathfrak{V})$ and $J\chi_{1}(\mathfrak{V})$ are
conjugate under $\chi(\mathfrak{V})$ . Thus $I=Y^{-1}JXY$ , where $X$ and $Y$ are elements of
$N_{\mathfrak{G}_{1,2}}(\mathfrak{V})$ and $N_{\mathfrak{G}}(\mathfrak{V})$ , respectively. Since $N_{\mathfrak{G}}(\mathfrak{V})=\langle I, C_{\mathfrak{G}}(\mathfrak{V})\rangle,$ $X$ and $Y$ are con-
tained in $C_{\mathfrak{G}}(\mathfrak{V})$ . Thus $V^{I}=V^{J}$ for every element $V$ of $\mathfrak{V}$ . This proves the
lemma.

From now on, throughout this paper, we assume $n$ is odd and $\chi(\tau)$ contains
a regular normal subgroup. Then $i$ equals a power of a prime number, say
$p^{m}$ .

THEOREM 1. Let $\mathfrak{G}$ be a doubly transitive permutation group of odd degree
$n$ such that a Sylow 2-subgroup $\mathfrak{K}$ of $\mathfrak{G}_{1,2}$ is cyclic. If $|\mathfrak{K}|>2$ and $\langle \mathfrak{K}, 1\rangle$ is
dihedral or quasi-dihedral, then $\mathfrak{G}$ contains a regular normal subgroup. If
$|\mathfrak{K}|=2$ and $\mathfrak{G}$ has one class of involutions, then it contains a regular normal
subgroup or it is isomorphic to $PSL(2,11)$ with $n=11$ .

PROOF. $ n-1=(i-1)(\beta i+\gamma)/\gamma$ and $\gamma$ is odd. By Lemma 3 $\beta$ is even.
Therefore a Sylow 2-subgroup of $C_{\mathfrak{G}}(\tau)$ is that of $\mathfrak{G}$. By Lemma 4 a proof
of the theorem is similar to the case that $\mathfrak{G}_{1,2}$ is cyclic ([8]).

\S 3. Proof of Theorem.

Let $\mathfrak{G}$ be as in Theorem. By Theorem 1 we may assume $\mathfrak{K}_{0}=\langle\tau\rangle$ and
$d=d(I)+d(I\tau)$ . If all involutions are conjugate, then $\beta=d$ is even and if $\mathfrak{G}$

has two classes of involutions, then let us assume $\alpha(I)=1$ and $\beta=d(I_{T})$ . Let
$\mathfrak{H}_{q}$ be a Sylow q-subgroup of $\mathfrak{H}$ Since all Sylow subgroups of $\mathfrak{H}$ are cyclic,
we may assume that $N_{\mathfrak{G}}(\mathfrak{H}_{q})$ contains $\langle \mathfrak{K}, I\rangle$ and $\mathfrak{H}_{r}$ for $r<q$ .
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LEMMA 5. If $\mathfrak{G}$ has two classes of involutions and if $\alpha(\mathfrak{H}_{q})$ is odd for
every $\mathfrak{H}_{q}$ such that $\langle \mathfrak{H}_{q}, I\rangle$ is dihedral, then $\mathfrak{G}$ contains a regular normal sub-
group.

PROOF. Let $a$ be the unique element in 3(1). Assume $\langle \mathfrak{H}_{q}, I\rangle$ is dihedral.
Let $\mathfrak{H}_{q}^{\prime}$ be a Sylow q-subgroup of $\mathfrak{H}$ normalized by $I$. Then $\langle \mathfrak{H}_{q}^{\prime}, I\rangle$ must be
dihedral. Since $\alpha(\mathfrak{H}_{q})$ is odd, so is $\alpha(\mathfrak{H}_{q}^{\prime})$ . Since $\Im(\mathfrak{H}_{q}^{\prime})^{I}=\Im(\mathfrak{H}_{q}^{\prime})$ , it contains $a$ .
Let $X$ be an element of $\mathfrak{D}(I)$ . Then $X$ is a product of elements of $\mathfrak{D}(I)$ ,
$X_{1}$ , , $X_{r-1}$ and $X_{r}$ , where $|X_{j}|$ is a power of a prime number and $(|X_{j}|, |X_{k}|)$

$=1$ for $j\neq k$ . From the above $\Im(X_{j})$ contains $a$ . Thus 3(X) contains $a$ and
so does $\Im(\mathfrak{D}(I))$ . Since $g_{!}^{*}(2)=d(I)$ , the set of involutions fixing only the
point $a$ is that of involutions in $\langle \mathfrak{D}(1), 1\rangle$ . It is trivial that $I$ is a unique
involution in $\langle \mathfrak{D}(I), 1\rangle$ which is commutative with 1. Since $C_{\mathfrak{G}}(I)$ is contained
in $\mathfrak{G}_{a}$ , there is no involution $(\neq I)$ in $C_{\mathfrak{G}}(I)$ which is commutative with $I$ and
conjugate to $I$. By [1] $\mathfrak{G}$ contains a solvable normal subgroup. This proves
the lemma.

By this lemma we may assume that if $\mathfrak{G}$ has two classes of involutions,
then there exists $\mathfrak{H}_{q}(\neq 1)$ such that $\langle \mathfrak{H}_{q}, 1\rangle$ is dihedral and $\alpha(\mathfrak{H}_{q})$ is even.

LEMMA 6. $1f\alpha(\mathfrak{H}_{q})$ is even, then $\langle \mathfrak{H}_{q}, \tau\rangle$ is dihedral.
PROOF. Assume $\langle \mathfrak{H}_{q}, \tau\rangle$ is abelian. If $\Im(\mathfrak{H}_{q})$ contains $\Im(\tau)$ , then $\alpha(\mathfrak{H}_{q})$ is

odd since $\alpha(\tau)$ is odd. Therefore $\mathfrak{H}_{q}$ is not contained in $\chi_{1}(\tau)$ . Since $\chi(\tau)$

contains a regular normal subgroup, so does $\chi(H_{q}\chi_{1}(\tau))$ and its degree
$\alpha(\langle \mathfrak{H}_{q}, \tau\rangle)$ is a power of $p$ . Since the stabilizer in $\chi(\mathfrak{H}_{q})$ of any two points
of $\Im(\mathfrak{H}_{q})$ is of even order, $\alpha(\mathfrak{H}_{q})=i^{\prime}(\beta^{\prime}(i^{\prime}-1)+\gamma^{\prime})/\gamma^{\prime}$ , where $i^{\prime}=\alpha(\langle \mathfrak{H}_{q}, \tau\rangle),$ $\gamma^{\prime}$

is odd and $\beta^{\prime}$ is some integer. Therefore $\alpha(\mathfrak{H}_{q})$ is odd, which is a contradiction.
LEMMA 7. If $\alpha(1)=1,$ $\alpha(\mathfrak{H}_{q})$ is even and if $\langle \mathfrak{H}_{q}, I\rangle$ is dihedral, then

$q=p=|\mathfrak{H}_{q}|$ .
PROOF. By Lemma 6 $\langle \mathfrak{H}_{q}, \tau\rangle$ is dihedral. Therefore $\langle \mathfrak{H}_{q}, I\tau\rangle$ is abelian.

If $\alpha(\langle \mathfrak{H}_{q}, I\tau\rangle)\geqq 2$ , then $\langle \mathfrak{H}_{q}, I\tau\rangle$ must be conjugate to a subgroup of $\langle \mathfrak{H}_{q}, \mathfrak{K}\rangle$

and it is dihedral. Therefore $\alpha(\langle \mathfrak{H}_{q}, I\tau\rangle)\leqq 1$ . Assume $\alpha(\langle \mathfrak{H}_{q}, I\tau\rangle)=1$ . Since
$\alpha(1)=1$ and $\alpha(\mathfrak{H}_{q})$ is even, $\Im(I)$ is not contained in $\Im(\mathfrak{H}_{q})$ . Let $a$ be an element
of $\Im(\langle \mathfrak{H}_{q}, I\tau\rangle)$ . Then $a^{I}\neq a$ and $a^{I}=a^{\tau}$ is an element of $\Im(\mathfrak{H}_{q})$ . Therefore
$(a^{I})^{I\tau}=a^{\tau}=a^{I}$ and it is an element of $\Im(\langle \mathfrak{H}_{q}, I\tau\rangle)$ , which is a contradiction.
Thus $\alpha(\langle \mathfrak{H}_{q}, I\tau\rangle)=0$ . Since $C_{\mathfrak{G}}(1\tau)$ is conjugate to $C_{\mathfrak{G}}(\tau),$ $q=p$ . Since $|C_{\mathfrak{G}_{1,2}}(\tau)|$

is not divisible by $p$ , a Sylow $p$ -subgroup of $C_{\mathfrak{G}}(I\tau)$ is elementary abelian.
Thus $|\mathfrak{H}_{p}|=p$ .

LEMMA 8. $1f\mathfrak{G}$ has one class of involutions and $\langle \mathfrak{H}_{q}, \tau\rangle$ is dihedral, $or$

if $\alpha(I)=1$ and $\langle \mathfrak{H}_{q}, \tau\rangle$ and $\langle \mathfrak{H}_{q}, I\rangle$ are dihedral, then $q=p=|\mathfrak{H}_{q}|$ and $\alpha(\mathfrak{H}_{p})$

is even.
PROOF. Assume by way of contradiction that $q\neq p$ . Let $\mathfrak{H}_{q}^{\prime}$ be a sub-

group of $\mathfrak{H}_{q}$ of order $q$ . If all involutions are conjugate, we may assume that
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$\langle \mathfrak{H}_{q}^{\prime}, I\tau\rangle$ is abelian. Since $\langle \mathfrak{H}_{q}^{\prime}, \tau\rangle$ is dihedral and $q\neq p,$ $\alpha(\langle \mathfrak{H}_{q}^{\prime}, I\tau\rangle)=1$ .
Thus $q$ is a factor of $i-1$ . Since $\tau$ normalizes $\langle \mathfrak{H}_{q}^{\prime}, I\tau\rangle,$ $\Im(\langle \mathfrak{H}_{q}^{\prime}, I_{T}\rangle)$ is con-
tained in $\Im(\tau)$ . Therefore $\alpha(\langle \mathfrak{H}_{q}^{\prime}, I\tau, \tau\rangle)=1$ and $\langle \mathfrak{H}_{q}^{\prime}, \tau\rangle\chi_{1}(I\tau)$ is a complement
of a Frobenius subgroup of $\chi(I\tau)$ . By a property of Frobenius groups
$\langle \mathfrak{H}_{q}^{\prime}, \tau\rangle\chi_{1}(I\tau)$ must be cyclic. Since it is isomorphic to $\langle \mathfrak{H}_{q}^{\prime}, \tau\rangle,$ $\langle \mathfrak{H}_{q}^{\prime}, \tau\rangle$ must
be cyclic, which is a contradiction. Thus $q=p$ . In the same way as in the
proof of Lemma 7, $\mathfrak{H}_{p}=\mathfrak{H}_{p}^{\prime}$ . Since $\alpha(\langle \mathfrak{H}_{p}, I\tau\rangle)=0$ and $I(\mathfrak{H}_{p})^{I\tau}=I(\mathfrak{H}_{p}),$ $\alpha(\mathfrak{H}_{p})$ is
even.

COROLLARY 9. If every involution is conjugate to $\tau$ , then $d=(1+p)d^{\prime}$ ,
where $d^{\prime}=[C_{\mathfrak{H}}(\tau):C_{\mathfrak{H}}(\langle\tau, I\rangle)]$ and $\gamma=p$ .

PROOF. Since $\tau$ is not contained in the center of $\mathfrak{G}_{1,2}$ , there exists a
Sylow q-subgroup $\mathfrak{H}_{q}$ such that $\langle \mathfrak{H}_{q}, \tau\rangle$ is dihedral. By Lemma 8 if $\langle \mathfrak{H}_{q}, \tau\rangle$

is dihedral, then $q=p=|\mathfrak{H}_{q}|$ . Thus $\gamma=[\mathfrak{H}:C_{\mathfrak{H}}(\tau)]=p$ . Since $\langle \mathfrak{H}_{p}, \tau\rangle$ is
dihedral, we may assume that $\langle \mathfrak{H}_{p}, I\rangle$ is dihedral. Let $\mathfrak{H}_{r}^{\prime}$ be a Sylow r-
subgroup of $C_{\mathfrak{H}}(I)$ . Then $\langle \mathfrak{H}_{r}, I\rangle$ is abelian since $\mathfrak{H}_{r}^{\prime}$ and $\mathfrak{H}_{r}$ are conjugate
by an element of $C_{\mathfrak{H}}(I)$ , and $\langle \mathfrak{H}_{r}, \tau\rangle$ is also abelian. Thus $[\mathfrak{H}:C_{\mathfrak{H}}(I)]=$

$p[C_{\mathfrak{H}}(\tau):C_{\mathfrak{H}}(\langle I, \tau\rangle)]=pd^{\prime}$ . Similarly $[\mathfrak{H}:C_{\mathfrak{H}}(I\tau)]=d^{\gamma}$ .
COROLLARY 10. If $\alpha(I)=1$ , then $\gamma$ is a factor of $ P\beta$ .
LEMMA 11. If $\langle \mathfrak{H}_{q}, I\rangle$ or $\langle \mathfrak{H}_{q}, \tau\rangle$ is dihedral for $q\neq p$ , then $\langle \mathfrak{H}_{q}, \mathfrak{H}_{p}\rangle$ is

abelian.
PROOF. Assume $\langle \mathfrak{H}_{q}, I\rangle$ is dihedral. If $q<p$ , then \langle I, $\mathfrak{H}_{q}\rangle$ is contained

in $N_{\mathfrak{G}}(\mathfrak{H}_{p})$ . Since $N_{\mathfrak{G}}(\mathfrak{H}_{p})/C_{\mathfrak{G}}(\mathfrak{H}_{p})$ is cyclic, $\langle \mathfrak{H}_{q}, \mathfrak{H}_{p}\rangle$ is abelian. If $q>p$ , then
\langle I, $\mathfrak{H}_{p}\rangle$ is contained in $N_{\mathfrak{G}}(\mathfrak{H}_{q})$ . Thus $\langle \mathfrak{H}_{q}, \mathfrak{H}_{p}\rangle$ is abelian.

LEMMA 12. $i=p=3$ and $\alpha(\mathfrak{H}_{p})=2$ .
PROOF. If $\alpha(I)=1$ , then $\alpha(I\tau)=i$ and $\langle \mathfrak{H}_{p}, I\rangle$ is dihedral by Lemma 7.

If $\alpha(I)=\alpha(I\tau)=i$, then we may assume that $\langle \mathfrak{H}_{p}, I\rangle$ is dihedral. Since $C_{\mathfrak{G}}(I\tau)$

is conjugate to $C_{\mathfrak{G}}(\tau)$ and it contains $\mathfrak{H}_{p},$ $C_{\mathfrak{G}}(\tau)$ contains a subgroup of order
$p$ which is conjugate to $\mathfrak{H}_{p}$ . Let $\mathfrak{R}$ be a normal subgroup of $C_{\mathfrak{G}}(\tau)$ containing
$\chi_{1}(\tau)$ such that $\mathfrak{R}/\chi_{1}(\tau)$ is a regular normal subgroup of $\chi(\tau)$ of order $i$ . Since
Sylow 2-subgroup of $\mathfrak{N}$ is cyclic, $\mathfrak{R}$ has a normal 2-complement, which is
normalized by $I$. Let $\mathfrak{P}$ be a Sylow $p$-subgroup of $C_{\mathfrak{G}}(\tau)$ which is invariant
by $I$ and let $\mathfrak{P}^{\prime}$ be a subgroup of $\mathfrak{P}$ of order $p$ which is conjugate to $\mathfrak{H}_{p}$ .
Then $\mathfrak{P}x_{1}(\tau)$ is a regular normal subgroup of $\chi(\tau)$ .

(1) $\mathfrak{P}$ is normal in $\mathfrak{P}x_{1}(\tau)$ .
PROOF. Let $\mathfrak{H}_{q}^{\prime}$ be a Sylow q-subgroup of $\chi_{1}(\tau)$ contained in $\mathfrak{H}_{q}$ . We may

assume that by the Frattini argument $\mathfrak{P}$ is contained in $N_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})$ . We shall
prove that $\mathfrak{P}$ is contained in $C_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})$ . Since $C_{\mathfrak{G}}(\tau)=x_{1}(\tau)(N_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})\cap C_{\mathfrak{G}}(\tau)),$ $N_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})$

$\cap C_{\mathfrak{G}}(\tau)$ acts doubly transitively on $\Im(\tau)$ and hence so does $N_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})\cap C_{\mathfrak{G}}(\tau)$

$\cap N_{\mathfrak{G}}(\mathfrak{P})$ . Thus $N_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})\cap C_{\mathfrak{G}_{1}}(\tau)\cap N_{\mathfrak{G}}(\mathfrak{P})$ acts transitively on $\mathfrak{P}-\{1\}$ . Assume
that $\mathfrak{P}$ is not contained in $C_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})$ . Since $Aut(\mathfrak{H}_{q}^{\prime})$ is cyclic, $i=p$ and it is a
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factor of $q-1$ . If $\langle \mathfrak{H}_{q}^{\prime}, 1\rangle$ is dihedral, then $\langle \mathfrak{H}_{q}^{\prime}, \mathfrak{P}\rangle$ must be abelian since
$\langle \mathfrak{P}, \Im\rangle$ is dihedral and Aut $(\mathfrak{H}_{q}^{\prime})$ is cyclic. Thus $\langle \mathfrak{H}_{q}^{\prime}, I\rangle$ is abelian and so is
$\langle \mathfrak{H}_{q}^{\prime}, I\tau\rangle$ . If $\Im(\mathfrak{H}_{q}^{\prime})=\Im(\tau)$ , then $q$ is a factor of $i-1$ since $ I\tau$ is conjugate to
$\tau$ . This is a contradiction and $\Im(\tau)$ is a proper subset of $\Im(\mathfrak{H}_{q}^{\prime})$ . Since $p<q$ ,
$\mathfrak{H}_{p}$ is contained in $N_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})$ . If $\chi_{1}(\mathfrak{H}_{q}^{\prime})$ contains $\mathfrak{H}_{p}$ , then $\Im(\langle \mathfrak{H}_{p}, \tau\rangle)=\Im(\tau)$ . Since
$\Im(\mathfrak{H}_{p})^{\tau}=\Im(\mathfrak{H}_{p}),$ $\alpha(\mathfrak{H}_{p})$ is odd. On the other hand, $\alpha(\mathfrak{H}_{p})$ is even by Lemma 8
since $\langle H_{p}, \tau\rangle$ and $\langle H_{p}, I\rangle$ are dihedral. Thus $\mathfrak{H}_{p}$ is not contained in $\chi_{1}(\mathfrak{H}_{q}^{\prime})$ .
Thus $\chi(\mathfrak{H}_{q}^{\prime})_{1,2}$ contains a dihedral subgroup $\langle\tau, \mathfrak{H}_{p}\rangle\chi_{1}(\mathfrak{H}_{q}^{\prime})$ . Thus $\chi(\mathfrak{H}_{q}^{\prime})$ is a
doubly transitive permutation group on $\Im(\mathfrak{H}_{q}^{\prime})$ in which the stabilizer of two
points contains at least two involutions. Since $N_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})\cap C_{\mathfrak{G}}(\tau)$ acts doubly
transitively on $\Im(\tau)$ and $(N_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})\cap C_{\mathfrak{G}}(\tau))\chi_{1}(\tau)/\chi_{1}(\tau)=x(\tau),$ $\chi(\mathfrak{H}_{q}^{\prime})$ satisfies the
conditions in Theorem. By the inductive hypothesis $\chi(\mathfrak{H}_{q}^{\prime})$ is isomorphic to
one of $S_{5}$ and $PSL(2,11)$ or contains a regular normal subgroup. Since \langle I, $\mathfrak{H}_{q}^{\prime}\rangle$

is abelian and $|\chi_{1}(\mathfrak{H}_{q}^{\prime})|$ is not divisible by $p,$ $C_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})\chi_{1}(\mathfrak{H}_{q}^{\prime})$ is a proper subgroup
of $\chi(\mathfrak{H}_{q}^{\prime})$ . Thus $\chi(\mathfrak{H}_{q}^{\prime})$ contains a regular normal subgroup, which is contained
in $C_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})\chi_{1}(\mathfrak{H}_{q}^{\prime})$ . Let $\tilde{\mathfrak{P}}$ be a Sylow $p$-subgroup of $C_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})$ . Since $|\mathfrak{H}_{p}|=P$ and
$\langle \mathfrak{P}, \mathfrak{H}_{q}^{\prime}\rangle$ is non abelian, $\tilde{\mathfrak{P}}$ is isomorphic to a regular normal subgroup of $x(\mathfrak{H}_{q}^{\prime})$ .
By the Frattini argument $\tau$ normalizes $\tilde{\mathfrak{P}}$ . Since $\alpha(\langle\tau, \mathfrak{H}_{q}^{\prime}\rangle)=i$ , we may
assume that $\tilde{\mathfrak{P}}$ contains $\mathfrak{P}$ , which is a contradiction. Therefore $|C_{\mathfrak{G}}(\mathfrak{H}_{q}^{\prime})\cap \mathfrak{P}\chi_{1}(\tau)|$

is divisible by $i$ . By the Burnside’s splitting theorem $\mathfrak{P}$ is normal in $\mathfrak{P}x_{1}(\tau)$ .
From (1) $\mathfrak{P}$ is normal in $C_{\mathfrak{G}}(\tau)$ . Since $C_{\mathfrak{G}_{1}}(\tau)$ acts transitively on $\mathfrak{P}-\{1\}$ ,

$[C_{\mathfrak{G}_{1}}(\tau):N_{\mathfrak{G}}(\mathfrak{P}^{\prime})\cap C_{\mathfrak{G}_{1}}(\tau)]=(i-1)/(p-1)$ . And $[N_{\mathfrak{G}}(\mathfrak{P}^{\prime})\cap C_{\mathfrak{G}_{1}}(\tau):C_{\mathfrak{G}}(\mathfrak{P}^{\prime})\cap C_{\mathfrak{G}_{1}}(\tau)]$

$=p-1$ . Next we shall study $|C_{\mathfrak{G}}(\mathfrak{P}^{\prime})|$ .
(2) Let $\mathfrak{S}$ be a Sylow 2-subgroup of $C_{\mathfrak{G}}(\mathfrak{P}^{\prime})$ containing $\tau$ . Then $\mathfrak{S}$ is

conjugate to $\mathfrak{K}$ and $[C_{\mathfrak{G}}(\mathfrak{P}^{\prime}) : C_{\mathfrak{G}}(\mathfrak{P}^{\prime})\cap C_{\mathfrak{G}}(\tau)]$ is odd.
PROOF. Since $n$ is odd, $\Im(\mathfrak{S})$ is non empty. Since $\Im(\mathfrak{S})$ is contained in

$\Im(\tau)$ and $\alpha(\langle\tau, \mathfrak{P}^{\prime}\rangle)=0,$ $\alpha(\mathfrak{S})\geqq p$ . Thus $\mathfrak{S}$ is conjugate to $\mathfrak{K}$ .
(3) Let $\mathfrak{Q}^{\prime}$ be a Sylow q-subgroup of $C_{\mathfrak{G}}(\mathfrak{P}^{\prime})$ . If $\alpha(\mathfrak{Q}^{\prime})\geqq 1$ , then $\alpha(\mathfrak{Q}^{\prime})\geqq 2$ .
PROOF. From (2) $C_{\mathfrak{G}}(\mathfrak{P}^{\prime})$ has a normal 2-complement. Therefore it may

be assumed that $\tau$ normalizes $\mathfrak{Q}^{\prime}$ . If $\Im(\mathfrak{Q}^{\prime})\cap\Im(\tau)$ is non empty, then $\alpha(\langle \mathfrak{Q}^{\prime}, \tau\rangle)$

$\geqq p$ . If $\Im(\mathfrak{Q}^{\prime})\cap\Im(\tau)$ is empty, then $\alpha(\mathfrak{Q}^{\prime})\geqq 2$ since $\Im(\mathfrak{Q}^{\prime})^{\tau}=\Im(\mathfrak{Q}^{J})$ .
(4) $\alpha(\mathfrak{P}^{\prime})$ is divisible by $p-1$ .
PROOF. Let $q$ be a prime factor of $p-1$ . By Corollary 9 and 10, $i-1$ is

a factor of $n-1$ and so is $p-1$ . Let $\mathfrak{Q}$ be a Sylow q-subgroup of $N_{\mathfrak{G}}(\mathfrak{P}^{\prime})$

containing a Sylow q-subgroup $\mathfrak{Q}^{\prime}$ of $C_{\mathfrak{G}}(\mathfrak{P}^{\prime})$ . Then $\alpha(\mathfrak{Q})=1$ and $\alpha(\mathfrak{Q}^{\prime})\geqq 2$

from (3). If $|\mathfrak{G}_{1,2}|$ is not divisible by $q$ , then $\mathfrak{Q}^{\prime}=1$ and it may be assumed
that $\mathfrak{Q}$ is contained in $C_{\mathfrak{G}_{1}}(\tau)\cap N_{\mathfrak{G}}(\mathfrak{P}^{\prime})$ . Thus every element $(\neq 1)$ of $\mathfrak{Q}$ fixes
only the point 1 and hence $|\mathfrak{Q}|$ is a factor of $\alpha(\mathfrak{P}^{\prime})$ . Next assume $\mathfrak{H}_{q}\neq 1$ .
If $\langle \mathfrak{H}_{q}, \tau\rangle$ is abelian, then it may be assumed that $\mathfrak{H}_{q}$ is contained in $C_{Q}(\mathfrak{P}^{\prime})$

since $\chi(\tau)$ contains a regular normal subgroup and $\mathfrak{P}$ is normal in $C_{\mathfrak{G}}(\tau)$ by
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(1). If $\langle \mathfrak{H}_{q}, \tau\rangle$ is dihedral, then $\langle \mathfrak{H}_{q}. \mathfrak{H}_{p}\rangle$ is abelian by Lemma 11. Since $\mathfrak{P}^{\prime}$

is conjugate to $\mathfrak{H}_{p},$
$\mathfrak{Q}^{\prime}$ is conjugate to $\mathfrak{H}_{q}$ . Since $N_{\mathfrak{G}}(\mathfrak{P}^{\prime})/C_{\mathfrak{G}}(\mathfrak{P}^{\prime})$ is cyclic, by

the Frattini argument $\tau$ is contained in $N_{\mathfrak{G}}(\mathfrak{Q})$ . If $q$ is a factor of $\alpha(\mathfrak{P}^{\prime})-1$ ,

then $\alpha(\langle \mathfrak{Q}, \mathfrak{P}^{\prime}\rangle)\geqq 1$ . Since $\alpha(\langle\tau, \mathfrak{P}^{\prime}\rangle)=0,$ $\alpha(\langle \mathfrak{Q};\mathfrak{P}^{\prime}\rangle)\geqq 2$ and $|\mathfrak{Q}|$ must be a
factor of $|\mathfrak{H}_{q}|$ , which is a contradiction and hence $q$ is a factor of $\alpha(\mathfrak{P}^{\prime})$ .
Thus $[\mathfrak{Q}:\mathfrak{Q}^{\prime}]$ is a factor of $\alpha(\mathfrak{P}^{\prime})$ . This proves (4).

(5) $i=p=3$ and $\alpha(\mathfrak{H}_{p})=2$ .
PROOF. $\chi(\mathfrak{P}^{\prime})$ is a doubly transitive group of degree $\alpha(\mathfrak{P}^{\prime})$ . Let $r$ be a

prime factor of $\alpha(\mathfrak{P}^{\prime})-1$ . Let $\mathfrak{R}$ be a Sylow r-subgroup of $N_{\mathfrak{G}}(\mathfrak{P}^{\prime})$ . Then
$\alpha(\Re)\geqq 1$ . From (4) $\Re iscontainedinC_{\mathfrak{G}}(\mathfrak{P}^{\prime})$ . From (3) $\alpha(\Re)\geqq 2$ . Thus $\alpha(\mathfrak{P}^{\prime})-1$

$=1$ and $\alpha(\mathfrak{P}^{\prime})=2$ . From (4) $p-1$ is a factor of $\alpha(\mathfrak{P}^{\prime})=2$ . Thus $p=3$ . Since
$\alpha(\mathfrak{P}^{\prime})=2,$ $\mathfrak{P}$ is a subgroup of $x_{1}(\mathfrak{P}^{\prime})$ . Thus $\mathfrak{P}=\mathfrak{P}^{\prime}$ and $i=3$ .

COROLLARY 13. $\mathfrak{K}=\langle\tau\rangle$ .
PROOF. Since $\mathfrak{K}$ is contained in $N_{\mathfrak{G}}(\mathfrak{H}_{p})$ and $\langle \mathfrak{H}_{p}, \tau\rangle$ is dihedral, $\mathfrak{K}=\langle\tau\rangle$ .
LEMMA 14. If $\mathfrak{G}$ has one class of involutions, then $\mathfrak{G}$ is isomorphic to

$PSL(2,11)$ with $n=11$ .
PROOF. The lemma follows from Theorem 1 and Corollary 13.
LEMMA 15. If $\mathfrak{G}$ has two classes of involutions, then $\mathfrak{G}$ is isomorphic to

$S_{5}$ with $n=5$ .
PROOF. Assume that $\langle \mathfrak{H}_{q}, \tau\rangle$ is abelian and $\langle \mathfrak{H}_{q}, I\rangle$ is dihedral. If $\Im(\tau)$

does not contain $\Im(\mathfrak{H}_{q})$ , then there exist points $a$ and $b$ in $\Im(\mathfrak{H}_{q})$ such that
$a^{\tau}=b$ . Let $\eta$ be an involution of $N_{\mathfrak{G}}(\mathfrak{H}_{q})\cap \mathfrak{G}_{a,b}$ which is commutative with $\tau$ .
Then $\alpha(\tau\eta)=1$ and $\langle\tau\eta, \mathfrak{H}_{q}\rangle$ is abelian, which is a contradiction. Therefore
$\alpha(\mathfrak{H}_{q})=3$ . Since $\mathfrak{P}$ is normal in $C_{\mathfrak{G}}(\tau)$ , $\Im(\mathfrak{P})^{\mathfrak{H}_{q}}=\Im(\mathfrak{P})$ . Since $\alpha(\mathfrak{P})=2$ and
$\alpha(\langle \mathfrak{H}_{q}, \mathfrak{P}\rangle)=0,$ $\mathfrak{H}_{q}=1$ . Thus $\gamma=p\beta$ and $n=i\{\beta(i-1)+\gamma\}/\gamma=5$ . This proves
the lemma.

This completes a proof of Theorem.

Hokkaido University
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