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\S 0. Introduction.

Takahashi [1] proved that (i) in order for a submanifold $M^{n}$ of an m-
dimensional euclidean space $E^{m}$ to be a minimal submanifold it is necessary
and sufficient that the radius vector $X$ satisfies $\Delta X=0$, where $\Delta$ denotes the
Laplacian in the submanifold $M$“, $i$ . $e$ . all the (natural) coordinate functions
are harmonic, and (ii) in order that a submanifold of a hypersphere with
radius $r$ of a euclidean space is minimal, it is necessary and sufficient thatr
the radius vector $X$ satisfies $\Delta X=(-n/r^{2})X$, where $n$ denotes the dimension
of the submanifold.

The main purpose of the present paper is to study, a submanifold $M^{n}$ of
a submanifold $M^{m}$ of a Riemannian manifold $M^{l}$ being given, the conditions
that $M^{n}$ is minimal in $M^{m}$ or that $M^{n}$ is minimal in $M^{\iota}$ . and to obtain a
theorem which generalizes two results above of Takahashi.

\S 1. Submanifold $M^{n}$ of a submanifold $M^{m}$ of a Riemannian manifold $M^{\iota}$ .
Let $M^{\iota}$ be an l-dimensional Reimannian manifold of class $C^{\infty}$ covered by

a system of coordinate neighborhoods $\{U;x^{A}\}$ where here and in the sequel

the indices $A,$ $B,$ $C$ , $\cdot$ .. run over the range {1, 2, $\cdot$ .. , 1}. We denote the com-
ponents of the metric tensor of $M^{\iota}$ by $g_{CB}$ .

Let $M^{m}$ be an m-dimensional differentiable submanifold of class $C^{\infty}$ of $M^{l}$

covered by a system of coordinate neighborhoods {V; $y^{h}$ } where here and in
the sequel the indices $h,$ $i,$ $j$ , $\cdot$ .. run over the range. $\{\overline{1},\overline{2,} ... , \overline{m}\}(m\leqq l)$ and
the local expression of $M^{m}$ be

(1.1) $x^{A}=x^{A}(y^{h})$ .
We put

(1.2) $B_{i^{A}}=\partial_{i}x^{A}$ , $\partial_{i}=\partial/\partial y^{i}$

and denote by $C_{u^{A}}$($u,$ $v,$ $w,$ $=m+1,$ $\cdots$ , l) $l-m$ mutually orthogonal unit nor-
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mal vectors of $M^{m}$ in $M^{\iota}$ . Then the components of the metric tensor of $M^{m}$

are given by

(1.3) $g_{ji}=g_{CB}B_{j^{C}}B_{i^{B}}$ .
Since $C_{u^{A}}$ satisfy

(1.4) $g_{CB}B_{J^{C}}C_{u^{B}}=0$ , $g_{CB}C_{v^{C}}C_{u^{B}}=\delta_{vu}$ ,

we have

(1.5) $g^{CB}=g^{fi}B_{J^{C}}B_{i^{B}}+C_{u^{C}}C_{u^{B}}$ ,

$g^{CB}$ and $g^{ji}$ being contravariant components of the metric tensors of $M^{\iota}$ and
$M^{m}$ respectively.

Now the so-called van der Waerden-Bortolotti covariant derivative of
$B_{i^{A}}$ is given by

(1.6) $\nabla_{j}B_{i^{A}}=\partial_{j}B_{i^{A}}+\{c^{A_{Bj^{h_{i}}}}\}B_{j^{C}}B_{i^{B}}-\{\}B_{h^{A}}$

and is orthogonal to $M^{m}$ , where $\{_{c^{A_{B}}}\}$ and $\{_{j^{h}i}\}$ are Christoffel symbols

formed with $g_{CB}$ and $g_{ji}$ respectively. The vector field

(1.7) $H^{A}(M^{m}, M^{l})=m^{1}- g^{fi}\nabla_{j}B_{i^{A}}$

of $M^{t}$ defined along $M^{m}$ and normal to $M^{m}$ is called the mean curvature vec-
$tor$ of $M^{m}$ in $M^{l}$ . If $H^{A}(M^{m}, M^{l})$ vanishes, $M^{m}$ is called a minimal submani.
fold of $M^{\iota}$ .

We now consider an n-dimensional differentiable submanifold $M^{n}$ of class
$C^{\infty}$ of $M^{m}$ covered by a system of coordinate neighborhoods $\{W, z^{a}\}$ where
here and in the sequel the indices $a,$ $b,$ $c$ , $\cdot$ .. run over the range $\{i,\dot{2}, \cdot.. , \dot{n}\}$

$(n<m\leqq l)$ and let the local expression of $M^{n}$ be

(1.8) $y^{h}=y^{h}(z^{a})$ .
We put

(1.9) $B_{b}^{h}=\partial_{b}y^{h}$ , $\partial_{b}=\partial/\partial z^{b}$

and denote by $C_{p}^{h}(p, q, r, =n+1, \cdots, m)$ $m-n$ mutually orthogonal unit
normal vectors of $M^{n}$ in $M^{m}$ . Then the components of the metric tensor of
$M^{n}$ are given by

(1.10) $g_{cb}=g_{ji}B_{c^{j}}B_{b}^{i}$ .
Since $C_{p}^{h}$ satisfy

(1.11) $g_{ji}B_{c^{j}}C_{p}^{i}=0$ , $g_{ji}C_{q^{j}}C_{p}^{i}=\delta_{qp}$ ,
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we have

(1.12) $g^{ji}=g^{cb}B_{c^{j}}B_{b}^{i}+C_{p^{f}}C_{p}^{i}$ ,

$g^{cb}$ being contravariant components of the metric tensor of $M^{n}$ .
The so-called van der Waerden-Bortolotti covariant derivative of $B_{b}^{h}$

along $M^{n}$ is given by

(1.13) $\nabla_{c}B_{b^{h}}=\partial_{c}B_{b}^{h}+\{j^{h}i\}B_{c^{f}}B_{b}^{i}-\{_{c^{a_{b}}}\}B_{a}^{h}$

and is orthogonal to $M^{n}$ , where $\{_{c^{a}b}\}$ are Christoffel symbols formed with
$g_{cb}$ . The vector field

1(1.14) $H^{h}(M^{n}, M^{m})=\overline{n}g^{cb}\nabla_{c}B_{b^{h}}$

of $M^{m}$ defined along $M^{n}$ and normal to $M^{n}$ is the mean curvature vector of
$M^{n}$ in $M^{m}$ . If $H^{h}(M^{n}, M^{m})$ vanishes along $M^{n},$ $M^{n}$ is a minimal submanifold
of $M^{m}$ .

Now the submanifold $M^{n}$ of $M^{m}$ can be regarded as a submanifold of
$M^{\iota}$ and its local expression is

(1.15) $x^{A}=x^{A}(y^{h}(z^{a}))$

and consequently

(1.16) $B_{b^{A}}=B_{b}^{h}B_{h^{A}}$ ,

the fundamental tensors being related by

(1.17) $g_{cb}=g_{ji}B_{c^{f}}B_{b}^{i}=g_{CB}B_{j^{C}}B_{i^{B}}B_{c^{j}}B_{b}^{i}=g_{CB}B_{c^{C}}B_{b^{B}}$ .
The mutually orthogonal unit normals of $M^{n}$ in $M^{\iota}$ are

(1.18) $C_{p^{4}}=C_{p}^{i}B_{i^{A}}$ and $C_{u^{A}}$ ,

$C_{p^{A}}$ being tangent to $M^{m}$ and $C_{u^{A}}$ being normal to $M^{m}$ .
The van der Waerden-Bortolotti covariant derivative of $B_{b^{A}}$ is given by

\langle 1.19) $\nabla_{c}B_{b^{A}}=\partial_{c}B_{b^{A}}+\{c^{A_{Bc^{a}b}}\}B_{c^{C}}B_{b^{B}}-\{\}B_{a^{A}}$

and is orthogonal to $M^{n}$ . The mean curvature vector of $M^{n}$ in $M^{\iota}$ is given
by

1(1.20) $H^{A}(M^{n}, M^{\iota})=ng^{cb}\nabla_{c}B_{b^{A}}$

and normal to $M^{n}$ . If $H^{A}(M^{n}, M^{l})$ vanishes, then $M^{n}$ is minimal in $M^{\iota}$ .
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\S 2. Relations between mean curvature vectors.

Now taking the van der Waerden-Bortolotti covariant derivative of (1.16),

we find [2]

(2.1) $\nabla_{c}B_{b^{A}}=(\nabla_{c}B_{b}^{h})B_{h^{A}}+B_{c^{j}}.B_{b}^{i}\nabla_{j}B_{i^{A}}$ ,

from which

(2.2) $\frac{1}{n}g^{cb}\nabla_{c}B_{b^{A}}=(\frac{1}{n}g^{cb}\nabla_{c}B_{b^{h}})B_{h^{A}}+(\frac{1}{n}g^{cb}B_{c^{j}}B_{b}^{i})\nabla_{j}B_{\dot{t}}^{A}$ ,

or
(2.3) $H^{A}(M^{n}, M^{l})=H^{h}(M^{n}, M^{m})B_{h^{A}}+H^{A}(M^{n}, M^{m}, M^{l})$ ,

where we have put

(2.4) $H^{A}(M^{n}, M^{m}, M^{l})=(\frac{1}{n}g^{cb}B_{c^{j}}B_{b}^{i})\nabla_{j}B_{i^{A}}$ .

We call $H^{A}(M^{n}, M^{m}, M^{\iota})$ the relative mean curvature vector of $M^{n}$ with respect
to $M^{m}$ and $M^{\iota}$ . $H^{A}(M^{n}, M^{m}, M^{\iota})$ is a vector field normal to $M^{m}$ .

The relative mean curvature vector $H^{A}(M^{n}, M^{m}, M^{\iota})$ can be written as

(2.5) $H^{A}(M^{n}, M^{m}, M^{l})=\frac{m}{n}H^{A}(M^{m}, M^{l})-\frac{1}{n}C_{p^{j}}C_{p}^{i}\nabla_{j}B_{i^{A}}$ ,

since
$g^{cb}B_{c^{j}}B_{b}^{i}=g^{ji}-C_{p^{j}}C_{p}^{i}$

From (2.3) we have
THEOREM 2.1. The mean curvature vector of $M^{n}$ in $M^{l}$ is the sum of the

mean curvature vector of $M^{n}$ in $M^{m}$ and the relative mean curvature vector of
$M^{n}$ with respect to $M^{m}$ and $M^{\iota}$ .

COROLLARY 2.2. In order that $M^{n}$ be minimal in $M^{m}$ , it is necessary and
sufficient that the mean curvature vector of $M^{n}$ in $M^{\iota}$ be normal to $M^{m}$ .

THEOREM 2.3. In order for $M^{n}$ to be minimal in $M^{l}$ , it is necessary and
sufficient that $M^{n}$ is minimal in $M^{m}$ and the relative mean curvature of $M^{n}$

with respect to $M^{m}$ and $M^{l}$ vanishes.

\S 3. Concurrent vector field [3]

We consider a vector field $v^{A}$ of $M^{\iota}$ defined along $M^{n}$ and assume that
$v^{A}$ is concurrent along $M^{n}$ , that is,

(3.1) $B_{b^{A}}+\nabla_{b}v^{A}=0$ .
From this equation, we have

(3.2) $\nabla_{c}B_{b^{A}}+\nabla_{c}\nabla_{b}v^{A}=0$ ,
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and consequently

(3.3) $H^{A}(M^{n}, M^{\iota})+_{n}^{1}--g^{cb}\nabla_{c}\nabla_{b}v^{4}=0$

or, by (2.3),

(3.4) $H^{h}(M^{n}, M^{m})B_{h^{A}}+H^{A}(M^{n}, M^{m}, M^{\iota})+\frac{1}{n}g^{cb}\nabla_{c}\nabla_{b}v^{A}=0$ .

Thus, $H^{A}(M^{n}, M^{m}, M^{\iota})$ being normal to $M^{m}$ , if $n^{-g^{cb}\nabla_{c}\nabla_{b}v^{A}}1$ is normal to
$M^{m}$ , we have $H^{h}(M^{n}, M^{m})=0$ . Conversely, if $H^{h}(M^{n}, M^{m})=0$ , then
$\frac{1}{n}g^{cb}\nabla_{c}\nabla_{b}v^{A}$ is normal to $M^{m}$ . Hence we have

THEOREM 3.1. Suppose that there exists a vector field $v^{A}$ of $M^{\iota}$ defined
along $M^{n}$ and concurrent along $M^{n}$ . $1n$ order for $M^{n}$ to be minimal in $M^{m}$ ,
it is necessary and sufficient that $\Delta v^{A}=g^{cb}\nabla_{c}\nabla_{b}v^{A}$ is normal to $M^{m}$ .

In particular, if $M^{m}=M^{\iota}$ , then we have
THEOREM 3.2. Suppose that there exists a vector field $v^{h}$ of $M^{m}$ defined

along $M^{n}$ and concurrent along $M^{n}$ . $1n$ order for $M^{n}$ to be minimal in $M^{m}$ ,
it is necessary and sufficient that $g^{cb}\nabla_{c}\nabla_{b}v^{h}=0,$ $i$ . $e$ . $\Delta v^{h}=0$, where $\Delta$ denotes
the Laplacian operator in $M^{n}$ .

COROLLARY 3.3. (Takahashi) Suppose that $M^{n}$ is a submanifold of a hyper-
sphere $S^{m}$ in $a$ euclidean space $E^{m+1}$ . Then the radius vector $X$ of $S^{m}$ con-
sidered along $M^{n}$ is concurrent. Thus in order for $M^{n}$ to be minimal, it is
necessary and sufficient that $\Delta X=g^{cb}\nabla_{c}\nabla_{b}X$ be normal to $S^{m}$ , that is, propor-
tional to $X$.

COROLLARY 3.4. (Takahashi) Suppose that $M^{n}$ is a submanifold of a
euclidean space $E^{m}$ . Then $M^{n}$ is minimal in $E^{m}$ if and only if each (natural)
coordinate function of $M^{n}$ in $E^{m}$ is harmonic.

\S 4. Submanifolds umbilical with respect to a normal.

We consider a unit vector field $e$
“ of $M^{\iota}$ defined along $M^{n}$ and normal

to $M^{m}$ and assume that $M^{n}$ is umbilical with mean curvature $\beta$ with respect
to $e^{A}$ . We choose $e^{A}$ as the first normal $C_{m+1}^{A}$ to $M^{m}$ , then we have equations
of Gauss of $M^{n}$ in $M^{\iota}$ :

(4.1) $\nabla_{c}B_{b^{A}}=h_{cbp}C_{p^{A}}+\beta g_{c}{}_{b}C_{m+1}^{A}+h_{cbm+2}C_{m+2}^{A}+\cdots+h_{cb\iota}C_{\iota^{A}}$ ,

$h_{cbp},$ $\beta g_{cb},$ $h_{cbm+2},$ $\cdots$ , $h_{cb\iota}$ being second fundamental forms with respect to $C_{p}^{A}$ ,
$C_{\pi\iota+1}^{A},$ $C_{l^{A}}$ respectively, from which

(4.2) $H^{A}(M^{n}, M^{l})=\frac{1}{n}g^{cb}h_{cbp}C_{p^{A}}+\beta C_{m+1}^{A}$

$+\frac{1}{n}g^{cb}h_{cbm+2}C_{m+2^{A}}+$ $+\frac{1}{n}g^{cb}h_{cbl}C_{l^{A}}$ .
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We denote by $\alpha$ the mean curvature of $M^{n}$ in $M^{\iota}$ , then from equation
(4.2), we see that if $\alpha^{2}\leqq\beta^{2}$ , then we have $\alpha^{2}=\beta^{2}$ and

$g^{cb}h_{cbp}=0$ , $g^{cb}h_{cbm+2}=$ $=g^{cb}h_{cbl}=0$ ,

which show that $M^{n}$ is minimal in $M^{m}$ and $M^{n}$ is minimal in $M^{\iota}$ if and only
if $\beta=0$ . Thus we have

THEOREM 4.1. Let $e^{A}$ be a unit vector field of $M^{\iota}$ defined along $M^{n}$ and
normal to $M^{m}$ and assume that $M^{n}$ is umbilical with mean curvature $\beta$ with
respect to $e^{A}$ . If the mean curvature $\alpha$ of $\dot{M}^{n}$ in $M^{\iota}$ satisfies $\alpha^{2}\leqq\beta^{2}$ , then
$M^{n}$ is minimal in $M^{m}$ and is minimal in $M^{\iota}$ if and only if $\beta=0$ .

We now assume that $M^{m}$ is totally umbilical in $M^{\iota}$ . Then we have

(4.3) $\nabla_{j}B_{i^{A}}=g_{ji}\alpha_{u}C_{u^{A}}$ ,

where $\alpha_{u}$ is a vector field in the normal bundle of $M^{m}$ in $M^{\iota}$ and

(4.4) $\nabla_{j}C_{v^{A}}=-a_{v}B_{j^{A}}+I_{jv}{}_{u}C_{u^{A}}$ ,

where $l_{jvu}$ is the third fundamental tensor of $M^{m}$ in $M^{\iota}$ and skew symmetric
in $v$ and $u$ .

From (4.3), we have

(4.5) $H^{A}(M^{m}, M^{l})=\frac{1}{m}g^{fi}\nabla_{j}B_{i^{A}}=\alpha_{u}C_{u^{A}}$

and

(4.6) $H^{A}(M^{n}, M^{m}, M^{l})=(\frac{1}{n}g^{cb}B_{c^{j}}B_{b^{i}})\nabla_{j}B_{i^{A}}=\alpha_{u}C_{u^{A}}$ .
Consequently we see that

(4.7) $H^{A}(M^{m}, M^{l})=H^{A}(M^{n}, M^{m}, M^{l})=\alpha_{u}C_{u^{A}}$

and

(4.8) $H^{A}(M^{n}, M^{l})=H^{h}(M^{n}, M^{m})B_{h^{A}}+\alpha_{u}C_{u^{A}}$ .
Thus, for the covariant derivative of $H^{A}(M^{n}, M^{\iota})$ , we have

(4.9) $\nabla_{c}(H^{A}(M^{n}, M^{\iota}))=\{\nabla_{c}(H^{h}(M^{n}, M^{m}))-\alpha^{2}B_{c^{h}}\}B_{h^{A}}$

$+\{\partial_{c}\alpha_{u}+l_{jvu}B_{c^{f}}\alpha_{v}\}C_{u^{A}}$ ,

where $\alpha$ is the length of $H^{A}(M^{m}, M^{\iota})$ , that is,

(4.10) $\alpha=\sqrt{\alpha_{u}\alpha_{u}}$ .
We also assume that $H^{A}(M^{n}, M^{\iota})$ is parallel in the normal bundle, and

then we have, from (4.9),

(4.11) $\partial_{c}\alpha_{u}+l_{jvu}B_{c^{j}}\alpha_{v}=0$ ,

from which
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$\alpha_{u}\partial_{c}\alpha_{u}=0$

and consequently the length $\alpha$ of $H^{A}(M^{m}, M^{\iota})$ is constant on $M^{n}$ .
Then, from (4.7) and (4.11), we have

(4.12) $\nabla_{b}(H^{A}(M^{m}, M^{\iota}))=-a^{2}B_{b^{h}}B_{h^{A}}$ ,

from which

(4.13) $\nabla_{c}\nabla_{b}(H^{A}(M^{m}, M^{\iota}))=-\alpha^{2}(\nabla_{c}B_{b^{h}})B_{h^{A}}-\alpha^{2}B_{c^{f}}B_{b}^{i}\nabla_{j}B_{i^{h}}$ ,

and consequently

(4.14) $\Delta(H^{A}(M^{m}, M^{\iota}))=g^{cb}\nabla_{c}\nabla_{b}(H^{A}(M^{m}, M^{\iota}))$

$=-n\alpha^{2}H^{h}(M^{n}, M^{m})B_{h^{A}}-n\alpha^{2}H^{A}(M^{n}, M^{m}, M^{l})$ .
Thus we have
THEOREM 4.2. Assume that $M^{m}$ is totally umbilical in $M^{\iota}$ , then the mean

curvature vector $H^{A}(M^{m}, M^{\iota})$ of $M^{m}$ in $M^{\iota}$ coincides with the relative mean
curvature vector of $M^{n}$ with respect to $M^{m}$ and $M^{\iota}$ . Moreover assume that the
mean curvature vector $H^{A}(M^{n}, M^{\iota})$ of $M^{n}$ in $M^{\iota}$ is parallel in the normal
bundle, then the length $\alpha$ of the mean curvature vector $H^{A}(M^{m}, M^{\iota})$ of $M^{m}$ in
$M^{l}$ is constant and in the case in which $\alpha$ is different from zero, in order for
$M^{n}$ to be minimal in $M^{m}$ , it is necessary and sufficient that

$\Delta(H^{A}(M^{m}, M^{\iota}))=-na^{2}H^{A}(M^{n}, M^{m}, M^{\iota})$

on $M^{n}$ .
COROLLARY 4.3. Let $M^{m}$ be totally umbilical in $M^{m+1}$ with non-zero mean

curvature or be totally umbilical in $M^{m+1}$ of constant sectional curvature, then
in order that $M^{n}$ is minimal in $M^{m}$ , it is necessary and sufficient that the
normal $C$ to $M^{m}$ in $M^{m+1}$ satisfies $\Delta C=g^{cb}\nabla_{c}\nabla_{b}C=fC,$ $f$ being a constant.
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