# On submanifolds of submanifolds of a Riemannian manifold 

By Bang-yen Chen and Kentaro Yano

(Received Nov. 25, 1970)
(Revised April 7, 1971)

## § 0. Introduction.

Takahashi [1] proved that (i) in order for a submanifold $M^{n}$ of an $m$ dimensional euclidean space $E^{m}$ to be a minimal submanifold it is necessary and sufficient that the radius vector $X$ satisfies $\Delta X=0$, where $\Delta$ denotes the Laplacian in the submanifold $M^{n}$, i.e. all the (natural) coordinate functions are harmonic, and (ii) in order that a submanifold of a hypersphere with radius $r$ of a euclidean space is minimal, it is necessary and sufficient that the radius vector $X$ satisfies $\Delta X=\left(-n / r^{2}\right) X$, where $n$ denotes the dimension of the submanifold.

The main purpose of the present paper is to study, a submanifold $M^{n}$ of a submanifold $M^{m}$ of a Riemannian manifold $M^{l}$ being given, the conditions that $M^{n}$ is minimal in $M^{m}$ or that $M^{n}$ is minimal in $M^{l}$, and to obtain a theorem which generalizes two results above of Takahashi.
§ 1. Submanifold $M^{n}$ of a submanifold $M^{m}$ of a Riemannian manifold $M^{l}$.
Let $M^{l}$ be an $l$-dimensional Reimannian manifold of class $C^{\infty}$ covered by a system of coordinate neighborhoods $\left\{U ; x^{\boldsymbol{A}}\right\}$ where here and in the sequel the indices $A, B, C, \cdots$ run over the range $\{1,2, \cdots, l\}$. We denote the components of the metric tensor of $M^{l}$ by $g_{C B}$.

Let $M^{m}$ be an $m$-dimensional differentiable submanifold of class $C^{\infty}$ of $M^{l}$ covered by a system of coordinate neighborhoods $\left\{V ; y^{h}\right\}$ where here and in the sequel the indices $h, i, j, \cdots$ run over the range $\{\overline{1}, \overline{2}, \cdots, \bar{m}\}$ ( $m \leqq l$ ) and the local expression of $M^{m}$ be

$$
\begin{equation*}
x^{A}=x^{A}\left(y^{h}\right) . \tag{1.1}
\end{equation*}
$$

We put

$$
\begin{equation*}
B_{i}{ }^{A}=\partial_{i} x^{A}, \quad \partial_{i}=\partial / \partial y^{i} \tag{1.2}
\end{equation*}
$$

and denote by $C_{u}{ }^{4}(u, v, w, \cdots=m+1, \cdots, l) l-m$ mutually orthogonal unit nor-
mal vectors of $M^{m}$ in $M^{l}$. Then the components of the metric tensor of $M^{m}$ are given by

$$
\begin{equation*}
g_{j i}=g_{C B} B_{j}{ }^{c} B_{i}{ }^{B} . \tag{1.3}
\end{equation*}
$$

Since $C_{u}{ }^{A}$ satisfy

$$
\begin{equation*}
g_{C B} B_{j}{ }^{C} C_{u}{ }^{B}=0, \quad g_{C B} C_{v}{ }^{C} C_{u}{ }^{B}=\delta_{v u}, \tag{1.4}
\end{equation*}
$$

we have

$$
\begin{equation*}
g^{C B}=g^{j i} B_{j}{ }^{C} B_{i}{ }^{B}+C_{u}{ }^{C} C_{u}{ }^{B}, \tag{1.5}
\end{equation*}
$$

$g^{C B}$ and $g^{j i}$ being contravariant components of the metric tensors of $M^{l}$ and $M^{m}$ respectively.

Now the so-called van der Waerden-Bortolotti covariant derivative of $B_{i}{ }^{4}$ is given by

$$
\nabla_{j} B_{i}{ }^{A}=\partial_{j} B_{i}^{A}+\left\{\begin{array}{c}
A  \tag{1.6}\\
C B
\end{array}\right\} B_{j}{ }^{c} B_{i}^{B}-\left\{\begin{array}{c}
h \\
j i
\end{array}\right\} B_{h}^{A}
$$

and is orthogonal to $M^{m}$, where $\left\{\begin{array}{c}A \\ C B\end{array}\right\}$ and $\left\{\begin{array}{l}h \\ j i\end{array}\right\}$ are Christoffel symbols formed with $g_{C B}$ and $g_{j i}$ respectively. The vector field

$$
\begin{equation*}
H^{A}\left(M^{m}, M^{l}\right)=\frac{1}{m} g^{j i} \nabla_{j} B_{i}{ }^{A} \tag{1.7}
\end{equation*}
$$

of $M^{l}$ defined along $M^{m}$ and normal to $M^{m}$ is called the mean curvature vector of $M^{m}$ in $M^{l}$. If $H^{A}\left(M^{m}, M^{l}\right)$ vanishes, $M^{m}$ is called a minimal submani. fold of $M^{l}$.

We now consider an $n$-dimensional differentiable submanifold $M^{n}$ of class $C^{\infty}$ of $M^{m}$ covered by a system of coordinate neighborhoods $\left\{W, z^{a}\right\}$ where here and in the sequel the indices $a, b, c, \cdots$ run over the range $\{\mathbf{i}, \dot{2}, \cdots, \dot{n}\}$ ( $n<m \leqq l$ ) and let the local expression of $M^{n}$ be

$$
\begin{equation*}
y^{h}=y^{h}\left(z^{a}\right) . \tag{1.8}
\end{equation*}
$$

We put

$$
\begin{equation*}
B_{b}^{h}=\partial_{b} y^{h}, \quad \partial_{b}=\partial / \partial z^{b} \tag{1.9}
\end{equation*}
$$

and denote by $C_{p}{ }^{h}(p, q, r, \cdots=n+1, \cdots, m) m-n$ mutually orthogonal unit normal vectors of $M^{n}$ in $M^{m}$. Then the components of the metric tensor of $M^{n}$ are given by

$$
\begin{equation*}
g_{c b}=g_{j i} B_{c}{ }^{j} B_{b}{ }^{i} . \tag{1.10}
\end{equation*}
$$

Since $C_{p}{ }^{h}$ satisfy

$$
\begin{equation*}
g_{j i} B_{c}{ }^{j} C_{p}{ }^{i}=0, \quad g_{j i} C_{q}{ }^{j} C_{p}{ }^{i}=\delta_{q p}, \tag{1.11}
\end{equation*}
$$

we have

$$
\begin{equation*}
g^{j i}=g^{c b} B_{c}{ }^{j} B_{b}{ }^{i}+C_{p}{ }^{j} C_{p}{ }^{i}, \tag{1.12}
\end{equation*}
$$

$g^{c b}$ being contravariant components of the metric tensor of $M^{n}$.
The so-called van der Waerden-Bortolotti covariant derivative of $B_{0}{ }^{h}$ along $M^{n}$ is given by

$$
\nabla_{c} B_{b}^{h}=\partial_{c} B_{b}{ }^{h}+\left\{\begin{array}{l}
h  \tag{1.13}\\
j i
\end{array}\right\} B_{c}^{j} B_{b}^{i}-\left\{\begin{array}{c}
a \\
c b
\end{array}\right\} B_{a}^{h}
$$

and is orthogonal to $M^{n}$, where $\left\{\begin{array}{c}a \\ c b\end{array}\right\}$ are Christoffel symbols formed with $g_{c b}$. The vector field

$$
\begin{equation*}
H^{n}\left(M^{n}, M^{m}\right)=\frac{1}{n} g^{c b} \nabla_{c} B_{b}{ }^{h} \tag{1.14}
\end{equation*}
$$

of $M^{m}$ defined along $M^{n}$ and normal to $M^{n}$ is the mean curvature vector of $M^{n}$ in $M^{m}$. If $H^{h}\left(M^{n}, M^{m}\right)$ vanishes along $M^{n}, M^{n}$ is a minimal submanifold of $M^{m}$.

Now the submanifold $M^{n}$ of $M^{m}$ can be regarded as a submanifold of $M^{l}$ and its local expression is

$$
\begin{equation*}
x^{4}=x^{A}\left(y^{h}\left(z^{a}\right)\right) \tag{1.15}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
B_{b}{ }^{4}=B_{b}{ }^{h} B_{h}{ }^{4}, \tag{1.16}
\end{equation*}
$$

the fundamental tensors being related by

$$
\begin{equation*}
g_{c b}=g_{j i} B_{c}^{j} B_{b}{ }^{i}=g_{C B} B_{j}{ }^{c} B_{i}^{B} B_{c}^{j} B_{b}{ }^{i}=g_{C B} B_{c}{ }^{c} B_{b}{ }^{B} . \tag{1.17}
\end{equation*}
$$

The mutually orthogonal unit normals of $M^{n}$ in $M^{l}$ are

$$
\begin{equation*}
C_{p}{ }^{4}=C_{p}{ }^{i} B_{i}{ }^{A} \quad \text { and } \quad C_{u}{ }^{4} \tag{1.18}
\end{equation*}
$$

$C_{p}{ }^{A}$ being tangent to $M^{m}$ and $C_{u}{ }^{4}$ being normal to $M^{m}$.
The van der Waerden-Bortolotti covariant derivative of $B_{b}{ }^{A}$ is given by

$$
\nabla_{c} B_{b}{ }^{A}=\partial_{c} B_{b}{ }^{A}+\left\{\begin{array}{c}
A  \tag{1.19}\\
C B
\end{array}\right\} B_{c}{ }^{c} B_{b}{ }^{B}-\left\{\begin{array}{c}
a \\
c b
\end{array}\right\} B_{a}^{A}
$$

and is orthogonal to $M^{n}$. The mean curvature vector of $M^{n}$ in $M^{l}$ is given by

$$
\begin{equation*}
H^{A}\left(M^{n}, M^{l}\right)=\frac{1}{n} g^{c b} \nabla_{c} B_{b}{ }^{A} \tag{1.20}
\end{equation*}
$$

and normal to $M^{n}$. If $H^{A}\left(M^{n}, M^{l}\right)$ vanishes, then $M^{n}$ is minimal in $M^{l}$.

## § 2. Relations between mean curvature vectors.

Now taking the van der Waerden-Bortolotti covariant derivative of (1.16), we find [2]

$$
\begin{equation*}
\nabla_{c} B_{b}{ }^{4}=\left(\nabla_{c} B_{b}{ }^{h}\right) B_{h}{ }^{4}+B_{c}{ }^{j} B_{b}{ }^{i} \nabla_{j} B_{i}{ }^{4}, \tag{2.1}
\end{equation*}
$$

from which

$$
\begin{equation*}
\frac{1}{n} g^{c b} \nabla_{c} B_{b}{ }^{A}=\left(-\frac{1}{n} g^{c b} \nabla_{c} B_{b}{ }^{h}\right) B_{h}{ }^{4}+\left(\frac{1}{n} g^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\right) \nabla_{j} B_{i}{ }^{A}, \tag{2.2}
\end{equation*}
$$

or

$$
\begin{equation*}
H^{A}\left(M^{n}, M^{l}\right)=H^{h}\left(M^{n}, M^{m}\right) B_{h}^{A}+H^{A}\left(M^{n}, M^{m}, M^{l}\right), \tag{2.3}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
H^{A}\left(M^{n}, M^{m}, M^{l}\right)=\left(\frac{1}{n} g^{c b} B_{c}{ }^{j} B_{b}{ }^{i}\right) \nabla_{j} B_{i}{ }^{A} . \tag{2.4}
\end{equation*}
$$

We call $H^{A}\left(M^{n}, M^{m}, M^{l}\right)$ the relative mean curvature vector of $M^{n}$ with respect to $M^{m}$ and $M^{l}$. $H^{A}\left(M^{n}, M^{m}, M^{l}\right)$ is a vector field normal to $M^{m}$.

The relative mean curvature vector $H^{A}\left(M^{n}, M^{m}, M^{l}\right)$ can be written as

$$
\begin{equation*}
H^{A}\left(M^{n}, M^{m}, M^{l}\right)=\frac{m}{n} H^{A}\left(M^{m}, M^{l}\right)-\frac{1}{n} C_{p}{ }^{j} C_{p}{ }^{i} \nabla_{j} B_{i}{ }^{A}, \tag{2.5}
\end{equation*}
$$

since

$$
g^{c b} B_{c}{ }^{j} B_{b}{ }^{i}=g^{j i}-C_{p}{ }^{j} C_{p}{ }^{i} .
$$

From (2.3) we have
THEOREM 2.1. The mean curvature vector of $M^{n}$ in $M^{l}$ is the sum of the mean curvature vector of $M^{n}$ in $M^{m}$ and the relative mean curvature vector of $M^{n}$ with respect to $M^{m}$ and $M^{l}$.

Corollary 2.2. In order that $M^{n}$ be minimal in $M^{m}$, it is necessary and sufficient that the mean curvature vector of $M^{n}$ in $M^{l}$ be normal to $M^{m}$.

THEOREM 2.3. In order for $M^{n}$ to be minimal in $M^{l}$, it is necessary and sufficient that $M^{n}$ is minimal in $M^{m}$ and the relative mean curvature of $M^{n}$ with respect to $M^{m}$ and $M^{l}$ vanishes.

## § 3. Concurrent vector field [3]

We consider a vector field $v^{A}$ of $M^{l}$ defined along $M^{n}$ and assume that $v^{4}$ is concurrent along $M^{n}$, that is,

$$
\begin{equation*}
B_{b}{ }^{4}+\nabla_{b} v^{4}=0 . \tag{3.1}
\end{equation*}
$$

From this equation, we have

$$
\begin{equation*}
\nabla_{c} B_{b}^{A}+\nabla_{c} \nabla_{b} v^{A}=0, \tag{3.2}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
H^{A}\left(M^{n}, M^{l}\right)+\frac{1}{n} g^{c b} \nabla_{c} \nabla_{b} v^{4}=0 \tag{3.3}
\end{equation*}
$$

or, by (2.3),

$$
\begin{equation*}
H^{h}\left(M^{n}, M^{m}\right) B_{n}^{A}+H^{A}\left(M^{n}, M^{m}, M^{l}\right)+\frac{1}{n} g^{c b} \nabla_{c} \nabla_{b} v^{A}=0 \tag{3.4}
\end{equation*}
$$

Thus, $H^{A}\left(M^{n}, M^{m}, M^{l}\right)$ being normal to $M^{m}$, if $\frac{1}{n} g^{c b} \nabla_{c} \nabla_{b} v^{4}$ is normal to $M^{m}$, we have $H^{h}\left(M^{n}, M^{m}\right)=0$. Conversely, if $H^{h}\left(M^{n}, M^{m}\right)=0$, then $\frac{1}{n} g^{c b} \nabla_{c} \nabla_{b} v^{4}$ is normal to $M^{m}$. Hence we have

Theorem 3.1. Suppose that there exists a vector field $v^{4}$ of $M^{l}$ defined along $M^{n}$ and concurrent along $M^{n}$. In order for $M^{n}$ to be minimal in $M^{m}$, it is necessary and sufficient that $\Delta v^{A}=g^{c b} \nabla_{c} \nabla_{b} v^{4}$ is normal to $M^{m}$.

In particular, if $M^{m}=M^{l}$, then we have
Theorem 3.2. Suppose that there exists a vector field $v^{h}$ of $M^{m}$ defined along $M^{n}$ and concurrent along $M^{n}$. In order for $M^{n}$ to be minimal in $M^{m}$, it is necessary and sufficient that $g^{c b} \nabla_{c} \nabla_{b} v^{h}=0$, i. e. $\Delta v^{h}=0$, where $\Delta$ denotes the Laplacian operator in $M^{n}$.

Corollary 3.3. (Takahashi) Suppose that $M^{n}$ is a submanifold of a hypersphere $S^{m}$ in a euclidean space $E^{m+1}$. Then the radius vector $X$ of $S^{m}$ considered along $M^{n}$ is concurrent. Thus in order for $M^{n}$ to be minimal, it is necessary and sufficient that $\Delta X=g^{c b} \nabla_{c} \nabla_{b} X$ be normal to $S^{m}$, that is, proportional to $X$.

Corollary 3.4. (Takahashi) Suppose that $M^{n}$ is a submanifold of a euclidean space $E^{m}$. Then $M^{n}$ is minimal in $E^{m}$ if and only if each (natural) coordinate function of $M^{n}$ in $E^{m}$ is harmonic.

## § 4. Submanifolds umbilical with respect to a normal.

We consider a unit vector field $e^{4}$ of $M^{l}$ defined along $M^{n}$ and normal to $M^{m}$ and assume that $M^{n}$ is umbilical with mean curvature $\beta$ with respect to $e^{A}$. We choose $e^{A}$ as the first normal $C_{m+1}{ }^{A}$ to $M^{m}$, then we have equations of Gauss of $M^{n}$ in $M^{l}$ :

$$
\begin{equation*}
\nabla_{c} B_{b}^{A}=h_{c b p} C_{p}^{A}+\beta g_{c b} C_{m+1}^{A}+h_{c b m+2} C_{m+2}^{A}+\cdots+h_{c b l} C_{l}^{A}, \tag{4.1}
\end{equation*}
$$

$h_{c b p}, \beta g_{c b}, h_{c b m+2}, \cdots, h_{c b l}$ being second fundamental forms with respect to $C_{p}{ }^{4}$, $C_{m+1}{ }^{4}, \cdots, C_{l}{ }^{4}$ respectively, from which

$$
\begin{align*}
H^{A}\left(M^{n}, M^{l}\right)= & \frac{1}{n} g^{c b} h_{c b p} C_{p}^{A}+\beta C_{m+1}^{A}  \tag{4.2}\\
& +\frac{1}{n} g^{c b} h_{c b m+2} C_{m+2}^{A}+\cdots+\frac{1}{n} g^{c b} h_{c b l} C_{l}{ }^{A} .
\end{align*}
$$

We denote by $\alpha$ the mean curvature of $M^{n}$ in $M^{l}$, then from equation (4.2), we see that if $\alpha^{2} \leqq \beta^{2}$, then we have $\alpha^{2}=\beta^{2}$ and

$$
g^{c b} h_{c b p}=0, \quad g^{c b} h_{c b m+2}=\cdots=g^{c b} h_{c b l}=0,
$$

which show that $M^{n}$ is minimal in $M^{m}$ and $M^{n}$ is minimal in $M^{l}$ if and only if $\beta=0$. Thus we have

THEOREM 4.1. Let $e^{A}$ be a unit vector field of $M^{2}$ defined along $M^{n}$ and normal to $M^{m}$ and assume that $M^{n}$ is umbilical with mean curvature $\beta$ with respect to $e^{4}$. If the mean curvature $\alpha$ of $M^{n}$ in $M^{l}$ satisfies $\alpha^{2} \leqq \beta^{2}$, then $M^{n}$ is minimal in $M^{m}$ and is minimal in $M^{l}$ if and only if $\beta=0$.

We now assume that $M^{m}$ is totally umbilical in $M^{l}$. Then we have

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{A}=g_{j i} \alpha_{u} C_{u}{ }^{4}, \tag{4.3}
\end{equation*}
$$

where $\alpha_{u}$ is a vector field in the normal bundle of $M^{m}$ in $M^{l}$ and

$$
\begin{equation*}
\nabla_{j} C_{v}^{A}=-\alpha_{v} B_{j}^{A}+l_{j v u} C_{u}^{A} \tag{4.4}
\end{equation*}
$$

where $l_{j v u}$ is the third fundamental tensor of $M^{m}$ in $M^{l}$ and skew symmetric in $v$ and $u$.

From (4.3), we have

$$
\begin{equation*}
H^{A}\left(M^{m}, M^{l}\right)=\frac{1}{m} g^{j i} \nabla_{j} B_{i}{ }^{A}=\alpha_{u} C_{u}^{A} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{A}\left(M^{n}, M^{m}, M^{l}\right)=\left(\frac{1}{n} g^{c b} B_{c}^{j} B_{b}^{i}\right) \nabla_{j} B_{i}^{A}=\alpha_{u} C_{u}^{A} . \tag{4.6}
\end{equation*}
$$

Consequently we see that

$$
\begin{equation*}
H^{A}\left(M^{m}, M^{l}\right)=H^{A}\left(M^{n}, M^{m}, M^{l}\right)=\alpha_{u} C_{u}{ }^{A} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{A}\left(M^{n}, M^{l}\right)=H^{n}\left(M^{n}, M^{m}\right) B_{h}^{4}+\alpha_{u} C_{u}^{4} . \tag{4.8}
\end{equation*}
$$

Thus, for the covariant derivative of $H^{4}\left(M^{n}, M^{l}\right)$, we have

$$
\begin{align*}
\nabla_{c}\left(H^{A}\left(M^{n}, M^{l}\right)\right)= & \left\{\nabla_{c}\left(H^{h}\left(M^{n}, M^{m}\right)\right)-\alpha^{2} B_{c}{ }^{h}\right\} B_{h}{ }^{A}  \tag{4.9}\\
& +\left\{\partial_{c} \alpha_{u}+l_{j v u} B_{c}{ }^{j} \alpha_{v}\right\} C_{u}{ }^{4},
\end{align*}
$$

where $\alpha$ is the length of $H^{A}\left(M^{m}, M^{l}\right)$, that is,

$$
\begin{equation*}
\alpha=\sqrt{\alpha_{u} \alpha_{u}} . \tag{4.10}
\end{equation*}
$$

We also assume that $H^{A}\left(M^{n}, M^{l}\right)$ is parallel in the normal bundle, and then we have, from (4.9),

$$
\begin{equation*}
\partial_{c} \alpha_{u}+l_{j v u} B_{c}{ }^{j} \alpha_{v}=0, \tag{4.11}
\end{equation*}
$$

from which

$$
\alpha_{u} \partial_{c} \alpha_{u}=0
$$

and consequently the length $\alpha$ of $H^{A}\left(M^{m}, M^{l}\right)$ is constant on $M^{n}$.
Then, from (4.7) and (4.11), we have

$$
\begin{equation*}
\nabla_{b}\left(H^{A}\left(M^{m}, M^{l}\right)\right)=-\alpha^{2} B_{b}^{h} B_{h}^{A} \tag{4.12}
\end{equation*}
$$

from which

$$
\begin{equation*}
\nabla_{c} \nabla_{b}\left(H^{A}\left(M^{m}, M^{l}\right)\right)=-\alpha^{2}\left(\nabla_{c} B_{b}^{h}\right) B_{h}^{A}-\alpha^{2} B_{c}^{j} B_{b}^{i} \nabla_{j} B_{i}^{h} \tag{4.13}
\end{equation*}
$$

and consequently

$$
\begin{align*}
\Delta\left(H^{A}\left(M^{m}, M^{l}\right)\right) & =g^{c b} \nabla_{c} \nabla_{o}\left(H^{A}\left(M^{m}, M^{l}\right)\right)  \tag{4.14}\\
& =-n \alpha^{2} H^{h}\left(M^{n}, M^{m}\right) B_{r}^{A}-n \alpha^{2} H^{A}\left(M^{n}, M^{m}, M^{l}\right)
\end{align*}
$$

Thus we have
THEOREM 4.2. Assume that $M^{m}$ is totally umbilical in $M^{l}$, then the mean curvature vector $H^{A}\left(M^{m}, M^{l}\right)$ of $M^{m}$ in $M^{l}$ coincides with the relative mean curvature vector of $M^{n}$ with respect to $M^{m}$ and $M^{l}$. Moreover assume that the mean curvature vector $H^{A}\left(M^{n}, M^{l}\right)$ of $M^{n}$ in $M^{l}$ is parallel in the normal bundle, then the length $\alpha$ of the mean curvature vector $H^{A}\left(M^{m}, M^{l}\right)$ of $M^{m}$ in $M^{l}$ is constant and in the case in which $\alpha$ is different from zero, in order for $M^{n}$ to be minimal in $M^{m}$, it is necessary and sufficient that

$$
\Delta\left(H^{A}\left(M^{m}, M^{l}\right)\right)=-n \alpha^{2} H^{A}\left(M^{n}, M^{m}, M^{l}\right)
$$

on $M^{n}$.
COROLLARY 4.3. Let $M^{m}$ be totally umbilical in $M^{m+1}$ with non-zero mean curvature or be totally umbilical in $M^{m+1}$ of constant sectional curvature, then in order that $M^{n}$ is minimal in $M^{m}$, it is necessary and sufficient that the normal $C$ to $M^{m}$ in $M^{m+1}$ satisfies $\Delta C=g^{c b} \nabla_{c} \nabla_{b} C=f C, f$ being a constant.

> Michigan State University
> and
> Tokyo Institute of Technology

## Bibliography

[1] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.
[2] K. Yano, Sur quelques propriétés de $V_{l}$ dans $V_{m}$ dans $V_{n}$, Proc. Imp. Acad. Tokyo, 16 (1940), 173-177.
[3] K. Yano, Sur le parallélisme et la concourance dans l'espace de Riemann, Proc. Imp. Acad. Japan, 19 (1943), 189-197.

