Normal parts of certain operators

By K. F. CLANCEY and C. R. PUTNAM

(Received July 31, 1971)

1. Only bounded operators T on a Hilbert space \mathfrak{G} will be considered. A compact set X of complex numbers containing $\mathfrak{sp}(T)$ is said to be a spectral set of T (von Neumann [8]) if $||f(T)|| \leq \sup_{z \in X} |f(z)|$, where f(z) is a rational function having no poles on X; cf. Riesz and Sz.-Nagy [12], p. 435. For any compact set X let C(X) denote the space of continuous functions on X and R(X) the uniform closure of the set of rational functions with poles off X. It was shown by von Neumann that if X is a spectral set of T and if C(X) = R(X) then T must be normal; see also Lebow [6], p. 73. It may be noted that C(X) = R(X) holds when X has Lebesgue plane measure 0; this result is due to Hartogs and Rosenthal (cf. Gamelin [4], p. 47).

An operator T is said to be hyponormal if

$$(1.1) T^*T - TT^* \ge 0.$$

It is well-known that a subnormal operator, that is, an operator having a normal extension on a larger Hilbert space, is hyponormal, but that the converse need not hold. Further, if T is subnormal then sp(T) is a spectral set of T. On the other hand, if T is only hyponormal, this need not be the case; see Clancey [1].

Let T be hyponormal and let D denote an open disk satisfying

$$(1.2) sp(T) \cap D \neq \emptyset.$$

In case the set $sp(T) \cap D$ has planar measure zero then T has a normal part, that is,

(1.3)
$$T = T_1 \oplus N, \quad N = \text{normal};$$

see Putnam [9]. Whether every compact set X with the property that

(1.4)
$$X \cap D \neq \emptyset \Rightarrow \operatorname{meas}_2(X \cap D) > 0$$
 $(D = \operatorname{open disk})$

is the spectrum of a completely hyponormal operator (hyponormal and having no non-trivial reducing space on which it is normal) is not known. In this connection, see [3], [11]. As to subnormal operators, however, the authors

This work was supported by National Science Foundation research grants.

have shown in [2] that a compact set X is the spectrum of a completely subnormal operator (subnormal and completely hyponormal) if and only if

(1.5)
$$X \cap D \neq \emptyset \Rightarrow R(X \cap \overline{D}) \neq C(X \cap \overline{D}),$$

where D denotes an open disk. (The closure of a set A is denoted by \overline{A} .)

In case T is subnormal, then polynomials in T and, in fact, rational functions of T are also subnormal. On the other hand, if T is assumed only to be polynomially hyponormal, so that all polynomials in T are hyponormal, it seems to be unknown whether all rational functions of T must also be hyponormal. Further, it is also apparently not known whether T must be subnormal if all rational functions of T are hyponormal.

It may be noted that if T is hyponormal (and invertible) then so also is its inverse; Stampfli [13]. Also, there exist hyponormal operators T which are not subnormal but are such that all powers T^2, T^3, \cdots are subnormal; Stampfli [14]. In addition, for every positive integer n there exists a hyponormal operator T which is not subnormal and such that all polynomials in T of degree not exceeding n are hyponormal; Joshi [5].

If T is hyponormal then $||T|| = \sup \{|z| : z \in sp(T)\}$. It follows that if all rational functions of T are hyponormal then sp(T) is a spectral set of T. Further, if T is hyponormal and if all polynomials in T are hyponormal and if, in addition, sp(T) does not separate the plane, then all rational functions of T are also hyponormal. This is easily deduced from Mergelyan's theorem. (See Lebow [6], p. 66, where it is shown that if X is a compact set which does not separate the plane and if for an operator T, $||p(T)|| \leq \sup_{z \in X} |p(z)|$ holds for any polynomial p(z), then X is a spectral set of T.)

It will be shown in the present paper that certain results on subnormal operators obtained in [2] and [10] can be extended to operators T for which sp(T) is a spectral set or to operators T which are polynomially hyponormal.

THEOREM 1. Let sp(T) be a spectral set of T. Suppose that D is an open disk satisfying (1.2) and for which

(1.6)
$$R(sp(T) \cap \overline{D}) = C(sp(T) \cap \overline{D}).$$

Then T has a normal part, so that (1.3) holds.

In the special case in which T is subnormal, the above result was proved in [2].

For any simple closed curve C, not necessarily having zero Lebesgue plane measure, denote its open interior by int(C) and its open exterior by ext(C). The following generalizes a result of [10].

THEOREM 2. Let T be polynomially hyponormal. Let C be a simple closed curve such that

K. F. CLANCEY and C. R. PUTNAM

 $(1.7) sp(T) \subset \{C \cup int(C)\}$

and suppose that

(1.8)
$$\{sp(T) \cap C\} - \{sp(T) \cap \operatorname{int}(C)\}^{-} \neq \emptyset.$$

Then T has a normal part, so that (1.3) holds.

It may be noted that if T is supposed only to be hyponormal, rather than polynomially hyponormal, then T may be completely hyponormal even though its spectrum is a subset of a simple closed curve; see [10]. In fact, T can be chosen so that $T^{*}T-TT^{*}$ has rank one and hence is even irreducible; cf. [10], [11].

A dual of Theorem 2 is the following.

THEOREM 2'. Let T be hyponormal and invertible and suppose that T^{-1} is polynomially hyponormal. Let C be a simple closed curve for which

$$(1.7)' \qquad \qquad sp(T) \subset \{C \cup \text{ext}(C)\}$$

and

$$(1.8)' \qquad \{sp(T) \cap C\} - \{sp(T) \cap \operatorname{ext}(C)\}^{-} \neq \emptyset.$$

Then T has a normal part.

The above is of course a corollary of Theorem 2 by virtue of the mapping w = 1/z.

2. PROOF OF THEOREM 1. In view of (1.2) it is clear that one can choose concentric open disks $D_1 \subset D_2 \subset D$ centered at z_0 with corresponding radii $r_1 < r_2 < r$ and such that $sp(T) \cap D_1 \neq \emptyset$. Let A denote the closed annulus with hole D and outer radius so large that A contains that part of sp(T) lying outside D. Then put $Y = A \cup \{sp(T) \cap \overline{D}\}$. Let f(z) be defined by; f(z) = 1 on \overline{D}_1 , $f(z) = (R - r_2)/(r_1 - r_2)$ if $|z - z_0| = R$ and $r_1 < R < r_2$, and f(z) = 0 outside D_2 . Thus f is continuous in the plane and, in particular, $f|_Y \in C(Y)$. Further, in view of (1.6), it is clear that $f|_Y$ is locally in R(Y) so that, by Bishop's theorem (see Gamelin [4], p. 51 or Zalcman [15], p. 124), $f|_Y \in R(Y)$. (Cf. the similar argument in [2].)

Hence there exists a sequence $\{r_n(z)\}$, $n = 1, 2, \dots$, of rational functions in R(Y) converging uniformly on Y to f(z). Since sp(T), hence also Y, is a spectral set of T, it follows that $\{r_n(T)\}$ converges in the uniform topology to an operator f(T). If \mathfrak{H}_0 is defined by

$$(2.1) \qquad \qquad \mathfrak{H}_0 = (f(T)\mathfrak{H})^-,$$

then clearly \mathfrak{H}_0 is invariant under T. Let $T_0 = T | \mathfrak{H}_0$.

Next, we show that \mathfrak{H}_0 reduces T. By von Neumann [8], p. 266, the image of sp(T) under f is a spectral set of f(T). But this set is real, so that by

200

von Neumann's theorem f(T) is self-adjoint. Since T commutes with f(T), so also does T^* , and hence \mathfrak{H}_0 reduces T. Since $||r_n(T)-f(T)|| \to 0$ and, by the spectral mapping theorem, $sp(r_n(T)) = r_n(sp(T))$, it follows that sp(f(T)) $\supset f(sp(T)) \neq \{0\}$, so that, in particular, $\mathfrak{H}_0 \neq 0$ -space. (Since f(sp(T)) is a spectral set of f(T) then, in fact, sp(f(T)) = f(sp(T)).) Thus,

$$(2.2) T = T_1 \oplus T_0, T_0 = T | \mathfrak{D}_0.$$

It will next be shown that T_0 is normal.

Since the spectrum of T is a spectral set it follows that for every $x \neq 0$ in \mathfrak{D} there is a positive measure $\mu[x, x]$ supported on sp(T) such that

(2.3)
$$(g(T)x, x) = \int_{sp(T)} g(t) d\mu[x, x]$$

for every g in R(sp(T)); see Lebow [6], pp. 70-71. Since $\overline{z}f(z)$ is in R(sp(T)), just as f(z), there exists a sequence $\{s_n(z)\}$ of functions in R(sp(T)) converging uniformly to $\overline{z}f(z)$ and hence $\{s_n(T)\}$ converges uniformly to an operator S. By (2.3),

$$(Sx, x) = \int \overline{t} f(t) d\mu[x, x] = \left(\int tf(t) d\mu[x, x]\right)^* = (f(T)Tx, x)^*$$
$$= (x, f(T)Tx) = (T^*f(T)x, x)$$

(cf. Lebow [6], p. 73). Hence $S = T^*f(T)$ and so $T^*f(T)$ commutes with T. Since f(T) also commutes with T, then $T^*Tf(T) = T^*f(T)T = TT^*f(T)$, so that T_0 is normal, and the proof of Theorem 1 is complete.

3. LEMMA. Let $\{T_n\}$ be a sequence of hyponormal operators converging uniformly to the (hyponormal) operator T, so that

$$||T_n - T|| \to 0 \quad \text{as} \quad n \to \infty .$$

Then $z_0 \in sp(T)$ if and only if there exists a sequence $\{z_n\}, z_n \in sp(T_n)$, such that $z_n \rightarrow z_0$.

PROOF. The "if" part clearly holds for any bounded operators T_n , T satisfying (3.1). In order to prove the "only if," let $z_0 \in sp(T)$. If the assertion is false, then there exists a constant $\delta > 0$ and a sequence $\{n_k\}$ of positive integers satisfying $n_1 < n_2 < \cdots$ for which $sp(T_{n_k}) \cap \{z : |z-z_0| < \delta\} = \emptyset$. Since T_{n_k} is hyponormal, then $\|(T_{n_k}-z_0I)x\| \ge \|(T_{n_k}-z_0I)^*x\| \ge \delta\|x\|$ for all x in \mathfrak{H} . On letting $n_k \to \infty$, one obtains similar inequalities with T_{n_k} replaced by T, so that $z_0 \notin sp(T)$, a contradiction.

4. PROOF OF THEOREM 2. By the Riemann mapping theorem, the set $C \cup \operatorname{int}(C)$ can be mapped homeomorphically onto $|w| \leq 1$ by w = f(z), where f(z) is analytic in $\operatorname{int}(C)$. By Mergelyan's theorem ([7]) there exist polyno-

mials $\{p_n(z)\}, n = 1, 2, \dots$, such that $p_n(z) \to f(z)$ uniformly on $C \cup \text{int}(C)$. Since the operators $p_n(T)$ are hyponormal, then $p_n(T)$ converges in the uniform topology to a hyponormal operator f(T). According to the spectral mapping theorem, $sp(p_n(T)) = p_n(sp(T))$ and it now follows from the Lemma that sp(f(T)) = f(sp(T)). Further, if z_1 is in the set of (1.8), then $f(z_1)$ is in $sp(f(T)) \cap C'$, where $C' = \{w : |w| = 1\}$, and $f(z_1)$ is not in the closure of $sp(f(T)) \cap \text{int}(C')$. It follows from [9] that f(T) has a normal part $M = f(T) | \mathfrak{H}_0$, $\mathfrak{H}_0 \neq 0$, so that $f(T) = S \oplus M$, where M is normal on $\mathfrak{H}_0 \neq 0$. Since Mergelyan's theorem can be used again (cf. [10]) to recover T as $T = g(f(T)) = g(S) \oplus g(M)$, where g is the inverse of f, it follows that g(M) is also normal (on \mathfrak{H}_0) and the proof is complete.

Acknowledgment. We are indebted to J.G. Stampfli for helpful conversations concerning some of the results of this paper.

> University of Georgia Purdue University

References

- K. F. Clancey, Examples of non-normal seminormal operators whose spectra are not spectral sets, Proc. Amer. Math. Soc., 24 (1970), 797-800.
- [2] K.F. Clancey and C.R. Putnam, The local spectral behavior of completely subnormal operators, Trans. Amer. Math. Soc., 163 (1972), 239-244.
- [3] K.F. Clancey and C.R. Putnam, The spectra of hyponormal integral operators, Comm. Math. Helv. (to appear).
- [4] T.W. Gamelin, Uniform Algebras, Prentice Hall, 1969.
- [5] A.D. Joshi, Hyponormal polynomials of monotone shifts, Thesis, Purdue University, 1971.
- [6] A. Lebow, On von Neumann's theory of spectral sets, J. Math. Anal. Appl., 7 (1963), 64-90.
- [7] S. Mergelyan, Uniform approximations to functions of a complex variable, Amer. Math. Soc. Trans., No. 10, 1954.
- [8] J. von Neumann, Eine Spektraltheorie f
 ür allgemeine Operatoren eines unit
 ären Raumes, Math. Nachr., 4 (1951), 258-281.
- [9] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Zeits., 116 (1970), 323-330.
- [10] C. R. Putnam, The spectra of subnormal operators, Proc. Amer. Math. Soc., 28 (1971), 473-477.
- [11] C. R. Putnam, The spectra of completely hyponormal operators, Amer. J. Math., 93 (1971), 699-708.
- [12] F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Pub. Co., New York, 1955.
- [13] J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117 (1965), 469-476.

- [14] J.G. Stampfli, Which weighted shifts are subnormal, Pacific J. Math., 17 (1966), 367-379.
- [15] L. Zalcman, Analytic capacity and rational approximation, Lecture Notes in Mathematics, no. 50, Springer, 1968.

,