A note on the vanishing of certain ' L^2 -cohomologies'

By R. PARTHASARATHY

(Received April 7, 1971)

Introduction

Let G be a connected noncompact semisimple Lie group admitting a finite dimensional faithful representation. Let K be a maximal compact subgroup of G. Throughout, we assume that G/K is a hermitian symmetric space. Let $\mathfrak g$ be the Lie algebra of G and $\mathfrak k$ the subalgebra of $\mathfrak g$ corresponding to K. Then, as is well known, rank of $\mathfrak k$ =rank of $\mathfrak g$. Let $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g$ contained in $\mathfrak k$. For an ordering of the roots Σ of $(\mathfrak h^c, \mathfrak g^c)$ compatible with the complex structure on G/K, let P be the set of positive roots and P_k the set of positive compact roots. Let ρ be half the sum of the roots in P. Let $\mathcal F$ be the set of all integral linear forms on $\mathfrak h^c$. Let

$$\mathcal{F}' = \{ \lambda \in \mathcal{F} \mid \langle \lambda + \rho, \alpha \rangle \neq 0, \text{ for } \alpha \in P \}$$

and

$$\mathcal{G}'_0 = \{ \lambda \in \mathcal{G}' \mid \langle \lambda + \rho, \alpha \rangle > 0, \text{ for } \alpha \in P_k \}.$$

For $\lambda \in \mathcal{F}_0'$, let τ_λ be the irreducible unitary representation of K with highest weight λ on a vector space V_λ . Let τ_λ^* be the contragredient representation of K on the dual V_λ^* to V_λ and let $E_{V_\lambda^*}$ be the holomorphic vector bundle on G/K associated to τ_λ^* . Let $H_2^{0,q}(E_{V_\lambda^*})$ be the Hilbert space of square integrable harmonic forms of type (0,q) with coefficients in $E_{V_\lambda^*}$ and let π_λ^q be the unitary representation of G on $H_2^{0,q}(E_{V_\lambda^*})$. If $\lambda + \rho$ is "sufficiently regular" it was proved in $[\mathbf{5}$, Theorem 2, § 7] that $H_2^{0,q}(E_{V_\lambda^*}) = 0$, if $q \neq q_\lambda$, where q_λ is the number of non-compact positive roots α such that $\langle \lambda + \rho, \alpha \rangle > 0$ and that $\lfloor \pi_\lambda^q \lambda \rfloor = \omega(\lambda + \rho)^*$ where $\lfloor \pi_\lambda^{q_\lambda} \rfloor$ denotes the equivalence class of the representation $\pi_\lambda^q \lambda$ and $\omega(\lambda + \rho)^*$ is the discrete class contragredient to the discrete class $\omega(\lambda + \rho)$ which corresponds to λ (the correspondence being in the sense of Lemma 2.4 in $[\mathbf{5}]$).

Define for $\lambda \in \mathcal{F}_0$,

$$P^{(\lambda)} = \{ \alpha \in \Sigma \mid \langle \lambda + \rho, \alpha \rangle > 0 \}$$
.

 $P^{(\lambda)}$ is the set of positive roots with respect to a linear order in Σ . The main theorem (Theorem 1, § 1) of this note is that if every noncompact root in $P^{(\lambda)}$ is totally positive (in the sense of definition, p. 752 in [2.b]) in the

above linear order then $H_2^{0,q}(E_{V_1}) = 0$ if $q \neq q_{\lambda}$ and that $[\pi_{\lambda}^q \lambda] = \omega(\lambda + \rho)^*$.

In § 2, from the results of [6] about "the spaces of square integrable Dirac Spinors" we deduce the vanishing Theorems for "the spaces of square integrable harmonic forms with coefficients in $E_{V_{\lambda}^*}$ " under some condition on the parameter λ which is less restrictive than the one in [5, Theorem 2, § 7].

§ 1.

Let G be a noncompact semisimple Lie group. We assume that G has a finite dimensional faithful representation and that the complexification G^c of G is simply connected. Let K be a maximal compact subgroup of G. We assume that G/K is hermitian symmetric. Let \mathfrak{g} be the Lie algebra of G and \mathfrak{k} the Lie subalgebra of \mathfrak{g} corresponding to G. Then as is well known rank of \mathfrak{k} are rank of \mathfrak{g} . We now fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} such that $\mathfrak{h} \subseteq \mathfrak{k}$. Let \mathfrak{g}^c be the complexification of \mathfrak{g} . Let G be the Killing form of \mathfrak{g}^c . We define

$$\mathfrak{p} = \{ Y \in \mathfrak{g} \mid B(X, Y) = 0 \text{ for every } X \in \mathfrak{f} \}.$$

Then we have

$$g = f + p$$
, $f \cap p = 0$, $[p, p] \subseteq f$ and $[f, p] \subseteq p$.

For any subset m of \mathfrak{g}^c we denote by \mathfrak{m}^c the complex subspace of \mathfrak{g}^c generated by m. We identify \mathfrak{p}^c in the usual way with the complexification of the real tangent space at $\{K\} \in G/K$. We denote by \mathfrak{p}_+ and \mathfrak{p}_- the subspaces of \mathfrak{p}^c consisting of antiholomorphic and holomorphic tangent vectors respectively of \mathfrak{p}^c . Then one knows that

$$\mathfrak{p}^c = \mathfrak{p}_+ + \mathfrak{p}_-, \quad \mathfrak{p}_+ \cap \mathfrak{p}_- = 0 \quad \text{and} \quad [\mathfrak{f}^c, \mathfrak{p}_{\pm}] \subseteq \mathfrak{p}_{\pm}.$$

Now put $\mathfrak{g}_u=\mathfrak{k}+\sqrt{-1}\mathfrak{p}$. Then \mathfrak{g}_u is a compact real form of \mathfrak{g}^c . If θ denotes the conjugation of \mathfrak{g}^c with respect to \mathfrak{g}_u , we write $X^*=-\theta X$, for $X\in\mathfrak{g}^c$. We define an inner product (,) in \mathfrak{g}^c by $(X,Y)=B(X,Y^*)$, for $X,Y\in\mathfrak{g}^c$. Let Σ be the set of nonzero roots of \mathfrak{g}^c with respect to \mathfrak{h}^c . For each root $\alpha\in\Sigma$, we choose an eigenvector X_α belonging to the root α such that $(X_\alpha,X_\alpha)=1$. A root $\alpha\in\Sigma$ is called compact if $X_\alpha\in\mathfrak{k}^c$ and noncompact if $X_\alpha\in\mathfrak{p}^c$. We choose, as we can, a linear order in Σ , such that if P is the set of positive roots and P_n the set of noncompact positive roots with respect to that linear order, then

$$\mathfrak{p}_+ = \sum_{lpha \in P_n} \mathfrak{g}^{lpha}$$
 .

We denote by P_k the set of all compact positive roots. Then we have $P = P_k \cup P_n$. For any linear form λ on \mathfrak{h}^c , we shall denote by H_{λ} the element of \mathfrak{h}^c , such that $B(H_{\lambda}, H) = \lambda(H)$ for all $H \in \mathfrak{h}^c$. For any pair (λ, μ) of linear forms on \mathfrak{h}^c , we put $\langle \lambda, \mu \rangle = \lambda(H_{\mu})$. Let \mathcal{F} be the set of all integral linear

forms on \mathfrak{h}^c , i. e. the set of linear forms λ on \mathfrak{h}^c such that $2\frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle}$ is an integer for every root α . We put

$$\mathcal{F}' = \{ \lambda \in \mathcal{F} ; \langle \lambda + \rho, \alpha \rangle \neq 0, \text{ for } \alpha \in \Sigma \}$$

and

$$\mathcal{F}_0' = \{\lambda \in \mathcal{F}'; \langle \lambda + \rho, \alpha \rangle > 0, \text{ for } \alpha \in P_k\}$$

where $\rho = \frac{1}{2} \sum_{\alpha \in P} \alpha$. Then one can verify that any λ in \mathcal{G}' is in \mathcal{G}'_0 if and only if λ is dominant with respect to P_k (i. e. $\langle \lambda, \alpha \rangle \geq 0$ for every $\alpha \in P_k$).

Now let $\lambda \in \mathcal{F}_0'$ and let τ_{λ} be the irreducible unitary representation of K with highest weight λ on a space V_{λ} . Let τ_{λ}^{*} denote the unitary representation of K contragredient to τ_{λ} on the dual space V_{λ}^* to V_{λ} . Let $E_{V_{\lambda}^*}$ denote the holomorphic vector bundle on G/K, associated with the representation τ_{λ}^* of K (see [5, §1]). The inner product (,) in \mathfrak{g}^c restricts to a K invariant inner product on \mathfrak{p} and gives rise to a hermitian metric on G/K. Also, the K invariant inner product in V_{λ}^{*} gives rise to a canonical hermitian metric on $E_{v_i^*}$. Let $C^{0,q}(E_{v_i^*})$ (resp. $L_2^{0,q}(E_{v_i^*})$) denote the space of all C^{∞} (resp. square integrable) differential forms of type (0, q) with coefficients in $E_{v_1^*}$. G acts on the bundle $E_{v_1^*}$ and gives rise to an action of G on the space of forms on G/K with values in $E_{V_1^*}$. The action of G on $C^{0,q}(E_{V_1^*})$ gives rise to an action ν of \mathfrak{g}^c on $C^{0,q}(E_{V_i^*})$ which extends to an action, also denoted by ν , of the universal enveloping algebra $U(\mathfrak{g}^c)$ of \mathfrak{g}^c on $C^{0,q}(E_{V_1^*})$. Let $H_2^{0,q}(E_{V_1^*})$ be the space of square integrable harmonic forms of type (0, q) on G/K with coefficients in $E_{V_{\lambda}^*}$ (see § 4, in [5]). One knows that $H_2^{0,q}(E_{V_{\lambda}}) \subseteq C^{0,q}(E_{V_{\lambda}^*})$. Moreover, $H_2^{0,q}(E_{V_1^*})$ is a closed subspace of $L_2^{0,q}(E_{V_1^*})$ and hence a Hilbert space. Also $H_2^{0,q}(E_{V_1^*})$ is invariant under the action of G on $L_2^{0,q}(E_{V_1^*})$. Thus, we get a unitary representation, denoted π_{λ}^{q} , of G on $H_{2}^{0,q}(E_{\nu}^{*})$.

Now, let \mathcal{E}_d be the set of discrete class representations of G. (see § 1 in [5]). Denote by Ad_+^q (resp. Ad_-^q) the representation of K on $\wedge^q \mathfrak{p}_+$ (resp. $\wedge^q \mathfrak{p}_-$) induced by the adjoint action of K on \mathfrak{p}_+ (resp. \mathfrak{p}_-) and put $\tau_{\lambda}^q = Ad_+^q \otimes \tau_{\lambda}$. We now have the following (Proposition 4.1 in $\lceil 5 \rceil$)

Proposition 1.1. Put

$$\mathcal{E}_d(\lambda) = \{ \omega \in \mathcal{E}_d ; \chi_{\omega}(\Omega) = \langle \lambda + 2\rho, \lambda \rangle \}$$

where χ_{ω} denotes the infinitesimal character of ω and $\Omega \in U(\mathfrak{g}^c)$ the Casimir of G. Then, we have

$$\llbracket \pi \Upsilon \rrbracket = \bigoplus_{\omega \in \mathcal{E}_d(\lambda)} (\omega \mid K : \llbracket \tau \Upsilon \rrbracket) \omega^* \quad (finite sum)$$

where $[\pi_{\Lambda}^{q}]$ denotes the equivalence class of the representation π_{Λ}^{q} of G (similarly for $[\tau_{\Lambda}^{q}]$) and $(\omega | K : [\tau_{\Lambda}^{q}])$ denotes the intertwining number of $\omega | K$ and $[\tau_{\Lambda}^{q}]$ (see

§ 1 in [5]).

For any set Q of linear forms on \mathfrak{h}^c , we define

$$\langle Q \rangle = \sum_{\alpha \in Q} \alpha$$

 $(\langle Q \rangle = 0 \text{ if } Q = \phi, \text{ the empty set)}$ and

[Q] = the number of elements in the set Q.

Fix any $\lambda \in \mathcal{F}'_0$. Let

$$Q_{\lambda} = \{ \alpha \in P_n \mid \langle \lambda + \rho, \alpha \rangle > 0 \}$$

and define

$$q_{\lambda} = \lceil Q_{\lambda} \rceil$$
.

Let $m = \lceil P_n \rceil = \frac{1}{2} \dim G/K$ and fix any q such that $0 \le q \le m$. Define

$$\Gamma_q = \{\langle Q \rangle \mid Q \subseteq P_n, [Q] = q\}$$
.

Define

$$P^{(\lambda)} = \{ \alpha \in \Sigma \mid \langle \lambda + \rho, \alpha \rangle > 0 \}.$$

Then $P^{(\lambda)}$ is the set of positive roots with respect to a linear order in Σ . Following [2.b], if Σ_+ is the set of positive roots with respect to some linear order in Σ , then we say that a noncompact root $\alpha \in \Sigma_+$ is *totally positive* (with respect to that ordering) if $\alpha + \beta$ is a noncompact root in Σ_+ for any compact root β such that $\alpha + \beta$ is a root. We now have the following

THEOREM 1. Let $\lambda \in \mathcal{F}'_0$ and assume that with respect to the linear order in Σ for which $P^{(\lambda)}$ is the set of positive roots, every noncompact root in $P^{(\lambda)}$ is totally positive. Then

$$H_2^{0,q}(E_{V_{\lambda}^*})=0$$
, if $q\neq q_{\lambda}$

and

$$[\pi_{\lambda}^{q_{\lambda}}] = \omega(\lambda + \rho)^*$$

where $\omega(\lambda+\rho)^*$ is the discrete class contragredient to the discrete class $\omega(\lambda+\rho)$ which corresponds to λ , in the sense of Lemma 2.4 in [5] and $[\pi_{\lambda}^{q_{\lambda}}]$ the equivalence class of the representation $\pi_{\lambda}^{q_{\lambda}}$ of G. Moreover,

$$(\omega(\lambda+\rho): [\tau_{\lambda+\langle Q_1\rangle}])=1$$

where $\tau_{\lambda+\langle Q_{\lambda}\rangle}$ is the representation of K with $\lambda+\langle Q_{\lambda}\rangle$ as highest weight.

PROOF. First we make a few observations which are consequences of our assumption about $P^{(\lambda)}$. Let W_G be the subgroup of the Weyl group of $(\mathfrak{h}^c, \mathfrak{g}^c)$ generated by reflections with respect to compact roots. Let

$$\bar{P}^{(\lambda)} = -\kappa P^{(\lambda)}$$
,

where κ is the unique element of W_G , such that $\kappa P_k = -P_k$. Clearly, $\bar{P}^{(\lambda)}$ is the set of positive roots with respect to a linear order in Σ . Note that

$$P^{(\lambda)} = P_k \cup Q_{\lambda} \cup -Q'_{\lambda}$$

where Q'_{λ} is the complement of Q_{λ} in P_n . Since by assumption in the positive root system $P^{(\lambda)}$, every noncompact root is totally positive, we have $sP_n^{(\lambda)}=P_n^{(\lambda)}$, for every $s\in W_G$, where $P_n^{(\lambda)}$ is the set of noncompact roots in $P^{(\lambda)}$. Also, $sP_n=P_n$ for every $s\in W_G$. Since, clearly, we have $Q_{\lambda}=P_n\cap P_n^{(\lambda)}$ we see that for every $s\in W_G$,

$$(1.1) sQ_{\lambda} = sP_n \cap sP_n^{(\lambda)} = P_n \cap P_n^{(\lambda)} = Q_{\lambda}.$$

Thus,

$$\bar{P}^{(\lambda)} = P_{\nu} U - Q_{\lambda} U Q_{\lambda}'$$

Now, assume that $H_2^{0,q}(E_{V_\lambda^*}) \neq 0$. We know that the representation π_λ^q of G on $H_2^{0,q}(E_{V_\lambda^*})$ decomposes into a finite direct sum of discrete class representations (Proposition 1.1). Let ω be a discrete class such that ω^* occurs in this decomposition. Let π be a member of the equivalence class ω and H the representation space of π . Denote also by π the derived representation of the enveloping algebra $U(\mathfrak{g}^c)$ of \mathfrak{g}^c on the space of analytic vectors for π in H. Then, we assert that with respect to the linear order in Σ for which $\bar{P}^{(\lambda)}$ is the set of positive roots there exists a positive extreme weight vector (for definition see pp. 750-751 in [2.b]) with weight μ of the form $\lambda+\gamma$, for some $\gamma \in \Gamma_q$. For proving this we proceed as follows:

Let χ_{ω} be the infinitesimal character of ω . By Proposition 1.1 we know that

(1)
$$\chi_{\omega}(\Omega) = \langle \lambda + 2\rho, \lambda \rangle$$

and

(2)
$$(\boldsymbol{\omega} | K : [\tau_i^q]) \neq 0.$$

The second condition implies that there exists an irreducible representation δ of K which is a subrepresentation of both $\pi|K$ and τ_{λ}^q . Let H_{δ} be the subspace of H spanned by elements which transform under $\pi|K$ according to δ . Fix a unit weight vector $\psi_{\mu} \in H_{\delta}$ belonging to the highest weight μ of δ . Then ψ_{μ} is infinitely differentiable under π and we have by (1)

$$\pi(\Omega)\phi_{\mu} = \chi_{\omega}(\Omega)\phi_{\mu} = \langle \lambda + 2\rho, \lambda \rangle \phi_{\mu}$$
.

From the fact that μ is the highest weight of an irreducible subrepresentation of τ_{i}^{q} , one can show that

$$(1.2) \mu = \lambda + \gamma$$

for some $\gamma \in \Gamma_q$. In fact if σ is any finite dimensional representation of \mathfrak{t}^c , one can easily show that an irreducible subrepresentation of $\tau_\lambda \otimes \sigma$ has $\lambda + \nu$

as highest weight, where ν is a suitable weight of σ .

Now, choose a Weyl basis $\{E_{\alpha}\}_{\alpha\in\Sigma}$ of $\mathfrak{g}^{c}\pmod{\mathfrak{h}^{c}}$ with respect to a compact real form $\mathfrak{g}_{u}=\mathfrak{k}+\sqrt{-1}\mathfrak{p}$. Let Ω_{k} be the Casimir of K. Then we have

$$\Omega - \Omega_K = \sum_{\alpha \in P_n} (E_{\alpha} E_{-\alpha} + E_{-\alpha} E_{\alpha})$$

$$= \sum_{\alpha \in \overline{P_n}(\lambda)} (E_{\alpha} E_{-\alpha} + E_{-\alpha} E_{\alpha})$$

where $\bar{P}_n^{(\lambda)}$ is the set of noncompact roots in $\bar{P}^{(\lambda)}$. After some computations (see proof of Theorem 2, § 7 in [5]) we see that

$$-2\sum_{\alpha\in \vec{F}_n^{(\lambda)}} \parallel \pi(E_\alpha)\phi_\mu \parallel^2 = \langle \lambda+2\rho, \lambda \rangle - \langle \mu-2\rho_n^{(\lambda)}+2\rho_k, \mu \rangle$$

where $\rho_n^{(\lambda)} = \frac{1}{2} \sum_{\alpha \in P_n^{(\lambda)}} \alpha = -\frac{1}{2} \sum_{\alpha \in \overline{P}_n^{(\lambda)}} \alpha$. Note that we have from (1.1), $\rho_n^{(\lambda)} = \langle Q_{\lambda} \rangle - \rho_n$. Substituting for μ from (1.2) we have

$$\begin{split} -2\sum_{\alpha\in\bar{P}_{n}^{(\lambda)}} &\|\pi(E_{\alpha})\phi_{\mu}\|^{2} \\ &= \langle \lambda + 2\rho, \lambda \rangle - \langle \lambda + \gamma - 2\rho_{n}^{(\lambda)} + 2\rho_{k}, \lambda + \gamma \rangle \\ &= \langle \lambda + \rho, \lambda + \rho \rangle - \langle \rho, \rho \rangle - \langle \lambda + \gamma - \rho_{n}^{(\lambda)} + \rho_{k}, \lambda + \gamma - \rho_{n}^{(\lambda)} + \rho_{k} \rangle \\ &+ \langle \rho_{k} - \rho_{n}^{(\lambda)}, \rho_{k} - \rho_{n}^{(\lambda)} \rangle \\ &= \langle \lambda + \rho, \lambda + \rho \rangle - \langle \rho, \rho \rangle - \langle \lambda + \rho + \gamma - \rho_{n} - \rho_{n}^{(\lambda)}, \lambda + \rho + \gamma - \rho_{n} - \rho_{n}^{(\lambda)} \rangle \\ &+ \langle \rho_{k} - \rho_{n}^{(\lambda)}, \rho_{k} - \rho_{n}^{(\lambda)} \rangle. \end{split}$$

Note that $\rho_k - \rho_n^{(\lambda)} = \frac{1}{2} \langle \bar{P}^{(\lambda)} \rangle = \sigma \cdot \rho$ for some σ belonging to the Weyl group of $(\mathfrak{h}^c, \mathfrak{g}^c)$ since $\bar{P}^{(\lambda)}$ is the set of positive roots with respect to some linear ordering in Σ . Hence, $\langle \rho_k - \rho_n^{(\lambda)}, \rho_k - \rho_n^{(\lambda)} \rangle = \langle \rho, \rho \rangle$. Thus,

$$\begin{split} -2\sum_{\alpha\in\bar{P}_{n}^{(\lambda)}}\|\pi(E_{\alpha})\phi_{\mu}\|^{2} &= -2\langle\lambda+\rho,\,\gamma-\rho_{n}-\rho_{n}^{(\lambda)}\rangle - \langle\gamma-\rho_{n}-\rho_{n}^{(\lambda)},\,\gamma-\rho_{n}-\rho_{n}^{(\lambda)}\rangle \\ &= -2\langle\lambda+\rho,\,\gamma-\langle Q_{\lambda}\rangle\rangle - \langle\gamma-\langle Q_{\lambda}\rangle,\,\gamma-\langle Q_{\lambda}\rangle\rangle\,. \end{split}$$

Since $\lambda + \rho$ is a regular integral linear form which is dominant with respect to $P^{(\lambda)}$, we see that $\lambda + \rho - \rho^{(\lambda)}$ is dominant with respect to $P^{(\lambda)}$. Since $\gamma \in \Gamma_q$, $\gamma = \langle Q \rangle$ for some subset Q of P_n . Thus

$$\gamma - \langle Q_{\lambda} \rangle = \langle Q \cap Q'_{\lambda} \rangle - \langle Q_{\lambda} \cap Q' \rangle$$

where Q'_{λ} and Q' are respectively the complements of the sets Q_{λ} and Q in P_n . Now,

$$\begin{split} -2 \sum_{\alpha \in \bar{P}_n^{(\lambda)}} & \|\pi(E_\alpha) \phi_\mu\|^2 = -2 \langle \lambda + \rho - \rho^{(\lambda)}, \, \gamma - \langle Q_\lambda \rangle \rangle \\ & - \langle \gamma - \langle Q_\lambda \rangle + 2 \rho^{(\lambda)}, \, \gamma - \langle Q_\lambda \rangle \rangle \,. \end{split}$$

Consider the two terms on the right hand side. Since $\gamma - \langle Q_{\lambda} \rangle = \langle Q \cap Q'_{\lambda} \rangle$ $-\langle Q_{\lambda} \cap Q' \rangle$ and since $P^{(\lambda)} = P_k \cup Q_{\lambda} \cup (-Q'_{\lambda})$ it follows using the fact that $\lambda + \rho - \rho^{(\lambda)}$ is dominant with respect to $P^{(\lambda)}$ that $-2\langle \lambda + \rho - \rho^{(\lambda)}, \gamma - \langle Q_{\lambda} \rangle \rangle$ is nonnegative. Also

$$\begin{aligned}
-\langle \gamma - \langle Q_{\lambda} \rangle + 2\rho^{(\lambda)}, \, \gamma - \langle Q_{\lambda} \rangle \rangle \\
&= -\langle \gamma - \langle Q_{\lambda} \rangle + \rho^{(\lambda)}, \, \gamma - \langle Q_{\lambda} \rangle + \rho^{(\lambda)} \rangle + \langle \rho^{(\lambda)}, \, \rho^{(\lambda)} \rangle \\
&= -\langle \rho^{(\lambda)} - \langle Q_{1} \rangle, \, \rho^{(\lambda)} - \langle Q_{1} \rangle \rangle + \langle \rho^{(\lambda)}, \, \rho^{(\lambda)} \rangle,
\end{aligned}$$

where $Q_1 = (Q_{\lambda} \cap Q') \cup (-Q'_{\lambda} \cap -Q)$. Note that $Q_1 \subset P^{(\lambda)}$. By [4, Lemma 5.9], $\rho^{(\lambda)} - \langle Q_1 \rangle$ is a weight of the irreducible representation of \mathfrak{g}^c with $\rho^{(\lambda)}$ as highest weight with respect to $P^{(\lambda)}$. Hence $\langle \rho^{(\lambda)} - \langle Q_1 \rangle$, $\rho^{(\lambda)} - \langle Q_1 \rangle \rangle \leq \langle \rho^{(\lambda)}, \rho^{(\lambda)} \rangle$ so that $-\langle \gamma - \langle Q_{\lambda} \rangle + 2 \rho^{(\lambda)}, \gamma - \langle Q_{\lambda} \rangle \rangle$ is nonnegative. Thus it follows that $-2\sum_{\alpha\in \overline{P}_n^{(\lambda)}}\|\pi(E_\alpha)\phi_\mu\|^2 \text{ is nonnegative.} \quad \text{But, clearly } -2\sum_{\alpha\in \overline{P}_n^{(\lambda)}}\|\pi(E_\alpha)\phi_\mu\|^2 \leq 0. \quad \text{Hence,}$ we conclude that $\sum_{\alpha\in \overline{P}_n^{(\lambda)}}\|\pi(E_\alpha)\phi_\mu\|^2 = 0. \quad \text{Thus, } \pi(E_\alpha)\phi_\mu = 0 \quad \text{for every } \alpha\in \overline{P}_n^{(\lambda)}.$

But by the choice of ψ_{μ} , $\pi(E_{\alpha})\psi_{\mu}=0$, $\forall \alpha \in P_{k}$. Since $\bar{P}^{(\lambda)}=P_{k}\cup \bar{P}_{n}^{(\lambda)}$ our claim in the beginning is proved.

Now, suppose $H_2^{0,q}(E_{v^*}) \neq 0$ and $H_2^{0,q'}(E_{v^*}) \neq 0$ where q and q' are distinct and $0 \le q$, $q' \le n$. If ω (resp. ω') is a discrete class such that ω^* (resp. ω'^*) occurs in the decomposition of $[\pi_i^a]$ (resp. $[\pi_i^a]$) then we assert that $\omega \neq \omega'$. This can be proved as follows. The representations of $U(\mathfrak{g}^c)$ on the spaces of analytic vectors for the representations ω and ω' possess positive extremal weight vectors (for definition see pp. 750-751 in [2.b]) of weights μ and μ' respectively with respect to $ar{P}^{(\lambda)}$ where μ and μ' are of the form $\mu = \lambda + \gamma$ and $\mu' = \lambda + \gamma'$ with $\gamma \in \Gamma_q$ and $\gamma' \in \Gamma_{q'}$. Let $j \in \mathfrak{h}$ be the unique element such that $ad J|\mathfrak{p}$ gives the complex structure on the real tangent space at $\{K\} \in G/K$, when $\mathfrak p$ is identified with that tangent space in the usual way. (One knows that such a J exists. See [3, Theorem 4.5].) Thus

$$\mathfrak{p}_+ = \{ Y \in \mathfrak{p}^c \mid ad J(Y) = -iY \}$$

and

$$\mathfrak{p}_{-} = \{ Y \in \mathfrak{p}^c \mid ad J(Y) = iY \}$$
.

Hence, we have $\alpha(J) = -i$ for every $\alpha \in P_n$. Thus

$$\mu(J) = \lambda(J) + \gamma(J)$$
$$= \lambda(J) - qi$$

since $\gamma \in \Gamma_q$. Similarly, $\mu'(J) = \lambda(J) - q'i$. Since $q \neq q'$, we then conclude that $\mu \neq \mu'$. Then, using [Lemma 2, 2.b], we conclude that the representations of $U(\mathfrak{g}^c)$ on the spaces of analytic vectors for ω and ω' are not equivalent.

Consequently $\omega \neq \omega'$ and hence also $\omega^* \neq \omega'^*$.

Since for each q, $\lceil \pi_{\lambda}^q \rceil$ decomposes into a finite direct sum of irreducible unitary representations of G (Proposition 1.1), we now conclude using the "alternating sum formula," (i. e. $\lceil 5 \rceil$, Theorem 2, $\S 6 \rceil$) and $\lceil 2 \rceil$. Theorem 6 and its corollary \rceil that there exists q_0 such that $H_2^{0,q}(E_{V_{\lambda}^*})=0$ for $q\neq q_0$ and that $\lceil \pi_{\lambda}^q \rceil = \omega(\lambda + \rho)^*$. Now, it follows using Proposition 1.1, that if $0 \leq q \leq n$ and ω is a discrete class such that $\chi_{\omega}(\Omega) = \langle \lambda + 2\rho, \lambda \rangle$ where χ_{ω} is the infinitesimal character of ω and $\Omega \in U(\mathfrak{g}^c)$ the Casimir, then

$$(\omega | K: [\tau_{\lambda}^q]) = 0$$
 if $\omega \neq \omega(\lambda + \rho)$

and

$$(\omega(\lambda+
ho)|K: \lceil au_\lambda^q
ceil) = \left\{egin{array}{ll} 0 & ext{if } q
eq q_0 \ 1 & ext{if } q = q_0 \ . \end{array}
ight.$$

We now prove that $q_0=q_\lambda$. From the assumption about $P^{(\lambda)}$ and from the fact that $\bar{P}^{(\lambda)}=-\kappa P^{(\lambda)}$, it is easy to see that with respect to the linear order in Σ in which $\bar{P}^{(\lambda)}$ is the set of positive roots, every noncompact root in $\bar{P}^{(\lambda)}$ is totally positive.

Now let

$$\bar{\rho}^{(\lambda)} = \frac{1}{2} \sum_{\alpha \in \bar{P}^{(\lambda)}} \alpha$$

and let

$$\lambda' = \lambda + \rho - \overline{\rho}^{(\lambda)}$$
.

Note that $\bar{\rho}^{(\lambda)} = \rho_k - \frac{1}{2} \langle Q_{\lambda} \rangle + \frac{1}{2} \langle Q'_{\lambda} \rangle$, so that one has

$$\lambda' = \lambda + \langle Q_{\lambda} \rangle$$
.

Observe that λ' is dominant with respect to P_k ; as a matter of fact λ is dominant with respect to P_k since $\lambda \in \mathcal{F}_0'$ and also $\langle Q_{\lambda} \rangle$ is dominant with respect to P_k (see proof of [5, Corollary 2, §7]). Let $\tau_{\lambda'}$ be the irreducible representation of K with λ' as highest weight. Let $\overline{\mathfrak{p}}^{(\lambda)} = \sum_{\alpha \in \overline{P}_n^{(\lambda)}} \mathfrak{g}^{\alpha}$. Since with

respect to the linear order in Σ for which $\bar{P}^{(\lambda)}$ is the set of positive roots every noncompact root in $\bar{P}^{(\lambda)}$ is totally positive it follows that $\bar{\mathfrak{p}}^{(\lambda)}$ is stable under the adjoint action of K. Denote by $\bar{\tau}$ the representation of K on $\wedge \bar{\mathfrak{p}}^{(\lambda)}$ induced by the adjoint action of K on $\bar{\mathfrak{p}}^{(\lambda)}$. We assert that

$$\tau_{\lambda'} \otimes \bar{\tau} \cong \sum_{q=0}^{n} \tau_{\lambda} \otimes Ad_{+}^{q}$$

where Ad_+^q is the representation of K on $\wedge^q \mathfrak{p}_+$ induced by the adjoint action of K on \mathfrak{p}_+ . This can be proved as follows: For any representation δ of K we denote by Trace δ the character of the representation δ . Then we have

by Weyl's character formula

Trace
$$\tau_{\lambda}|_{H} = \frac{\sum\limits_{s \in W_{G}} \varepsilon(s) e^{s(\lambda + \rho_{k})}}{\sum\limits_{s \in W_{G}} \varepsilon(s) e^{s\rho_{k}}}$$

and similarly

Trace
$$\tau_{\lambda'}|_{H} = \frac{\sum\limits_{s} \varepsilon(s) e^{s(\lambda' + \rho_{k})}}{\sum\limits_{s} \varepsilon(s) e^{s\rho_{k}}}$$
.

Also

Trace
$$Ad_{+}^{q}|_{H} = \sum_{Q \subseteq P_{n}, [Q]=q} e^{\langle Q \rangle}$$

and

Trace
$$\bar{\tau}|_{H} = \sum_{Q \subseteq \bar{P}_{n}^{(\lambda)}} e^{\langle Q \rangle}$$
.

Now,

$$\begin{aligned} \operatorname{Trace} \left(\tau_{\lambda'} \otimes \bar{\tau}\right)|_{H} &= \left(\operatorname{Trace} \tau_{\lambda'}|_{H}\right) \cdot \left(\operatorname{Trace} \bar{\tau}|_{H}\right) \\ &= \frac{\sum\limits_{s \in W_{G}} \varepsilon(s) e^{s(\lambda + Q_{\lambda}) + \rho_{k})}}{\sum\limits_{s} \varepsilon(s) e^{s\rho_{k}}} \cdot \sum\limits_{Q \subseteq \bar{P}_{n}^{(\lambda)}} e^{"} \\ &= e^{} \cdot \frac{\sum\limits_{s} \varepsilon(s) e^{s(\lambda + \rho_{k})}}{\sum\limits_{s} \varepsilon(s) e^{s\rho_{k}}} \cdot \sum\limits_{Q \subset \bar{P}_{n}^{(\lambda)}} e^{"} \\ &\left(\operatorname{since} \ s \langle Q_{\lambda} \rangle = \langle Q_{\lambda} \rangle \ \text{by} \ (1.1)\right) \\ &= \frac{\sum\limits_{s} \varepsilon(s) e^{s(\lambda + \rho_{k})}}{\sum\limits_{s} \varepsilon(s) e^{s\rho_{k}}} \cdot \sum\limits_{Q \subset \bar{P}_{n}^{(\lambda)}} e^{" + } \\ &= \frac{\sum\limits_{s} \varepsilon(s) e^{s(\lambda + \rho_{k})}}{\sum\limits_{s} \varepsilon(s) e^{s\rho_{k}}} \cdot \sum\limits_{Q \subset \bar{P}_{n}} e^{"}. \end{aligned}""""$$

Thus the characters of the representations $\tau_{\lambda'} \otimes \bar{\tau}$ and $\bigoplus_{q} (\tau_{\lambda} \otimes Ad_{+}^{q})$ are equal and hence these two representations are equivalent.

One can introduce a new G invariant complex structure on G/K such that when the complexification of the real tangent space at $\{K\} \in G/K$ is as usual identified with \mathfrak{p}^c , the space of antiholomorphic tangent vectors in \mathfrak{p}^c is precisely $\sum_{\alpha \in \bar{P}_n^{(\lambda)}} \mathfrak{g}^{\alpha}$. (We show this when \mathfrak{g} is simple, the general case being

easily deducible from this. Thus let P be a positive root system in Σ compatible with a G invariant complex structure on G/K. Let P_k and P_n be the set of compact and noncompact roots in P. Then one knows that $P_k \cup (-P_n)$ is also a positive root system in Σ which is compatible with a G invariant complex structure on G/K. Now let \widetilde{P} be any positive root system in Σ such

that every noncompact root in \widetilde{P} is totally positive and such that $\widetilde{P}_k = P_k$ where \widetilde{P}_k is the set of compact roots in \widetilde{P} . One knows that there exists exactly one noncompact simple root α in \widetilde{P} . (See [2.b, Corollary 2, § 5].) Then it is clear that $\widetilde{P}=P$ or $\widetilde{P}=P_k\cup (-P_n)$ according as $\alpha\in P_n$ or $\alpha\!\in\! -P_n$.) Let $\bar{\tau}^q$ be the representation of K on $\wedge^q \bar{\mathfrak{p}}^{(\lambda)}$ which is induced by the adjoint action of K on $\bar{p}^{(\lambda)}$. The representation $\tau_{\lambda'}^*$ of K on $V_{\lambda'}^*$ induces a vector bundle $E_{v_1^{*'}}$ on G/K and as in [5, §1] $E_{v_1^{*'}}$ can be made into a holomorphic vector bundle (the complex structure of G/K being the new complex structure). We have $\lambda' + \bar{\rho}^{(\lambda)} = \lambda + \rho$. Since $\langle \lambda' + \bar{\rho}^{(\lambda)}, \alpha \rangle > 0$ for every compact root in $\bar{P}^{(\lambda)}$ and $\langle \lambda' + \bar{\rho}^{(\lambda)}, \alpha \rangle < 0$ for every noncompact root in $\bar{P}^{(\lambda)}$ one knows that (see [2.c] or [1]) the space H of square integrable (with respect to a hermitian metric on $E_{V_{k'}^{*}}$ induced by a K invariant metric on $V_{k'}^{*}$) holomorphic sections of $E_{V_{A'}}$ is nonzero. H is nothing but the space of square integrable harmonic forms of type (0, 0) (See [5, § 4] for definition) on G/K with coefficients in the vector bundle $E_{v_{\lambda}^*}$. If π denotes the action of $U(\mathfrak{g}^c)$ on the space $C(E_{v_{\lambda}^*})$ of C^{∞} sections of the bundle $E_{v_1^*}$, which is derived from the action of G on $(C(E_{V_1^*}))$, then by [5, Lemma 1.1] we have

$$H = \{ \varphi \in C(E_{V_{\lambda}^*}) \mid \varphi \text{ square integrable, } \pi(\Omega) \varphi = \langle \lambda' + 2\overline{\rho}^{(\lambda)}, \lambda' \rangle \varphi \}$$

where $\Omega \in U(\mathfrak{g}^c)$ is the Casimir of \mathfrak{g}^c . Let $[\beta]$ be the equivalence class of the unitary representation β of G on H. Then we know that $[\beta]$ is a finite sum of discrete classes of G (Proposition 1.1). Since $H \neq 0$ there exists a discrete class ω_0 of G such that ω_0^* occurs in the decomposition of $[\beta]$. Note that by Proposition 1.1 we have

i)
$$\chi_{\omega_0}(\Omega) = \langle \lambda' + 2\bar{\rho}^{(\lambda)}, \lambda' \rangle$$

and

ii)
$$(\boldsymbol{\omega}_0|K:[\tau_{\lambda'}])\neq 0.$$

Observe that since $\lambda' + \overline{\rho}^{(\lambda)} = \lambda + \rho$, we have

$$\begin{split} \langle \lambda' + 2\overline{\rho}^{(\lambda)}, \, \lambda' \rangle &= |\lambda' + \overline{\rho}^{(\lambda)}|^2 - |\overline{\rho}^{(\lambda)}|^2 = |\lambda + \rho|^2 - |\rho|^2 \\ &= \langle \lambda + 2\rho, \, \lambda \rangle \, . \end{split}$$

The representation $\tau_{\lambda'} = \tau_{\lambda + \langle Q_{\lambda} \rangle}$ is a subrepresentation of the representation $\tau_{\lambda'}^{q_{\lambda}}$ of K on $V_{\lambda} \otimes \wedge^{q_{\lambda}} \mathfrak{p}_{+}$. (This is because, as we already saw, $\langle Q_{\lambda} \rangle$ is the highest weight of an irreducible component of the representation of K on $\wedge^{q_{\lambda}} \mathfrak{p}_{+}$.) Thus from i) and ii) we have

a)
$$\chi_{\omega_0}(\Omega) = \langle \lambda + 2\rho, \lambda \rangle$$

and

b)
$$(\omega_0|K: [\tau_1^{q_\lambda}]) \neq 0.$$

Thus, using Proposition 1.1, it follows that ω_0^* occurs in the decomposition of $[\pi_{\lambda}^{q_{\lambda}}]$. Then, by what we have proved already it follows that

i)
$$q_0 = q_{\lambda}$$

ii)
$$\lceil \pi_{\lambda}^{q_{\lambda}} \rceil = \omega_{0}^{*} = \omega(\lambda + \rho)^{*}$$

and

iii)
$$(\omega(\lambda+\rho)|K:[\tau_{\lambda+\langle Q_{\lambda}\rangle}])=1.$$

(Q. E. D.)

REMARK. Now, choose an element π in the equivalence class $\omega(\lambda+\rho)$ and let H be the representation space of π . Let $\delta=\tau_{\lambda+\langle Q_{\lambda}\rangle}$ and let H_{δ} be the subspace spanned by the set of vectors in H which transform under $\pi \mid K$ according to δ . Then the proof of Theorem 1 actually shows that if $\psi_{\lambda+\langle Q_{\lambda}\rangle}$ is a nonzero element of H which belongs to the highest weight $\lambda+\langle Q_{\lambda}\rangle$ then $\pi(E_{\alpha})\psi_{\lambda+\langle Q_{\lambda}\rangle}=0$ for every $\alpha\in \bar{P}^{(\lambda)}$.

REMARK. The set of discrete classes realized in Theorem 1 by L^2 -cohomology method, i. e.,

 $\{\omega \in \mathcal{E}_a \mid \omega = \omega(\lambda + \rho)^* \text{ for some } \lambda \in \mathcal{F}_0' \text{ such that any non-compact root in the positive root system } \{\alpha \in \Sigma \mid \langle \lambda + \rho, \alpha \rangle > 0\} \text{ is totally positive} \}$

is just the subset of \mathcal{E}_d whose classes are constructed by Harish-Chandra in [2.c]. When G is simple, the set of $\lambda \in \mathcal{F}_0'$ satisfying the condition of Theorem 1 is just the set

$$\{\lambda \in \mathcal{F}_0' \mid q_\lambda = 0 \text{ or } n(=\lceil P_n \rceil)\}$$
.

§ 2.

We continue with the notation of the previous section. Let $so(\mathfrak{p})$ be the Lie subalgebra of End(\mathfrak{p}) which corresponds to the rotation group $SO(\mathfrak{p})$ \subseteq Aut(\mathfrak{p}), under the positive definite bilinear form $B|\mathfrak{p}$, where B is the Killing form of \mathfrak{g}^c . We make the following observations the details of which can be found in [6].

Let $\sigma: so(\mathfrak{p}) \to \operatorname{End}(L)$ be the spin representation of $so(\mathfrak{p})$. Then σ is the direct sum of two subrepresentations $\sigma^{\pm}: so(\mathfrak{p}) \to \operatorname{End}(L^{\pm})$ which are called the half spin representations of $so(\mathfrak{p})$. Let $\alpha: \mathfrak{k} \to so(\mathfrak{p})$ be the homomorphism induced by the adjoint action of \mathfrak{k} on \mathfrak{p} . Let χ, χ^{+} and χ^{-} be the representations of \mathfrak{k} defined by $\chi = \sigma \circ \alpha$, $\chi^{+} = \sigma^{+} \circ \alpha$ and $\chi^{-} = \sigma^{-} \circ \alpha$. The sets Γ, Γ^{+} and Γ^{-} of weights of the representations χ, χ^{+} and χ^{-} respectively are given by

$$\Gamma = \{ \rho_n - \langle Q \rangle \mid Q \subseteq P_n \} ,$$

$$\Gamma^+ = \{ \rho_n - \langle Q \rangle \mid Q \subseteq P_n, [Q] \text{ is even} \}$$

and

$$\Gamma^- = \{ \rho_n - \langle Q \rangle \mid Q \subseteq P_n, [Q] \text{ is odd} \}$$
.

Define a subset W^1 of the Weyl group $W(\mathfrak{h}^c, \mathfrak{g}^c)$ by setting

$$W^1 = \{ \sigma \in W(\mathfrak{h}^c, \mathfrak{g}^c) \mid \sigma(-P) \cap P \subseteq P_n \}$$

where $P \subseteq \Sigma$ is the fixed positive root system compatible with the complex structure on G/K and P_n is the set of noncompact roots in P. For $\sigma \in W^1$ we define

$$j(\sigma) = +$$
, if $[\sigma(-P) \cap P]$ is even

and

$$j(\sigma) = -$$
, if $\lceil \sigma(-P) \cap P \rceil$ is odd.

For every $\sigma \in W^1$, $\sigma \rho - \rho_k$ is dominant with respect to P_k and the representation of f^c with $\sigma \rho - \rho_k$ as highest weight occurs in χ . We have further the following

LEMMA 2.1. For every $\sigma \in W^1$, the representation $\tau_{\sigma \rho - \rho_k}$ of \mathfrak{t}^c with $\sigma \rho - \rho_k$ as highest weight occurs with multiplicity one in χ and we have a decomposition

$$(2.1) L = \sum_{\sigma \in W^1} V_{\sigma \rho - \rho_k}.$$

Moreover in the same notation

$$L^+ = \sum_{\sigma \in W^1, \ j(\sigma) = +} V_{\sigma \rho - \rho_k}$$

and

$$L^- = \sum_{\sigma \in W^1, j(\sigma) = -} V_{\sigma \rho - \rho_k}$$

(For proof see [6, Lemma 9.1 and Remark 9.2]).

Let D be the set of all linear forms λ on \mathfrak{h}^c such that $\frac{2\langle\lambda,\alpha\rangle}{\langle\alpha,\alpha\rangle}$ is a nonnegative integer for every $\alpha\in P_+$. Then one can easily see that the map $D\times W^1\to \mathscr{L}_0'$ given by

$$(\lambda, \sigma) \longmapsto \lambda^{(\sigma)}$$

where $\lambda^{(\sigma)} = \sigma(\lambda + \rho) - \rho$, is a bijection (see [4, Lemma 6.4]). Now, choose $\lambda \in D$ and $\sigma \in W^1$ and consider $\lambda^{(\sigma)} \in \mathcal{F}_0'$. $\lambda^{(\sigma)} + \rho_n$ is dominant with respect to P_k . Let $\tau_{\lambda^{(\sigma)} + \rho_n}$ be the irreducible representation of \mathfrak{f} with $\lambda^{(\sigma)} + \rho_n$ as highest weight on a space $V_{\lambda^{(\sigma)} + \rho_n}$. The representation $\chi^{\pm} \otimes \tau_{\lambda^{(\sigma)} + \rho_n}$ can be integrated to a representation, also denoted by $\chi^{\pm} \otimes \tau_{\lambda^{(\sigma)} + \rho_n}$, of K. Let $E_L + \otimes V_{\lambda^{(\sigma)} + \rho_n}$ and $E_L - \otimes V_{\lambda^{(\sigma)} + \rho_n}$ be the homogeneous vector bundles on G/K induced by the representations $\chi^{\pm} \otimes \tau_{\lambda^{(\sigma)} + \rho_n}$ and $\chi^{\pm} \otimes \tau_{\lambda^{(\sigma)} + \rho_n}$ of K. We choose K invariant hermitian metrics in the spaces $L^{\pm} \otimes V_{\lambda^{(\sigma)} + \rho_n}$ and $L^{\pm} \otimes V_{\lambda^{(\sigma)} + \rho_n}$ and induce metrics on the fibres of $E_L \otimes V_{\lambda^{(\sigma)} + \rho_n}$. Let $H_2^{\pm}(E_{V_{\lambda^{(\sigma)} + \rho_n}})$ denote the Hilbert spaces of square integrable sections φ , which are infinitely differentiable and such that

$$\pi(\Omega) \cdot \varphi = \langle \lambda + 2\rho, \lambda \rangle \varphi$$

where $\pi(\Omega)$ denotes the action of the Casimir $\Omega \in U(\mathfrak{g}^c)$ on the space of C^{∞} sections of $E_{L^{\pm} \otimes V_{\lambda}(\sigma)_{+\rho_n}}$. In view of [6, Proposition 4.2] these are the spaces of 'square integrable Dirac spinors' defined in [6, § 7]. Suppose

$$\langle \sigma \lambda, \alpha \rangle \neq 0$$
, for $\alpha \in P_n$.

Let j = + or -. Then in [6] it was proved that

$$H_{2}^{j}(E_{V_{\lambda}(\sigma)+\rho_{n}})=0$$
, if $j\neq j(\sigma)$.

The proof of $[6, Theorem 2, \S 9]$ actually yields a sharper form which we will now state. The decomposition (2.1) gives rise to a decomposition

$$E_{L\otimes V_\lambda(\sigma)_{+\rho_n}} = \bigoplus_{\xi \in W^1} E_{V\xi\rho - \rho_k \otimes V_\lambda(\sigma)_{+\rho_n}}$$

of the vector bundle $E_{L\otimes V_{\lambda}(\sigma)+\rho_n}$. Let $H_{\frac{5}{2}}(E_{V_{\lambda}(\sigma)+\rho_n})$ be the Hilbert space of square integrable infinitely differentiable sections φ of $E_{V\xi\rho-\rho_k\otimes V_{\lambda}(\sigma)+\rho_n}$ which satisfy

$$\pi(\Omega)\varphi = \langle \lambda + 2\rho, \lambda \rangle \varphi$$

where $\pi(\Omega)$ denotes the action of Ω on the space of C^{∞} sections of the bundle $E_{V\xi\rho-\rho_k\otimes V_\lambda(\sigma)+\rho_n}$. Then we have the following

THEOREM 2. Let $\lambda \in D$ and $\sigma \in W^1$, so that $\lambda^{(\sigma)} \in \mathcal{F}'_0$. Then, for $\xi \in W^1$,

$$H_2^{\xi}(E_{V_{\lambda}(\sigma)_{+\rho_n}})=0$$
, if $\xi \neq \sigma$,

if $\langle \sigma \lambda, \alpha \rangle \neq 0$, for $\alpha \in P_n$.

From this we now deduce the following

THEOREM 3. Let $\lambda \in D$ and $\sigma \in W^1$ and let $\mu = \sigma(\lambda + \rho) - \rho$ so that $\mu \in \mathcal{F}_0'$. Assume that

(2.2)
$$\langle \sigma \lambda, \alpha \rangle \neq 0$$
 for any $\alpha \in P_n$.

Then

$$H_2^{0,q}(E_{V_u^*}) = 0$$
 if $q \neq q_u$

when q_{μ} is the number of $\alpha \in P_n$ such that $\langle \mu + \rho, \alpha \rangle > 0$.

PROOF. Put $\mu' = -\kappa(\mu + \rho) - \rho$, where κ is the unique element of W_{σ} which takes P_k into $-P_k$. One can easily verify that $\mu' \in \mathcal{F}_0'$. Let $\varphi \in D$ and $\sigma' \in W^1$ be the unique elements such that $\mu' = \sigma'(\varphi + \rho) - \rho$. Then by Theorem 2 above one has, for $\xi \in W^1$,

$$H_2^{\xi}(E_{V_{\mu'+\rho_n}})=0$$
, if $\xi \neq \sigma'$

provided

(2.3)
$$\langle \sigma' \varphi, \alpha \rangle \neq 0$$
, for $\alpha \in P_n$.

Since $\mu' + \rho = \sigma'(\varphi + \rho)$, we have

$$\sigma'\varphi = \mu' + \rho - \sigma'\rho$$
.

Note that $\sigma' \rho = \frac{1}{2} \langle P' \rangle$, where

$$P' = \{ \alpha \in P \cup -P \mid \langle \mu' + \rho, \alpha \rangle > 0 \}$$
.

But since $\mu' + \rho = -\kappa(\mu + \rho) = -\kappa\sigma(\lambda + \rho)$, we have

$$\{\alpha \in P \cup -P \mid \langle \mu' + \rho, \alpha \rangle > 0\} = -\kappa \sigma P.$$

Hence,

(2.4)
$$\sigma' \rho = \frac{1}{2} \langle P' \rangle = -\kappa \sigma \rho.$$

Thus

$$\begin{split} \sigma'\varphi &= \mu' + \rho + \kappa\sigma\rho = -\kappa(\mu + \rho) + \kappa\sigma\rho \\ &= -\kappa\sigma(\lambda + \rho) + \kappa\sigma\rho = -\kappa\sigma\lambda \;. \end{split}$$

Thus the condition (2.3) is just that

$$\langle -\kappa\sigma\lambda, \alpha \rangle \neq 0$$
 for $\alpha \in P_n$

i.e.

$$\langle \sigma \lambda, \alpha \rangle \neq 0$$
 for $\alpha \in P_n$.

Thus, when (2.2) is satisfied, for $\xi \in W^1$

$$(2.5) H_2^{\xi}(E_{V_{u'+\varrho_n}}) = 0 \text{if } \xi \neq \sigma'.$$

Consider the irreducible representation $\tau_{\rho n}$ of f which occurs in the decomposition (2.1) of χ . One knows that $\langle \rho_n, \alpha \rangle = 0$ for every $\alpha \in P_k$. (This is clear since $s_{\alpha}\rho_n = \rho_n$ where $s_{\alpha} \in W_G$ denotes the reflection with respect to α .) It follows from this that $\tau_{\rho n}$ is a one dimensional representation of f. One knows that the set of weights of χ is $\{\rho_n - \langle Q \rangle \mid Q \subseteq P_n\}$ (See [6, Remark 3.1 and Remark 3.2]). On the other hand, the set of weights of the representation Ad_{-}^q of K on $\wedge^q \mathfrak{p}_-$ is $\{-\langle Q \rangle \mid Q \subseteq P_n, [Q] = q\}$. Thus it follows that

$$\sum_{q} \tau_{\rho_n} \otimes Ad^{\underline{q}} = \chi$$

on comparing the set of weights of the representations on the two sides. Because of Lemma 2.1, it follows that

(2.6)
$$\tau_{\rho_n} \otimes Ad^q = \bigoplus_{\nu \in S_q} \tau_{\nu\rho - \rho_k}$$

where S_q $(q=1,\,2,\,\cdots\,,\,n)$ are subsets of $W^{\rm 1}$ such that

$$S_q \cap S_{q'} = \phi$$
 if $q \neq q'$ and $\bigcup_q S_q = W^1$.

Since τ_{ρ_n} is one dimensional, $\tau_{\mu+\rho_n} = \tau_{\mu} \otimes \tau_{\rho_n}$. One knows that if τ is an irreducible representation of \mathfrak{t} with highest weight λ , then the representation τ^* which is dual to τ has highest weight $-\kappa\lambda$. Thus,

$$\tau_{\mu'+\rho_n} = \tau_{-\kappa(\mu+\rho_n)} = \tau_{\mu+\rho_n}^* = \tau_{\mu}^* \otimes \tau_{\rho_n}^*.$$

Thus, for $\nu \in W^1$,

$$\tau_{\nu\rho-\rho_k} \otimes \tau_{\mu'+\rho_n} = \tau_{\nu\rho-\rho_k} \otimes \tau_{\mu}^* \otimes \tau_{\rho_n}^*.$$

Hence from (2.6) it follows that

$$\bigoplus_{\nu \in \mathcal{S}_q} \tau_{\nu \rho - \rho_k} \otimes \tau_{\mu' + \rho_n} = Ad_-^q \otimes \tau_\mu^* \,.$$

From the definitions of the spaces $H_2^{\nu}(E_{V_{\mu'+\rho_n}})$ (for $\nu \in W^1$) and $H_2^{0,q}(E_{V_{\mu}^*})$ and from [5, Lemma 1.1] it now follows that

$$\bigoplus_{\nu \in S_q} H_2^{\nu}(E_{V_{\mu'+\rho_n}}) = H_2^{0,q}(E_{V_{\mu}^*}).$$

Now, in view of (2.5), in order to prove that $H_2^{0,q}(E_{\nu_{\mu}^*})=0$ if $q\neq q_{\mu}$, it is enough to prove that $\sigma'\in S_q$ if $q\neq q_{\mu}$, or equivalently that $\sigma'\in S_{q_{\mu}}$.

For this we prove that $\tau_{\sigma'\rho-\rho_k}$ is a subrepresentation of $\tau_{\rho_n} \otimes Ad^{\underline{q}\mu}$. Since by (2.4) $\sigma'\rho = -\kappa\sigma\rho$, we have $\sigma'\rho-\rho_k = -\kappa(\sigma\rho-\rho_k)$. Note that $\sigma\rho = \frac{1}{2}\langle\sigma P\rangle$. But

$$\sigma P = \{ \alpha \in P \cup -P \mid \langle \sigma \rho, \alpha \rangle > 0 \}
= \{ \alpha \in P \cup -P \mid \langle \sigma(\lambda + \rho), \alpha \rangle > 0 \}
= \{ \alpha \in P \cup -P \mid \langle \mu + \rho, \alpha \rangle > 0 \}
= P_k \cup Q_\mu \cup (-Q'_\mu)$$

where Q'_{μ} is the complement of Q_{μ} in P_n . Thus,

$$\sigma \rho = \frac{1}{2} \langle \sigma P \rangle = \rho_k + \frac{1}{2} \langle Q_{\mu} \rangle - \frac{1}{2} \langle Q'_{\mu} \rangle$$
$$= \rho_k + \langle Q_{\mu} \rangle - \rho_n.$$

Hence $\sigma \rho - \rho_k = \langle Q_\mu \rangle - \rho_n$. Thus,

$$\sigma'\rho - \rho_k = -\kappa(\sigma\rho - \rho_k) = -\kappa(\langle Q_\mu \rangle - \rho_n)$$
$$= \rho_n - \kappa \langle Q_\mu \rangle.$$

Thus

$$\tau_{\sigma'\rho-\rho_k} = \tau_{\rho_n} \otimes \tau_{-\kappa \langle Q_{\mu} \rangle}$$
$$= \tau_{\rho_n} \otimes \tau_{Q_{\mu} \rangle}^*.$$

But $\tau_{\langle Q_{\mu} \rangle}$ is a subrepresentation of $Ad_{+}^{q\mu}$ (see proof of [5, Corollary 2, § 7]). Since obviously $Ad_{-}^{q\mu}$ is the representation of K dual to the representation $Ad_{+}^{q\mu}$ of K, we then see that $\tau_{-\kappa\langle Q_{\mu} \rangle}$ is a subrepresentation of $Ad_{-}^{q\mu}$. Thus $\tau_{\sigma'\rho-\rho_k}$ is a subrepresentation of $\tau_{\rho_n} \otimes Ad_{-}^{q\mu}$.

This concludes the proof of Theorem 3.

Tata Institute of Fundamental Research Bombay 5 BR (India)

References

- [1] F. Bruhat, Travaux de Harish-Chandra, Seminaire Bourbaki, exposé 143 (1957),
- [2] Harish-Chandra,
 - (a) Representations of semisimple Lie groups; III, Trans. Amer. Math. Soc., 76 (1954), 243-253.
 - (b) Representations of semisimple Lie groups; IV, Amer. J. Math., 77 (1955), 743-777.
 - (c) Representations of semisimple Lie groups; V, Amer. J. Math., 78 (1956), 1-41.
- [3] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [4] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil Theorem, Ann. of Math., 74 (1961), 329-387.
- [5] M.S. Narasimhan and K. Okamoto, An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type, Ann. of Math., 91 (1970), 486-511.
- [6] R. Parthasarathy, Dirac operator and the Discrete series, (to appear).