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Introduction

Let G be a connected noncompact semisimple Lie group admitting a finite
dimensional faithful representation. Let K be a maximal compact subgroup
of G. Throughout, we assume that G/K is a hermitian symmetric space.
Let g be the Lie algebra of G and f the subalgebra of g corresponding to K.
Then, as is well known, rank of I=rank of g. LetY be a Cartan subalgebra
of g contained in f. For an ordering of the roots 2 of (§¢, g¢) compatible
with the complex structure on G/K, let P be the set of positive roots and
P, the set of positive compact roots. Let p be half the sum of the roots in P.
Let & be the set of all integral linear forms on §¢. Let

F'={A€ F|{A+p, a>+0, for a = P}
and
Fi={A€ F'|{A+p, a>>0, for a s P,}.

For 1= &, let 7; be the irreducible unitary representation of K with highest
weight 1 on a vector space V; Let ¥ be the contragredient representation
of K on the dual V} to V,and let E,; be the holomorphic vector bundle on
G/K associated to 7f. Let HY%Ey;) be the Hilbert space of square integra-
ble harmonic forms of type (0, ¢) with coefficients in E,; and let n{ be the
unitary representation of G on H$%(Ey;). If A4-p is “sufficiently regular” it
was proved in [5, Theorem 2, §7] that H3%E,:) =0, if ¢+ q; where ¢, is
the number of non-compact positive roots « such that {A+4+p, a) >0 and that
[7d1] = w(A+p)* where [7%] denotes the equivalence class of the representa-
tion 742 and w(2+p)* is the discrete class contragredient to the discrete class
®(A+p) which corresponds to 4 (the correspondence being in the sense of

Lemma 2.4 in [5])).
Define for 1 F,,

PP ={aec 3 |{i+p, a)>0}.

P“% is the set of positive roots with respect to a linear order in Y. The

main theorem (Theorem 1, §1) of this note is that if every noncompact root
in P® is totally positive (in the sense of definition, p. 752 in [2.b]) in the



Vanishing of certain ‘L%-cohomologies’ 677

above linear order then H$%Ey))=0 if ¢+ ¢; and that [z{1]= o(1+p)*.

In §2, from the results of about “the spaces of square integrable
Dirac Spinors” we deduce the vanishing Theorems for “the spaces of square
integrable harmonic forms with coefficients in Ey;” under some condition on
the parameter A which is less restrictive than the one in [5, Theorem 2, §7].

8§ 1.

Let G be a noncompact semisimple Lie group. We assume that G has a
finite dimensional faithful representation and that the complexification G¢ of
G is simply connected. Let K be a maximal compact subgroup of G. We
assume that G/K is hermitian symmetric. Let g be the Lie algebra of G and
f the Lie subalgebra of g corresponding to K. Then as is well known rank
of f=rank of g. We now fix a Cartan subalgebra ) of g such that ) &f. Let
g¢ be the complexification of g. Let B be the Killing form of g¢. We define

p={Yeg|B(X,Y)=0 for every Xet}.

Then we have

g=1t+p, tNp=0, [pp]St and [f p]J<y.

For any subset m of g¢ we denote by m® the complex subspace of g¢ gener-
ated by m. We identify p¢ in the usual way with the complexification of
the real tangent space at {K} « G/K. We denote by p, and p_ the subspaces
of p° consisting of antiholomorphic and holomorphic tangent vectors respec-
tively of p¢. Then one knows that

¢ = PetDb, PeNb.= 0 and I:fC, pﬂ:] S D

Now put g,=f+~/—1p. Then g, is a compact real form of g¢. If 6 denotes
the conjugation of g¢ with respect to g,, we write X*= —0X, for X g°.
We define an inner product (,) in g¢ by (X, Y)=B(X, Y*), for X, Y <g°.
Let 2 be the set of nonzero roots of g¢ with respect to §¢. For each root
a2, we choose an eigenvector X, belonging to the root a such that
(X, X)=1. A root a2 is called compact if X,=f° and noncompact if
X,€p°. We choose, as we can, a linear order in 2, such that if P is the
set of positive roots and P, the set of noncompact positive roots with respect
to that linear order, then

We denote by P, the set of all compact positive roots. Then we have
P= P, P, For any linear form 2 on %¢, we shall denote by H; the element
of §¢, such that B(H, H)= A2(H) for all H=%°. For any pair (4, p) of linear
forms on )¢, we put {2, u>=2A(H,). Let T be the set of all integral linear



678 . R. PARTHASARATHY

forms on §° i.e. the set of linear forms A on ¢ such that 2~<i’ i?)‘ is an

]

integer for every root a. We put

F'={A€F;{A4+p, a>+0, for a Y}
and
Fo={AeF" ;{A+p, a) >0, for a € P}
where p:—; > a. Then one can verify that any 2 in &’ is in &{ if and only

asP

if A is dominant with respect to P, (i.e. <A, a) =0 for every a & P,).

Now let 2 € &} and let 7, be the irreducible unitary representation of K
with highest weight 2 on a space V,. Let t¥ denote the unitary representa-
tion of K contragredient to z; on the dual space V¥ to V,. Let Ey% denote
the holomorphic vector bundle on G/K, associated with the representation
75 of K (see [5, §17). The inner product (,) in g€ restricts to a K invariant
inner product on p and gives rise to a hermitian metric on G/K. Also, the
K invariant inner product in V¥ gives rise to a canonical hermitian metric
on Ey: Let C"Y(Ey) (resp. LY%(Ey?) denote the space of all C* (resp. square
integrable) differential forms of type (0, ¢) with coefficients in Eyy. G acts
on the bundle EV; and gives rise to an action of G on the space of forms
on G/K with values in Ey:. The action of G on C"%(Ey;) gives rise to an
action v of g¢ on C%%Eyy) which extends to an action, also denoted by v,
of the universal enveloping algebra U(g®) of g€ on C°"7(EV;). Let HY(Ey3)
be the space of square integrable harmonic forms of type (0, ¢) on G/K with
coefficients in Ey; (see §4, in [5]. One knows that H}YEy)) S CYYEy)).
Moreover, H}%Ey) is a closed subspace of L%%Ey3) and hence a Hilbert
space. Also H3%Eyy) is invariant under the action of G on L}%Eyy. Thus,
we get a unitary representation, denoted z¢, of G on HS"‘(EV;).

Now, let &; be the set of discrete class representations of G. (see §1 in
[5). Denote by Ad? (resp. Ad%) the representation of K on A%, (resp. A%_)
induced by the adjoint action of K on p, (resp.p_) and put z§= Adt R 7;. We
now have the following (Proposition 4.1 in [5)

ProposiTION 1.1. Put

CdA)={w e &; X (2)={A+2p, 2D}

where X, denotes the infinitesimal character of w and 2 < U(g®) the Casimir of
G. Then, we have

[780= P (w|K:[{Dw* (finite sum)
wSEg(d)

where [n{] denotes the equivalence classkofthe representation n$ of G (similarly
Sor [z])) and (w|K: [z4]) denotes the intertwining number of w|K and [t%] (see
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§1 in [5).

For any set Q of linear forms on %¢, we define
(@)= «a
ac@

K@>=0 if Q=¢, the empty set) and
[@]=the number of elements in the set Q.

Fix any A€ F{. Let

Qi={ae P, | {A+p, a>>0)
and define

¢,=[Q.].
Let m=[P,]= —%— dim G/K and fix any ¢ such that 0=g=m. Define

I'y={Q>IQc P, [Q]l=gq}.
Define

PP={acX|{i+p, a)>0}.

Then P is the set of positive roots with respect to a linear order in .
Following [2.b], if 2, is the set of positive roots with respect to some linear
order in %, then we say that a noncompact root a< 2, is totally positive
(with respect to that ordering) if ¢+ is a noncompact root in %, for any
compact root 8 such that e+ is a root. We now have the following

THEOREM 1. Let A€ F} and assume that with respect to the linear order
in 2 for which P is the set of positive roots, every moncompact root in PP
is totally positive. Then

HYYEy)=0, if g#q,
and
[z§ ] = w(A+p)*
where w(A+p)* is the discrete class contragredient to the discrete class w(24p)
which corresponds to A, in the sense of Lemma 24 in [5] and [n] the equi-
valence class of the representation n%4 of G. Moreover,

(@(A+0): [TrcosD =1

where Ti<q,> iS the representation of K with A+<{Qz as highest weight.

PrOOF. First we make a few observations which are consequences of
our assumption about P®. Let W, be the subgroup of the Weyl group of
(5¢, g¢) generated by reflections with respect to compact roots. Let

DD @
PP = g P®

where ¢ is the unique element of Wy, such that xP,= —P,. Clearly, P?® is
the set of positive roots with respect to a linear order in 2. Note that
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PP = P,UQI—Q;,

where )} is the complement of ; in P,. Since by assumption in the posi-
tive root system P, every noncompact root is totally positive, we have
sPP =P, for every s Wy, where P% is the set of noncompact roots in
P, Also, sP,= P, for every s< Wg. Since, clearly, we have Q;= P, P®
we see that for every s e Wy,

¢B) $Qi =Py SPP =Py N PP =0Q;.

Thus,
PP =P U—-Q,UQ,.

Now, assume that H$%FEy3;) +0. We know that the representation zj of
G on HY%E,%) decomposes into a finite direct sum of discrete class repre-
sentations (Proposition 1.I). Let @ be a discrete class such that w* occurs
in this decomposition. Let = be a member of the equivalence class w and H
the representation space of #. Denote also by n the derived representation
of the enveloping algebra U(g®) of g¢ on the space of analytic vectors for =
in H. Then, we assert that with respect to the linear order in 2 for which
P™ is the set of positive roots there exists a positive extreme weight vector
(for definition see pp. 750-751 in [2.b]) with weight ¢ of the form A4y, for
some y € [',. For proving this we proceed as follows:

Let X, be the infinitesimal character of w. By [Proposition 1.1| we know

that

@ Xo(2) =<A+2p, 2>
and
) (wlK:[79]) #0.

The second condition implies that there exists an irreducible representation
0 of K which is a subrepresentation of both z|K and 7. Let H; be the
subspace of H spanned by elements which transform under =|K according
to 6. Fix a unit weight vector ¢, < H; belonging to the highest weight x
of 6. Then ¢, is infinitely differentiable under = and we have by (1)

”(-Q)¢.u: xw(Q)Sby: <2+2‘0, A >¢p .

From the fact that g is the highest weight of an irreducible subrepresenta-
tion of 7§, one can show that
1.2 p=2A+y

for some y /', In fact if ¢ is any finite dimensional representation of ¢,
one can easily show that an irreducible subrepresentation of 7, ¢ has A+v
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as highest weight, where v is a suitable weight of o.
Now, choose a Weyl basis {E,}.ex of ¢¢ (mod §°) with respect to a com-

pact real form g,=%4++~/—1p. Let 2, be the Casimir of K. Then we have
‘Q_‘QK: 2 (EaE—a+E~a'Ea)

acPp

> (Ea E_o+E_oEo)

P

where PP is the set of noncompact roots in P®. After some computations

(see proof of §7 in we see that
—2 )llﬂ(Ea)¢pllz—<2+2p,2> p—20L 420k 1>

aeP

where w1 > a= 1 S a. Note that we have from (1.1), pP=
P =2 2

aGPT(f) aef’f{”

{Q:>—py. Substituting for g from ((1.2) we have
-2 % H T(E)Ppll®

aGP

={A+2p0, A>—L A+ 7y —2pLP+204, 2+7
=QA+p, 2+p>—Lp, p>— L+ 71— P+ pr, A+7— P+ pr>
+pr— i) pr— P>
= A+p, 24+ p>—Lp, p>—LA+p+7—pa—pP, A+p+7—pr— 0>
+<or— 0, 0x— > -
Note that pk—p,f,’b:-%— <15‘2’>:a-p for some o belonging to the Weyl group

of (§°, g) since P is the set of positive roots with respect to some linear
ordering in Y. Hence, {pr—pP, pr—pP> =<p, p>. Thus,

-2 E ||7Z'(Ea')¢y”2_'—2<2+‘0;7’ Pr—PP>—Ly— pr— PP, 7—pr— P
= —2+p, 1O >—{r—LQD, r—<Q»> .

Since A+p is a regular integral linear form which is dominant with respect
to P», we see that A+p—p® is dominant with respect to P°. Since yel’,,
r=<Q) for some subset @ of P,. Thus

7—<Q» =KQNQ»>—LQ:NQ"

where Q} and Q’ are respectively the complements of the sets @Q; and Q in
P,. Now,

—2 2 Ilﬂ(Ea)sbyHZ —2Q2+p—p?, r—<Q>
— QD +20%®, r—<Q»> .
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Consider the two terms on the right hand side. Since y—<{Q;>={QNQ%>
—LQ; Q"> and since PP = P,\JQ,J(—Q},) it follows using the fact that
A+p—p® is dominant with respect to P® that —2{A+p—p®, r—<LQD> is
nonnegative. Also

— =R +20®, r—<(Q>
= —(g—LQD D+ p®, r QD+ P>+ p®, pP
= —{pP—LQ, pP—LQ >+ p®, p®),

where Q,=(Q. N Q)Y (—Qin —Q). Note that Q,C P, By [4, Lemma 5.9],
p®—<(Q,> is a weight of the irreducible representation of g¢ with p® as
highest weight with respect to P*. Hence {p®—<Q,>, p®—<(Q) < {p®, o)
so that —<{(yr—<Q +2p"®, y—<Q,>> is nonnegative. Thus it follows that
—2 ¥ [n(E)¢,l* is nonnegative. But, clearly —2 3 [#(E)¢,./*<0. Hence,

¢ =0l

we conclude that %2) |7(ED¢ull2=0. Thus, n(E)¢,.=0 for every ac PP,
as n

But by the choice of ¢,, 7(E)¢,.=0, Ya € P;. Since PPD=pP \JPP our claim

in the beginning is proved.

Now, suppose H%%(Ey:)+# 0 and H$%(Ey3) + 0 where ¢ and ¢’ are distinct
and 0=gq, ¢/ =<n. If w (resp. ') is a discrete class such that o* (resp. w’'*)
occurs in the decomposition of [#{] (resp. [#{]) then we assert that w # w’.
This can be proved as follows. The representations of U(g¢) on the spaces
of analytic vectors for the representations w and w’ possess positive extremal
weight vectors (for definition see pp. 750-751 in [2.b]) of weights g and g’
respectively with respect to P® where g and g/ are of the form p=ai+7y
and p' =244y’ with yel', and y’=/l',. Let J=h be the unique element
such that ad J|p gives the complex structure on the real tangent space at
{K} =G/K, when p is identified with that tangent space in the usual way.
(One knows that such a J exists. See [3, Theorem 4.5].) Thus

po={Yep’lad J(Y)=—iV}

and
p.={Yeplad J(Y)=1Y}.
Hence, we have a(J)= —1 for every a= P,. Thus
w()=2D+r(D
=AD—qi

since y € I',. Similarly, p/(J)=2A(J)—q’i. Since g # ¢’, we then conclude that
p# ¢'. Then, using [Lemma 2, 2.b], we conclude that the representations of
U(g®) on the spaces of analytic vectors for w and w’ are not equivalent.
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Consequently w # @’ and hence also w* # w’*.

Since for each g, [#%{] decomposes into a finite direct sum of irreducible
unitary representations of G (Proposition 1.1), we now conclude using the
“alternating sum formula,” (i.e. [5, §6]) and [2.a, Theorem 6 and
its corollary] that there exists ¢, such that H}%Ey3) =0 for ¢+ ¢, and that
(7] = w(A+p)*. Now, it follows using Proposition 1.1, that if 0=<¢=n and
o is a discrete class such that X,(2) ={2+2p, 2> where X, is the infinitesimal
character of w and 2 = U(g®) the Casimir, then

(@ K:[z)=0 if o+ w@+p)

and
0 if g=+gq,
@+pIK: =]
1 if g=gq,.

We now prove that ¢,=g; From the assumption about P® and from
the fact that PP = —xP® it is easy to see that with respect to the linear
order in 3 in which P® is the set of positive roots, every noncompact root
in P® is totally positive.

Now let

—~ 1
pcl):_z__ 2 a
ach)

and let
2/ — 2_*__‘0__5(2) .

Note that p® = pk——“%%QD-I—%‘(Qﬁ), so that one has

A =2A4+QD .

Observe that A’ is dominant with respect to P,; as a matter of fact A is
dominant with respect to P, since A< F; and also <{@;> is dominant with
respect to P, (see proof of [5, Corollary 2, §71). Let 7z, be the irreducible
representation of K with A’ as highest weight. Let p? = }_]u g*. Since with
aePn
respect to the linear order in ¥ for which P is the set of positive roots every
noncompact root in P is totally positive it follows that p® is stable under
the adjoint action of K. Denote by 7 the representation of K on AP induced

by the adjoint action of K on p*®. We assert that

r2 Q7= 37, AdL
q=0

where Ad? is the representation of K on A%, induced by the adjoint action
of K on p,.. This can be proved as follows: For any representation 6 of K
we denote by Trace 0 the character of the representation 6. Then we have
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by Weyl’s character formula

2 s(s)es(lﬂ)k)
Trace 7;| g =226

ECTI

sEWg
and similarly

2 s(s)es(i'+pk)

Trace tplyp= "o ——
cetyly > e(s)e Pk
s
Also
Trace Ad%|p= X o<9>
QCP,,Ql=¢q
and
TraceZ|g= 3 &>,
5 (4
ecp (M
Now,

Trace (z @7T) |y =(Trace v, |z) - (Trace 7| ;)

2 e(s)es(l+<Q,1>+pk)
sEWag . e<90>

by e(s)eser ocF D

2 e(s)es(zi-pk)
—e<&>., 5 < - > e<e>
0
Es e(s)e*rx QCAW

(since s<Q»>=<Q» by (1.1)
2 s(s)es(2+pk)
» o<e>+<Q >

S,
Se(s)etE oG

Z S(S)es(M-pk)
> e<e>,

S
ZS) e(s)e’rk =P,

Thus the characters of the representations 7, @7 and P (r;® Ad?) are equal
and hence these two representations are equivalent. !

One can introduce a new G invariant complex structure on G/K such
that when the complexification of the real tangent space at {K} e G/K is as
usual identified with p¢, the space of antiholomorphic tangent vectors in p¢

is precisely X g% (We show this when g is simple, the general case being
aEf’é'

easily deducible from this. Thus let P be a positive root system in 2 com-
patible with a G invariant complex structure on G/K. Let P, and P, be the
set of compact and noncompact roots in P. Then one knows that P,\J(—P,)
is also a positive root system in 2 which is compatible with a G invariant
complex structure on G/K. Now let P ve any positive root system in 3 such
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that every noncompact root in P is totally positive and such that ﬁ,&_—-Pk
where ﬁk is the set of compact roots in P. One knows that there exists
exactly one noncompact simple root « in P. (See [2.b, Corollary 2, §5].)
Then it is clear that P = P or P= P,\U(—P,) according as a € P, or ac—P,)
Let 77 be the representation of K on A®® which is induced by the adjoint
action of K on p». The representation z§ of K on V3 induces a vector
bundle Eyi on G/K and as in [5, §1] Eyy can be made into a holomorphic
vector bundle (the complex structure of G/K being the new complex struc-
ture). We have /+p® = 2+p. Since (47, a) >0 for every compact root
in P® and <X+p%, a> <0 for every noncompact root in P’ one knows that
(see [2.c] or the space H of square integrable (with respect to a hermitian
metric on Ey% induced by a K invariant metric on V%) holomorphic sections
of Ey+ is nonzero. H is nothing but the space of square integrable harmonic
forms of type (0, 0) (See [5, § 4] for definition) on G/K with coefficients in
the vector bundle Ey+. If n denotes the action of U(g°) on the space C(Ey3;)
-of C~ sections of the bundle Ey% which is derived from the action of G on
‘«C(Ey+.), then by [5, Lemma 1.1] we have

H={p € C(Ey}) | ¢ square integrable, z(2)p= (A +2pP, 27 ¢}

‘where 2 < U(g¢) is the Casimir of g¢. Let [B] be the equivalence class of
‘the unitary representation 8 of G on H. Then we know that [§] is a finite
sum of discrete classes of G (Proposition 1.I). Since H = 0 there exists a
discrete class w, of G such that w¥ occurs in the decomposition of [3]. Note
that by [Proposition 1.1 we have

) Lwo(82) = (X259, 27>

and
ii) (wo| K: [z 1) #0.
‘Observe that since /47 = 1-+p, we have
QUA2pP, 2y =1 +pP|*— 1P |*=|2+p|*— | p|®
={A+2p, 2.

"The representation 7 = 7;;<q,> is a subrepresentation of the representation
zi2 of K on V;® A%p,. (This is because, as we already saw, <{Q;> is the
‘highest weight of an irreducible component of the representation of K on
A%p,) Thus from i) and ii) we have

a) ool D)= <A+2p, 2>

and
b) (00| K: [z32 D +0.
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Thus, using [Proposition 1.1, it follows that ¥ occurs in the decomposition
of [#§4+]. Then, by what we have proved already it follows that

i) do={q3
if) [$1] = 0} = WA+ p)*
and
iii) (@(A+ )| K: [TrcqsD=1.

(Q.E.D.)

REMARK. Now, choose an element 7 in the equivalence class @(1+ p)
and let H be the representation space of =. Let 0 =t<q,> and let H; be
the subspace spanned by the set of vectors in H which transform under =|K
according to 6. Then the proof of actually shows that if ¢i<q,>
is a nonzero element of H which belongs to the highest weight 14+<Q;> then
T(EDParco>=0 for every a = P&,

REMARK. The set of discrete classes realized in by L2-coho-
mology method, i.e,,
{we | w=0w(+p)* for some 1 F; such that any non-compact root in the
positive root system {a 2 |<{A+p, a)> >0} is totally positive}
is just the subset of &; whose classes are constructed by Harish-Chandra in
[2.c]. When G is simple, the set of A< &} satisfying the condition of
is just the set

{2e F31¢2=0 or n(=[P,D}.

§2.

We continue with the notation of the previous section. Let so(p) be the
Lie subalgebra of End (p) which corresponds to the rotation group SO(p)
S Aut (p), under the positive definite bilinear form B|p, where B is the Killing
form of g¢. We make the following observations the details of which can be
found in [6].

Let o:so(p)— End (L) be the spin representation of so(p). Then ¢ is the
direct sum of two subrepresentations ¢*: so(p)— End (L*) which are called the
half spin representations of so(p). Let a:f—so(d) be the homomorphism
induced by the adjoint action of f on p. Let X, X* and X~ be the representa-
tions of t defined by X=o0oca, X*=0¢%*oa and X =0 oa. The sets I', I'* and
I'- of weights of the representations X, X* and X~ respectively are given by

I' ={p.—{Q>1Q< P},

I'"={p,—<Q>| Q S P,, [Q] is even}
and

I'={p,—<Q>| Q& P,, [Q] is odd} .
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Define a subset W' of the Weyl group W({¢, g€) by setting
Wi={e W, g% | o(—P)N\PS P,}

where P< Y is the fixed positive root system compatible with the complex
structure on G/K and P, is the set of noncompact roots in P. For s eW!
we define

jl@) =+, if [e(—P)n\ P] is even
and

jlo)y=—, if [6(—P)\P] is odd.

For every o W', op—p; is dominant with respect to P, and the representa-
tion of f¢ with op—p;, as highest weight occurs in X. We have further the
following

LEMMA 2.1. For every o €W?, the representation t,,_,, of ¥ with op— py
as highest weight occurs with multiplicity one in X and we have a decomposition

2.1) L :0%1 Vao-og -
Moreover in the same notation
[ —
L ——-U:}.Wl, j(a)=+Vap—pk
and
L~ :a'%?Wl%(a')'——:— Vap_pk
(For proof see [6, Lemma 9.1 and Remark 9.27).
Let D be the set of all linear forms 4 on §°¢ such that —2<<—a2~’&q>>~ is a

nonnegative integer for every a  P,. Then one can easily see that the map
DX W?'— g given by

(2, 0') — l(a')

where A = o(1+p)—p, is a bijection (see [4, Lemma 6.4]). Now, choose 2D
and o €W!' and consider 21 € F{. A+ p, is dominant with respect to PF;.
Let 7 @.,, be the irreducible representation of f with A“°4-p, as highest
weight on a space V,w,,,. The representation X*&) 7;@,,, can be integrated
to a representation, also denoted by X*® 7 w@4,,, of K. Let EL+®V2<4)+M and
EL—@,VX(,)M" be the homogeneous vector bundles on G/K induced by the
representations X*Q 7i@4,, and X~ @ 7@, of K. We choose K invariant
hermitian metrics in the spaces L+*Q Vi wi,, and L™ @ V;w,,, and induce
metrics on the fibres of ELi@Vi(")"‘pn' Let H;(EVX(‘,”M) denote the Hilbert spaces

of square integrable sections ¢, which are infinitely differentiable and such
that

7(2)- p={(A+2p, A>p
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where n(£2) denotes the action of the Casimir £  U(g°) on the space of C*
sections of E gy @ ,, In view of [6, Proposition 4.2] these are the spaces

of ‘square integrable Dirac spinors’ defined in (6, § 7]. Suppose
(oA, ay+0, for ac P,.
Let j=+ or —. Then in [6] it was proved that
H{(Ev;@4,,) =0, it j#7j(0).

The proof of [6, Theorem 2, § 9] actually yields a sharper form which we:
will now state. The decomposition gives rise to a decomposition

EL@V;_(J)_,_pn :e @1 EVgp_pk®V,;(a)+pn

of the vector bundle EL®VZ(”)+pn' Let Hg(EVl(‘)+pn) be the Hilbert space of
square integrable infinitely differentiable sections ¢ of EVep—pk®V2<"+pn which
satisfy
(8o =< A+2p, 2> ¢
where n(£2) denotes the action of £ on the space of C* sections of the bundle
Ey., ,.evi04,, Then we have the following
THEOREM 2. Let A< D and o €W?, so that A € &. Then, for £W?,

HES(EVZ(d) )207 Zf Eia,

+pn
if (o, a>+*0, for a € P,.

From this we now deduce the following

THEOREM 3. Let A€ D and o €W" and let p=o(A+p)—p so that pe F.
Assume that

2.2) {oA, a>+0 for any aes P,.
Then
HY(Eyv;)=0  if q+#q,

when q, is the number of a € P, such that {p-+p, a) >0.

PrROOF. Put g = —k(u+p)—p, where « is the unique element of Wy,
which takes P, into —P,. One can easily verify that ¢/ &« #;. Let ¢ = D and
o’ = W' be the unique elements such that ¢’ =o0’(¢+pg)—p. Then by Theorem
2 above one has, for £ W},

Hf(Ey,,,)=0, if &+o
provided

2.3 (o', ay+#0, for a=P,.
Since p'+p=0'(p+p), we have
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o'p=p'+p—ap.
Note that O"p:-é~<P’>, where

P={ac PU—-P|{p+p, ay>0}.
But since p’'+4p= —&(y+p)= —ro(A+p), we have

{ae PU—P|{p+p, a)>0} =—kroP.
Hence,

2.4 a’p———-f%(P’): —Kop.

Thus
o'p=p'+pt+rop=—k(ptp)+rop

= —k0o(A+p)+Krop=—KoA.
Thus the condition (2.3) is just that
{—koAd, a)+0 for as P,

i.e.

(oA, ay+0 for ac P,.
Thus, when is satisfied, for £ =W!
(2.5) Hf(Ey,,,)=0 if &#d.

Consider the irreducible representation z,, of f which occurs in the decom-
position of X. One knows that {p, a>=0 for every a € P,. (This is
clear since s,p,= p, where s, =W, denotes the reflection with respect to a.)
It follows from this that z,, is a one dimensional representation of . One
knows that the set of weights of X is {p,—< Q> |Q E P,} (See [6, Remark 3.1
and Remark 3.2]). On the other hand, the set of weights of the representation
Ade of K on A%_ is {—<Q>| Q< P,, [Q]1=¢q}. Thus it follows that

34 Ten @ AdL =X

on comparing the set of weights of the representations on the two sides.
Because of Lemma 2.1], it follows that

(2.6) Ton QAdL= D 7yp_p,
u&Sq
where S, (¢=1, 2, ---, n) are subsets of W* such that

SqNSg=9 if g+¢ and US,=W".
q

Since 7,, is one dimensional, 7 .o, =7,X 7,,. One knows that if ¢ is an
irreducible representation of f with highest weight 4, then the representation
z* which is dual to z has highest weight —xA. Thus,
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Twton = Torturom = Tpvon = T4 Q T3, -
Thus, for v eW?,
Too-0xQ Tprton = Tup-p, D TEQ TE, .
Hence from it follows that
y@qrm—pk(@ Twipn = AdL QTS

From the definitions of the spaces H;(EV# ) (for veW?") and HYYEy%) and

from [5, Lemma 1.1] it now follows that
b Hj (EV,,:.”,,,) = Hg'q(EVL) .

yESq
Now, in view of [25), in order to prove that H}%E,;)=0 if g+#gq,, it is
enough to prove that ¢’ & S, if ¢ + ¢,, or equivalently that ¢’ € Sqﬂ.
For this we prove that Torp-pp 1S @ subrepresentation of 7,,& Ad. Since

by o/p=—rkop, we have o'p—p,= —k(cp—p;). Note that op:——%(aP).
But

SN

oP={acs PU—P|op, a)>0}
={a e PU—P|{a(A+p), a)> > 0}
={ae PUY—-P|{putp, a)>0}
=P, JQ.J(—Q,)

where Q) is the complement of Q, in P,. Thus,
1 1 ,
op=5 (aPY=pet 5 <Qud—5 <>

= P+ Qu>—0n -
Hence 0p—pr,=<Q.>—p,. Thus,
o' p—pi = —£(0p—pr) = — k(K Qu>—pn)

= Pn—ﬁ< Q;z> .
Thus

TU'P‘P}(: z‘pn®z’—l€( Q/;)
= TPn®T?Q‘u> .

But T¢Qu> is a subrepresentation of Ad# (see proof of [5, Corollary 2, § 7).
Since obviously Ad% is the representation of K dual to the representation
Ad## of K, we then see that z_, Q,> 1S a subrepresentation of Ad?%. Thus

Too-p, 1S @ subrepresentation of z,,& Adl«.
This concludes the proof of
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