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§0. Introduction.

The purpose of this paper is to expose a general approach to the study
of a measurable flow on a standard space with a probability measure.

For a given measurable flow 9 we introduce the group ¢ of bimeasurable
transformations which transform the orbits of the flow Z onto another orbits;
we call such a transformation in € an orbit-preserving transformation. Such
group is related with many problems in the theory of flow. An orbit-
preserving transformation yields a new flow, say a time changed flow of I
which is metrically isomorphic to the flow Z. In this sense, such group &
makes the flow I invariant and gives us informations about the geometry of
trajectories of 4. Moreover the group ¢ determines the subfamily of time
change functions by which the time changed flows of 4 are metrically iso-
morphic to &.

The notion of time change of flow was introduced by E. Hopf [2], and
is extensively studied by G. Maruyama [5] and H. Totoki [9]. Our approach
is different from them in the point of view of global analysis; for example,
we ask in what class of flows the given flow < is typical one.

Our method is worked by appealing to a cohomologous class of (one-)
cocycles of the group &; the notion of additive functionals of a flow which
was introduced by G. Maruyama is just cocycle of the group ¢ with respect
to the additive group R of real numbers, and a time change function of flow
is an inverse function in time variable of an additive functional, although our
definition of time change functions is slightly different from his. These
notions are defined in the sections 2 and 3.

The group ¢ contains important subgroups. As one of them we are
concerned with the subgroup &; in the sections 3.3 and 3.4. The group &,
consists of all transformations which transform each orbit of g onto itself.
This group &, is related with, for example, the time change of an analytic
flow defined by a differential equation on the 2-dimensional torus which was
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treated by I. Arnold and A. Kolmogorov [11]. In the section 3.3, we
extend their results by our method.

The group & also contains a subgroup 4. A transformation ¢ € ¢ belongs
to A, if ¢ is an automorphism and the function 7,= 7,(f, w) defined by

GT;(I—la) - T,-a(t,,,,)(b y w < Q
satisfies admissible condition ;
7, =17,(t, w) is differentiable at t=0.

In terminology of Ya. G. Sinai [8], the flow & is a transversal flow of o€ A4,
which was successfully introduced by him to investigate an automorphism ¢
(or flow). On the while, our object of study is not ¢ but the very flow .
Thus, in this sense, our approach is dual to that of Ya. G. Sinai.

The structures of groups A is related with the value of the entropy of
the flow 9. In the section 4.1, we show that if the entropy of I, (<) is
positive finite, the group A consists of orbit-preserving automorphisms which
commute with all 7, t e (—o0, o0). In other section of 4 we study the er-
godicity and spectrum of I appealing to the structure of the group A and A.

I am greatly indebted to the referee for the improvements on this paper.

§1. Preliminaries.

Some notions used in this work are a little different from usual ones in
ergodic theory.

Throughout this paper (2, ®B, P) is a standard space, where P is a prob-
ability (Radon) measure on 2.

Two spaces (22, B, P) and (2°, B°, P° are isomorphic if there exists a
bimeasurable mapping 6 from £ onto £2° such that P°(@E)=P(E), E€®B.
An automorphism on £ is an 1—1 bimeasurable and measure-preserving trans-

formation on 2. We mean by a flow a 1-parameter group of automorphisms
on £.
A flow {T.} is said to be measurable if the following condition is satisfied ;

{(t, a)); Ttwe BE%} E%RX%,

where B, is the topological Borel field in R, the real line.

Throughout this paper, by a flow, we mean a measurable flow and we
denote it by o=(2,8B, P, T)).

Two flows T =(2,B, P, T,) and 9° = (£2°, B, P°, TY) are said to be (metrically)
isomorphic, if there exists an isomorphism ¢ from £ onto £° such that
0 ' T%w=T,w, a.e. w(dP) for all t= R, where the abbreviation a.e. w(dP)
means that an assertion foregoing to it hold for almost every o with respect
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to the measure P. A flow 9=(2,B, P, T,) is said to be ergodic, if an invariant
B-set E, i.e.,, T,E=EFE for all t< R, has measure 0 or 1.

Periodic point w of the flow g is an element of £ such that T,w =w for
some nonzero < R. Throughout this paper, we assume that the set of all
periodic points is a null set.

It is well known that an ergodic measurable flow 9 can be represented
by the special flow I*=(Q* B*, P* T¥). The special flow 9* can be con-
structed as follows. Let (£2° B° be a standard space with measure m, 6 be
a positive real valued Borel function on £° and let T be an automorphism
on (£2°,m). Let g be the Lebesgue measure on R. Let £2* be the set of all
pairs of points (p, ) with 0=<t=<6(p) and B* be the restriction of B*xXB, to
2% Put P*=mxpyu/N, where N is a normalizer, and define the l-parameter
group {7T#} by

( (T7p, t+u—257'60(T*p)) : i
for n>0 and X7 0(T*p) < t+u < 270(T*p)

T¥p, u)=¢ (p, t+u) for 0= u+t<O(p)

(T"p, t+u+270(T"*p))

L for n<0 and — 30T *p) <t+u= —-Z’é“‘&(T"‘p) .

Then I*= (2%, B*, P*, T¥) is a measurable flow.
Put F(p, u) =6(p) and G(p, v) =wu, and then F and G are measurable func-
tions on Q*.

§ 2. The orbit-preserving transformation group.

Suppose we are given a measurable flow I=(2,%8, P, T;) on a standard
space (2,B) with a probability measure P. Throughout this paper, we assume
that the set of all periodic points of 4 is a null set. Concerning this flow
g, we wish to introduce groups of bimeasurable transformations on (£, B),
which make the flow & invariant in the following sense.

DEFINITION 2.1. Let O, be the orbit of « under the flow 4,

Op={Tiw; —c0<t<oo}.

Let ¢ be a bimeasurable point transformation on £ which transforms every
orbit onto another orbit;

a(0,) = Oy o, ne . 2.1)
We say such mapping o is orbit-preserving transformation and we denote by &

the set of all orbit-preserving transformations on 2. Clearly, ¢ forms a group
under the ordinary multiplication.
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We identify o, with o, € &, if the measure of the set {w e 2; 0,0 # 0,0}
is zero. This identification is an equivalence relation which is compatible
with respect to the group operation.

If no confusion is likely to occur, we use the notation ¢ for the quotient
group of ¢ with respect to the above equivalence relation.

The group ¢ contains some subgroups which play an important role in
the study of the flow 9. We shall give the definitions of them.

DEFINITION 2.2. A transformation ¢ ¢ is said to be strictly orbit-
preserving, if o transforms every orbit onto itself; ¢(0,) =0, We denote
by &, the subgroup of all strictly orbit-preserving transformations on £.

By C we mean the set of all transformations commuting with every T;.
The set C also makes a subgroup of &. '

Let A and A, be the intersection of ¢ and &; with the set of all auto-
morphisms on 2, respectively. They also form subgroups of ¢. We use
sometimes the notion 4 for the group {7T.}.

We can easily see that all the groups introduced above are metrical in-
variants of the flow. Suppose that a flow I°=(2° B°, P° TY) is isomorphic
to the flow 9 with respect to an isomorphism #. Then the group ¢ is iso-
morphic to the group ¢° with respect to the isomorphism 6, where &° is the
orbit-preserving group associated with the flow Z°. This situation is same
to any other groups introduced above.

PROPOSITION 2.1. The groups G, @s;, A, W, and C are metrical invariants of
the flow 4.

Note that the equivalence relation ~ in & defined by € which will be
introduced in the next section is also preserved by the isomorphism 6.

§3. The group ¢ and the time change functions.
3.1. The time change functions of the flow <.

The group & is closely related with the time change functions of the
flow 4. The notion of time change function of a flow was introduced by G.
Maruyama [5], from which ours is slightly different (refer also to H. Totoki
[9D.

DEFINITION 3.1. A time change function 7 =z(t, ®) of the flow 9 is a real
valued function defined on R which satisfies the followings;

(1) z(t, w) is a finite valued and 1—1 mapping from R onto itself for a. e. w.

@) @+s, w) =, @)+ (s, Tew,wyw) for a.e. w.

B) (0, w)=0 a.e. .

The set of all time change functions of the flow 9 is denoted by F.
When a time change function z(f{, ) is Borel measurable in ({, ) we say 7 is
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a measurable time change function.

Now we shall'consider the relation between ¢ and F. Since any trans-
formationto € & is orbit-preserving, there corresponds to ¢ a function 7,(¢, ®)
by the relation

0T07 '@ =Tryt,» a.e . 3.D)

To prove the measurability of 7z, o< &, we identify the flow & with the
special flow I*=(02* B* P* T}) of T and we regard the group € and the
functions = = 7(f, @) as ones associated with the flow g*. Let £, be the basic
space, 6 be the ceiling function and T be the basic automorphism. Let
G(p, xX) =x and F(p, x) =60(p), then G and F are Borel measurable. Let o< 4.
We define the mappings (p, ) = R[(p, t); o] and (p, ) > L[(p, 1); 0] from £*
. into 2, and from 2* into R, respectively by

o(p, ) =(R[(p, ); o], LL(p, ) ; 0]).

Since o is orbit-preserving, for each (p, f), there corresponds an integer k&
such that R[(p, t); c]1=T*p. We define

K[(p,D); c1=F.
LEMMA 3.1.1. The functions R[-; o], L[-; 0] and K[- ;o] are measurable

for any o= Q.
PrOOF. For any measurable subset M C £2,, the subsets

M*={(p, )y 2*; pc M}
and
M*(a, b)y=A{(p, D); a=G(p, t) <b} N M*
are measurable. Since the set {(p, ); R[(p, t); 0] M} =06"'(M*) is measur-
able, R[-; o] is measurable. The measurability of L[-; ¢] is deduced from
the equation L[(p, ); 01=G(a(p, )). Let {{,} be the sequence of measurable
partitions of £, which satisfies the followings
1) Cn Te
2) for any different points p, ¢ = £2,, there exists a partition {, which
separates p and ¢, namely there exists M={, such that p M and ¢E M.
We denote the set {(p, ©); K(p, H)=Fk} by E;. Suppose (p,H) e E,. Then for
any n there exists M, €, such that T*p=R[(p, t); 0] = M, and hence (p, )
e (T *My)*. Thus

EkCQMgc ({RL(p, t); a1 € M} N(TFM)¥).

Conversely, let (p, D e "NV {R(p, V); o0l M} \(T"*M)*). Then there exists
a set M,e{, such that R[(p, 1); 0] M, and (p, t) (T *M,)* for any n.
Hence R[(p, 1); 6]1=TF%p; if not, there exists a partition {, which separates
RI(p, O); o] and T*p. It follows
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Ec=( Y (R, 0; 01e M) N(T*M)"),

and therefore E, is the measurable set.

THEOREM 3.1.1. 1) 7,=1,(t, w) is the measurable time change function of
q for any o< Q.

2)  Taa(t, ®) =14,(z4,(t, 07'w), ®) a.e. w(dP).
PRrROOF. Since the flow 9* is measurable, the mappings ((p, 1), s)—
R{(p, t); T¥] and ((p, 1), s)— L[(p, t); T¥] are measurable. Let

JE19(TD) k=1

, —346(Tp)  k=-—-1.
Putting

g(p, )=LL(p, 1); 07" ]+s—O(R[(p, t); o7, L[(p, V); 67']),
we get

oTFo™'(p, 1)

=o((T*R(p, 1); 07*], LI(p, 1) ; 0™ ]+s—O(RI(p, O); 07*], LL(p, t); 0*1))
= (RI(T*RI(p, B); 0], &P, 1) ; 61, LL(T*RI(p, D); 07'], guld, 1)) ; 0T,
when
O(R(p, 1); 071, LL(p, 1) ; 07 ') = L[(p, ) ; 67']+s

<O, (RI(P, O); 0717, LI(p, 1) ; 071]).
On the while,

oT¥o ' (p, ) =T ¥,is,cp,05(P5 1)
= (T, t+z.(s, (p, ))—6))
when 6; < t+7,(s, (p, 1)) <O,4,. It follows
RU(T*R{(p, t); 07], gu(p, 1)) ; 01=T'P
LIU(T*RI(p, ©); 0], &(p, 1) ; 0] =1t+74(s, (p, )—6,

Put K(p, t, s)=K[(p, t); T¥] and E,={{(p, V), s); K(p, t, s)=Fk}. The similar
considerations to the above lemma lead us to the equality

Ee=0\ (b, 0, 9); RI(p, 0); TEI& M, (p, 1) = (T-*M)*} ,

(3.1.2)

and hence K(p,t, s) is measurable. Put J(p, ¢, s) =j if (p, ¢, s) satisfies (3.1.2).
Then

{J(D, t, 5)=J, K(p, t, s) =k} ={K(p, t, s) =k}
KNQM\L:JC {(RCT*RI(p, ); 07'], 8ulp, 1, )] E M, (p, 1) € (T-IM)*}
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and therefore the set {J(p,1t s)=7} =&kj {(J(p, t, )=7, K(p, t, sy=Fk} is the
measurable set. On the set {J(p, t, s) =J}, v, has the form

to(s, (9, D) = LLT*RL(p, t); 07*], &J+O(T*R(p, 1) ; 0' D —1

and hence 7, is measurable. Another properties of z, are easy to see and
we omit them.

Thus we have the mapping: ¢ —7, from & into F. Moreover the formula
3.1) gives us a time changed flow S,= (2, By, Q, S») of the flow I, where
Si0 =Tryi,0yw and Q(E)= P(¢7'E), E < By.

LEMMA 3.1.2. S,=(£, By, Q, S;) is a measurable flow which is metrically
isomorphic to the flow 4.

Conversely let r=1¢(f, w) = F be a measurable time change function and
define an automorphism S, by S,w=T¢,n®, ® € 2. Then we can easily see
that {S;} is a group of bimeasurable transformations such that S;.,=S.S;,
t, s R. Suppose that there exXists a bimeasurable transformation ¢ on £
such that

oT07'w=S,w, we 2.

Then, with respect to the probability measure Q(E)= P(¢7'FE), E < B,,
S=(£2, By, Q, S») becomes a measurable flow which is isomorphic to the flow
g, with respect to o. Clearly such transformation ¢ must be orbit-preserving
and z(t, w)=1,(t, w) a.e. w(dP). We denote by F(¢Q) the family of all z,=z,(t, w),
o € @ which are classified mod 0.

Note that the mapping: ¢ —7, is not bijection. We say that two trans-
formations ¢, and g, (€ @) are equivalent if o;'0,=C and denote o,~0,. It is
trivial to see that the relation ~ is an equivalence relation. Denote by &/~
the quotient space of ¢ with respect to the above relation ~, and by [o] the
equivalence class with representative c= ¢. From the relation o,~0,, it
follows 7,, =74, a.e. w, because of the followings;

_ -1, __ - -1
T,ﬂ(c,a,)a) = O'ITta'l 1&) = 0,0, lo'tha'l @
=0,T05'0,07'w = 0,T07'w
= Trqz(t,w)w .

Thus we see that the mapping: ¢/~ 2 [d]— 1, F(Q) is a bijection. In the
section 3.3, we shall give some results about the characterization of time
change function in F(g,).

Summing up the above discussions, we obtain

PROPOSITION 3.1.1. The element [o] € @/~ induces the time changed flow
Stey=(£2, B, Q, S) which is isomorphic to the flow I via the time change func-
tion 7z, F(G). Moreover the mapping @/~ 2 [o]— 1. F(Q) is a bijection.
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There exists a flow I such that F contains a time change function which
does not come from the group ¢. For example, let 9 be a flow with discrete
spectrum. Then there exists always a time changed flow S with continuous
spectrum, so that S is not isomorphic to 9 and the time change function
does not belong to F(g).

3.2. The cohomology H'(9, R) and time change functions.

In this section, we discuss time change functions of the flow 9 and co-
cycles of the group {7,.}. At first, we shall give definitions of cocycles and
cohomology of a general dynamical system.

Let (X, B, #) be a measure space and & be a transformation group on X
such that p(gE)=0 if w(F)=0, E€ B, g=®. We say that a mapping ¢ from
®x X into a group 2 is a cocycle of the dynamical system (X, B, ¢, ) with
respect to the group 2, if ¢ satisfies the equation

©(8; 81, w)=¢(g), w)p(8,, £:0) a.e. w and for any g, 2,€8. (321

We denote by HY(®, X) the set of all cocycles of & Two cocycles ¢ and
¢ € H'(®, 3) are said to be homologous with respect to a coboundary h= h(w)
if there exists a function 2 =h(w) on X with values in 3 such that

o(g, w)h(w) = P(g, w)h(gw) a.e. . 3.2.2

As can be easily seen, the homologous relation is an equivalence relation.
The group of homologous classes of cocycles is called the cohomology of &
with respect to 2 and is denoted by H(S, 2).

Now we consider the dynamical system 9 = (£, Bg, P, T, and its co-
homology H*(Z, R). To each time change function r € F, we can construct
an additive functional in the following way. Let z=17({, w) be a time change
function. We define ¢ = ¢(u, ) the inverse function in u of r=7(¢, w) by

ou, w)=t, if z(t, ®)=u.

By Definition 3.1, ¢ is well defined on RX L.

LEMMA 3.2.1. The functional ¢ satisfies

a) ¢=¢u, w) is a finite valued 1—1 mapping from R onto itself for

a.e. w(dP)

b) ou+tv, )=, ®)+eWw, T,w) for a.e. w(dP)

c) ¢, w)=0 for a.e. w(dP).

PRrROOF. It is obvious to see a) and c¢). We shall show only b). Put
z(t, w) =u, (s, Tee,wy®) =V, and 7(t+s, w)=y. Then it follows

o(u+v, w) = o(y, ®)=t+s=pu, )+, T,w).
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We shall agree to say that the functional ¢ defined above is an additive
Sfunctional corresponding to a time change function z (cf. G. Maruyama [5]).

By the above lemma, an additive functional of the flow g is just a cocycle
in HY(Z, R) corresponding to a time change function, r = F. The additive
functional corresponding to a time change function z,= F(Q) enjoys special
properties; one of which is the following lemma and it will be used in the
section 3.3.

LEMMA 3.22. Let 7z, F(Q) and let ¢, ,= ¢, (4, w) be the additive func-
tional corresponding to z,.,=r7,.,(u, ®). Then

7o(t, ow) = ¢, _,(t, ®) a.e o,

so that z, is measurable if and only if ¢, , is measurable.
PrROOF. Let 7,.,(t, ) =wu and then ¢, ,(u, w)=1 It follows, 07'T,00=
Tfo._lu,w)w:Tuw. This implieS,

T

J— — -1 _
010,000 = 0Ty0 =0T ,07'00 = Tryu,00,00 .

This gives us the conclusion.

We shall give a sufficient condition for two cocycles ¢ and ¢ being
mutually homologous.

THEOREM 3.2.1. Suppose that two measurable cocycles ¢ and ¢ of the flow
I satisfy the condition

. 1S
— 00 <é§2 —S—fo Co(t, w)—¢(t, w)ldt < oo a.e .

Then ¢ and ¢ are homologous.
PROOF. Put

@) =lim [ "Tot, 0)— (e, 0)1dt

and
B={w; h(w) < oo} .

Then it follows T;BC B and for every w< B

H(T ) =1tim -3 "To(s, Tuo)—¢(s, Tuw)lds

=tlim ¢ Tp(t+s, @)=t )=+, )+¢(t @)ds

= h(w)—o(t, ®)+¢(t, w) .
Let 2= h(w) be a measurable extension of #=A(w). Then
o(t, 0)+ T w) = ¢(t, w)+h(w) a.e «.

The following is related to the converse problem of the previous theorem.



364 M. Kowaba

THEOREM 3.2.2. Suppose that a measurable cocycle ¢(t, w) is homologous
to ¢(t, w): '
o(t, 0)+h(Tw) =P, W) +h(w) a.e .

If h=h(w) is integrable, we get
S
—0 <L }gim~é—fo Lo(s, @)—¢(s, w)lds < oo a.e o.
PrROOF. We have
1 ¢S 1 ¢S
- L [op)—p@)Ids =5 | | [A(T )~ h(w)1ds

1 s
=5 NT,w)ds—h(w) .
(1}

with some integrable -invariant function h(w). This completes the proof.

3.3. A characterization of time change functions 7, & F(g,).

In this section, we shall give the geometrical interpretations of the pre-
vious discussions in 3.2.

We shall agree to say that a real valued measurable function f on £ is
admaissible if

Fo(t) = (Tw)+t—f(w)

is the one-one onto map on R for a.e. w.
THEOREM 3.3.1. Let f be a real valued function on 2. Then the trans-
formation o defined by

0w =T, we 2

is a strictly orbit-preserving transformation, namely o € @, if and only if f is
admissible with respect to the flow 4.

PrROOF. We shall show that ¢ is the onto mapping. Let £= 2 be an
arbitrary element. Then, for some element w €0¢ and some s € R, the element
¢ has a form §=T;w. We can find the time t< R such that

s=f(Tw)+t.
It follows
E = Tﬂnw)“w = Tf(Tw,,Tta) = oT,w .

To show that ¢ is 1—1, suppose ow=oc&. This implies Ty ww = Te)é-
Hence, by putting ¢ = f(w)—f(£), we obtain £ =T,w. It follows
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T =00 =06 =0Tw =Tyiruw® -

From this, it follows f(T,w)—f(w)+t=0. Since f is admissible, we get =0,
namely w=2_¢.

To prove the measurability of ¢, we identify the flow 9 with the special
representation 9* = (2%, B*, P*, T¥) of 4 and we regard the group &; and the
admissible function f as ones associated with g*. Let £, be the basic space,
@ be the ceiling function and T be the basic automorphism. Let G(p, x)=x
and F(p, x) =6(p). Then G(p, x) and F(p, x) are Borel measurable. Put

M*={(p, e Q*; pes M}, M is measurable set in 2,,
M+, by={(p, t); a=G(p, )y <b} N M*

and
2E19(T7p) k=1
O.u(p, )y=4 —250(T’p) k=—1
0 k=0.
We get

o~ (M*(a, b))
=UA, ;T ¥p, t+1(p, )—O(D)) € M*(a, b), O(p) = t+1(P, 1) < Orsi(D)}
=V LT MY* N {(p, ©); a < G(p, H+f(p, H—O(p, t) < b}

Since the right term is the measurable set and the family {M*(q, b); M < By,
(a, by R} generates B* o is measurable. Since o is a one-to-one onto meas-
urable transformation on the standard space, ¢~' has also the same properties.

Conversely we suppose c=G;. Recall the notations R[(p, 1); o], LL(p, 1); o]
and K[(p, t); o] defined in the Lemma 3.1.1. As shown in the Lemma 3.1.1, the
set E,={(p, t); K(p, t) =k} is measurable and £2*= \kj E,. Since the function
f has the form

f(P, t) - L[(P; t): a]+@k(p! t)+G(P, t) ’ (p; t) & Ek ’

Jf is measurable. This completes the proof.

Let 0 = G,. Since ow is in O,, we can find a time ¢t = R such that co =T,w.
Denote ¢t by f,(w). Moreover, to each o = G,, as was shown in 3.1, there cor-
responds a time change function z, € F(g,).

THEOREM 3.3.2. A time change function t,< F(G;) has the form;

Ta(t; 0'0)) :fa(TtW)—fg(w)+t . a.e. w,

where f, is admaissible.
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We denote by ¢, the ordinary time, namely, ¢, = ¢,(t, w) =t for any w < 2.
Note that ¢, is also a cocycle in H'(d, R). We, now, can give a condition for
a time change function z=17({, ®) of the flow 9 to be induced from a trans-
formation o € &G,.

THEOREM 3.3.3. Let = F and ¢ be the additive functional corresponding
to . Then t=r1(t, ) is induced from a transformation o< 4,, if ¢ =¢(u, w)
is homologous to the ordinary time @, = @,(t, w) =1t with respect to an admissible
coboundary function f, namely

o(t, w) = f(Tw)—flw)+t a.e w.

PROOF. Suppose ¢(t, w) = f(T,w)—f(w)+1t, where f is admissible. Then f
yields a transformation ¢ in G; and a time change function z,. By Theorem
3.3.2 and Lemma 3.2.2, we get

o(t, w) =1,(t, ow) = ¢, ,(t, ®) a.e. o,

where ¢,_, is the additive functional corresponding to the time change func-
tion z,_;. Hence it follows (¢, w) =7,-,(t, w), that is, ¢ € F(g,).

Combining the above theorem with Theorem 3.2.2, we get a sufficient
condition for r =7(¢, w) to be induced from ¢ = &,.

COROLLARY 3.3.1. If the additive functional ¢ of a time change function
T 1s measurable and satisfies

—oo < lim _11‘.3[ (t, w)—t]dt < o a.e
s~ S Jo P AR

then = =1t(t, w) is induced from a transformation ¢ G, and moreover the time
changed flow of I by t is metrically isomorphic to the flow g.

APPLICATION TO THE FLOW ON THE TORUS. As an application of the pre-
vious discussions, we shall consider the flow which was studied by A. Kolmo-
gorov and I. Arnold, and we shall give an extension of their result.

Let us consider the ergodic flow I =(M,, B, dxdy, T;) on the 2-dimensional
torus M, with the normalized Lebesgue measure dxdy, where B is the topo-
logical Borel field and 7' is defined by

Z? =1, —2{:7 (y is an irrational number).
Let K(x, y) be a real valued periodic function on R? with period 1 such

that
0< K(x, ) = C® (=3)

and
f D’ { OIK(x, Wdxdy=1.

Define the additive functional ¢ = ¢(t, x, ¥) by
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t
o, x, y) =f0 K(x+s, y+rs)ds.

Then we get the time changed flow S=WM,, B, Q, S;), where S; is defined by
dx 1 dy _ 1

dt — K(x,»)° dt — yK(x, )

and
dQ(x, y) = K(x, y)dxdy .

Now our problem reads as follows;
Are two flows 4 and S isomorphic?
Suppose that y satisfies an arithmetic condition such that there exist
positive numbers L and H (H < k—2) for which
L
MR o Xy 43D
holds for any integers m and n=.
Let
K(x’ y) - 2 cm,nQZﬂi<mx+nw

be the Fourier expansion of K(x, ). Then we get

(t, x, ) =t+ > < —eZEm:n—r)t—__L 2L (MIT4+1Y)
o (m.niF0,0 " 2ri(m—+ny)
and
i 1 g c .
1 Q- —t]dt= TR p2mEi(MIERY)
Sl—'rg S ‘fO [g) ] (m,7:,)2q&(o!o) 2r1 (m—i—nr)

We shall show that the right terms of the above equations are absolutely
convergent series.
We get the following estimation of the Fourier coefficients ¢y, :

k-1 k k | 0" 0*
25wt (m |+ n ¥ cm,n | = Max {Max —a;,;K, Max —ayka}.
Denoting the right term by M, we get

Gl S M2 T L ml 4 R

Let N(j) be a number of the lattice points (m, n) for which |m|+|n|=j.
Then

N =28+ =2 .
It follows

_emal M . k-H
(m,nf?e;o,c)) 2r|m4-ny| = 2kgkt (m,n)zﬁo,o)(lmI Finb)

< M e,
2 T j=1
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Since 0 < H< k—2, the right term converges.

By [Corollary 3.3.1, we conclude that the two flows < and S are isomorphic
with respect to a strictly orbit-preserving transformation.

THEOREM 3.34. Let T be the flow on the 2-dimensional torus M, defined by

dx/dt=1, dy/dt=17p

with the Lebesgue measure dxdy, and let S be the time changed flow of 9 defined
by

dx/dt=1/K(x, y), dy/dt =1/yK(x, )
with the measure dQ(x, y) = K(x, y)dxdy. Suppose 0 <K =C® and _”dedy: 1,

and let y be an irrational number for which there exist positive numbers L and
H (H<k—2) such that
L

|m+ny|> Tml+TnDE for any integers m and n.

Then the time changed flow S is isomorphic to the flow 9.

3.4. The cocycle f4 in H'(@,, R).

In this section, we are concerned with the cocycle f¢ of the group &,
with respect to R, which is determined by the flow 2. As was shown in 3.3,
to each o € &,, there corresponds a function f,=f,(®w) such that oo =T/ .
The family {f,; 0 € Z,} has the following property.

LEMMA 34.1.

fﬂzdl(w) = fal(w) +f¢12(0'1(!)) a.e w.
PROOF.

020,00 = Tfaz«u(d’)w = Tfaz(omn” 10 = Tfa;(w)'l‘faz(dlw)w .

Let us define a function on €,x 2 with values in R by fg(o, w) = f,(w),
we 2, o= g, Then it follows from the above lemma that the function
fa=/fa(o, w) is just a cocycle of the group &, with respect to R, namely,
fee H(G,, R). Let o = H'(Z, R) be a cocycle of the flow & corresponding
to § = G, and define a mapping ¢gofg from &,X £ into R by

(o0 f) (@, ®) = 4(falo, w), ®) .

PROPOSITION 34.1. ¢@gofg is a cocycle in H*(G,, R) and is homologous to fg.
Moreover if a cocycle g=g(o, w) s H(Z,, R) is homologous to the cocycle fo
with respect to an admissible coboundary h= h(w), then there exists a trans-
formation 0 € @, such that

| ]
psofe=g a.e.w, forany ogEg,.
PROOF.
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(Sﬁaofg)(azon w) = SDB(fQ’(UzUlv ), W)
= @p(falo,, »), )+ @o(fo(0,, 0,0), ng-(al,w)w)
= (pgo fa)(0,, W)+ (psofa)(0,, 0,0).
Since ¢y has the form ‘
wﬁ(t’ &)) :fg—l(Ttw) _fg—l(w>+t ’
replacing ¢ by fg(¢, ®) in the above formula, we get
(s ofa)(o, w)= fa-](ng(a,w)w) ‘_fg—l(w) +fg(o, w)
:fg—l(aw)—fg—1(w)+fg(a, w)
a.e. o for any 0 € @,. This means that ¢@sofg is homologous to fg with
respect to the coboundary f,-, and this proves the first assertion. Put fa =
Thoy®w, @< 2. Then 6=0"'cg, and @t, ) =hTw)—hw)+t a.e. w. It
follows
(SDaOfg) (0', (l)) - h(ng(a,w)w)_h(w) +f9(07 (l))
= h(ow)— h(w)~+ fg(o, ®)
=g(o, w) a.e. @.

We shall give a condition that a flow with the same trajectories as 4 is
isomorphic to the flow I. Let 75 €F(<;) and define (r08)(g, w) = 74(g (0, ®), W),
where g H'(g;, R).

THEOREM 34.1. Let S=(2,%B,Q,S:) be a time changed flow of I=
(2,8, P, T,) with respect to 8 =G,. Then fqg=rtpofs. Conversely if S is the
1-parameter group of bimeasurable transformations on (£2,B) with the same
trajectories as I and fq=rtg0fs with 0 € G, then S becomes a flow with the
measure Q(E)= P(@E), E€®B and is isomorphic to .

PROOF. Since

0T.0'w = S0,
PO E)=Q(E), EeB,
we get
gw = ng(,,,w)a) = stca,w)w = 0Tfs(g,w)0_1w = Tro(fs(a’w),w)ﬁ) ’
and then

fa(o, w) =(rg0fs)(o, ®) a.e. w, for any g€ G;.

Since fs(S;, w)=1 a.e. w, it is easy to see the converse statement.
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§4. The dynamical system (2, B, P, A).
4.1. The dynamical system (2, B, P, 1) and the entropy of the flow J.

Let F(A) be the set of all time change functions z,=7,({, ), 0 €%, each
of which has the nonzero derivative at t=0 for a.e. w. Let

A={oceN; t, € F(A)}.
If 0,, 0, A, we get

a102(L, a(Ta(t, 07'w), @) . oo(t, 07'®
lim 2(*-“.{’)%___ lim < 1(Tanl — ), @) lim - (4, o70)
t—0 t Tgo—0 Taz(ty 0, (l)) t—0 t
Since {=17,_,(7,(, ow), w),
. Tya(s, W) . ] ,,tf 7 ,_,,,_,1._._
l:r}g s T lzl—IE 7o(t, ow) 750, w) a.e @,

so that the set .4 forms a subgroup of 2. Since {T.} C A the dynamical
system A=(£,B, P, A) is an extension of the dynamical system <=
(2,8,P,T,).

We shall show the structure of <4 is related to the entropy of the flow 4.
In the following, we assume the flow is ergodic.

LEMMA 4.1.1 (Ya. G. Sinai [8]). Let I be an ergodic flow and let t, be a
measurable time change function of I with o A. Then we get

z.(t, w) = At a.e .

Using the above lemma we get
THEOREM 4.1.1. Suppose the entropy of the ergodic flow T is positive finite.
Then
A=UANC.

PROOF. Let S=(2,B, P,S;) be a time changed flow of the flow I by
Ts 0 = A. Since S; is P-measure invariant, we get

h(Ty) = h(S,) = h(Tz) = Ah(T)) .
This implies A=1. Hence it follows

oT, o' =S,0w=Tw,

namely, 6 €. Clearly ADANC. This completes the proof.

The following is a restatement of the above result.

COROLLARY 4.1.1. Suppose that the flow I is ergodic. If there exists an
automorphism o & A which does not commute with some T, & {T,}, then the
entropy h(I) of the flow T is zero or infinite.

It seems to me very interesting to show the converse assertion of the

Theorem 4.1.1,, but it is still open.
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As to the group A NG, we get
THEOREM 4.1.2. Let I be an ergodic flow. Then

{T}=AN4G,.
PROOF. Let o€ ANEG,. Then
74(t, 0w) = f(Tw)—f(w)-+t = At, a.e w.

Since & is ergodic, f, must be a constant, say f.(w)=c a.e. w. This implies
c=T, a.e. w.

There exist, in fact, ergodic flows such that 4 is not included in C.

EXAMPLE 1. Let A be an ergodic continuous group automorphism on the
2-dimensional torus M,. Then the eigenvalues of A are the irrational algebraic
numbers of degree 2; we identify the group automorphism A with the uni-
modular integral matrix associated with it. We denote one of them by 2 and
let (1,7) be the eigenvector of A with respect to 4. Put g:=(, yf) (mod 1).
Then the family {g;} is the 1-parameter subgroup of M,, and then the flow
defined by

T.g=g+g8, g€M,,

is ergodic and AT, A*=T;. Thus A= Jl and A does not commute with the
flow.

Notice that <4 contains all continuous group automorphisms which have
the proper direction (1, y).

Another example of the flow with zero entropy of which </ is not included
in C is the horocycle flow on the compact manifold with the constant negative
curvature. Moreover it is known the flow induced from a Brownian motion
has the infinite entropy and .4 is not included in C.

EXAMPLE 2. Until now we have discussed a flow with continuous time
parameter. The notions of orbit-preserving transformation groups and other
concepts introduced previously are available also to a flow with discrete
parameter, i.e.,, an automorphism.

In this example, concerning to Theorem 4.1.1, we wish to mention to
Bernoulli shift. This is the example of the dynamical system with positive
finite entropy for which A+ {T}}.

Let X={x, x,, -+, x,} be a set with a measure

b > 0 and zpk =1.
Let =(2,B, P, T) be a two sided Bernoulli shift defined in a usual manner,
where
2=TI®X:,, X=X

and
Tw)i=wis,, @=(, w1 @, 0y, ).
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Let L be a permutation of X and define a transformation ¢, by
UL("' y W-y, Wy, W, '):( ’ Lw—-lr L(l)o, Lwn "') .

For convenience, we call g, a permutation of £.

G. A. Hedlund, M. L. Curtis, and R.C. Lyndon have determined a class of
the continuous transformations commuting with shift on a symbolic dynamical
system [I]. By using their results, we can determine the group AN X as-
sociated with the Bernoulli shift, where X is the group of all continuous
transformations on Q2.

We define the equivalence relation ~ by

xiij, if pi:pj'

Let {X,, X,, ---, Xi} be the partition of X into the equivalent classes, and let
L(X, P) be the set of all permutations which preserve each X;.

THEOREM 4.1.3. The group ANK is generated by T and o, ; L € L(X, P).
Moreover, if p;’s are all different, the group AN K coincides with the group
T={T™}.

4.2. Ergodicity and spectrum of the flow < and the groups %; and 4.

We shall give a condition of ergodicity of the flow I appealing to %,.

THEOREM 4.2.1. The dynamical system W,= (R, B, P, ;) is ergodic if and
only if the flow T=(Q,B, P, T,) is ergodic.

PROOF. Since {T.} W, ‘if part’ is trivial to see. Suppose %U; is ergodic.
Let E be a B-set which is invariant under {7T;}. It is enough to show that
E is invariant under any c€%,. Let we E. Then aa):ng(a,,,,,we E, namely,
cECE. Put =T _; u15¢- Then 7EE and moreover § =007 '§ =0T _; w155
=o7n. This shows ¢E=E.

From the above theorem, we get the following criterion for the flow to
be ergodic.

COROLLARY. If W, contains an ergodic element, then the flow is ergodic.

Now we shall give a characterization of the spectrum of the flow &
appealing to the structure of the group A.

THEOREM 4.2.2. Suppose that the flow T 1is ergodic. If A contains a
1-parameter subgroup {o,; s R} such that o,EC for any s R. Then the
flow T is weakly mixing.

PrROOF. Let {U.} and {V,.} be the unitary operators induced from {o.}
and {T,}; U,F(w)=F(o,w) and V,F(w)=F(T,w), F e L¥f2, P). Suppose that
the flow I has an eigenvalue g+ 0 and eigenfunction F,.; V. F,=exp Qriput)F,,,
te R. Since o,€C and o, < A, there exists a function A(s) such that ¢,T;0;"
=Tus: by Lemma 4.1.1. Then we see that there exists a time s, such that
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A(so) # 1, 2()A(t) = A(s+1) and 74, w)=A(s)t. It follows
V.U Fw) = F (o, T, @)
= F (T 2500 :0)
=U; Ve Frlw)
=exp CriA()ut)UF (w) .

373

Thus {U,F,; —oo <s< oo} is a family of eigenfunctions corresponding to the

eigenvalues A(s)u. This contradicts to the separability of L2(£2, P).

Appealing to the above theorem, we can see the horocycle flow on the
manifold with a constant negative curvature and the flow induced from the

Brownian motion are weakly mixing [4].
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