On submanifolds of submanifolds of a Riemannian manifold

By Bang-yen CHEN and Kentaro YANO

(Received Nov. 25, 1970) (Revised April 7, 1971)

§0. Introduction.

Takahashi [1] proved that (i) in order for a submanifold M^n of an *m*dimensional euclidean space E^m to be a minimal submanifold it is necessary and sufficient that the radius vector X satisfies $\Delta X = 0$, where Δ denotes the Laplacian in the submanifold M^n , i. e. all the (natural) coordinate functions are harmonic, and (ii) in order that a submanifold of a hypersphere with radius *r* of a euclidean space is minimal, it is necessary and sufficient that the radius vector X satisfies $\Delta X = (-n/r^2)X$, where *n* denotes the dimension of the submanifold.

The main purpose of the present paper is to study, a submanifold M^n of a submanifold M^m of a Riemannian manifold M^l being given, the conditions that M^n is minimal in M^m or that M^n is minimal in M^l , and to obtain a theorem which generalizes two results above of Takahashi.

§ 1. Submanifold M^n of a submanifold M^m of a Riemannian manifold M^l .

Let M^i be an *l*-dimensional Reimannian manifold of class C^{∞} covered by a system of coordinate neighborhoods $\{U; x^A\}$ where here and in the sequel the indices A, B, C, \cdots run over the range $\{1, 2, \cdots, l\}$. We denote the components of the metric tensor of M^i by g_{CB} .

Let M^m be an *m*-dimensional differentiable submanifold of class C^{∞} of M^i covered by a system of coordinate neighborhoods $\{V; y^h\}$ where here and in the sequel the indices h, i, j, \cdots run over the range $\{\overline{1}, \overline{2}, \cdots, \overline{m}\}$ $(m \leq l)$ and the local expression of M^m be

$$(1.1) x^{A} = x^{A}(y^{h}).$$

We put

$$(1.2) B_i{}^{A} = \partial_i x^{A}, \partial_i = \partial/\partial y^i$$

and denote by $C_u^A(u, v, w, \dots = m+1, \dots, l)$ l-m mutually orthogonal unit nor-

mal vectors of M^m in M^l . Then the components of the metric tensor of M^m are given by

$$(1.3) g_{ji} = g_{CB} B_j^{\ C} B_i^{\ B}.$$

Since C_u^A satisfy

(1.4)
$$g_{CB}B_{j}{}^{c}C_{u}{}^{B} = 0, \qquad g_{CB}C_{v}{}^{c}C_{u}{}^{B} = \delta_{vu},$$

we have

(1.5)
$$g^{CB} = g^{fi}B_{j}^{C}B_{i}^{B} + C_{u}^{C}C_{u}^{B},$$

 g^{CB} and g^{ji} being contravariant components of the metric tensors of M^{l} and M^{m} respectively.

Now the so-called van der Waerden-Bortolotti covariant derivative of B_i^A is given by

(1.6)
$$\nabla_{j}B_{i}^{A} = \partial_{j}B_{i}^{A} + \left\{ \begin{array}{c} A \\ CB \end{array} \right\} B_{j}^{C}B_{i}^{B} - \left\{ \begin{array}{c} h \\ ji \end{array} \right\} B_{h}^{A}$$

and is orthogonal to M^m , where $\begin{pmatrix} A \\ CB \end{pmatrix}$ and $\begin{pmatrix} h \\ ji \end{pmatrix}$ are Christoffel symbols formed with g_{CB} and g_{ji} respectively. The vector field

(1.7)
$$H^{A}(M^{m}, M^{l}) = \frac{1}{m} g^{ji} \nabla_{j} B_{i}^{A}$$

of M^{i} defined along M^{m} and normal to M^{m} is called the mean curvature vector of M^{m} in M^{i} . If $H^{A}(M^{m}, M^{i})$ vanishes, M^{m} is called a minimal submanifold of M^{i} .

We now consider an *n*-dimensional differentiable submanifold M^n of class C^{∞} of M^m covered by a system of coordinate neighborhoods $\{W, z^a\}$ where here and in the sequel the indices a, b, c, \cdots run over the range $\{\dot{1}, \dot{2}, \cdots, \dot{n}\}$ $(n < m \leq l)$ and let the local expression of M^n be

$$(1.8) y^h = y^h(z^a) \,.$$

We put

(1.9)
$$B_b{}^h = \partial_b y^h, \qquad \partial_b = \partial/\partial z^b$$

and denote by C_p^{h} ($p, q, r, \dots = n+1, \dots, m$) m-n mutually orthogonal unit normal vectors of M^n in M^m . Then the components of the metric tensor of M^n are given by

(1.10)
$$g_{cb} = g_{ji} B_c{}^j B_b{}^i$$
.

Since C_p^h satisfy

(1.11)
$$g_{ji}B_c{}^jC_p{}^i = 0, \quad g_{ji}C_q{}^jC_p{}^i = \delta_{qp},$$

we have

(1.12)
$$g^{ji} = g^{cb} B_c^{\ j} B_b^{\ i} + C_p^{\ j} C_p^{\ i},$$

 g^{cb} being contravariant components of the metric tensor of M^n .

The so-called van der Waerden-Bortolotti covariant derivative of B_b^h along M^n is given by

(1.13)
$$\nabla_{c}B_{b}{}^{h} = \partial_{c}B_{b}{}^{h} + \left\{ \begin{matrix} h \\ ji \end{matrix} \right\} B_{c}{}^{j}B_{b}{}^{i} - \left\{ \begin{matrix} a \\ cb \end{matrix} \right\} B_{a}{}^{h}$$

and is orthogonal to M^n , where $\begin{cases} a \\ cb \end{cases}$ are Christoffel symbols formed with g_{cb} . The vector field

(1.14)
$$H^{h}(M^{n}, M^{m}) = \frac{1}{n} g^{cb} \nabla_{c} B_{b}^{h}$$

of M^m defined along M^n and normal to M^n is the mean curvature vector of M^n in M^m . If $H^h(M^n, M^m)$ vanishes along M^n, M^n is a minimal submanifold of M^m .

Now the submanifold M^n of M^m can be regarded as a submanifold of M^i and its local expression is

$$(1.15) x^{\mathbf{A}} = x^{\mathbf{A}}(y^{\mathbf{h}}(z^{a}))$$

and consequently

$$(1.16) B_b{}^{\scriptscriptstyle A} = B_b{}^{\scriptscriptstyle h} B_{\scriptscriptstyle h}{}^{\scriptscriptstyle A},$$

the fundamental tensors being related by

(1.17)
$$g_{cb} = g_{ji}B_c{}^{j}B_b{}^{i} = g_{CB}B_j{}^{c}B_i{}^{B}B_c{}^{j}B_b{}^{i} = g_{CB}B_c{}^{c}B_b{}^{B}.$$

The mutually orthogonal unit normals of M^n in M^l are

(1.18)
$$C_p{}^{A} = C_p{}^{i}B_i{}^{A}$$
 and $C_u{}^{A}$,

 C_p^A being tangent to M^m and C_u^A being normal to M^m .

The van der Waerden-Bortolotti covariant derivative of B_{b}^{A} is given by

(1.19)
$$\nabla_{c}B_{b}{}^{A} = \partial_{c}B_{b}{}^{A} + \left\{ \begin{array}{c} A \\ CB \end{array} \right\} B_{c}{}^{C}B_{b}{}^{B} - \left\{ \begin{array}{c} a \\ cb \end{array} \right\} B_{a}{}^{A}$$

and is orthogonal to M^n . The mean curvature vector of M^n in M^{ι} is given by

(1.20)
$$H^{A}(M^{n}, M^{l}) = \frac{1}{n} g^{cb} \nabla_{c} B_{b}^{A}$$

and normal to M^n . If $H^A(M^n, M^l)$ vanishes, then M^n is minimal in M^l .

550

$\S 2$. Relations between mean curvature vectors.

Now taking the van der Waerden-Bortolotti covariant derivative of (1.16), we find [2]

(2.1)
$$\nabla_c B_b{}^A = (\nabla_c B_b{}^h) B_h{}^A + B_c{}^j B_b{}^i \nabla_j B_i{}^A,$$

from which

(2.2)
$$\frac{1}{n} g^{cb} \nabla_{c} B_{b}^{A} = \left(\frac{1}{n} g^{cb} \nabla_{c} B_{b}^{h} \right) B_{h}^{A} + \left(\frac{1}{n} g^{cb} B_{c}^{j} B_{b}^{i} \right) \nabla_{j} B_{i}^{A},$$

or

(2.3)
$$H^{A}(M^{n}, M^{l}) = H^{h}(M^{n}, M^{m})B_{h}^{A} + H^{A}(M^{n}, M^{m}, M^{l}),$$

where we have put

(2.4)
$$H^{A}(M^{n}, M^{m}, M^{l}) = \left(\frac{1}{n} g^{cb} B_{c}^{j} B_{b}^{l}\right) \nabla_{j} B_{i}^{A}.$$

We call $H^{A}(M^{n}, M^{m}, M^{l})$ the relative mean curvature vector of M^{n} with respect to M^{m} and M^{l} . $H^{A}(M^{n}, M^{m}, M^{l})$ is a vector field normal to M^{m} .

The relative mean curvature vector $H^{A}(M^{n}, M^{m}, M^{l})$ can be written as

(2.5)
$$H^{A}(M^{n}, M^{m}, M^{l}) = -\frac{m}{n} H^{A}(M^{m}, M^{l}) - \frac{1}{n} C_{p}{}^{j}C_{p}{}^{i}\nabla_{j}B_{i}{}^{A},$$

since

$$g^{cb}B_c{}^jB_b{}^i=g^{ji}-C_p{}^jC_p{}^i.$$

From (2.3) we have

THEOREM 2.1. The mean curvature vector of M^n in M^l is the sum of the mean curvature vector of M^n in M^m and the relative mean curvature vector of M^n with respect to M^m and M^l .

COROLLARY 2.2. In order that M^n be minimal in M^m , it is necessary and sufficient that the mean curvature vector of M^n in M^l be normal to M^m .

THEOREM 2.3. In order for M^n to be minimal in M^i , it is necessary and sufficient that M^n is minimal in M^m and the relative mean curvature of M^n with respect to M^m and M^i vanishes.

§ 3. Concurrent vector field [3]

We consider a vector field v^{A} of M^{i} defined along M^{n} and assume that v^{A} is concurrent along M^{n} , that is,

(3.1)
$$B_b{}^a + \nabla_b v{}^a = 0.$$

From this equation, we have

$$\nabla_c B_b{}^A + \nabla_c \nabla_b v^A = 0,$$

and consequently

(3.3)
$$H^{A}(M^{n}, M^{l}) + \frac{1}{n} g^{cb} \nabla_{c} \nabla_{b} v^{A} = 0$$

or, by (2.3),

(3.4)
$$H^{h}(M^{n}, M^{m})B_{h}^{A} + H^{A}(M^{n}, M^{m}, M^{l}) + \frac{1}{n} g^{cb} \nabla_{c} \nabla_{b} v^{A} = 0.$$

Thus, $H^{A}(M^{n}, M^{m}, M^{l})$ being normal to M^{m} , if $\frac{1}{n}g^{cb}\nabla_{c}\nabla_{b}v^{A}$ is normal to M^{m} , we have $H^{h}(M^{n}, M^{m}) = 0$. Conversely, if $H^{h}(M^{n}, M^{m}) = 0$, then $\frac{1}{n}g^{cb}\nabla_{c}\nabla_{b}v^{A}$ is normal to M^{m} . Hence we have

THEOREM 3.1. Suppose that there exists a vector field v^{A} of M^{ι} defined along M^{n} and concurrent along M^{n} . In order for M^{n} to be minimal in M^{m} , it is necessary and sufficient that $\Delta v^{A} = g^{cb} \nabla_{c} \nabla_{b} v^{A}$ is normal to M^{m} .

In particular, if $M^m = M^l$, then we have

THEOREM 3.2. Suppose that there exists a vector field v^h of M^m defined along M^n and concurrent along M^n . In order for M^n to be minimal in M^m , it is necessary and sufficient that $g^{cb} \nabla_c \nabla_b v^h = 0$, i.e. $\Delta v^h = 0$, where Δ denotes the Laplacian operator in M^n .

COROLLARY 3.3. (Takahashi) Suppose that M^n is a submanifold of a hypersphere S^m in a euclidean space E^{m+1} . Then the radius vector X of S^m considered along M^n is concurrent. Thus in order for M^n to be minimal, it is necessary and sufficient that $\Delta X = g^{cb} \nabla_c \nabla_b X$ be normal to S^m , that is, proportional to X.

COROLLARY 3.4. (Takahashi) Suppose that M^n is a submanifold of a euclidean space E^m . Then M^n is minimal in E^m if and only if each (natural) coordinate function of M^n in E^m is harmonic.

§4. Submanifolds umbilical with respect to a normal.

We consider a unit vector field e^{A} of M^{l} defined along M^{n} and normal to M^{m} and assume that M^{n} is umbilical with mean curvature β with respect to e^{A} . We choose e^{A} as the first normal C_{m+1}^{A} to M^{m} , then we have equations of Gauss of M^{n} in M^{l} :

(4.1)
$$\nabla_{c}B_{b}{}^{A} = h_{cbp}C_{p}{}^{A} + \beta g_{cb}C_{m+1}{}^{A} + h_{cbm+2}C_{m+2}{}^{A} + \dots + h_{cbl}C_{l}{}^{A},$$

 h_{cbp} , βg_{cb} , h_{cbm+2} , \cdots , h_{cbl} being second fundamental forms with respect to C_p^A , C_{m+1}^A , \cdots , C_l^A respectively, from which

(4.2)
$$H^{A}(M^{n}, M^{l}) = \frac{1}{n} g^{cb} h_{cbp} C_{p}^{A} + \beta C_{m+1}^{A} + \frac{1}{n} g^{cb} h_{cbm+2} C_{m+2}^{A} + \dots + \frac{1}{n} g^{cb} h_{cbl} C_{l}^{A}$$

552

We denote by α the mean curvature of M^n in M^l , then from equation (4.2), we see that if $\alpha^2 \leq \beta^2$, then we have $\alpha^2 = \beta^2$ and

$$g^{cb}h_{cbp} = 0$$
, $g^{cb}h_{cbm+2} = \cdots = g^{cb}h_{cbl} = 0$,

which show that M^n is minimal in M^m and M^n is minimal in M^l if and only if $\beta = 0$. Thus we have

THEOREM 4.1. Let e^A be a unit vector field of M^i defined along M^n and normal to M^m and assume that M^n is umbilical with mean curvature β with respect to e^A . If the mean curvature α of M^n in M^i satisfies $\alpha^2 \leq \beta^2$, then M^n is minimal in M^m and is minimal in M^i if and only if $\beta = 0$.

We now assume that M^m is totally umbilical in M^l . Then we have

$$(4.3) \nabla_j B_i{}^A = g_{ji} \alpha_u C_u{}^A$$

where α_u is a vector field in the normal bundle of M^m in M^l and

$$(4.4) \qquad \qquad \nabla_j C_v{}^{A} = -\alpha_v B_j{}^{A} + l_{jvu} C_u{}^{A},$$

where l_{jvu} is the third fundamental tensor of M^m in M^l and skew symmetric in v and u.

From (4.3), we have

(4.5)
$$H^{A}(M^{m}, M^{l}) = \frac{1}{m} g^{ji} \nabla_{j} B_{i}^{A} = \alpha_{u} C$$

and

(4.6)
$$H^{A}(M^{n}, M^{m}, M^{l}) = \left(\frac{1}{n}g^{cb}B_{c}^{j}B_{b}^{i}\right)\nabla_{j}B_{i}^{A} = \alpha_{u}C_{u}^{A}.$$

Consequently we see that

(4.7) $H^{A}(M^{m}, M^{l}) = H^{A}(M^{n}, M^{m}, M^{l}) = \alpha_{u}C_{u}^{A}$

and

(4.8)
$$H^{A}(M^{n}, M^{l}) = H^{h}(M^{n}, M^{m})B_{h}^{A} + \alpha_{u}C_{u}^{A}.$$

Thus, for the covariant derivative of $H^{A}(M^{n}, M^{l})$, we have

(4.9)
$$\nabla_c(H^A(M^n, M^l)) = \{ \nabla_c(H^h(M^n, M^m)) - \alpha^2 B_c{}^h \} B_h{}^A + \{ \partial_c \alpha_u + l_{ivu} B_c{}^j \alpha_v \} C_u{}^A ,$$

where α is the length of $H^{A}(M^{m}, M^{l})$, that is,

(4.10)
$$\alpha = \sqrt{\alpha_u \alpha_u} \ .$$

We also assume that $H^{A}(M^{n}, M^{l})$ is parallel in the normal bundle, and then we have, from (4.9),

$$(4.11) \qquad \qquad \partial_c \alpha_u + l_{jvu} B_c{}^j \alpha_v = 0,$$

from which

 $\alpha_u \partial_c \alpha_u = 0$

and consequently the length α of $H^{A}(M^{m}, M^{l})$ is constant on M^{n} .

Then, from (4.7) and (4.11), we have

(4.12)
$$\nabla_b(H^A(M^m, M^l)) = -\alpha^2 B_b{}^h B_h{}^A,$$

from which

(4.13)
$$\nabla_c \nabla_b (H^{\mathcal{A}}(M^m, M^l)) = -\alpha^2 (\nabla_c B_b{}^h) B_h{}^{\mathcal{A}} - \alpha^2 B_c{}^j B_b{}^i \nabla_j B_i{}^h,$$

and consequently

(4.14)
$$\Delta(H^{A}(M^{m}, M^{l})) = g^{cb} \nabla_{c} \nabla_{b} (H^{A}(M^{m}, M^{l}))$$
$$= -n\alpha^{2} H^{h}(M^{n}, M^{m}) B_{h}^{A} - n\alpha^{2} H^{A}(M^{n}, M^{m}, M^{l}).$$

Thus we have

THEOREM 4.2. Assume that M^m is totally umbilical in M^i , then the mean curvature vector $H^{A}(M^m, M^i)$ of M^m in M^i coincides with the relative mean curvature vector of M^n with respect to M^m and M^i . Moreover assume that the mean curvature vector $H^{A}(M^n, M^i)$ of M^n in M^i is parallel in the normal bundle, then the length α of the mean curvature vector $H^{A}(M^m, M^i)$ of M^m in M^i is constant and in the case in which α is different from zero, in order for M^n to be minimal in M^m , it is necessary and sufficient that

$$\Delta(H^{\mathbf{A}}(M^{\mathbf{m}}, M^{\mathbf{l}})) = -n\alpha^{2}H^{\mathbf{A}}(M^{\mathbf{n}}, M^{\mathbf{m}}, M^{\mathbf{l}})$$

on M^n .

COROLLARY 4.3. Let M^m be totally umbilical in M^{m+1} with non-zero mean curvature or be totally umbilical in M^{m+1} of constant sectional curvature, then in order that M^n is minimal in M^m , it is necessary and sufficient that the normal C to M^m in M^{m+1} satisfies $\Delta C = g^{cb} \nabla_c \nabla_b C = fC$, f being a constant.

> Michigan State University and Tokyo Institute of Technology

Bibliography

- T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.
- [2] K. Yano, Sur quelques propriétés de V_l dans V_m dans V_n, Proc. Imp. Acad. Tokyo, 16 (1940), 173-177.
- [3] K. Yano, Sur le parallélisme et la concourance dans l'espace de Riemann, Proc. Imp. Acad. Japan, 19 (1943), 189-197.

554