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0\circ Introduction

Although it is well known that the groups $\mathcal{D}$ of the smooth diffeomor-
phisms of compact manifolds $M$ are so called Frechet Lie groups [2, 3, 7],

the category of Frechet Lie groups seems to the author to be still too huge

to treat and get some useful results. Comparing with Hilbert Lie groups,
Frechet Lie groups have not so nice property. This is mainly because the
implicit function theorem or the Frobenius theorem does not hold in the
category of Frechet manifolds in general case. As a matter of fact, these
groups $\mathcal{D}$ have a little nicer property, which is an analogue with the Sobolev
chain in function spaces. In fact, $\mathcal{D}$ is an inverse limit of a series of smooth
Hilbert manifolds $\mathcal{D}^{s}[2,7]$ . However, group operations are not so simple as
additive groups of function spaces. These have a little more complicated

property (see $[2, 7]$ . Also this will be proved again in this paper as an im-
mediate conclusion of Theorem $B$ and Lemma 1). Anyway since here is a
chain $\mathcal{D}^{s}$ , it is natural to think that many properties of $\mathcal{D}$ (not $\mathcal{D}^{s}$ itself) can
be proved by using this chain, and at this time, since we want to get pro-
perties of $\mathcal{D}$ (not $\mathcal{D}^{s}$), inequalities which are similar to Garding’s inequality

are becoming needful. Garding’s inequality was necessary to prove the
regularity of elliptic operators, and here to get properties of $\mathcal{D}$ we need
some kinds of regularity theorems.

However, to get desired inequalities in general one has to write down
all formulas explicitly without using local coordinates of $M$. This paper is
one of the efforts of doing these. All results, especially several inequalities

obtained in this paper, will be needful to prove the theorem which is men-
tioned in the introduction in [8]. To consider the properties of $\mathcal{D}$ many
concepts and quantities defined on $M$ must be lifted up to those of $\mathcal{D}$ . At this
point, the Theorems $A,$ $B$ which are mentioned below are becoming important.
The purpose of this paper is to prove these theorems and as applications of
these to prove some of local properties of $\mathcal{D}$ as well as some of inequalities.
(See next section to know how these theorems are applied.)

To state the Theorems $A,$ $B$ we have to begin with the following: Let
$E$ and $F$ be finite dimensional vector bundles over a compact n-dimensional
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manifold $M$ without boundary. On $E$ and $F$ we can define smooth riemannian
inner products, making these riemannian vector bundles, and hence rieman-
nian connections $\nabla$ (cf. [6] for example). For the convenience of notations,

we use the same notation $\nabla$ for connections of $E$ and $F$. Moreover, since
we can define a smooth riemannian connection on $M$, this connection will be
denoted by $\nabla$ . Connections of any finite dimensional vector bundles are de-
noted by a simple notation $\nabla$ as far as there is no confusion.

Now suppose $W$ be a relatively compact open subset of $E$ such that
$W\cap E_{x}$ is a non empty open subset of $E_{x}$ for every $x\in M$, where $E_{x}$ (as well
as $F_{x}$) is the fibre at $x$ . Let $f$ be a smooth mapping of $\overline{W}$ (the closure of $W$ )

into $F$ such that $f(W\cap E_{x})\subset F_{x}$ , where ”smooth mapping of $\overline{W}$ ’ means that $f$

can be extended to a smooth mapping of an open neighbourhood of $\overline{W}$ into
$F$. Let $\nabla^{\prime}f$ and $\partial f$ be partial covariant derivatives of $f$ along the base mani-
fold $M$ and along the fibre respectively (see also $2^{o}$ for more precise defini-
tion).

Let $\Gamma(E)$ (resp. $\Gamma(F)$) be the space of smooth sections of $E$ (resp. $F$) and
$\Gamma(W)$ be the totality of $u\in\Gamma(E)$ such that $u(x)\in W_{x}$ for every $x\in M$. Define
an inner product $\langle, \rangle_{k}$ on $\Gamma(E)$ or $\Gamma(F)$ by

$\langle u, v\rangle_{k}=\sum_{t=0}^{k}\int_{M}\langle\nabla^{c_{\mathcal{U}}}, \nabla^{t}v\rangle\mu$ ,

where $\mu$ is a volume element of $M$ and $\langle, \rangle$ is the inner product of $T_{M^{t}}^{*}\otimes E$

(or $T_{M}^{*t}\otimes F$). In fact, $\nabla^{t}u$ can be regarded as a section of $T_{M^{t}}^{*}\otimes E$ (or $T_{M}^{*t}\otimes F$),

where $T_{M^{t}}^{*}$ is the t-tensor product of the cotangent bundle $T_{M}^{*}$ of $M$.
Denote by $\Gamma^{k}(E)$ (resp. $\Gamma^{k}(F)$) the completion of $\Gamma(E)$ (resp. $\Gamma(F)$) under

the norm $\Vert\Vert_{k}$ defined by $\Vert u\Vert_{k}^{2}=\langle u, u\rangle_{k}$ .
Let $\Gamma(W, F)$ be the linear space of smooth mappings $f$ of $\overline{W}$ into $F$ such

that $f(W_{x})\subset F_{x}$ for every $x\in M$.
Let $C^{k}(E)$ denote the space of sections of $E$ of class $C^{k}$ . This is a Banach

space under the norm which induces the topology of uniform convergence
of all derivatives of order $\leqq k$ . The Sobolev embedding theorem states that

if $r\geqq 0$ and $k\geqq[-2n-]+1+r$, then $\Gamma^{k}(E)\subset C^{\gamma}(E)$ and the inclusion is con-

tinuous. Therefore, if $k\geqq[2n]+1$ , the following definition makes sense:

$\Gamma^{k}(W)=$ { $u\in\Gamma^{k}(E);u(x)\in W_{x}$ for every $x\in M$ }.

Obviously, $\Gamma^{k}(W)=\Gamma^{k_{0}}(W)\cap\Gamma^{k}(E)$ and $\Gamma(W)=\Gamma^{k_{0}}(W)\cap\Gamma(E)$ , where $k_{0}$

$=[-2n-]+1$ .
Let $V^{k_{1}}$ be a bounded open subset of $\Gamma^{k_{1}}(W)$ for $k_{1}\geqq k_{0}$ , where ”bounded”

means that there is $u\in V^{k_{1}}$ such that $\Vert v-u\Vert_{k_{1}}$ is bounded for every $v\in V^{k_{1}}$ .
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Put $V^{s}=\Gamma^{s}(W)\cap V^{k_{1}},$ $V=\Gamma(W)\cap V^{k_{1}}$ .
Let $\alpha$ denote the triple $(k, l, V)$ . We define a semi-norm $||_{\alpha}$ on $\Gamma(W, F)$

by

$|f|_{\sigma}=\sum_{0\leqq p+q\leqq k}\sup\{\int|(\nabla^{p}\partial^{q^{\llcorner}l^{\prime}}f)(v(x))|^{2}\mu;v\in V\}$ .
OSt’ $\leqq/$

Of course $|f|_{\alpha}=0$ implies $f(v(x))\equiv 0$ for any $v\in V$. Let $N$ be the totality of
$f\in\Gamma(W, F)$ such that $f(v(x))\equiv 0$ for every $v\in V.$ $N$ contains the null space
of $||_{\alpha},$ $\alpha=(k, 1, V)$ for any $k$ and 1.

Define a norm $\Vert\Vert_{\alpha}$ on $\Gamma(W, F)/N$ by the following:

$\Vert\overline{f}\Vert_{\sigma}=\inf\{|f+f^{\prime}|_{\sigma} ; f^{\prime}\in N\}$ ,

where $\overline{f}$ is the equivalence class of $f$. Obviously $\Vert\Vert_{\alpha}$ is a norm. Let $\Gamma\vee,{}^{t}(W$ ,
$F,$ $V^{k_{1}}$) denote the completion of $\Gamma(W, F)/N$ by $\Vert\Vert_{\cap}$ .

For the simplicity, we assume $k_{1}\leqq n+5$ throughout this paper.
Now, we can state the theorems:
THEOREM A. Suppose $s\geqq n+5$ . Let $\overline{f}\in\Gamma^{s,0}(W, E^{*m}\otimes F, V^{k_{1}})$ , $w\in V^{s}$

and $v_{j}\in\Gamma^{s}(E),$ $j=1,2,$ $\cdots$ $m$ . Then the following inequality holds:

$|1\overline{f}(w)(v_{1}, \cdots, v_{m})\Vert_{s}^{2}\leqq\Vert\overline{f}\Vert^{2}{}_{\alpha\iota}P(\Vert w\Vert_{2k_{0}}^{2})\Vert w\Vert_{s}^{2}\Vert v_{1}\Vert_{k_{0}}^{2}\cdots\Vert v_{m}\Vert_{k_{0}}^{2}$

$+\Vert f\Vert_{a_{2}}^{2}Q(\Vert w\Vert_{2k_{0}}^{2})$ ( $\sum_{J=1}^{m}\Vert v_{1}\Vert_{k_{0}}^{2}\cdots$ I $v_{j- 1}\Vert_{k_{0}}^{2}\Vert v_{j}\Vert_{s}^{2}\Vert v_{j+1}\Vert_{k}^{2_{0}}\cdots\Vert v_{m}\Vert_{k_{0}}^{2}$)

$+\Vert\overline{f}\Vert_{\alpha}^{2}R_{s}(\Vert w\Vert_{k0+1}^{2})\Vert v_{1}\Vert_{k_{0}}^{2}\cdots\Vert v_{m}\Vert_{k_{0}}^{2}$

$+\Vert\overline{f}\Vert_{a^{\prime}}^{2}S_{s}(\Vert w\Vert_{s- 1}^{2})\Vert v_{1}\Vert_{s- 1}^{2}\cdots\Vert v_{m}\Vert_{s- 1}^{2}$ ,

$\alpha_{1}=(k_{0},1, V),$ $\alpha_{2}=(k_{0},0, V),$ $\alpha=(s, 0, V),$ $\alpha^{\prime}=(s-1,0, V)$ , where $k_{0}=[2^{-]+1}n$

$P,$ $Q,$ $R_{s}$ and $S_{s}$ are polynomials with positive coefficients such that $P,$ $Q$ do not
depend on $s$ and $R_{s},$ $S_{s}$ depend on $s$ .

Essential point of this inequality is that the polynomials $P,$ $Q$ do pot

depend on $s$ and the highest term $\Vert\Vert_{s}$ comes in like linear mappings.
THEOREM B. Define a mapping $\Phi:\Gamma(W, F)/N\times V\rightarrow\Gamma(F)$ by $\Phi(\overline{f}, w)(x)$

$=f(w(x))$ . Then $\Phi$ can be extended to the $C^{\iota}$ -mapping of $\Gamma^{s,l}(W, F, V^{k_{1}})\times V^{s}$

into $\Gamma^{s}(F)$ for $s\geqq n+5$ .
One may find a similar result in $2^{o}$ of [2] with respect to the differentia-

bility of composition of maps and in fact this is an immediate conclusion of
the above theorem and Lemma 1 in the next section. These Theorems $A,$ $B$

are proved in $3^{o}$ .



Groups of diffeomorphisms 63

1\circ Local properties of groups of diffeomorphisms

Let $M$ be a compact n-dimensional manifold without boundary. Suppose
$M$ has a smooth riemannian structure. Let $Exp$ denote the exponential map-
ping defined by this smooth riemannian structure. So there is a relatively
compact and open tubular neighbourhood $U$ of the zero section of $T_{M}$ (the

tangent bundle of $M$ ) such that $Exp_{x}$ (the exponential mapping restricted to
the tangent space $T_{x}M$ at x) is a diffeomorphism of $U\cap T_{x}M$ (sometimes

this is denoted by $U_{x}$) onto an open neighbourhood of $x$ in $M$. There exists
a tubular neighbourhood $V$ of the zero section of $T_{M}$ such that $Exp(dExp_{x})_{y}z$

$\in Exp_{x}U_{x}$ for any $y,$ $z\in V\cap T_{x}M$ (this will be denoted by $V_{x}$) for every
$x\in M$, where $(dExp_{x})_{y}$ is the derivative of $Exp_{x}$ at $y$ .

Let $\Gamma(U)$ (resp. $\Gamma(V)$) be the totality of $u\in\Gamma(T_{M})$ (cf., $0^{o}$ ) such that
$u(x)\in U_{x}$ (resp. $V_{x}$) for every $x\in M$. $\Gamma(U)$ and $\Gamma(V)$ are open subsets of
$\Gamma(T_{M})$ in $C^{0}$ -topology.

It is not hard to verify that there is an open neighbourhood $U^{\prime}$ of $0$ in
$C^{1}$ -topology such that $x->Exp_{x}u(x)$ is a diffeomorphism for every $u\in U^{\prime}$ . As
a matter of fact, the structure of Frechet Lie group on $\mathcal{D}$ is given by this
mapping [3], namely, define the mapping $\xi$ of $U^{\prime}$ into $\mathcal{D}$ by

$\xi(u)(x)=Exp_{x}u(x)$ . $\cdot$ . . (1)

Then, $\xi$ is a homeomorphism of $U^{\gamma}$ onto an open neighbourhood of the
identity $e$ in $C^{1}$ -topology and can be regarded as a smooth chart of $\mathcal{D}$ at $e$

[3]. Naturally we may assume that $U^{\prime}\subset\Gamma(U)$ . Since $\mathcal{D}$ is a topological
group in $C^{1}$ -topology, there is an open neighbourhood $V^{\prime}$ of $0$ in $C^{1}$ -topology
such that $V^{\prime}\subset\Gamma(V)$ and $\xi(u)\cdot\xi(v)\in\xi(U^{\prime})$ for every $u,$

$v\in V^{\prime}$ . Let $U^{k_{0}+1}$

(resp. $V^{k_{0}+1}$) be an open, bounded neighbourhood of $0$ in $\Gamma^{k_{0}\cdot\succ 1}(T_{M})$ such that
$U^{k_{0}+1}\cap\Gamma(T_{M})\subset U^{\prime}$ (resp. $V^{k_{0}\vdash 1}\cap\Gamma(T_{M})\subset V^{\prime}$), where $k_{0}=[-n2]+1$ . This is

possible because of the Sobolev embedding theorem. This embedding theorem
also shows that $U^{k_{0}\cdot\vdash 1}\cap\Gamma(T_{M})$ and $V^{k_{0}+1}\cap r(T_{M})$ are bounded in $C^{1}$ -uniform
norm. Put $U=U^{k_{0}+1}\cap\Gamma(T_{M})$ , $V=V^{k_{0}+1}\cap\Gamma(T_{M})$ , $U^{s}=U^{k_{0}+1}\cap\Gamma^{s}(T_{M})$ and
$V^{s}=V^{k_{0}+1}\cap\Gamma^{s}(T_{M})$ for $s\geqq k_{0}+1$ . Define a mapping $\eta$ of V’ $\times V^{\prime}$ into $U^{\prime}$ by
$\eta(u, v)=\xi^{-1}(\xi(U)\xi(v))$ and $\eta(u, v)$ has the following expression:

$\eta(u, v)(x)=Exp_{x^{-1}}Expu(Exp_{x}v(X))$ , $\cdot$ .. (2)

where we use the notation $Exp$ in two different ways: $Exp_{x}$ implies the
mapping of $T_{x}M$ and $Exp$ does that of $T_{M}$ into $M$. In the sense of Frechet Lie
groups [3], $\eta$ is a smooth mapping. Let $\Gamma_{g}(T_{M})$ be the space of the smooth
sections of pull back $g^{-1}T_{M}$ of $T_{M}$ by $g\in \mathcal{D}$ . As a matter of course $\Gamma_{g}(T_{M})$

is the tangent space of $\mathcal{D}$ at g. Put $\gamma(T_{M})=\cup\{\Gamma_{g}(T_{M});g\in \mathcal{D}\}$ and $\gamma(T_{M})$ has
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a structure of smooth Frechet manifold, because this is the tangent bundle
of $\mathcal{D}$ . Let $R_{g}$ be the right translation of $g\in \mathcal{D},$ $dR_{g}$ : $\Gamma(T_{M})\mapsto\Gamma_{g}(T_{M})$ the
derivative of $R_{g}$ at $e$ and $dR:\Gamma(T_{M})\times \mathcal{D}-r(T_{M})$ the mapping defined by
$dR(v, g)=dR_{g}v$ . Put $\zeta(u, v)=d\xi^{-1}(dR_{\hat{\sigma}(v)}u)$ . Then, $\zeta:\Gamma(T_{M})\times U^{\prime}\leftrightarrow\Gamma(T_{M})$ can
be regarded as the local expression of $dR$ and it is easy to see that $\zeta$ has
the following explicit expression:

$\zeta(u, v)(x)=dExp_{x}^{-1}u(Exp_{x}v(x))$ . $\cdot$ .. (3)

So this mapping itself can be defined on $\Gamma(T_{M})X\Gamma(U)$ .
Let $N$ be the totality of $f\in\Gamma(U, T_{M})$ such that $f(v(x))\equiv 0$ for every $v\in U$.

Let $\Psi:\Gamma(T_{M})\succ\rightarrow\Gamma(U, T_{lf})/N$ be the mapping defined by

$\Psi(u)(y)=dExp_{\pi y}^{-1}u(Exp_{r_{\vee}y}y)$ , $y\in U$ ,

where $\pi$ is the projection of $T_{M}$ . Strictly speaking, one has to project this
to $\Gamma(U, T_{M})/N$, because the right hand side in the defining equality is an
element of $\Gamma(U, T_{M})$ . However, the mapping $\Psi$ is injective as a mapping of
$\Gamma(T_{M})$ into $\Gamma(U, T_{M})$ and also as a mapping of $\Gamma(T_{M})$ into $\Gamma(U, T_{M})/N$. So
we may use the same notation $\Psi$ .

Recollect that $L^{\gamma}$ is bounded in the $C^{1}$ -uniform topology.
LEMMA 1. $\Psi$ can be $ex\dagger ended$ to a bounded linear map of $\Gamma^{s+\iota}(T_{M})$ into

$\Gamma^{s},{}^{t}(U, T_{M}, U^{k_{0}+1})$ for $s\geqq k_{0}+1,1\geqq 0$ , namely, there is a constant $C_{a},$ $\alpha=(s, 1, U)$

such that
$\Vert\Psi(u)\Vert_{\sigma}\leqq C_{\alpha}\Vert u\Vert_{s+l}$ .

PROOF. Let $f\in\Gamma(U, T_{M})$ be an element defined by

$f(y)=dExp_{\pi y}^{-1}u(Exp_{\tau y}y)$ , $y\in U,$ $u\in\Gamma(T_{M})$ .
Since $\Vert\Psi(u)\Vert_{\alpha}=\inf\{|f+f^{\prime}|_{a} ; f^{\prime}\in N\}$ , we have only to show that $|f|_{a}$

$\leqq C_{\alpha}\Vert u\Vert_{s+\iota}$ .
Put $x=\pi y$ . $x^{1}$ ... $x^{n}$ be the normal coordinate at $x,$ $\xi^{1}$ , $\cdot$ .. , $\xi^{n}$ the linear

coordinate of $T_{x}M$. By using parallel translations, $(x^{1}, \cdots x^{n}, \xi^{1}, \cdots \xi^{n})$ is
regarded as a local trivialization at $x$ . $(0, \cdots 0, \xi_{0}^{1}, \cdots \xi_{0}^{n})$ denotes the coordi-
nate of the point $y$ . Let $z^{1},$ $\cdots$ , $z^{n}$ be the normal coordinate at $Exp_{x}y$ .
Then $z^{i}=z^{t}(x^{1}, \cdots , x^{n}, \xi^{1}, \xi^{n})$ and $z^{i}(0, \cdots , 0, \xi_{0}^{1}, \cdots , \xi_{0}^{n})=0$ . For every
fixed $x^{1}$ , $\cdot$ .. , $x^{n},$ $\xi^{i}$ can be solved with respect to $z^{1}$ , $\cdot$ .. , $z^{n}$ . This is because
all points we consider are in $U$ , hence $Exp_{x}$ is a diffeomorphism for any
$x\in M$. Denote

$\hat{x}=(x^{1}, ;_{1}’ x^{n}),$ $\xi=(\xi^{1}, \xi^{n})$ and
$\hat{z}=(z^{1}, \cdots , z^{n})$

.
Put $v(\hat{x},\hat{\xi})=dExp_{\hat{x}}$ $u(Exp_{\hat{x}}\hat{\xi})$ , and naturally we have $v(\hat{x},\hat{\xi})=\sum v^{i}(\hat{x}$ ,

$\xi\hat{)}\frac{\partial}{\partial\xi^{i}}$ . Therefore,

$\nabla^{p}\partial^{q}v(\hat{x},\hat{\xi})=\nabla_{k1}^{\prime}\cdots\nabla_{k_{p}}^{\prime}\partial_{j_{1}}’\cdots\partial_{j_{q}}v^{i}dx^{k_{1}}\otimes\cdots\otimes dx^{k_{p}}\otimes d\xi^{f_{i}}\otimes\cdots\otimes d\xi^{J_{q}}\otimes\frac{\partial}{\partial\xi^{\mathfrak{i}}}$ ,



Groups of diffeomorphisms 65

where $\nabla_{k_{i}}^{\prime}=\nabla^{\prime}\frac{\theta}{\partial^{x^{k_{i}}}}$ and $\partial_{Ji}=-\frac{\partial}{\partial\xi}-Ji$

Use the following relations

$\partial_{j_{i}}=\sum\frac{\partial z^{l}}{\partial x^{Ji}}--\partial_{Z^{l}}^{\partial}$ $\nabla_{k_{i}}^{\prime}=\sum\frac{\partial z^{t}}{\partial x^{j_{i}}}\nabla_{l}$

$(\nabla_{l}=\nabla_{\frac{\partial}{\partial zt})}$

and
$v^{i}(\hat{x},\hat{\xi})=\sum_{\partial}^{\partial}-\frac{\xi^{i}}{z^{f}}u^{j}(\hat{z})$ ,

where $u^{j}(\hat{z})$ is $u$ expressed by $\hat{z}$ , namely $u(\hat{z})=\sum u^{i}(\hat{z})--\partial_{Z}^{\partial_{i}}$ Then, since $\partial^{r}z^{j}$

etc. are all bounded for $r\leqq p+q$ . We have that there is constants $C_{k},$ $k=0$ ,

1, 2, $p+q$ , such that

$|\ell^{p}\partial^{q}v(\hat{x},\hat{\xi})|^{2}\leqq\sum_{k=0}^{p+q}C_{k}|(\nabla^{k}u)(\hat{z})|^{2}$ .

Therefore
$\int_{M}|(\nabla^{p}’\partial^{q}f)(v(x))|^{2}\mu\leqq\sum_{k=0}^{p+q}C_{k}\int_{M}|(\nabla^{k}u)(Exp_{x}v(x))|^{2}\mu$ .

Change the variable $x$ into $y=Exp_{x}v(x)$ in the right hand side. Since $U$ is
bounded in $C^{1}$ -uniform topology, the Jacobian is uniformly bounded for $v\in U$.
Therefore the right hand side of above inequality is not larger than

$\sum_{k=0}^{p+q}C_{k}^{\prime}\int_{M}|(\nabla^{k}u)(x)|^{2}\mu$ .

Thus, we have $|f|_{a}^{2}\leqq C_{a}^{\prime}\Vert u\Vert_{s+l}^{2}$ .
Recollect the definition of $\Phi$ (see Theorem $B$ in $0^{o}$ ), since $\zeta(u, v)=\Phi(\Psi(u), v)$ ,

we have the following by assuming Theorems $A,$ $B$ :
COROLLARY 1. $\zeta:\Gamma(T_{M})\times U\rightarrow\Gamma(T_{M})$ can be extended to the $C^{t}$ -mapping of

$\Gamma^{s+\iota}(T_{M})\times U^{s}$ into $\Gamma^{s}(T_{M})$ for $s\geqq n+5$ . Moreover, the following inequality holds.

$|I\zeta(u, v)\Vert_{s}^{2}\leqq\Vert u\Vert_{k0+1}^{2}P^{1}(\Vert v\Vert_{2_{k_{0}}}^{2})\Vert v\Vert_{s}^{2}+\Vert u\Vert_{s}^{2}R_{s}^{\prime}(\Vert v\Vert_{ko+1}^{2})$

$+\Vert u\Vert_{s- 1}^{2}S_{s}^{\prime}(\Vert v\Vert_{s- 1}^{2})$ , $k_{0}=[-n2]+1$ ,

where $P^{\prime},$ $R_{s}^{\prime},$ $S_{s}^{\prime}$ are polynomials with positive coefficients and $P^{\prime}$ does not de-
pend on $s$ .

NOTE. If $v$ is restricted in a bounded set in $U^{2k_{0}}$ , then we have

$|I\zeta(u, v)\Vert_{s}^{2}\leqq C\Vert v\Vert_{s}^{2}+D_{s}\Vert u\Vert_{\epsilon}^{2}+\Vert u\Vert_{s- 1}^{2}S_{s}^{\prime}(\Vert v\Vert_{s-1}^{2})$ .
Now, we define the following mapping $\xi$ of $V^{\prime}\times V^{\prime}$ into $\mathcal{D}$ ;

$\xi(u, v)(x)=Exp(dExp_{x})_{u(x)}v(x)$ , $\cdot$ . . (4)

where $(dExp_{x})_{u(x)}$ is the derivative of $Exp_{x}$ at $u(x)$ . Obviously, we have
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$\xi(u, \zeta(v, u))=\xi(v)\xi(u)$ ... (5)

and the local expression $\xi^{-1}\xi$ is given by

$\xi^{-1}\xi(u, v)(x)=Exp_{x^{-1}}Exp(dExp_{x})_{u(x)}v(x)$ . $\cdot$ .. (6)

Restrict the domain $v/\times V^{\prime}$ to $V\times V$ and we have the following:
LEMMA 2. Suppose $s\geqq n+5$ . The mapping $\xi^{-1}\xi$ ; VX $V->\Gamma(T_{M})$ can be

extended to the smooth mapping of $V^{s}\times V^{s}$ into $\Gamma^{s}(T_{M})$ . Moreover the follow-
ing inequality holds:

$|1\xi^{-1}\xi(u, v)\Vert_{s}\leqq P(\Vert u\Vert_{2k_{0}}^{2}+\Vert v\Vert_{2k_{0}}^{2})(\Vert u\Vert_{s}^{2}+\Vert v\Vert_{s}^{2})+S_{s}(\Vert u\Vert_{s- 1}^{2}+\Vert v\Vert_{s- 1}^{2})$ ,

where $P,$ $S_{s}$ are polynomials with positive coefficients and $P$ does not depen
on $s$ .

PROOF. Recall that $V\subset V^{J}\subset\Gamma(V)$ . Define the mapping $f$ by

$f(y, z)=Exp_{x}^{-1}Exp(dExp_{x})_{y}z$ , $x=\pi y=\pi z$ .
$f$ is a smooth mapping of $V\oplus V$ (Whitney sum) into $T_{M}$ . Moreover $f$ is an
element of $\Gamma(V\oplus V, T_{M})$ . Since $V\oplus V$ is relatively compact in $T_{M}\oplus T_{M}$

(Whitney sum), we can use Theorem B. Let $N$ be the totality of $ f^{\prime}\in$

$\Gamma(V\oplus V, T_{M})$ such that $f^{\prime}(u(x), v(x))\equiv 0$ for any $u,$ $v\in V$. Then, $f$ is also an
element of $\Gamma(V\oplus V, T_{M})/N$, namely, $f\in\Gamma^{s},{}^{t}(V\oplus V, T_{M}, V^{k_{0}+1}\times V^{k_{0}+1})$ for any
$s,$

$l$.
Therefore Theorem $B$ shows that $\xi^{-1}\xi$ can be extended to the smooth

mapping of $V^{\epsilon}\times V^{s}$ into $T^{s}(T_{M})$ for every $s\geqq n+5$ , and Theorem A yields
the desired inequality.

Since $\xi(u, \zeta(v, u))=\xi(v)\cdot\xi(u)$ (cf. (5)), we have
COROLLARY 2. If we restrict the domain of $\eta$ to $V\times V$, then the mapping

$\eta:V\times V-\Gamma(T_{M})$ can be extended to the $C^{l}$-mapping of $V^{s+l}\times V^{s}$ into $\Gamma^{s}(T_{M})$

for any $s\geqq n+5$ . Furthermore, we have the following inequality,

$\Vert\eta(v, u)\Vert_{s}\leqq P$ ( $\Vert u\Vert_{2k_{0}}^{2}$ , I $v\Vert_{2k_{0}}^{2}$) $\Vert u\Vert_{s}^{s}+Q_{s}(\Vert u\Vert_{2k_{0}}^{2}, \Vert v\Vert_{2k_{0}}^{2})\Vert v\Vert_{\epsilon}^{2}$

$+R_{s}(\Vert u\Vert_{s-1}^{2}, \Vert v\Vert_{s- 1}^{2})$ ,

where $P,$ $Q_{\epsilon},$ $R_{s}$ are polynomials of two variables with positive coefficients such
that $P$ does not depend on $s$ and $Q_{s},$ $R_{s}$ depend on $s$ .

NOTE. If $u,$ $v$ are restricted in a bounded subset in $V^{2k_{0}}$ , then $\Vert\eta(u, v)\Vert_{\epsilon}^{2}$

$\leqq C\Vert u\Vert_{s}^{2}+D_{s}\Vert v\Vert_{s}^{2}+R_{s}(\Vert u\Vert_{-1}^{2}, \Vert v\Vert_{s-1}^{2})$ .
Combining Corollary 1 and 2, we have the following:
COROLLARY 3. There is an open neighbourhood $U^{\prime}$ of $0$ of $\Gamma(T_{M})$ in $C^{1}-$

topology on which $\xi$ (cf. (1)) can be defined and maps $U^{\prime}$ homeomorphically
onto an open neighbourhood $O$ of the identity $e$ in $\mathcal{D}$ in $C^{1}$ -topology.

(A) There exists a bounded open neighbourhood $V^{k_{0}+1}$ of $0$ in $\Gamma^{k_{0}+1}(T_{M})$
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such that $\xi(V^{k_{0}\cdot\sim 1}\cap\Gamma(T_{M}))^{2}\subset\tilde{U}_{e}$ .
(B) Put $V=V^{k_{0^{-\llcorner}}1}\cap\Gamma(T_{M}),$ $V^{S}=V^{k_{0^{A}}1}\cap\Gamma^{S}(T_{M})$ . By defining the mapping

$\eta:V\times V\rightarrow\Gamma(T_{M})$ by $\eta(u, v)=\xi^{-1}(\xi(U)\xi(v)),$ $\eta$ satisfies $(i)\sim(iii)$ below: Suppose
$S\geqq n+5$ ,

(i) $\eta$ can be extended to the $C^{t}$ -mapping of $V^{s+t}\times V^{s}$ into $\Gamma^{s}(T_{M})$ .
(ii) Put $\eta_{u}(v)=\eta(v, u)$ and $\eta_{u}$ is a smooth map of $V^{s}$ into $\Gamma^{s}(T_{M})$ . (This

is because $\xi(u, \zeta(v, u))=\xi(v)\xi(u).)$

(iii) Put $\zeta(v, u)=(d\eta_{u})_{0}(v)$ (the derivative of $\eta_{u}$ at $0$) and $\zeta$ can be extended
to the $C^{t}$ -mapping of $\Gamma^{s^{\llcorner}t}(T_{M})\times V^{s}$ into $\Gamma^{s}(T_{M})$ .

Moreover, if we restrict the domain of $\eta$ and $\zeta$ onto a bounded open subset
\langle instead of $V^{k_{0}+1}$) in $\Gamma^{2k_{0}}(T_{M})$ , we have the following inequalities: Suppose
$s\geqq n+5$ .

$\Vert\eta(u, v)\Vert_{s}^{2}\leqq C\Vert v\Vert_{s}^{2}+D_{s}\Vert u\Vert_{s}^{2}+R_{s}(\Vert u\Vert_{s- 1}^{2}, \Vert v\Vert_{s- 1}^{2})$

$\Vert\zeta(u, v)\Vert_{s}^{2}\leqq C^{\prime}\Vert v\Vert_{s}^{2}+D_{s}^{\prime}\Vert u\Vert_{s}^{2}+\Vert u\Vert_{s- 1}^{2}S_{S}^{\prime}(\Vert v\Vert_{s- 1}^{2})$ ,

where $C,$ $C^{\prime}$ are constants which do not depend on $s,$ $D_{s},$ $D_{s}^{\prime}$ are constants de-
pending on $s$ and $R_{s},$ $S_{s}^{\prime}$ are polynomials with positive coefficients.

By using these properties, we have the following:
LEMMA 3. Suppose $s\geqq n+5$ . Let $\mathcal{N}^{s}$ be a basis of neighbourhoods of $0$ in

$\Gamma^{s}(T_{M})$ such that every element $W\in \mathcal{N}^{s}$ is contained in $V^{s}$ . Then, { $\xi(W\cap\Gamma(T_{M}))$ ;
$W\in \mathcal{N}^{s}\}$ defines a new topology on $\mathcal{D}_{0}$ which is weaker than the $C^{\infty}$-topology
and $\mathcal{D}_{0}$ becomes a topological group by this new topology, where $\mathcal{D}_{0}$ is the con-
nected component of $\mathcal{D}$ containing $e$ in $C^{\infty}$-topology.

PROOF. We have only to show the following (cf. [9] pp. 98-99 for ex-
ample):

(a) $\cap\{\xi(W\cap\Gamma(T_{M}));W\in \mathcal{N}^{s}\}=\{e\}$ . (trivial)

(b) If $W_{1}$ , $W_{2}\in \mathcal{N}^{s}$ , then there is $W_{3}\in \mathcal{N}^{s}$ such that $\xi(W_{3}\cap\Gamma(T_{M}))\subset$

$\xi(W_{1}\cap\Gamma(T_{M}))\cap\xi(W_{2}\cap\Gamma(T_{M}))$ . (trivial)
(c) For any $W_{1}\in \mathcal{N}^{s}$ , there is $W_{2}$ such that $\xi(W_{2}\cap\Gamma(T_{M}))^{2}\subset\xi(W_{1}\cap\Gamma(T_{M}))$ .

(continuity of $\eta$)
(d) For any $W_{1}\in \mathcal{N}^{s}$ , there is $W_{2}$ such that $\xi(W_{2}\cap\Gamma(T_{M}))^{-1}\subset\xi(W_{1}\cap\Gamma(T_{M}))$ .

(see below)
(e) For any $W_{1}\in \mathcal{N}^{s}$ and for any element $g\in\xi(W_{1}\cap\Gamma(T_{M}))$ , there is $W_{2}$

$\in \mathcal{N}^{s}$ such that $\xi(W_{2}\cap\Gamma(T_{M}))\cdot g\subset\xi(W_{1}\cap\Gamma(T_{M}))$ . (continuity of $\eta$)

(f) For any $W_{1}\in \mathcal{N}^{s}$ and for any $g\in \mathcal{D}_{0}$ , there is $W_{2}\in \mathcal{N}^{s}$ such that
$g\cdot\xi(W_{2}\cap\Gamma(T_{M}))\cdot g^{-1}\subset\xi(W_{1}\cap\Gamma(T_{M}))$ .

Since $\xi(W_{1}\cap\Gamma(T_{M}))$ is an open neighbourhood of $e$ in $C^{\infty}$-topology and hence

$\bigcup_{k=0}^{\infty}\xi(W_{1}\cap\Gamma(T_{M}))^{k}=\mathcal{D}_{0}$ for any $W_{1}\in \mathcal{N}^{s}$ , the statement (f) can be changed into

the following $(f^{\prime})$ :
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$(f^{\prime})$ For any $W_{1}\in \mathcal{N}^{s}$ and for any $g\in\xi(W_{1}\cap\Gamma(T_{M}))$ , there is $W_{2}\in \mathcal{N}^{\epsilon}$

such that $g\cdot\xi(W_{2}\cap\Gamma(T_{H}))\cdot g^{-1}\subset\xi(W_{1}\cap\Gamma(T_{K}))$ .
So this $(f^{\prime})$ can be easily verified by using the continuity of $\eta$ after we
prove (d).

Therefore, the only thing we have to prove is (d). However, to prove
this property, we have to do a similar computation as the proof of Theorem
A (cf. $3^{o}$ ). So this will be done in the last section.

Now, let $\mathcal{D}_{0}(s\geqq n+5)$ be the completion of $\mathcal{D}_{0}$ by the right uniform topo-

logy defined by the above new topology. It is easy to see that $\mathcal{D}_{0}^{s}\supset\xi(U^{s})$ .
($\xi(U^{s})$ makes sense because $s\geqq n+5.$) In the following, it will be proved that
$\xi(U^{s})$ is an open subset of $\mathcal{D}_{0}^{l}$ .

Since $\xi^{-1}\xi$ is smooth, there exists an element $W\in \mathcal{N}^{s}$ such that if $u,$ $v,$
$v^{\prime}$

are restricted in $W$ , then
$\Vert\xi^{-1}\xi(u, v^{\prime})-\xi^{-1}\xi(u, v)\Vert_{s}\leqq C_{s}\Vert v^{\prime}-v\Vert_{s}$ .

Since $\eta(v, u)=\xi^{-1}\xi(u, \zeta(v, u))$ and $\zeta$ is linear with respect to $v$ , we have

$\Vert\eta(v^{\prime}, u)-\eta(v, u)\Vert_{s}\leqq C_{s}\Vert\zeta(v^{\prime}-v, u)\Vert_{s}$

for $u,$ $v,$
$v^{\prime}$ restricted in a bounded open set $W^{\prime}\in \mathcal{N}^{s}$ . By using Corollary 1,

we have $\Vert\zeta(v^{\prime}-v, u)\Vert_{s}\leqq C_{s}^{\prime}\Vert v^{\prime}-v\Vert_{s}$ . Therefore,

$\Vert\xi^{-1}(\xi(v^{\prime})\xi(u))-\xi^{-1}(\xi(v)\xi(u))\Vert_{s}\leqq K_{s}\Vert v^{\prime}-v\Vert_{s}$ .
Assume $\xi(U^{s})$ is not open. Then, there is a sequence $g_{n}\in \mathcal{D}_{0}^{s}$ converging to
an element $\xi(u)\in\xi(U^{s})$ such that $g_{n}\not\in\xi(U^{s})$ . Let $V\in \mathcal{N}^{s}$ such that $V\subset W^{\prime}$

and $\xi(\overline{V})\xi(u)\subset\xi(U^{s})$ , where $\overline{V}$ is the closure of $V$. Since $\{g_{n}\}$ is a Cauchy
sequence, there exists an integer $k$ such that $g_{k}g_{n}^{-1}\in\xi(V)$ for any $n\geqq k$ . Let
$h_{n}=g_{k}g_{n}^{-1}$ . This is also a Cauchy sequence. Therefore, for any $\epsilon>0$ , there
is an integer $N$ such that $\Vert\xi^{-1}(h_{n}h_{m}^{-1})\Vert_{s}<\epsilon$ for any $n,$ $m\geqq N$. Thus, we may
assume $h_{n}h_{m}^{-1}\in\xi(V)$ for $n,$ $m\geqq N$. Let $u_{n}=\xi^{-1}(h_{n})$ . Then,

$\Vert u_{n}-u_{m}\Vert_{s}\leqq K_{s}\Vert\xi^{-1}(\xi(u_{n})\xi(u_{n\iota})^{-1})-\xi^{-1}(\xi(u_{m})\xi(u_{m})^{-1})\Vert_{s}$

$\leqq K_{l}\epsilon$ .
This implies $\{u_{n}\}$ is a Cauchy sequence in $V$ . Thus, $g_{k}g_{n-}^{-1}$ converges in $\xi(\overline{V})$ ,

hence $g_{k}\in\xi(\overline{V})\xi(u)$ , contradicting the assumption. Hence, $\xi(U^{s})$ is open.
It is not hard to verify the following properties:
$(\mathcal{D}_{0},1)$ $\mathcal{D}_{0}^{s}$ is a smooth Hilbert manifold modelled on $\Gamma^{S}(T_{M})$ .
$(\mathcal{D}_{0},2)$ $\mathcal{D}_{0}^{s+}‘$ $\subset \mathcal{D}_{0}^{s}$ and the inclusion is a $C^{\infty}$-map.
$(\mathcal{D}_{0},3)$ $\mathcal{D}_{0}=\cap p_{0}$ (use Sobolev embedding theorem).
$(\mathcal{D}_{0},4)$ The group multiplication $(g, h)\rightarrow g\cdot h$ is a $C^{\iota}$ -mapping of $\mathcal{D}_{0}^{\epsilon+l}\times \mathcal{D}_{0}^{l}$

into $\mathcal{D}_{0}^{l}$ .
$(\mathcal{D}_{0},5)$ For every $g\in \mathcal{D}_{0}^{s}$ , the right translations $R_{g}$ ; $ffl_{0}\rightarrow \mathcal{D}_{0}^{s}$ is smooth.



Groups of diffeomorphisms 69

$(\mathcal{D}_{0},6)$ The group inversion $g-g^{-1}$ is a $C^{\iota}$ -mapping of $\mathcal{D}_{0}^{s+l}$ into $\mathcal{D}_{0}^{\epsilon}$ .
$(\mathcal{D}_{0},7)$ The mapping $dR:\Gamma^{s+l}(T_{M})\times \mathcal{D}_{0}^{s}\mapsto T\mathcal{D}_{0}^{s}$ (the tangent bundle of $\mathcal{D}_{0}^{s}$)

defined by $dR(v, g)=dR_{g}v$ is a $C^{\iota}$ -map.
These are the properties which author called I. L. H.-Lie groups in [7] (see

also [2]). However, comparing with Hilbert Lie groups, in Frechet Lie
groups or even in I. L. H.-Lie groups, Lie algebras do not express the character
of these groups so nicely (cf. the example mentioned in the introduction of
[7]). We have to define somewhat different things to treat infinitesimal trans-
formations. As in case of finite dimensional Lie groups it must be invariant
connections.

Let $V^{k_{0}+1}$ be the same open bounded neighbourhood of $0$ in $\Gamma^{k_{0}+1}(T_{M})$ which
is defined in the first part of this section. Put $V=V^{k_{0}+1}\cap\Gamma(T_{M}),$ $V^{s}=V^{k_{0}+1}$

$\cap\Gamma^{s}(T_{M})$ . Let $\tilde{V}=\cup\{dR_{g}V;g\in \mathcal{D}_{0}\}$ . $\tilde{V}$ is an open subset of $\gamma_{0}(T_{M})$ and of
course a right invariant subset. Let $\tilde{V}^{s}=\cup\{dR_{g}V^{s} ; g\in \mathcal{D}_{0}^{s}\}$ for $s\geqq n+5$ .
$V^{s}$ is also an open, right invariant subset of the tangent bundle $T\mathcal{D}_{0}^{s}$. Let

$p$ be the projection of the tangent bundle $\gamma_{0}(T_{M})$ onto $\mathcal{D}_{0}$ . (Of course $\gamma_{0}(T_{M})$

$=\cup\{dR_{g}\Gamma(T_{M});g\in \mathcal{D}_{0}\}=\cup\{\Gamma_{g}(T_{M});g\in \mathcal{D}_{0}\}$ is the tangent bundle of $\mathcal{D}_{0}.$)

Define a mapping $\Xi:\tilde{V}\rightarrow \mathcal{D}_{0}$ by

$\Xi(v)(x)=Exp_{(pv)(x)}v(x)$ . $\cdot$ .. (7)
Obviously, we have

$\Xi(dR_{g}v)=R_{g}\Xi(v)$ . $\cdot$ .. (8)

Since the local trivialization of $\gamma_{0}(T_{M})$ is given by $d\xi:U^{\prime}\times\Gamma(T_{M)-\rangle}\gamma_{0}(T_{M})$ ,
the local expression $\xi^{-1}\Xi d\xi$ of $\Xi$ has the following explicit expression:

$\xi^{-1}\Xi d\xi(u, v)(x)=Exp_{x^{-1}}Exp(dExp_{x})_{u(x)}v(x)$ , $\cdot$ .. (9)

namely, $\xi^{-1}\Xi d\xi=\xi^{-1}\xi$ . By Lemma 2, we have the following:
PROPOSITION 1. $\Xi$ can be extended to the smooth mapping of $\tilde{V}^{s}$ into $\mathcal{D}_{0}^{s}$ .

Moreover, $\Xi$ is right invariant, that is, $\Xi dR_{g}=R_{g}\Xi$ . Let $V^{s}g=dR_{g}V^{s}$ for
$g\in \mathcal{D}_{0}^{s}$ and $\Xi_{g}$ the restriction of $\Xi$ to $V^{s}g$. Then $\Xi_{g}$ is a smooth diffeomor-
phism of $V^{s}g$ onto an open neighbourhood of $g$ in $\mathcal{D}_{0}^{s}$ , where $s\geqq n+5$ . Of
course $\Xi_{g}$ is a smooth diffeomorphism of $Vg(=dR_{g}V)$ onto an open neighbour-
hood of $g\in \mathcal{D}_{0}$ in the sense of Frechet Lie groups.

By this proposition, the pair $(\Xi_{g}, Vg)$ can be regarded as a coordinate
(or smooth chart) around $g\in \mathcal{D}_{0}$ for every $g$. So consider this coordinate as
a normal coordinate at $g\in \mathcal{D}_{0}$ and we get the concept of right invariant con-
nection on $\mathcal{D}_{0}$ , namely, the covariant derivative at $g$ is the natural derivative
with respect to this coordinate $(\Xi_{g}, Vg)$ . Let $\tilde{\nabla}$ denote the obtained right
invariant connection of $\mathcal{D}_{0}$ . Since $\Xi$ can be extended to the smooth mapping
of $\tilde{V}^{s}$ into $\mathcal{D}_{0}^{s}$ , this connection $\tilde{\nabla}$ can be extended to the smooth connection
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of $\mathcal{D}_{0}^{s}$ for $s\geqq n+5$ , namely, $\tilde{\nabla}$ is an I. L. H.-connection [8].

For any $v\in\Gamma(T_{M})$ let $d\xi v$ denote the vector field around $e\in \mathcal{D}_{0}$ defined
by $(d\xi)_{w}v$ for $w\in U^{\prime}$ . $(d\xi)_{w}$ is the derivative of $\xi$ at $w$ . Put $\Gamma_{w}(u, v)$

$=d\xi^{-1}\tilde{\nabla}_{(d\hat{\sigma})w^{u}}d\xi v$ . This is regarded as a local expression of $\tilde{\nabla}$ , corresponding

to $\Gamma_{jk}^{i}$ of that of connections in finite dimensional case.
Let $(d^{2}Exp_{x})_{w(x)}$ be the 2nd derivative of $Exp_{x}$ at $w(x)$ .
LEMMA 4. $\Gamma_{w}(u, v)$ has the following explicit expression

$\Gamma_{w}(u, v)(x)=dExp_{x}^{-1}(d^{2}Exp_{x})_{w(x)}((dExp_{x})_{w(x)}u(x), v(x))$ . $\cdot$ .. (10)

PROOF. Since $\tilde{\nabla}$ is right invariant,

$d\xi^{-1}\tilde{\nabla}_{(a\xi)_{w^{u}}}d\xi v=d\xi^{-1}dR_{\xi(w)}\tilde{\nabla}_{clR_{\xi(w)^{(d\hat{\sigma})}w^{u}}^{-1}}(dR_{\xi(w)}^{-1}d\xi v)$ .

Put $\tilde{v}=dR_{\xi(w)}^{-1}d\xi v,$ $u^{\prime}=dR_{\xi(w)}^{-1}(d\xi)_{w}u$ . Then, letting $y=\xi(w)^{-1}(x)$ ,

$\left\{\begin{array}{l}\tilde{v}(w^{\prime})(x)=((d\xi)_{w^{\prime}}v)(y)=(dExp_{\nu})_{w^{\prime}(y)}v(y),\\u(x)=(dExp_{y})_{w(y},u(y).\end{array}\right.$

Therefore, by definition of $\ulcorner\sim$

$(\tilde{\nabla}_{u},\overline{v})(x)=\lim_{\grave{x}\rightarrow 0}$
$\lambda 1\{(dExp_{y})_{u)(y)+\lambda u^{\prime}(y)}v(y)-(dExp_{y})_{w(y)}v(y)\}$

$=(d^{2}Exp_{y})_{w(y)}(u^{\prime}(y), v(y))$ .
Thus

$(d\xi^{-1}\tilde{\nabla}_{(d\xi)w^{u}}d\xi v)(x)=dExp_{x}^{-1}(d^{2}Exp_{x})_{w(x)}((dExp_{x})_{w(x)}u(x), v(x))$ .
Let $\pi$ be the projection of $T_{M}$ . Define an element $\gamma\in\Gamma(U, T_{M}^{*}\otimes T_{M}^{*}\otimes T_{M})$

by $\gamma(p)(q, r)=dExp_{\pi p}^{-1}(d^{2}Exp_{\tau p})_{p}((dExp_{rp})_{p}q, r)$ , where $p\in U_{\pi p},$ $q,$ $r\in T_{\pi p}M$.
Then, obviously $\Gamma_{w}(u, v)(x)=\gamma(w(x))(u(x), v(x))$ . The derivative $(d\Gamma)_{w}$ of $\Gamma$ at
$w$ is given by

$(d\Gamma)_{w}(w^{\prime})(u, v)=(d\gamma)_{w(x)}(w^{\prime}(x))(u(x), v(x))$ ,

where $(d\gamma)_{w(x)}$ is the derivative of $\gamma$ at $w(x)$ . Therefore by Theorem A we
have the following:

COROLLARY 4. Let $W$ be a bounded neighbourhood of $0$ in $\Gamma^{2k_{0}}(T_{M})$ such
that $W\cap\Gamma(T_{M})\subset\Gamma(U)$ . Put $W^{s}=W\cap\Gamma^{s}(T_{M})$ for $s\geqq n+5$ . Let $w\in W^{s},$ $u$ ,
$v,$ $w^{\prime}\in\Gamma^{s}(T_{M})$ . Then the following inequalities hold:

$(\Gamma, 1)$ $\Vert\Gamma_{w}(u, v)\Vert_{s}\leqq C\{\Vert u\Vert_{s}\Vert v\Vert_{k_{0}}+\Vert u\Vert_{k_{0}}\Vert v\Vert_{s}\}+C^{2}\Vert w\Vert_{s}\Vert u\Vert_{0}\Vert v\Vert_{0}$

$+P_{s}(\Vert w\Vert_{s- 1})\Vert u\Vert_{s- 1}\Vert v\Vert_{s- 1}$ ,

$(\Gamma, 2)$ $\Vert(d\Gamma)_{w}(w^{\prime})(u, v)\Vert_{s}\leqq C\{\Vert u\Vert_{s}\Vert v\Vert_{k_{0}}\Vert w^{\prime}\Vert_{k_{0}}+\Vert u\Vert_{k_{0}}\Vert v\Vert_{s}\Vert w^{\prime}\Vert_{k_{0}}+\Vert u\Vert_{k_{0}}\Vert v\Vert_{k_{0}}\Vert u|’\Vert_{s}\}$

$+D\Vert w\Vert_{s}\Vert u\Vert_{k_{0}}\Vert v\Vert_{k_{0}}\Vert w^{\prime}\Vert_{k_{0}}$

$+Q_{s}(\Vert w\Vert_{s- 1})\Vert u\Vert_{s- 1}\Vert v\Vert_{s- 1}\Vert w^{\prime}\Vert_{s- 1}$ ,
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where $C,$ $D$ are constants which do not depend on $s$ and $P_{s},$ $Q_{s}$ are polynomials
with positive coefficients.

REMARK. $(\Gamma 1),$ $(\Gamma 2)$ imply that the connection $\tilde{\nabla}$ satisfies the conditions
which are mentioned in [8] (hence $\tilde{\nabla}$ is regular in the sense of [8]). How-
ever, the regularity of this connection is trivial in this case, because the
curve $c(t)$ in $\mathcal{D}_{0}$ is geodesic if and only if $c(t)(x)$ is geodesic in $M$ for any
$x\in M$.

2\circ Vector bundles over $\mathcal{D}_{0}$

Let $E$ be a finite dimensional smooth riemannian vector bundle over $M$,
$\Gamma(E)$ the space of smooth sections of $E$ and $\Gamma_{g}(E)$ the space of smooth sec-
tions of the pull back $g^{-1}E$ of $E$ by $g\in \mathcal{D}_{0}$ . Put $\gamma(E)=\cup\{\Gamma_{g}(E);g\in \mathcal{D}_{0}\}$ .
This is a sort of vector bundle over $\mathcal{D}_{0}$ , if we forget about the topology.
Denote by $p$ the projection of $\gamma(E)$ onto $\mathcal{D}_{0}$ . Since $g$ is a diffeomorphism,
for every $v\in\Gamma_{g}(E)$ there is a unique $v^{f}\in\Gamma(E)$ such that $v(x)=v^{\prime}(g(x))$ and
conversely $v^{\prime}(g(x))$ is an element of $\Gamma_{g}(E)$ for any $v^{\prime}\in\Gamma(E)$ . Moreover,
$v(g(x))$ is an element of $\Gamma_{h\cdot g}(E)$ for every $v\in\Gamma_{h}(E)$ . Therefore $\gamma(E)$ is a
vector bundle on which $\mathcal{D}_{0}$ acts (from right) as bundle automorphism. Denote
by $R_{g}^{*}$ the action of $g$, that is, $(R_{g}^{*}v)(x)=v(g(x))$ . (Strictly speaking, we should
use the terminology anti-action, because $R_{gh}^{*}=R_{h}^{*}\cdot R_{g}^{*}.$) Recollect the defini-
tion of $\xi:U^{\prime}\vdash\rightarrow \mathcal{D}_{0}$ . Using this notation, $\tau^{\prime}(\xi(u)(x))v(x)$ denotes the parallel
translation of $v(x)\in E$ along the curve $\xi(tu)(x),$ $t\in[0,1]$ , in $M$. Of course
$\tau^{\prime}(\xi(u)(x))v(x)$ is an element of the fibre of $E$ at $\xi(u)(x)$ . So if we regard $x$ as
a variable, $\tau^{\prime}(\xi(u)(x))v(x)$ is an element of $\Gamma_{\xi(u)}(E)$ for every $v\in\Gamma(E)$ and
$u\in U^{\prime}$ . Put

$\tau(u, v)(x)=\tau^{\prime}(\xi(u)(x))v(x)$ . ... (11)

Then $\tau;U^{\prime}\times\Gamma(E)\leftrightarrow\gamma(E)$ is a bijective mapping of $U^{\prime}\times\Gamma(E)$ onto $p^{-1}(\xi U^{\prime})$

and if we put $\tau_{\xi(u)}v=\tau(u, v),$ $\tau_{\xi(u)}$ is a linear bijection of $\Gamma(E)$ onto $\Gamma_{\xi(u)}(E)$ .
So $\tau$ can be regarded as a local trivialization of $\gamma(E)$ .

Let $R^{*}:$ $\Gamma(E)\times \mathcal{D}_{0}\vdash\rightarrow\gamma(E)$ be the right translation defined by $R^{*}(v, g)=R_{g}^{*}v$ .
Then, the local expression of $R^{*}$ is the following:

Put $R^{\prime}(v, u)=\tau_{\xi(u)^{-1}}R^{*}(v, \xi(u))$ .

$R^{\prime}(v, u)(x)=\tau^{\prime}(\xi(u)(x))^{-1}v(\xi(u)(x))$ . $\cdot$ .. (12)

Let $U$ be the same open set as in Lemma 1.
LEMMA 5. $R^{\prime}$ : $\Gamma(E)\times U-\rangle$ $\Gamma(E)$ can be extended to the $C^{\iota}$-mapping of

$\Gamma^{s+t}(E)\times U^{s}\vdash\rightarrow\Gamma^{s}(E)$ for $s\geqq n+5$ . Moreover, the following inequality holds:
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$|1R^{\prime}(v, u)\Vert_{*}^{2}\leqq\Vert v\Vert^{2}{}_{k0+1}P^{\prime}(\Vert u\Vert_{2k_{0}}^{2})\Vert u$ 112+11 $v\Vert_{*}^{2}R_{s}^{\prime}(\Vert u\Vert_{k_{0}+1}^{2})$

$+\Vert v\Vert_{*-1}^{2}S_{l}^{\prime}(\Vert u\Vert_{s-1}^{2})$ , $k_{0}=[-2n-]+1$ ,

where $P^{J},$ $R_{l}^{\prime}$, S\’i are polynomials with positive coefficients and $P^{\prime}$ does not de-
pend on $s$ .

PROOF. Let $\tau^{\prime}(Exp_{x}y)$ denote the parallel translation along the curve
$Exp_{x}ty,$ $t\in[0,1]$ . Let $N$ be the totality of $f\in\Gamma(U, E)$ such that $f(u(x))\equiv 0$

for every $u\in U$. Let $\Psi:\Gamma(E)\rightarrow\Gamma(U, E)/N$ be the mapping defined by

$\Psi(v)(y)=\tau^{\prime}(Exp_{\pi\nu}y)^{-1}v(Exp_{\pi\nu}y)$ , $y\in U$ ,

where $\pi$ is the projection of $T_{H}$ . We have only to show that $\Psi$ can be ex-
tended to a bounded linear map of $\Gamma^{s+l}(T_{M})$ into $\Gamma^{s,l}(U, E, U^{k_{0}+1})$ (cf. Lemma
1 and Corollary 1). Let $\alpha=(s, l, U)$ we have to prove $\Vert\Psi(v)\Vert_{\alpha}\leqq C_{\alpha}\Vert v\Vert_{s+l}$ .

As in Lemma 1, let $\hat{x}=$ $(x^{1}$ , $\cdot$ .. , $x^{n})$ be the normal coordinate at $x=\pi y$ ,
$\hat{\xi}=$ $(\xi^{1}, \cdots , \xi^{n})$ the linear coordinate of $T_{x}M$ and $\hat{z}=(z^{1}, z^{n})$ the normal
coordinate at $Exp_{x}y$ . Put $w(\hat{x},\hat{\xi})=\tau^{\prime}(Exp_{\hat{x}}\hat{\xi})v(Exp_{\hat{x}}\hat{\xi})$ . Letting $e^{1},$

$\cdots,$
$e^{m}$ be a

basis of $E_{\hat{x}}$ (the fibre at $\hat{x}$) which is obtained by the parallel translation by
a basis of $E_{x}$ , we have

$w(\hat{x},\hat{\xi})=\sum w^{i}(\hat{x},\hat{\xi})e^{i}$

Thus by the same computation as in Lemma 1 we have the desired result.
Now, the local expression of right translation $R_{\xi(u)}^{*}$ is given by the fol-

lowing: Suppose $u,$ $v\in V,$ $w\in\Gamma(E)$ . Putting $R_{\xi(u)}^{\prime\prime}(w, v)=\tau_{\overline{\xi}(v)\xi(u)}^{1}R_{\xi(u)}^{*}\tau_{\xi(v)}w$ ,
we have

$\{R\xi_{(u)}(w, v)(x)=\tau^{\prime}(\xi(\eta(v, u)(x)))^{-1}\tau^{\prime}(\xi(v)(y))w(y)$ ... (13)
$y=\xi(u)(x)$ .

This is a rather complicated expression. So we define a mapping $\tau_{\Delta}(v, u)$ of
$\Gamma(E)$ onto itself by

$\{(\tau_{\Delta}(v, u)w)(x)=\tau^{\prime}(\xi(\eta(v, u))(x))^{-1}\tau^{\prime}(\xi(v)(y))\tau^{\prime}(\xi(u)(x))w(x)$ ... (14)
$y=\xi(u)(x)$ .

This is easy to understand (cf. Fig. 1).
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Using this notation, we have $R_{\xi(u)}^{\prime\prime}(w, v)=\tau_{\Delta}(v, u)R^{\prime}(w, u)$ .
For any $y,$ $z\in V_{x}$ let $\tau^{\prime}(Exp_{x}y),$ $\tau^{\prime}(Exp(dExp_{x})_{y}z)$ and $\tau^{\prime}(Expf(y, z))$ be

the parallel translations along $Exp_{x}ty,$ $t\in[0,1],$ $Exp(dExp_{x})_{y}tz,$ $t\in[0,1]$ and
$Exptf(y, z),$ $t\in[0,1]$ respectively, where $f(y, z)=Exp_{x^{-1}}Exp(dExp_{x})_{y}z$ . Define
a smooth mapping $T$ of $V\oplus V$ into $E^{*}\otimes E$ by

$T(y, z)=\tau^{\prime}(Expf(y, z))^{-1}\tau^{\prime}(Exp(dExp_{x})_{y}z)\tau^{\prime}(Exp_{x}y)$ .
Then, $T\in\Gamma(V\oplus V, E^{*}\otimes E)$ . Denote by $\tilde{\tau}_{\Delta}$ the mapping defined by $\tilde{\tau}_{\Delta}(u, v)(x)$

$=T(u(x), v(x))$ . Then we have

$\tau_{\Delta}(v, u)=\tau_{\Delta}\sim(u, \zeta(v, u))$ ... (15)

(Compare this equality with (5)).

LEMMA 6. Suppose $s\geqq n+5$ . The mapping $\tau_{\Delta}$ ;$\sim$

$V\times V\rightarrow\Gamma(E^{*}\otimes E)$ can be
extended to the smooth mapping of $V^{s}\times V^{s}$ into $\Gamma^{s}(E^{*}\otimes E)$ .

Moreover, the following inequality holds:

$\Vert\tilde{\tau}_{\Delta}(u, v)w\Vert_{s}^{2}\leqq P(\Vert u\Vert_{2k_{0}}^{2}+\Vert v\Vert_{2k_{0}}^{2})(\Vert u\Vert_{s}^{2}+\Vert v\Vert_{s}^{2})\Vert w\Vert_{k_{0}}^{2}$

$+Q(\Vert u\Vert_{2k_{0}}^{2}+\Vert v\Vert_{2k_{0}}^{2})\Vert w\Vert_{s}^{2}$

$+R_{s}(\Vert u\Vert_{s- 1}^{2}+\Vert v\Vert_{s- 1}^{2})\Vert w\Vert_{s- 1}^{2}$ .
The proof of this lemma is completely parallel to that of Lemma 2. The
inequality is an immediate conclusion of Theorem A.

Let $\tau_{\Delta}\circ R^{\prime}$ : $V\times\Gamma(E)\times V\rightarrow\Gamma(E)$ be the mapping defined by $\tau_{\Delta}\circ R^{\gamma}(v, w, u)$

$=\tau_{\Delta}(v, u)R^{\prime}(w, u)(=R_{\xi(u)}^{\prime\prime}(w, v))$ . Then combining Lemmas 5 and 6, we have the
following:

PROPOSITION 2. $\tau_{\Delta}\circ R^{\prime}$ can be extended to $C^{\iota}$ -map of $V^{s+t}\times\Gamma^{s+t}(E)\times V^{s}$

into $\Gamma^{s}(E)$ . If $u\in V^{s}$ is fixed, then this is a smooth map of $V^{s}\times\Gamma^{s}(E)$ into
$\Gamma^{s}(E)$ , where $s$ is provided $\geqq n+5$ .

PROOF. $\tau_{\Delta}\circ R^{\prime}(v, w, u)=\tau_{\Delta}\sim(u, \zeta(v, u))R^{\prime}(w, u)$ . Apply Lemma 1, Corollary
1, Lemma 5 and Lemma 6. Then, we get the first statement. If $u$ is fixed,
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then $w\rightarrow R^{\prime}(w, u)$ and $v\rightarrow\zeta(v, u)$ are linear, hence smooth. So we get the
second statement.

Since $\mathcal{D}_{0}^{n+5}$ is a topological group, there is an open neighbourhood $W^{n+s}$

of $0$ in $\Gamma^{n^{\mathfrak{u}}5}(E)$ such that $\xi(W^{n5}- 4)(\xi(W^{n+5}))^{-1}\subset\xi(V^{n+5})$ .
Put $W^{s}=W^{n\cdot\vdash 5}\cap\Gamma^{s}(E)$ for $s\geqq n+5$ . We define an equivalence relation

on the disjoint union $\cup\{\xi(W^{s})g\times\Gamma^{s}(E);g\in \mathcal{D}_{0}^{s}\}$ by the following: $(\xi(u)g, w)$

$\sim(\xi(u^{\prime})g^{\prime}, w^{\prime})$ (called equivalent), if and only if $\xi(u)g=\xi(u^{\prime})g^{\prime}$ and $w=$
$R_{g’ g^{-1}}^{\prime\prime}(w^{\prime}, u^{\prime})$ . Since $g^{\prime}g^{-1}$ is contained in $\xi(V^{s})$ , this is well defined. $R_{g^{\prime}g^{-1}}^{\prime\prime}(w^{\prime}$ ,
$u^{\prime})$ is smooth and linear with respect to $w^{\prime}$ .

Let $\gamma^{s}(E)$ be the equivalence classes $\cup\{\xi(W^{s})g\times\Gamma^{s}(E);g\in \mathcal{D}_{0}^{s}\}/\sim$ . Ob-
viously $\gamma^{s}(E)$ is a smooth fibre bundle over $\mathcal{D}_{0}^{s}$ with the fibre $\Gamma^{s}(E)$ . It is
not hard to verify the following properties:

$(\gamma 1)$ $\gamma^{s}(E)$ is a smooth fibre bundle over $\mathcal{D}_{0}^{s}$ with the fibre $\Gamma^{s}(E)$ .
$(\gamma 2)$ $\gamma^{s+1}(E)\subset\gamma^{s}(E)$ and the inclusion is a smooth bundle map.
$(\gamma 3)$ $\gamma(E)=\cap\gamma^{s}(E)$ (use the Sobolev embedding theorem).
$(\gamma 4)$ For every $g\in \mathcal{D}_{0}^{s}$ , the right translation $R_{g}^{*}$ is smooth. (Proposition 2).
$(\gamma 5)$ $R^{*}:$ $\Gamma(E)\times \mathcal{D}_{0}\rightarrow\gamma(E)$ can be extended to a $C^{\iota}$ -mapping of $\Gamma^{S^{\llcorner}l}(E)$

$\times \mathcal{D}_{0}^{s}$ into $\gamma^{s}(E)$ . (Lemma 5).

For any $s,$
$t$ such that $n+5\leqq s\leqq t,$ $\gamma^{ts}(E)$ implies the pull back of $\gamma^{s}(E)$ by

the inclusion $\mathcal{D}_{0}^{t}\subset \mathcal{D}_{0}^{s}$ . Obviously $\gamma^{ts}(E)$ is a smooth vector bundle over $\mathcal{D}_{0}^{t}$

with the fibre $\Gamma^{s}(E)$ . This is the bundle defined by $\cup\{\xi(W^{t})g\times\Gamma^{s}(E)$ ;
$ g\in \mathcal{D}_{0}^{t}\}/\sim$ , where $(\xi(u)g, w)\sim(\xi(u^{\prime})g^{\prime}, w^{\prime})$ if and only if $\xi(u)g=\xi(u^{\prime})g^{\prime}$ and
$w=R_{g’ g^{-1}}^{\prime\prime}(w^{\prime}, u^{\prime})$ . Since $g^{\prime}g^{-1}\in\xi(V^{t})\subset\xi(V^{s})$ this is well defined. In Lemma
5, take $U^{t}$ instead of $U^{s}$ . Then, $U^{t}\subset U^{s}$ implies that $R^{\prime}$ : $\Gamma(E)\times U\rightarrow\Gamma(E)$

can be extended to the $C^{\iota}$ -map of $\Gamma^{s\cdot\vdash\iota}(E)\times U^{t}$ into $\Gamma^{s}(E)$ . Similarly in Pro-
position 2 we can take $V$ ”, $V^{t}$ instead of $V^{s\cdot\succ l},$ $V^{s}$ because $V^{t+t}\subset V^{s+t}$ ,
$V^{t}\subset V^{s}$ . Therefore, we have the following additional properties:

$(\gamma 6)$ For every $g\in \mathcal{D}_{0}^{t}$ , the right translation $R_{g}^{*}$ is a smooth map of $\gamma^{ts}(E)$

onto itself.
$(\gamma 7)$ $R^{*}:$ $\Gamma(E)\times \mathcal{D}_{0}\rightarrow\gamma(E)$ can be extended to a $C^{\iota}$ -mapping of $\Gamma^{s+l}(E)$

$\times \mathcal{D}_{0}^{t}$ into $\gamma^{\iota,s}(E)$ .
Here we would like to illustrate why we need to lift the concept of vector
bundles over $M$ onto that over $\mathcal{D}_{0}$ . Mainly, it is because many subalgebra
of the Lie algebra of $\mathcal{D}_{0}$ is given by the kernell of differential operators.
The Lie algebra of $\mathcal{D}_{0}$ is of course $\Gamma(T_{M})$ . Let $\mathfrak{G}$ be a subalgebra of $\Gamma(T_{M})$ .
Then, the distribution of $\{dR_{g}\mathfrak{G};g\in \mathcal{D}_{0}\}$ obtained by the right translation is
smooth in the sense of Frechet Lie groups. However, in the category of
Frechet manifolds the Frobenius’ theorem does not hold in general case. So,
take the closure $\mathfrak{G}^{s}$ of $\mathfrak{G}$ in $\Gamma^{S}(T_{M})$ and consider the distribution { $dR_{g}\mathfrak{G}^{s}$ ;
$g\in \mathcal{D}_{0}^{s}\}$ . This is a distribution on Hilbert manifold $\mathcal{D}_{0}^{s}$ , on which the Fro-
benius’ theorem holds. However, at this time the differentiability might lose.
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If we take $\{dR_{g}\mathfrak{G}^{s\cdot- 1} ; g\in \mathcal{D}_{0}^{s}\}$ , then we get the differentiability but lose the
closedness of the distribution.

Now, consider a linear mapping $A:\Gamma(T_{M})\rightarrow\Gamma(E)$ which can be extended
to the bounded linear operator of $\Gamma^{S}(T_{M})$ into $\Gamma^{s-d}(E)$ . Define a right in-
variant bundle morphism $\tilde{A}$ of $\gamma^{s}(T_{M})$ into $\gamma^{ss- a}(E)$ by $A_{g}=R_{g}^{*}AdR_{g}^{-1}$ . This
is only continuous in general case. However, suppose $\tilde{A}$ happens to be smooth
and $A\Gamma^{s}(T_{M})$ is closed in $\Gamma^{s- d}(E)$ . Then it is not hard to verify that $Ker\tilde{A}$

is a smooth distribution on $\mathcal{D}_{0}^{s}$ . In fact, we have the following smooth ex-
tension theorem: If $A:\Gamma(T_{M})\rightarrow\Gamma(E)$ is a differential operator of order $d$ with
smooth coefficients, then $\tilde{A}$ is a smooth bundle morphism. To prove this theo-
rem we need more complicated arguments about jet bundles and higher order
connections. So this will be proved in the next paper.

3\circ Proof of Theorem A, B

Notations are as in the introduction (cf. the statements of Theorems $A$ ,
B). We have to begin with the precise definition of partial covariant deriva-
tives $V^{\prime}f,$

$\partial f$.
Let $c(t)$ be a smooth curve in $M$ such that $c(0)=x$ and $-dd\overline{t}|_{t=0}c(t)=X\in T_{x}M$

(the tangent space of $M$ at $x$). For every $p\in w_{x},$ $p_{t}$ denotes the curve in $W$

$obtained_{-}$ by the parallel displacement of $p$ along the curve $c(t)$ . Define
$(\nabla_{x}^{\prime}f)(P)$ by

$(\nabla_{x}^{\prime}f)(p)=_{dt^{-}}^{\nabla}-|_{t=0}f(p_{t})$ ... (16)

where $\frac{\nabla}{dt}$ implies the covariant derivative in $F$. It is easy to see that
$(\nabla_{X}^{\prime}f)(p)$ does not depend on the choice of curves $c(t)$ as far as $c(0)=x$,

$\overline{d}^{d}\overline{t}^{-1_{t=0}c(t)=X}$

Since $f$ preserves the fibres, that is, $f(W_{x})\subset F_{x}$ , we define $(\partial_{q}f)(p)$ for
every $q\in E$ such that $\pi p=\pi q$ ( $\pi$ is the projection of $E$ ) by the following:

$(\partial_{q}f)(p)=\lim_{\delta-0}$
$\delta 1\{f(p+\delta q)-f(p)\}$ . $\cdot$ .. (17)

Since $(\nabla_{X}^{\prime}f)(p)$ is linear with respect to $X,$
$\nabla^{\prime}f$ can be regarded as a mapping

of $\overline{W}$ into $T_{M}^{*}\otimes E$ , where $T_{H}^{*}$ is the cotangent bundle of $M$. Similarly, $\partial f$ can
be regarded as a mapping of $\overline{W}$ into $E^{*}\otimes F$, where $E^{*}$ is the dual vector
bundle of $E$ . As a matter of course, $T_{M}^{*}\otimes F$ and $E^{*}\otimes F$ have connections
extended naturally by the rule of derivations from the connections of $T_{M},$ $E$

and $F$. So iterating these operations $\nabla^{\prime},$
$\partial$ , we get $\nabla^{k}f$

’

(resp. $\partial^{k}f$) is a map-
ping of It’ into $T_{M^{k}}^{*}\otimes F$ (resp. $E^{*k}\otimes F$ ), where $T_{M^{k}}^{*}=T_{M}^{*}\otimes\cdots\otimes T_{M}^{*}$ (k-tensor
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product of $T_{H}^{*}$ ) and $E^{*k}=E^{*}\otimes\cdots\otimes E^{*}$ .
LEMMA 7. $\nabla^{\prime}\partial=\partial\nabla^{\prime}$ .
PROOF. Let $\tau_{B}(c(t)),$ $\tau_{F}(c(t)),$ $\tau_{E\emptyset F}(c(t))$ be parallel displacements in $E,$ $F$,

$E^{*}\otimes F$ respectively along a curve $c(t)$ . Then, we have

$(\tau_{E\otimes F}(c(t)A))(e)=\tau_{F}(c(t))A(\tau_{B}(c(t))^{-1}e)$ , $\cdot$ .. (18)

for every $A\in E_{x}^{*}\otimes F_{x}$ and $e\in F_{c(t)}$ . This is because of the way of definition
of the connection $\nabla$ of $E^{*}\otimes F$. It is defined by the rule of derivation, and
in fact, since the concept of connections can be defined naturally from that
of parallel displacements, we may take the equality (18) as the defining equa-
tion of the connection of $E^{*}\otimes F$.

Let $X=d^{d}t|_{t-0}- c(t)$ and $p_{t}=\tau_{E}(c(t))p$ , that is, the parallel displacement of

$p\in W_{x}$ along the curve $c(t)$ . Put $q_{t}=\tau_{E}(c(t))q$ for any $q\in E_{x}$ . Then, we have

$(\nabla_{X}^{\prime}\partial_{q}f)(p)=\lim_{t-0}1_{-\{\tau_{F}(c(t))^{-1}(\partial_{q_{\ell}}f)(p_{t})-(\partial_{q}f)(p)\}}t$

$=\lim--\{\tau_{F}(c(t))^{-1}[f(p_{t}+sq_{t})-f(p_{\iota})]-[f(p+sq)-f(p)]\}1$

$s\sim t-0$

$st$

1 ’
$=\lim_{s\sim}s\{(\nabla_{x}f)(p+sq)-(V_{x}^{\prime}f)(p)\}=(\partial_{q}\nabla_{x}^{\prime}f)(p)$ $q$ . $e$ . $d$ .

Obviously, $\nabla^{k}\partial^{m}f$

’

is a smooth mapping of $\overline{W}$ into $T_{M^{k}}^{*}\otimes E^{*q}\otimes F$. On the other
hand, if $v$ is a smooth section of $E$, then the covariant derivative $v$ can be
regarded as a smooth section of $T_{M}^{*}\otimes E$ and hence $\nabla^{k}v$ is a section of $T^{*k}\otimes E$.
$(\nabla^{k}v)^{m}$ denotes the m-tensor product $\nabla^{k}v\otimes\cdots\otimes\nabla^{k}v$ . Obviously $(\nabla^{k}v)^{m}$ is a
section of $T_{M}^{*km}\otimes E^{m}$ . Since there is the natural pairing. : $E^{*}\times E\rightarrow R$ (real

numbers), we can define the natural pairing . : $E^{*m}\otimes F\times E^{m}\rightarrow F$ and hence

. : $T_{M^{k}}^{*}\otimes E^{*m}\otimes F\times T_{M}^{*k^{\prime}}\otimes E^{m}\rightarrow T_{M^{k+k}}^{*}‘\otimes F$ ,

where $E^{m}=E\otimes\cdots\otimes E$ (m-tensor product of $E$). Denote by $A\cdot B$ the natural
pairing of $A\in T_{M^{k}}^{*}\otimes E^{*m}\otimes F$ and $B\in T_{M^{k}}^{*}‘\otimes E^{m}$ . Using these notations, we
have

LEMMA 8. If $v$ is a smooth section of $E$ such that $v(x)\in W_{x}$ for every
$x\in M$ , then

$\nabla^{k}f(v(x))=\Sigma C_{p,q,a_{1},\cdots,a_{k}}(\nabla^{p}\partial^{q}f)(v(x))\cdot(\nabla v)^{\alpha_{1}}\otimes(\nabla^{2}v)^{a_{2}}\otimes\cdots\otimes(\nabla^{k}v)^{a_{k}}$ ,

where the summation runs through all non negative integers such that $q=a_{1}+$

$...+a_{k},$ $k=p+a_{1}+2a_{2}+\cdots+ka_{k}$ and $C_{p,q,a_{1},\cdots,a_{k}}$ is a universal constant such
that $C_{0,1,0,\cdots,0,1}=1$ . (Remark that if $a_{k}\neq 0$ , then $a_{k}=1$ and $p=a_{1}=a_{2}=\ldots=$

$a_{k- 1}=0.)$

PROOF. Obviously, $\nabla f(v(x))=(\nabla^{\prime}f)(v(x))+(\partial f)(v(x))\cdot(\nabla v)(x)$ . By induction,
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we have $q=a_{1}+\cdots+a_{k},$ $k=p+a_{1}+2a_{2}+\cdots+ka_{k}$ and $C_{0,I,0,\ldots,0,1}=1$ . (As for
other constants, computations are a little complicated. However these are

$d^{k}$

completely parallel to that of - $f(x, u(x))$ for a two variable function $f$ and
$dx^{k}$

a single variable function $u.$)

COROLLARY 5. Let $s$ be an integer such that $s\geqq n+l(n=\dim M)$ . For
every $k(k\leqq s)$ and the constants $C_{p,q,a_{1},\cdots,a_{k}}$ in Lemma 8 we have $\Sigma^{(t)}a_{t}\leqq 1$ ,

where $\Sigma^{(t)}$ denotes the summation for $t\geqq s-(n+l-1)/2$ . Of course, if $k<s-$

$(n+l-1)/2$ , we put $\Sigma^{(l)}a_{t}=0$ .
PROOF. Assume $\Sigma^{(l)}a_{t}\geqq 2$ . Then $q=\sum_{t=1}^{k}a_{t}\geqq 2$ . Thus,

$s-2\geqq k-2\geqq k-(p+q)=\sum_{\iota=2}^{k}(t-1)a_{t}\geqq 2(s-1-(n+l-1)/2)$

$=2s-(n+l+1)$ .
This implies $n+l-1\geqq s\geqq n+l$ . $q$ . $e$ . $d$ .
COROLLARY 6. Notations being as above,
(i) if $t<s-(n+l-1)/2$ and $1\geqq 3$ , then $t+n/2+1\leqq s-1$ and
(ii) if $\Sigma^{(l)}a_{t}=1$ and $1\geqq 5$ , then $p+q+n/2+1\leqq s-1$ .
PROOF.

(i) $t+- 2-+1<s--\frac{n+l-1}{2}+\frac{n}{2}+1n=s_{2^{-+-}2}^{l3_{-\leqq S}}-$ .

(ii) $p+q=k-\sum_{r=2}^{k}(t-1)a_{t}\leqq k-(s\underline{n+}_{2^{l-1}}----1)\leqq--n+l\underline{-1}2+1$ .
Hence

$p+q+\frac{n}{2}+1\leqq---+1+\frac{n}{2}+1\leqq s--n+l-12.2^{l}+-3_{-\leqq s-1}2$

Now, let $\Gamma(E)$ (resp. $\Gamma(F)$) be the space of smooth sections of $E$ (resp. $F$)

and $\Gamma(W)$ the subset of $\Gamma(E)$ consisting of the elements $u\in\Gamma(E)$ such that
$u(x)\in W_{x}$ for every $x\in M$. Define $\langle, \rangle_{k},$ $\Gamma^{k}(E),$ $\Gamma^{k}(F)$ and $\Gamma^{k}(W)$ as in the
introduction. By the Sobolev embedding theorem we have the following:

LEMMA 9. For $k=[- 2n]+1+r$, there is a constant $e_{k}$ such that

$e_{k}\Vert v\Vert_{k}\geqq\max_{x}|v(x)|+\max_{x}|(\nabla v)(x)|+\cdots+\max_{x}|(\nabla^{r}v)(x)|$ .

REMARK. In the following part of this section, the constant $e_{k_{0}}$ for

$k_{0}=[-2n-]+1$ will be appearing very often. Of course $||$ implies the length

of the tensors.
Suppose $s\geqq n+5$ and $k\leqq s$ and let $t_{0}=s-1-(n+4)/2$ (cf. Corollary 6) and

$k_{0}=[-n2-]+1$ . Since $\sum_{t\geqq\downarrow 0+1}a_{t}\leqq 1$ in the equality of Lemma 8, denote by $r$ the
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number such that $r\geqq t_{0}+1$ and $a_{r}=1$ if such a number exists, that is, in the
case of $\sum_{t\geqq t_{0^{\perp}}1}a_{x}=1$ . Put $m_{t}=\max_{x}|(\nabla^{\ell}v)(x)|$ for $t\leqq t_{0}$ and $m_{p,q}=\max_{x}|(\nabla^{p}\partial^{q}f)(v(x))|$

’

in case of $\sum_{l\geqq\iota_{0^{\leftarrow 1}}}a_{t}=1$ . Then, by Corollary 6 together with Lemma 9, we have

$m_{t}\leqq e_{k_{0}}\Vert\nabla^{t}v\Vert_{k_{0}}\leqq e_{k_{0}}\Vert v\Vert_{\ell\prec\cdot k_{0}}\leqq e_{k_{0}}\Vert v\Vert_{S- 1}$ (19)

$m_{p,q}\leqq e_{k_{0}}\Vert(\nabla^{p}\partial^{q}f)(v)\Vert_{k_{0}}$

’ ... (20)

and $p+q+k_{0}\leqq s-1$ .
LEMMA 10. Notations being as above, we have

$|\nabla^{k}f(v(x))|\leqq m_{0,1}|\nabla^{k}v|+\Sigma_{(1)}C_{p,q,q,0,\cdots,0}|(\nabla^{p}\partial^{q}f)(v(x))’|m_{1}^{q}$

$+\Sigma_{(2)}C_{p,q,a1,\cdots,\alpha_{t_{0’ 0,\cdots,0}}}|(\nabla^{p}\partial^{q}f)(v(x))|m_{1}^{a_{1}}m_{2}^{a_{2}}\cdots m_{t_{0}}^{a_{t}}o$

’

$+\Sigma_{(3)}C_{p,q,\alpha 1,a_{t_{0\prime}0\ldots.,1,0,\cdots,0}}m_{p,q}m_{1}^{a}m_{2^{\vee}}^{ao}\cdots m_{\iota_{0}}^{a_{t_{0}}}|\nabla^{r}v|$ ,

where the summation $\Sigma_{(i)},$ $i=1,2,3$ , runs through all non-negative integers as
follows;

$\Sigma_{(1)}$ ; $p+q=k$ (Remark that if $p+q=k$ , then $a_{2}=\ldots=a_{k}=0$)

$\Sigma_{(2)}$ ; $p+q<k,$ $q=a_{1}+$ $+a_{t_{0}}$ and $k=p+a_{1}+\cdots+t_{0}a_{t_{0}}$ .
(Remark that this is the case of $\sum_{t\geqq t_{0}+1}a_{t}=0.$)

$\Sigma_{(3)}$ ;
$a_{k}=0,\sum_{l\geqq t_{0}+1}a_{t}=1,$

$q=a_{1}+\cdots+a_{k- 1}$

$k=p+a_{1}+\cdots+(k-1)a_{k- 1}$ .
(Remark that this is the case of $\sum_{t\geqq\iota_{0}+1}a_{t}=1$ and $a_{k}=0$ . If $a_{k}\neq 0$ ,

then $a_{k}=1$ and $p=a_{1}=\ldots=a_{k-1}=0$ . This case is expressed
by the first term.)

Recall the definition in $0^{o}$ . Let $\Gamma(W, F)$ be the linear space of the smooth
mappings $f$ of $\overline{W}$ into $F$ such that $f(W_{x})\subset F_{x}$ for every $x\in M$. Let $V^{k_{1}}$ be a
bounded open set of $\Gamma^{k_{1}}(W)$ for $k_{0}\leqq k_{1}\leqq n+5$ . $N$ denotes the totality of $f$

such that $f(v(x))\equiv 0$ for any $v\in V^{k_{1}}\cap\Gamma(E)$ .
LEMMA 11. If $f\in N$, then $(\nabla^{p}\partial^{q}f)(v(x))’\equiv 0$ for any $v\in V^{k_{1}}\cap\Gamma(E)$ .
PROOF. By definition, we have

$(\partial_{w(x)}f)(v(x))=\lim_{\delta\sim}\delta^{-}1\{f(v(x)+\delta w(x))-f(v(x))\}$ .

So we have $(\partial f)(v(x))\equiv 0$ if $f\in N$. On the other hand, $\nabla f(v(x))\equiv 0$ implies
$(\nabla f)(v(x))\equiv 0$ , because $\nabla f(v(x))=\nabla^{\prime}f+\partial f\cdot\nabla v$ . Thus we get the desired result
by induction.

Put $V=V^{k_{1}}\cap\Gamma(E),$ $V^{s}=V^{k_{1}}\cap\Gamma^{s}(E)$ for $s\geqq n+5$ . $\Gamma^{k},{}^{t}(W, F, V^{k_{1}})$ de-
notes the completion of $\Gamma(W, F)/N$ by $\Vert\Vert_{\alpha},$ $\alpha=(k, 1, V)$ .
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PROPOSITION 3. Suppose $s\geqq n+5$ . If $\overline{f}\in\Gamma^{S0}(W, F, V^{k_{1}})$ and $v\in V^{s}$ , then
$f(v(x))$ is contained in $\Gamma^{s}(F)$ and the following inequality holds:

$\Vert\overline{f}(v(x))\Vert_{s}^{2}\leqq 2m_{0,1}^{2}\Vert v\Vert_{s}^{2}+C_{s}(m_{1}+1)^{2s}\Vert\overline{f}\Vert_{\alpha}^{2}+\Vert\overline{f}\Vert_{\alpha}^{2},P_{s}(\Vert v\Vert_{s- 1}^{2})$ ,

$\alpha=(s, 0, V)$ , $\alpha^{\prime}=(s-1,0, V)$ ,

where $C_{s}$ is a constant depending on $s$ and $P_{s}$ is a polynomial with positive co-
efficients.

To prove this, we need one more lemma (Lemma 12) and by this lemma,
it becomes enough to prove the inequality. The essential point of the above
inequality is that $m_{0,1}$ does not depend on $s$ and the maximal terms $\Vert\Vert_{s}$ in
norm come in like linear mappings.

LEMMA 12. There is a constant $\overline{C}_{k_{0}}$ depending only on $k_{0}$ such that

$m_{p,q}\leqq\overline{C}_{k_{0}}(1+m_{1}+\cdots+m_{k_{0}})^{k_{0}}\Vert\overline{f}\Vert_{\beta}$ , $\beta=(k_{0}+p+q, 0, V)$ ,

where $m_{p,q}=\max_{x}|(\nabla^{p}\partial^{q}f)(v(x))’|$ for an $f\in\overline{f}$. (Remark that $m_{p,q}$ depends only

on $\overline{f}$ by Lemma 11.)

PROOF. By Lemma 11, we see that $\Vert\overline{f}\Vert_{\beta}=\Vert f\Vert_{\beta}$ for $anyf\in\overline{f}$. So by the
inequality (20), we have only to consider $\Vert(\nabla^{p}\partial^{q}f)(v(x))\Vert_{k_{0}}’$ . In Lemma 8, re-
place $f$ by $\nabla^{p}\partial^{q}f$

’

and we have

$|\nabla^{t}(\nabla^{p}\partial^{q}f)(v(x))|\leqq\sum C_{i,j,b_{1},\ldots,b_{t}}|\nabla^{i+p}\partial^{j+q}f|\cdot|\nabla v|^{b_{1}}’’\cdots|\nabla^{t}v|^{b_{t}}$ .
Therefore for any $t\leqq k_{0}$ , we have that the right hand side is not larger than

$\Sigma C_{i,f,b_{1},\cdots,b_{t}}|(\nabla^{i+p}\partial^{j^{r}q}f)(v(x))|(1+m_{1}+’\ldots+m_{k_{0}})^{k_{0}}$ .
Thus,

$m_{p,q}\leqq e_{k_{0}}\Vert(\nabla^{p}\partial^{q}f)(v(x))\Vert_{k_{0}}\leqq\overline{C}_{k_{0}}\Vert\overline{f}\Vert_{\beta}(1+m_{1}+’\ldots+m_{k_{0}})^{k_{0}}$ .
PROOF OF PROPOSITION 3. Since $s>2k_{0}$ and $m_{j}\leqq e_{k_{0}}\Vert v\Vert_{j+k_{0}}$ (cf. (19)), if

$v\in\Gamma^{s}(E),\overline{f}\in\Gamma^{so}(W, F, V^{k_{1}})$ , then $ m_{1}<\infty$ . By Lemma 12 we get

$|\nabla^{k}f(v(x))|\leqq m_{0,1}|\nabla^{k}v|+C_{k}^{\prime}(1+m_{1})^{k^{\prime}}\sum_{p+q=k}|(\nabla^{p}\partial^{q}f)(v(x))|$

$+D_{k}\Sigma_{(2)}|(\ell^{p}\partial^{q}f)(v(x))|e_{k_{0}}^{q}\Vert v\Vert_{s-1}^{q}$

$+E_{k}\Sigma_{(3)}\Vert f\Vert_{\beta}(e_{k_{0}}\Vert v\Vert_{s- 1})^{a_{1}+\cdot\cdot+a_{t_{0}}}|\nabla^{r}v|$ ,

where $C_{k}^{\prime},$ $D_{k}$ and $E_{k}$ are constants depending on $k$ .
Since $p+q+k_{0}\leqq s-1$ in the summation $\Sigma_{(3)}$ (Corollary 6), this term can

be replaced by
$E_{k}\Vert f\Vert_{\alpha^{\prime}}\Sigma_{(3)}(e_{k_{0}}\Vert v\Vert_{s- 1})^{q- 1}|\nabla^{r}v|$ .

On the other hand,

$|\nabla^{k}f(v(x))|^{2}\leqq 2m_{0,1}^{2}|\nabla^{k}v|^{2}+2(C_{k}^{\prime}(1+m_{1})^{k}\Sigma+D_{k}\Sigma_{(2)}+E_{k}\Sigma_{(3)})^{2}$
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The second term 1I can be estimated very roughly by the following:

Let $C_{k}^{n},$ $D_{k}^{\prime}$ and $E_{k}^{\prime}$ are constants depending on $k$ .
$II\leqq C_{k}^{\prime\prime}(1+m_{1})^{2k}\sum_{p+q=k}|(\nabla^{p}\partial^{q}f)(v(x))|^{2}$

’

$+D_{k}^{\prime}\sum_{p+q<k}|(\nabla^{P}\partial^{q}f)(v(x))|^{2}\sum_{q\leqq k}e_{k_{0}}^{2q}\Vert v\Vert_{s-1}^{2q}$

’

$+E_{k}^{\prime}\Vert f\Vert_{\alpha^{\prime}}^{2}\sum_{q<k}(e_{k_{0}}\Vert v\Vert_{\epsilon- 1})^{2(q- 1)}\sum_{r_{\backslash }k}|\nabla^{r}v|^{2}$ .

Thus we have

$\Vert f(v(x))\Vert_{s}^{2}\leqq 2m_{0,1}^{2}\Vert v\Vert_{\epsilon}^{2}+C_{s}(1+m_{1})^{2s}\Vert f\Vert_{a}^{2}+D_{*}^{l}\Vert f\Vert_{\alpha}^{2}(\sum_{q\leqq\$}e_{k_{0}}\Vert v\Vert_{s- 1})^{2q}$

$+E_{\epsilon}^{\prime}\Vert f\Vert_{a^{\prime}}^{2}\sum_{qs}(e_{k_{0}}\Vert v\Vert_{s- 1})^{2(q- 1)}\Vert v\Vert_{s- 1}^{2}$ .

This completes the proof of Proposition 3.
The following lemma is easy to prove:
LEMMA 13. Suppose $s\geqq n+3(n=\dim M)$ . Let $e_{k_{0}}$ be the same constant

as in (19) and (20).
(i) If $u\in\Gamma(E)$ and $v\in\Gamma(F)$ , then

$|1u\otimes v\Vert_{s}^{2}\leqq e_{k_{0}}^{2}\{\Vert u\Vert_{s}\Vert v\Vert_{k_{0}}^{2}+\Vert u\Vert_{k_{0}}^{2}\Vert v\Vert_{\epsilon}^{2}\}+C_{s}\Vert u\Vert_{s-1}^{2}\Vert v\Vert_{*- 1}^{2}$ .
(ii) If $f\in\Gamma(E^{*}\otimes F)$ and $u\in\Gamma(E)$ , then

$|1f(u)\Vert_{\iota}^{2}\leqq e_{k_{0}}^{2}\{\Vert f\Vert_{*}^{2}\Vert u\Vert_{k_{0}}^{2}+\Vert f\Vert_{k_{0}}^{2}\Vert u\Vert_{s}^{2}\}+C_{s}\Vert f\Vert_{s- 1}^{2}\Vert u\Vert_{s- 1}^{2}$ .
As well as Proposition 3, the essential part of this lemma is that $e_{k_{0}}$ does
not depend on $s$ .

Now, let $f\in\Gamma(E^{*\iota}\otimes F)$ . Then $f$ is an l-linear map of $E\times\cdots\times E$ into $F$

and also $f$ can be regarded as a linear map of $E^{\iota}(=E\otimes\cdots\otimes E)$ into $F$.
LEMMA 14. Notations being as above, suppose $s\geqq n+3$ and let $\overline{e}_{k0}=$

$\max\{1, e_{k_{0}}\}$ . Then
$\Vert f(v_{1}, v_{l})\Vert_{\epsilon}^{2}\leqq\overline{C}_{k_{0}}^{2(l+1)}\Vert f\Vert_{s}^{2}\Vert v_{1}\Vert_{k_{0}}^{2}\cdots\Vert v_{\iota}\Vert_{k_{0}}^{2}$

$+C_{k_{0}}^{2(l+1)}\Vert f\Vert_{k_{0}}^{2}\sum_{j=1}^{\ell}\Vert v_{1}\Vert_{k_{0}}^{2}\cdots\Vert v_{J- 1}\Vert_{k_{0}}^{2}\Vert v_{j}\Vert_{s}^{2}\Vert v_{j4\cdot 1}\Vert_{k_{0}}^{2}\cdots\Vert v_{\iota}\Vert_{k_{0}}^{2}$

$+C_{s}\Vert f\Vert_{s- 1}^{2}\Vert v_{1}\Vert_{\epsilon- 1}^{2}\cdots\Vert v_{\iota}\Vert_{s- 1}^{2}$ ,

where $C_{s}$ is a constant depending on $s$ .
PROOF. $f(v_{1}$ , $\cdot$ .. , $v_{\iota})=f(v_{1}\otimes\cdots\otimes v_{\iota})$ . Thus by (ii) in Lemma 13, we have

$|1f(v_{1}, \cdots, v_{\iota})\Vert_{\epsilon}^{2}\leqq e_{k_{0}}^{2}\{\Vert f\Vert_{*}^{2}\Vert v_{1}\otimes\cdots\otimes v_{\iota}\Vert_{k_{0}}^{2}+\Vert f\Vert_{k_{0}}^{2}\Vert v_{1}\otimes\cdots\otimes v_{\iota}\Vert_{\iota}^{2}\}$

$+C_{s}\Vert f\Vert_{*- 1}^{2}\Vert v_{1}\otimes\cdots\otimes v_{t}\Vert_{s- 1}^{2}$ .
Using (i) of Lemma 13 successively, we get the desired result.

Now, Theorem A is an immediate conclusion of Proposition 3 together
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with Lemma 12 and 14.
Using this Theorem $A$ , we have
LEMMA 15. Let $f\in\Gamma(W, F)$ . Then there exist positive valued continuous

functions $\gamma_{1},$ $\gamma_{2}$ defined on the real half line $[0, \infty$) and a constant $C$ all of
them depending on $f$ such that

$\Vert f(u(x)+v(x))-f(u(x))\Vert_{s}^{2}\leqq C\int_{0}^{1}\Vert u+\theta u\Vert_{s}^{2}d\theta\Vert v\Vert_{k_{0}}^{2}$

$+\int_{0^{1}}\gamma_{1}(\Vert u+\theta v\Vert_{k_{0}}^{2})d\theta\Vert v\Vert_{s}^{2}$

$+\int_{0^{1}}\gamma_{2}(\Vert u+\theta v\Vert_{s- 1}^{2}\Vert d\theta\Vert v\Vert_{\epsilon- 1}^{2}$ .

PROOF. Since $ f(u(x)+v(x))-f(u(x))=\int_{0^{1}}(\partial f)(u(x)+\theta v(x))\cdot v(x)d\theta$ , we have

$\Vert f(u(x)+v(x))-f(u(x))\Vert_{\epsilon}^{2}=\sum_{k=0}\int_{M}|\int_{0^{1}}\nabla^{k}[(\partial f)(u(x)+\theta v(x))\cdot v(x)]d\theta|^{2}\mu$

$\leqq\sum_{k=0}^{n}\int_{M}\int_{0^{1}}|\nabla^{k}[(\partial f)(u(x)+\theta v(x))\cdot v(x)]|^{2}d\theta\mu$

using Schwartz inequality. Thus,

$\Vert f(u(x)+v(x))-f(u(x))\Vert_{s}^{2}\leqq\int_{0^{1}}\Vert(\partial f)(u(x)+\theta v(x))\cdot v(x)\Vert_{\epsilon}^{2}d\theta$ .

So Theorem A gives the desired result.
Now we define a mapping $\Phi:\Gamma(W, F)/N\times V\leftrightarrow\Gamma(F)$ by $\Phi(\overline{f}, u)(x)=f(u(x))$ ,

where $f\in\overline{f}$. Then, Proposition 3 shows that if $s\geqq n+5$ , then $\Phi$ can be ex-
tended as a mapping $\Phi:\Gamma^{so}(W, F, V^{k_{1}})\times\Gamma^{s}(W)-\Gamma^{s}(F)$ .

LEMMA 16. $\Phi$ : $\Gamma^{S0}(W, F, V^{k_{1}})\times V^{s}\leftrightarrow\Gamma^{s}(F)$ is continuous for every $s\geqq n+5$ .
PROOF. Let $\overline{f}\in\Gamma^{s0}(W, F, V^{k_{1}}),$ $u\in V^{s}$ . Suppose $\epsilon$ be an arbitrary positive

number. There is a positive number $\delta_{1}$ such that if $\Vert\overline{f}^{\prime}-\overline{f}\Vert_{\alpha}<\delta_{1},$ $\alpha=(s, 0, V)$ ,

then $\Vert(\overline{f}^{\prime}-\overline{f})(u^{\prime}(x))\Vert_{s}<\epsilon/3$ for every $u^{\prime}$ such that $\Vert u-u^{\prime}\Vert_{s}\leqq 1$ . This is an
immediate conclusion of Proposition 3. Now, we can choose an element
$\overline{f}^{\prime}\in\Gamma(W, F)/N$ such that $\Vert\overline{f}^{\prime}-\overline{f}\Vert_{\alpha}<\delta_{1}$ . So Lemma 15 tells us that there is
$\delta_{2}$ such that if $\Vert u^{\prime}-u\Vert_{s}<\delta_{2}$ , then $\Vert f^{\prime}(u(x))-f^{\prime}(u^{\prime}(x))\Vert_{s}<\epsilon/3$ . We may assume
that $\delta_{2}\leqq 1$ . Therefore

$\Vert f(u(x))-\overline{f}(u^{\prime}(x))\Vert_{s}\leqq\Vert(\overline{f}-\overline{f}^{\prime})(u(x))\Vert_{s}+\Vert\overline{f}^{\gamma}(u(x))-\overline{f}^{\prime}(u^{\prime}(x))\Vert_{s}$

$+\Vert(\overline{f}^{\prime}-\overline{f})(u^{\prime}(x))\Vert_{s}<\epsilon$ ,

whenever $\Vert u-u^{\prime}\Vert_{s}<\delta_{2}$ . Since $\Phi$ is linear with respect to $\overline{f}$, this inequality
together with Proposition 3 again shows the continuity of $\Phi$ .

PROOF OF THEOREM B. First of all, if $\Phi$ is differentiable at $(f, u)$ , then
the k-th derivative of $\Phi$ must be given by the following:
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$(d^{k}\Phi)_{(f,u)}(f_{1}, v_{1})\cdots(f_{k}, v_{k})(x)$

$=\sum_{J=1}^{k}(\partial^{k-1}f_{j})(u(x))\cdot v_{1}\otimes\cdots\otimes v_{j\sim 1}\otimes v_{j+1}\otimes\cdots\otimes v_{k}$

$+(\partial^{k}f)(u(x))\cdot v_{1}\otimes\cdots\otimes v_{k}$ ,

where $v_{j}$ implies of course $v_{j}(x)$ . Now, let $k\leqq l$ . Then $\partial^{k}f\in\Gamma^{\epsilon l-k}(W,$ $E^{*k}$

$\otimes F,$ $V^{k_{1}}$) $\subset\Gamma^{s,0}(W, E^{*k}\otimes F, V^{k_{1}})$ . Hence Theorem A and the continuity of
Lemma 16 show that $ d^{k}\Phi$ is continuous, if it exists. Thus we have only to
show the following (see [5], p. 7):

Let $\delta=\sqrt{\Vert f^{\prime}\Vert_{\beta}+\Vert v\Vert_{s}^{2}},$ $\beta=(s, l, V)$ .

$\varliminf_{\delta 01}-\delta^{1_{t^{-}\Vert(f+f^{\prime})(u(x)+v(x))-\dagger\sum_{k=0}^{\iota-1}-}}k!^{-(\partial^{k}f^{\prime})(u)\cdot v^{k}+..\sum_{k=0}^{l}}\overline{k}\overline{!}11_{(\partial^{k}f)(u)\cdot v^{k}\}\Vert_{s}=0}$ .

The second term in $\Vert\Vert_{s}$ is the Taylor series of $\Phi$ up to $l$ .
To do this it is enough to prove the following two equalities:

(1) $\lim_{\delta-\triangleleft}\Vert v^{1}\Vert_{l}^{\overline{l}\Vert f(u(x)+v(x))-\sum_{k=0}^{t}-(\partial^{k}f)(u)\cdot v^{k}|_{s}=0}k^{1}\overline{!}$

(2) $\lim_{\delta\sim}-\delta^{1_{t}}-\Vert f^{\prime}(u(x)+v(x))-\sum_{k-}^{l-1},$ $-k\frac{1}{!}(\partial^{k}f^{J})(u)\cdot v^{k}\Vert_{\epsilon}=0$ .

By Taylor’s theorem ([1] p. 186), we have

$f^{\prime}(u(x)+v(x))=\sum_{k=0}^{l-1}\frac{1}{k!}(\partial^{k}f^{J})(u(x))\cdot v(x)^{k}$

$+\int_{0^{1}}\frac{(1-\theta}{(l-}1^{)_{\overline{)!}}^{l-1}}(\partial^{\iota}f^{\prime})(u(x)+\theta v(x))\cdot v(x)^{\iota}d\theta$ .

So, as for (2), we have only to show

$\lim_{\delta\rightarrow 0}\frac{1}{\delta^{2l}}\Vert\int_{0^{1}}\frac{(1-\theta)^{t-1}}{(l-1)!}(\partial^{\iota}f^{\prime})(u(x)+\theta v(x))\cdot v(x)^{l}d\theta\Vert_{s}^{2}=0$ .
Using Schwartz inequality as in Lemma 15, we have that the left hand side
of the above equality is not larger than

$ C\lim_{\delta-\triangleleft}\frac{1}{\delta^{2l}}\int_{0^{1}}\Vert(\partial^{l}f^{J})(u(x)+\theta v(x))\cdot v(x)^{\iota}\Vert_{l}^{2}d\theta$ .
Therefore by Theorem A we see that the above quantity is $0$.

As for (1), since $\int_{0^{1}}\frac{(1-\theta}{(l-1}\frac{l-}{)!}d\theta)^{1}=\frac{1}{l!}$ , we have also to prove

$\lim_{||v|I_{l}\sim}\frac{1}{\Vert v\Vert_{\iota}^{l}}\Vert\int_{0^{1}}\frac{(1-\theta)^{l-1}}{(l-1)!}[(\partial^{\iota}f)(u(x)+\theta v(x))-(\partial^{l}f)(u(x))]\cdot v(x)^{l}d\theta\Vert_{*}=0$ .

It is enough to prove
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$\lim_{||v||_{S}-0}\Vert(\partial^{\iota}f)(u+\theta v)-(\partial^{l}f)(u)\Vert_{s}=0$ .

SiIlce $\partial^{\iota}f\in\Gamma^{s,0}(W, F, V^{k_{1}})$ , the continuity in Lemma 16 shows the desired
results.

4\circ Estimate for group inversion

Recall the definition of $\xi$ and $U$ in $1^{\circ}$ . We may assume that $U$ is a star
shaped neighborhood of $0$ in $\Gamma(T_{M})$ . Let $\varphi=\xi(u),$ $u\in U$. $\varphi$ is a diffeomor-
phism and obviously, there is $v\in\Gamma(T_{M})$ such that $\varphi^{-1}(x)=Exp_{x}v(x)$ . Put
$\psi=\varphi^{-1}$ .

For an arbitrarily fixed $x\in M$, let $y=\varphi(x)$ . Clearly, $\rho(x, y)=|u(x)|=|v(y)|$ ,
where $\rho$ is the distance function.

Let $x(t)$ be the geodesic defined by $Expt_{(x)\Gamma’}^{\frac{u}{|u}}(x)t\in[0, |u(x)|]$ . Parameters

for geodesics are always arc length. Consider a family of geodesics $x_{\alpha}(t)$

such that $x_{0}(t)\equiv x(t)$ . Then, $w(t)=\partial^{\frac{\partial}{\alpha}}|_{0}x_{\alpha}(t)$ satisfies

$-- w(t)+A(t)w(t)=0dt\nabla^{z_{2}}$ ... (21)

where $A(t)X=-R(\dot{x}(t), X)\dot{x}(t)$ and $R$ is the curvature tensor. $A(t)$ is self-
adjoint. If we use frames along $x(t)$ which are obtained by parallel displace-
ment of a frame at $x(O)$ along the curve $x(t)$ , and express the vector $w(t)$ , as
an $n\cdot tuple(n=\dim M)$ of functions (this will be denoted by $w(f)$ again), then
the above equation is changed into

$- d^{d}t^{2_{2}}-w(t)+A(t)w(t)=0$ , $\cdot$ .. (22)

where $A(t)$ is a symmetric matrix at each $t\in[0, |u(x)|]$ .
Now, there is a constant $K$ such that $\Vert A(t)\Vert\leqq K$ for any geodesic and for

any $t$ . This is because $M$ is compact. For simplicity, we use the notation
$w^{\prime}(t),$ $w^{\prime\prime}(t)$ for differentiation. Define a function $F(t)$ by

$F(t)=\int_{0^{t}}\int_{0^{s}}|w^{\prime}(\tau)|d\tau ds$ .
Then,

$|w^{\prime}(t)|-|w^{\prime}(0)|\leqq\int_{0^{t}}|w^{\prime\prime}(s)|ds\leqq KF(t)+K|w(0)|t$ .
Therefore,

$F^{n}(t)\leqq KF(t)+K|w(0)|t+|w^{\prime}(0)|$ .
Putting $F(t)=g(t)e^{\bigwedge_{Kt}}$

$g^{\prime\prime}(t)=2\sqrt{K}g^{\prime}(t)\leqq K|w(0)|t+|w^{\prime}(0)|$ .
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By assuming $\max_{x}|u(x)|\leqq 1$ , that is, restricting $u$ in such a neighborhood of
$0$ in $\Gamma(T_{M})$ , we have that there is a constant $C$ such that

$F^{\prime}(t)\leqq C\{|w(0)|t^{2}+|w^{\prime}(0)|t\}$ .
Since $t\leqq|u(x)|$ and

$|w(t)-w(0)^{1_{1}}\leqq\int_{0^{t}}|w^{\prime}(s)|ds=F^{\prime}(t)$ ,

$|w(t)-w(0)|\leqq C\{|w(0)||u(x)|^{2}+|w^{\prime}(0)||u(x)|\}$ .
Now, notice that $d\varphi_{x}X$ is given by the value $w(|u(x)|)$ of the solution $w(t)$ of
(21) such that $w(O)=X$ and $w^{\prime}(O)=\nabla_{X}u$ , where $X\in T_{x}M$. So expressing $d\varphi_{x}$

by the same frame obtained by the parallel displacement mentioned above
and denoting by the same notation, we have

$|d\varphi_{x}X-X|\leqq C\{|X||u(x)|^{2}+|\nabla_{X}u||u(x)|\}$ .
Hence

$\Vert d\varphi_{x}-I\Vert\leqq C\{|u(x)|^{2}+|(\nabla u)(x)||u(x)|\}$ , (23)

where $I$ is the identity matrix.
Assume furthermore that

1
$\max_{x}\{|u(x)|+|(\nabla u)(x)|\}<2C^{-}$

that is, restrict $u$ in such a neighborhood of $0$ in $\Gamma(T_{M})$ . Then, it is easy to
see that

$\Vert d\varphi_{x}^{-1}-I\Vert\leqq 2\Vert d\varphi_{x}-I\Vert$ . $\cdot$ .. (24)

Obviously, $d\varphi_{x}^{-1}=d\psi_{y}$ , where $d\psi_{\nu}$ is again expressed by the same frame along
$x(t)$ . $\psi$ is given by $\psi(z)=Expv(z)$ . Let $\psi_{\theta}(z)=Exp\theta v(z)$ . Then $\psi_{\theta}$ is also a
diffeomorphism for every $\theta\in[0,1]$ , because if not, we can find some $\theta$ at
which $\xi(\theta u)$ is not a diffeomorphism.

Consider the geodesic $x(t)=Expt|v(y)|$ ,
$v(y)$

$t\in[0, |v(y)|]$ . In fact this is the

same geodesic as above, if you change the parameter $f$ to $|u(x)|-f$ . By this
change of parameter the same equality as (21) or (22) holds.

Since $M$ is compact, there is a constant $K^{\prime}$ depending only on $M$ such
that $\Vert A(t)-A(O)\Vert\leqq K^{\prime}t$ .

Let $\overline{w}(t)$ be the solution of

$\overline{w}^{t}(t)+A(0)\overline{w}(f)=0$ ... (26)

with the same initial condition $\overline{w}(0)=w(0),\overline{w}^{\prime}(0)=w^{\prime}(0)$ . Since $A(O)$ is sym-
metric, we may assume that $A(O)$ is a diagonal matrix. Therefore, by a direct
computation, we see that there are $C_{1}$ and $\delta_{1}$ such that

$|\overline{w}(t)|\leqq C_{1}\{|w^{\prime}(0)|t+|w(0)|\}$
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for any $t\leqq\delta_{1}$ , where these constants depend only on $M$. By using the in-
equality in Theorem 5, [5] p. 41, we can compare solutions of (22) and (26),

that is,
$|w(t)-\overline{w}(t)|\leqq C_{2}\{K^{\prime}|w^{\prime}(0)|t^{3}+K^{\prime}|w(0)|t^{2}\}$ ,

where $C_{2}$ is a constant depending only on $M$. Therefore

$|w(t)-w(0)|\geqq|\overline{w}(t)-\overline{w}(0)|-C_{2}K^{\prime}\{|w^{\prime}(0)|t^{3}+|w(0)|t^{2}\}$

for any $t<\delta_{1}$ .
By a direct computation, we have that there are $C_{3},$ $C_{4}$ and $\delta_{2}$ such that

$|\overline{w}(t)-\overline{w}(0)|\geqq C_{3}|\overline{w}^{\prime}(0)|t-C_{4}|\overline{w}(0)|t^{2}$

for any $t\leqq\delta_{2}$ . Thus,

$|w(t)-w(0)|\geqq(C_{3}-C_{2}K^{\prime}t^{2})t|w^{\prime}(0)|-(C_{2}K^{\prime}+C_{4})t^{2}|w(0)|$ .
Take $\delta$ so that it may satisfy $\delta\leqq\min\{\delta_{1}, \delta_{2},1\}$ and $C_{3}-C_{2}K^{\prime}\delta^{2}\geqq C_{3}/2$ . Then,
for any $ t\leqq\delta$ ,

$|w(t)-u)(0)|\geqq--t|w^{\prime}(0)|-C^{\prime}t^{2}|w(0)|C_{2^{3}}$ .

So restrict $u$ in a neighborhood $\tilde{U}$ such that

1
$\tilde{U}=$ { $u\in U;|u(x)|\leqq\delta,$ $|u(x)|+|(\nabla u)(x)|<2C$ for any $x\in M$ }.

Since $|u(x)|=|v(y)|$ , all arguments above do work well. Therefore

$|d\psi_{y}X-X|\geqq^{C_{2^{3}}}--|v(y)||\nabla_{X}v|-C^{\prime}|v(y)|^{2}|X|$ .
This implies

$\Vert d\psi_{y}-I\Vert\geqq-|u(x)|C_{2^{\epsilon_{-}}}|(\nabla v)(y)|-C^{\prime}|u(x)|^{2}$ .

Combining with (23) and (24), we have that there are constants $C_{4},$ $C_{5}$ depend-
ing only on $M$ such that

$|(\nabla v)(y)|\leqq C_{4}|u(x)|+C_{5}|(\nabla u)(x)|$ ... (27)

for any $u\in\tilde{U}$.
Notice that the restriction for $u$ is only that in $C^{1}$ -uniform topology.

Therefore, we can find an open neighborhood $O^{k_{0}+1}$ of $0$ in $\Gamma^{k_{0}+1}(T_{M})$ ,

$k_{0}=[\frac{n}{2}]+1$ , such that $0^{k_{0}+1}\cap\Gamma(T_{M})\subset U$. Hereafter, $u$ is always restricted

in this set $O^{k_{0}+1}\cap\Gamma(T_{M})$ .
Let $x^{1}$ , $\cdot$ .. , $x^{n},$ $y^{1}$ , $\cdot$ .. , $y^{n}$ be coordinate at the points $x$ and $y$ respectively.

We may assume without loss of generality that the coordinate neighborhood
of $x$ contains $y$ and that of $y$ contains $x$. Since
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$\frac{\partial\varphi^{i}}{\partial x^{k}}(\psi(y))^{\partial\psi_{j^{k}}}\partial y(y)=\delta_{j^{\ell}}$ ,

we have

$\partial y^{j}\partial y^{k}\partial_{-\psi_{-}^{i}}^{2}=-\frac{\partial^{2}}{\partial x^{\alpha}}\varphi_{X^{b}}^{c}\partial^{-}-\partial\psi_{j}^{a}\partial x^{--}\partial\psi_{-}^{b}\partial x^{k}\partial\psi_{c}^{i}\partial x$

After this point, computations are very regular. Namely, denoting by $B,$ $\partial^{k}\psi$

the tensors $B_{j^{i}}=\partial\psi_{-(y)}\partial y^{j^{i}}$ and $\frac{\partial^{k}\psi^{i}}{\partial y^{i_{1}}\partial y^{l_{2}}\cdots\partial y^{i_{k}}}(y)$ respectively, and using the

notation in Lemma 8, we have

$\partial^{k}\psi=-\Sigma C_{a_{2},\ldots,a_{k}}^{\prime}(\partial^{2}\psi)^{a_{2}}\otimes\cdots\otimes(\partial^{k}\psi)^{a_{k}}\cdot B\otimes B\otimes\cdots\otimes B$ , $\cdot$ .. (28)

where $k\geqq 2$ and the summation runs through all non-negative integers such
that $a_{2}+2a_{3}+\cdots+(k-1)a_{k}=k-1$ . $C_{a_{2},\cdots,\alpha_{k}}^{\prime}$ are universal constants which
satisfy

$C_{0,\ldots 0,1}^{\prime}\equiv 1$ .
These properties can be proved by induction. In the last part $B\cdots B$ , we
have no need to care about how the indices are arranged, because after all,
we take norms of those.

Now, let $s$ be an integer in the range $\geqq n+5$ . This $s$ is the number in
$\Gamma^{s}(T_{H})$ of which we want to prove the continuity of the inversion. For any
$k\leqq s,$ $(k\geqq 2)$ , write the equality (28) as follows:

$\partial^{k}\psi=-\partial^{k}\varphi\cdot B\otimes\cdots\otimes B+\Sigma I^{\alpha_{2}\cdots,a_{k-1}}\cdot B\otimes$ $\otimes B$ .
Then, by the property $a_{2}+2a_{S}+\cdots+(k-1)a_{k}=k-1$ and by a similar method
as in Corollary 6, we have the following:

In $I^{a_{2},\cdots,a_{j}0\cdots 0}$ ,
(i) if $a_{j}\geqq 2$ , then all $\partial^{i}\varphi$ in this term satisfies

$i+[-2n-]+1\leqq s-1$ .
(ii) if $a_{j}=1$ , then all $\partial^{i}\varphi$ other than $\partial^{j}\varphi$ satisfies

$i+[-2n-]+1\leqq s-1$ .
Let $f(x^{1}, \cdots x^{n}, p^{1}, \cdots p^{n})$ be the coordinate expression of $Exp$ by the

coordinate at $x$, where $p^{1}$ , $\cdot$ .. , $p^{n}$ is a linear coordinate of $T_{x}M$. Then $\varphi(z)$ is
expressed by $f(z, u(z))$ . Therefore, we can use Lemma 8, and $\partial^{k}\varphi$ can be ex-
pressed by $(\nabla u)(x),$ $\cdots$ , $(\nabla^{k}u)(x)$ . Insert the results into (28) and we get

$(\partial^{k}\psi)(y)=-\partial f\cdot(\nabla^{k}u)(x)\cdot B\otimes\cdots\otimes B$

$+\Sigma J^{a_{1}\cdots,a_{k-1}}\cdot B\otimes\cdots\otimes B$ .
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Of course $J^{a_{1}\ldots,a_{q}}$ is the term which contains
$(\nabla u)^{a_{1}}\otimes\cdots\otimes(\nabla^{q}u)^{a_{q}}$ .

This $J^{a_{1}\ldots,a_{q}}$ also satisfies the same property as in (i), (ii) replacing $I^{\alpha_{1}\ldots,a_{q}}$

into $J^{a_{1}\ldots,a_{q}}$ .
Let $f^{\prime}(y^{1}, y^{n}, q^{1}, q^{n})$ be the coordinate expression of $Exp$ by the

coordinate at $y$ , where $q^{1},$ $q^{n}$ is a linear coordinate of $T,M$. By using
Lemma 8, we have

$(\partial^{k}\psi)(y)=\partial f^{\prime}\cdot(\nabla^{k}v)(y)+\Sigma K^{a_{1}\ldots,a_{k-1}}$ ,

where $K^{\alpha_{1}\ldots,a_{k- 1}}$ also satisfies the same property as in:(i), (ii). Therefore,

$\partial f^{\prime}\cdot(\nabla^{k}v)(y)+\Sigma K^{a_{1}\ldots,a_{k-1}}$

$=\partial f\cdot(\nabla^{k}u)(x)\cdot B\otimes\cdots\otimes B+\Sigma J^{a_{1}\ldots,\alpha_{k-1}}\cdot B\otimes\cdots\otimes B$ .
By (23) and (24), we have that there is a constant $L$ which depends only on
$\tilde{U}$ such that $\Vert B\Vert\leqq L$ . Since $\partial f^{\prime}$ and $\partial f$ are bounded, because $\partial f$ (or $\partial f^{\prime}$) is
the derivative along the fibres and so has the meaning independent of the
choice of coordinates (cf. first part of $3^{o}$ ), we have

$|(\nabla^{k}v)(y)|-\Sigma|K^{a_{1}\ldots,\alpha_{k-1}}|\leqq C|(\nabla^{k}u)(x)|+D\Sigma|J^{\alpha_{1}\ldots,a_{k-1}}|$ . $\cdot$ .. (29)

Replace all $|(\nabla^{i}u)(x)|$ by $e_{k_{0}}\Vert u\Vert_{i+k_{0}}$ , if $i+k_{0}\leqq s-1$ , where $k_{0}=[\frac{n}{2}]+1$ and $e_{k_{0}}$

is the same constant as in Lemma 9. Then we have

$|(\nabla^{k}v)(y)|\leqq C|(\nabla^{k}u)(x)|+P_{h}+Q_{k}+\Sigma|K^{a_{1}\ldots,a_{k-1}}|$ ,
where

$P_{k}=linear$ function of $|(\nabla^{1}u)(x)|$ , $\cdot$ .. , $|(\nabla^{k- 1}u)(x)|$ whose
coefficients are polynomials of $\Vert u\Vert_{k_{0}}$ , $\cdot$ .. , $\Vert u\Vert_{s-1}$ .

$Q_{k}=polynomial$ of $\Vert u\Vert_{S-1}$ without constant term.

Use this relation successively, and combine this with (27). We have
$|(\nabla^{k}v)(y)|\leqq C|(\nabla^{k}u)(x)|+P_{k}^{\prime}+Q_{k}^{\prime}$ for any $k\geqq 0$ ,

where $P_{k}^{\prime},$ $Q_{k}^{\prime}$ satisfies the same property as $P_{k},$ $Q_{k}$ above. Therefore, we
have

PROPOSITION 3. Let $i:\mathcal{D}_{0}\rightarrow \mathcal{D}_{0}$ be the group inversion. Then putting
$j=\xi^{-1}i\xi,$ $j$ satisfies

$\Vert ju\Vert_{s}^{2}\leqq C^{\prime}\Vert u\Vert_{s}^{2}+P_{s}(\Vert u\Vert_{s-1})\Vert u\Vert_{s-1}$

for any $u\in U^{k_{0}+1}\cap\Gamma(T_{M})$ , where $c/$ does not depend on $s$ .
This Proposition shows the property (d) in 1, Lemma 3.
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