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\S 0. Introduction.

The object of this note is to prove the following result.
THEOREM. Let $\tilde{z}$ be an arbitrary involution of the alternating group $\mathfrak{A}_{m}$ of

degree $m$ . Let $G$ be a finite group with the following properties:
(i) $G$ has no subgroup of index 2,
(ii) $G$ contains an involution $z$ such that $C_{G}(z)$ is isomorphic to $C_{\mathfrak{A}_{m}}(\tilde{z})$ .
Then if $m\equiv 2$ or 3 $mod 4$ and $m\geqq 7,$ $G$ is isomorphic to $\mathfrak{A}_{m}$ .
Obviously this is a generalization of [3; Th. I] in which the author proved

the theorem in the case where $\tilde{z}$ is an involution of $\mathfrak{A}_{m}$ with the longest cycle
decomposition. In [4; Th. $A$], the author also proved that, in the case $n_{\iota}^{\wedge}\equiv 0$

or 1 $mod 4$ , if $\tilde{z}$ is an involution of $\mathfrak{A}_{m}$ with the longest cycle decomposition,
$G$ is isomorphic to $\mathfrak{A}_{m}$ with a few exceptions in the case of small degrees.
Of course, we can expect a generalization of this result similar to the theorem,
but the author has not obtained any such results. The reason lies in the
point that $\tau ve$ cannot find out any method to examine the fusion of involutions.

The main work of this note is to examine the fusion of involutions of
the groups which satisfy the conditions of the theorem. On the basis of these
results, we can determine the precise structures of the normalizers of some
elementary abelian subgroups. Then it turns out that this knowledge enables
us to calculate the centralizers of involutions other than a given one in the
exact same way as in [3; \S 5 and \S 6]. (So we shall omit the detailed dis-
cussions of this part.) Then, by applying our previous result [3; Th. I], we
can obtain the theorem. Essentially the method to examine the fusion of
involutions is also similar to our previous work [5], but, in some points, we
need different kinds of arguments from [5]. So we shall discuss the ex-
amination of the fusion of involutions in full detail.

The notations and the terminologies which were introduced in the intro-
duction of [3] or [4] will be freely used.
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\S 1. Some $2$-1ocal subgroups of $\mathfrak{A}_{m}$ .
Let $\mathfrak{A}_{m}$ be the alternating group on $m$ letters $\{$ 1, 2, $\cdots$ , $m\}$ . In this first

section, we shall introduce some notations and describe some 2-1ocal subgroups
of $\mathfrak{A}_{m}$ , where $m\equiv 2$ or 3 $mod 4$ . Throughout the paper, $n$ denotes the largest
integer not exceeding $m/4$ . Thus we have $m=4n+2$ or $4n+3$ .

1.1. Firstly we shall define some involutions of $\mathfrak{A}_{m}$ as follows:
$\pi_{s}=(4s-3,4s-2)(4s-1,4s)$ ,

$\pi_{s}^{\prime}=(4s-3,4s-1)(4s-2,4s)$ ,

$\lambda_{s}=(4s-3,4s-2)(4n+1,4n+2)$ $(1\leqq s\leqq n)$ ,

$\alpha_{\$}=\pi_{1}\pi_{2}\ldots\pi_{s}$ ,

$\sigma_{s}^{\prime}=(4s-1,4s+1)(4s, 4s+2)$ ,

$\sigma_{t}=(\pi_{t}^{\prime}\pi_{\iota+1}^{\prime})^{\sigma_{t^{\prime}}}$

$(1\leqq t\leqq\uparrow\iota-1)$ .
It is well known that the involutions $\alpha_{1},$ $\alpha_{2},$

$\cdots$ , $\alpha_{n}$ are the representatives of
coniugacy classes of involutions of $\mathfrak{A}_{m}$ . Set

$ S=\langle\pi_{1}^{\prime}, \pi_{1}, \pi_{2}^{\prime}, \pi_{2}, \cdots, \pi_{n}^{\prime}, \pi_{n}\rangle$ ,

$ M=\langle\lambda_{1}, \pi_{1}, \lambda_{2}, \pi_{2}, \cdots \lambda_{n}, \pi_{n}\rangle$ ,

$J=S\cdot M$ ,

$\Sigma=$ \langle $\pi_{1}^{\prime}$ , a\’i, $\pi_{2}^{\prime},$ $\sigma_{2}^{\prime},$ $\cdots$ $\sigma_{n-1}^{\prime},$ $\pi_{n}^{\prime}\rangle$ ,

$\Sigma^{0}=\langle\Sigma, \sigma_{n}^{\prime}\rangle$ ,

$ P=\langle\sigma_{1}, \sigma_{2}, \cdots \sigma_{n- 1}\rangle$ .
We have $(\pi_{s}^{\prime}\lambda_{s})^{2}=\pi_{S}$ for each $s(1\leqq s\leqq n)$ . So the group $\langle\lambda_{s}, \pi_{s}^{\prime}\rangle$ is isomorphic
to a dihedral group of order 8 with the center $\langle\pi_{s}\rangle$ , and, if $s\neq t$ , we have

$[\langle\pi_{s}^{\prime}, \lambda_{s}\rangle, \langle\pi_{t}^{\prime}, \lambda_{t}\rangle]=1$ .
So $J$ is isomorphic to a direct product of $n$ copies of a dihedral group of
order 8, and $S$ and $M$ are elementary abelian subgroups of order $2^{2n}$ . $\Sigma$

(resp. $\Sigma^{0}$) is isomorphic to the symmetric group of degree $2n$ (resp. $2n+1$)

and the ordered set {z\’i, $\sigma_{1}^{\prime},$ $\cdots$ , $\sigma_{n-1}^{\prime},$ $\pi_{n}^{\prime}$ } (resp. $\{\pi_{1}^{\prime},$ $\sigma_{1}^{\prime},$ $\cdots$ , $\sigma_{n-1},$ $\pi_{n},$
$\sigma_{n}^{\prime}\}$ ) is a

canonical set of generators of $\Sigma$ (resp. $\Sigma^{0}$). $P$ is isomorphic to $\mathfrak{S}_{n}$ and the
ordered set $\{\sigma_{1}, \cdots , \sigma_{n\rightarrow 1}\}$ is a canonical set of generators of $P$. Furthermore
we easily see that $\Sigma$ and $\Sigma^{0}$ normalize $M$ and $P$ normalizes $J$.

Now we shall describe the actions of $\Sigma$ and $\Sigma^{0}$ on $M$ and show

(1) $N_{\mathfrak{U}_{m}}(M)=M\cdot\Sigma^{0}$

Before describing them, we remark that, as is easily seen from the order
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formula of $C_{\mathfrak{A}_{m}}(\alpha_{n})$ ,

(2) $ C_{\mathfrak{A}_{m}}(\alpha_{n})=\langle\nu\rangle\cdot M\cdot\Sigma\triangleright\langle\nu\rangle$ ,

where

$\nu=$

and
(3) $ C_{\mathfrak{U}_{m}}(\alpha_{n})\cap N_{\mathfrak{A}_{m}}(M)=M\cdot\Sigma$ ,

because $\nu$ is inverted by $\lambda_{1}$ . Let $\Lambda=\{\lambda_{1}, \lambda_{1}\pi_{1}, \lambda_{2}, \lambda_{2}\pi_{2}, \cdot.. , \lambda_{n}, \lambda_{n}\pi_{n}\}$ which is
a basis of $M$. Then we see that every element of $\Sigma$ induces a permutation
on $\Lambda$ . In particular, when $\Sigma$ is regarded as a permutation group on $\Lambda,$ $\pi_{s}^{\prime}$

acts on $\Lambda$ as a transposition which interchanges $\lambda_{s}$ and $\lambda_{s}\pi_{s}$ , and a\’{s} $(1\leqq s\leqq n-1)$

does as a transposition which interchanges $\lambda_{s}\pi_{s}$ and $\lambda_{s\dashv\cdot 1}$ . The action of $\sigma_{n}^{\prime}$

on $M$, which is not a permutation on $\Lambda$ , is as follows:
$\lambda_{s}^{\sigma_{\acute{n}}}=\lambda_{s}(\lambda_{n}\pi_{n})$

$(1\leqq s\leqq n)$ ,

$(\lambda_{s}\pi_{s})^{\sigma_{n}^{\prime}}=$

$(1\leqq s\leqq n-1)$

$(s=n)$ .
From these observations and the fact that any two involutions of $\mathfrak{A}_{m}$ are
conjugate in $\mathfrak{A}_{m}$ if and only if they have the same type of cycle decomposi-
tions, it turns out that, if we let $\Pi_{h}(1\leqq h\leqq n)$ be a set of elements each of
which is a product of $2h-1$ or $2h$ elements of $\Lambda$ , then the $\Pi_{h}(1\leqq h\leqq n)$ are
the totality of distinct orbits under the action of $\Sigma^{0}$ on $M-\{1\}$ . (Observe

also that each element of $\Pi_{h}$ is a product of $2h$ transpositions without com-
mon letters.) In particular, we have $2n+1$ elements which are conjugate in
$M\cdot\Sigma^{0}$ to $\alpha_{n}$ . Furthermore, we also see that any two involutions of $M$ are
conjugate in $\mathfrak{A}_{m}$ if and only if they are so in M. $\Sigma^{0}\subseteqq N_{\mathfrak{A}_{m}}(M)$ . This implies
$[N_{\mathfrak{U}_{m}}(M):N_{\mathfrak{A}_{m}}(M)\cap C_{\mathfrak{A}_{m}}(\alpha_{n})]=2n+1$ . On the other hand, since we have
$ C_{\mathfrak{A}_{m}}(\alpha_{n})\cap N_{\mathfrak{A}_{m}}(M)=M\cdot\Sigma$ by (3) and [M. $\Sigma^{0}$ ; $ M\cdot\Sigma$] $=2n+1$ , we get $N_{\mathfrak{A}_{m}}(M)$

$=M\cdot\Sigma^{0}$ which proves (1).
We shall describe the action of $P$ on $J$. It can be easily checked that

$\lambda_{s}^{\sigma_{t}}=$ $otherwiseift=sift=s-l$

and

$\pi_{\epsilon}^{\prime\sigma_{t}}=$ $otherwiseift=s-lift=s$

.
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Namely, $P$ operates on $J$ in such a way that every element of $P$ induces a
permutation on the index set of generators $\pi_{\epsilon}^{\prime}$ and $\lambda_{s}(1\leqq s\leqq n)$ of $J$. In other
words, $P\cdot J$ is isomorphic to a wreathed product of a dihedral group of order
8 by the symmetric group of degree $n$ . From a property of the automorphism
group of $J$ (cf. Proposition 2 in \S 2), we see that $N_{\mathfrak{U}_{m}}(J)/C_{\mathfrak{U}_{m}}(Z(J))\cap N_{\mathfrak{A}_{m}}(J)$

is isomorphic to a subgroup of $\mathfrak{S}_{n}$ . Since we have

(4) $C_{\mathfrak{U}_{m}}(Z(J))\cap N_{\mathfrak{U}_{m}}(J)=J$

as is easily checked by direct computations, we must have

(5) $N_{\mathfrak{U}_{m}}(J)=P\cdot J$ .
1.2. Let $k$ be a fixed integer such that $1\leqq k\leqq n$ . We shall describe some

properties of $C_{\mathfrak{U}_{m}}(\alpha_{k})$ which will be used throughout this paper. We shall
write $H_{m}(k)$ for $C_{\mathfrak{A}_{m}}(\alpha_{k})$ . If there is no confusion, we shall write $H=H_{m}(k)$

more simply.
We easily see

(6) $ H_{m}(k)=(W_{k}\times X_{k})\langle\lambda_{1}\rangle$ ,

where $W_{k}$ is the centralizer of $\alpha_{k}$ in the alternating group on $4k$ letters
$\{1, 2, \cdot , 4k\}$ and $X_{k}$ is the alternating group on $m-4k$ letters { $ 4k+1,4k+2\rangle$

.., , $m$ }.
Set

$ E_{k}=\langle\lambda_{1}\lambda_{2}, \lambda_{2}\lambda_{s}, \cdots \lambda_{k-1}\lambda_{k}, \pi_{1}, \pi_{2}, \cdots, \pi_{k}\rangle$ ,

$\Sigma_{k}1=\langle\pi_{1}^{\prime}, \sigma_{1}^{\prime}, \cdots’\sigma_{k-1}^{\prime}, \pi_{k}^{\prime}\rangle$ ,

$\Sigma_{k}2=\langle\pi_{k+1}^{\prime}, \sigma_{k+1}^{\prime}, \cdots \sigma_{n-1}^{\prime}, \pi_{n}^{\prime}\rangle$ ,

$\Sigma_{k}^{3}=\langle\Sigma_{k}2\sigma_{n}^{\prime}\rangle$ ,

$ P_{k}^{\prime}=\langle\sigma_{1}, \sigma_{2}, \cdots \sigma_{k- 1}\rangle$ ,

$ P_{k}^{2}=\langle\sigma_{k+1}, \sigma_{k+2}, \cdots \sigma_{n- 1}\rangle$ .
Then we have

$W_{k}=E_{k}\cdot\Sigma_{k}1\triangleright E_{k}$ ,

$X_{k}\supset\Sigma_{k}3\supset\Sigma_{k}2$

$\Sigma^{0}\supset\Sigma_{k}1\times\Sigma_{k}3$

$P\supset P_{k}^{!}\times P_{k}^{2}$ .
From (1), (3) and (5), we get

(7) $N_{H}(M)\cap C_{\mathfrak{U}_{m}}(\alpha_{n})=M\cdot(\Sigma_{k}\times 2)$ ,

(8) $N_{H}(M)=M\cdot(\Sigma_{k}1\times\Sigma_{k}3)$ ,
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(9) $N_{H}(J)=J\cdot(P_{k}^{1}\times P_{k}^{2})$ .
The actions of $\Sigma_{k}1\times\Sigma_{k}2$ and $\Sigma_{k}1\times\Sigma_{k}3$ on $M$ (and also the action of $P_{k}^{1}\times P_{k}^{2}$ on
$J)$ have been described in 1.1. We note here that, among all the involutions
of $\mathfrak{A}_{m}$ introduced in 1.1, just two involutions $\sigma_{k}^{\prime}$ and $a_{k}$ are not contained in
$H=H_{m}(k)$ .

The following lemma on some automorphisms of $H_{m}(k)$ will be used in
our later discussions.

LEMMA 1. $(\alpha)$ $H_{m}(k)$ has (outer) automorphisms $\epsilon_{1}$ and $\epsilon_{2}$ as follows:
(i) $\epsilon_{1}$ ; $\epsilon_{1}(\pi_{s}^{\prime})=\pi_{s}^{\prime}\alpha_{k}(1\leqq s\leqq k)$ ,

$\epsilon_{1}(a_{s}^{\prime})=\sigma_{s}^{\prime}\alpha_{k}(1\leqq s\leqq k-1)$ ,
$\epsilon_{1}=the$ identity on $X_{k}$ and $M$,

(ii) $\epsilon_{2}$ ; $\epsilon_{2}(\lambda_{s})=\lambda_{s}\alpha_{k}(1\leqq s\leqq k)$ ,
$\epsilon_{2}(\pi_{s})=\pi_{s}$ $(1\leqq s\leqq k)$ ,
$\epsilon_{2}=the$ identity on $X_{k}$ and $\Sigma_{k}1$

$(\beta)$ When $m\equiv 2mod 4$ and $k=n-1,$ $H_{m}(n-1)$ has an (outer) automorphism
$\epsilon_{0}$ as follows:

$\epsilon_{0}=the$ identity on $W_{n-1}$ and $\epsilon_{0}$ induces an automorphism on $X_{n-1}$

$\cong \mathfrak{A}_{6}$ such that $\langle\lambda_{n}, \pi_{n}\rangle^{\epsilon_{0}}=\langle\pi_{n}^{\prime}, \pi_{n}\rangle$ .
PROOF. The existence of $\epsilon_{1}$ and $\epsilon_{2}$ is obvious, because it is easily seen

from the definitions of $\epsilon_{1}$ and $\epsilon_{2}$ that $\epsilon_{1}$ and $\epsilon_{2}$ leave the relations between
generators of $H$ invariant. We shall show the existence of $\epsilon_{0}$ . It is well
known that $\mathfrak{A}_{6}$ has two conjugacy classes of four groups and a well-known
outer automorphism of $\mathfrak{S}_{6}$ interchanges these two classes of four groups.
In our present case, $\langle\lambda_{n}, \pi_{n}\rangle$ and $\langle\pi_{n}^{\prime}, \pi_{n}\rangle$ are representatives of conjugacy
classes of four groups of $X_{n-1}\cong \mathfrak{A}_{6}$ . From this we easily see the existence
of $\epsilon_{0}$ .

\S 2. Some properties of $N_{G}(J)$ .
2.1. Let $G_{m}(k)$ be a finite group with the following properties:
$G_{m}(k)$ contains an involution $\tilde{\alpha}_{k}$ such that the centralizer $C_{Gm(k)}(\tilde{\alpha}_{k})$ is iso-

morphic to $H_{m}(k)$ .
Clearly, in order to obtain the theorem in the introduction, it will be

sufficient to prove that, under the additional condition that $G_{m}(k)$ has no sub-
group of index 2, $G_{m}(k)$ is isomorphic to $\mathfrak{A}_{m}$ for each integer $m$ with $m\equiv 2$

or $3mod 4$ and $m\geqq 7$ and each integer $k$ with $1\leqq k\leqq n$ . For simplicity, we
shall identify $C_{Gm(k)}(\tilde{\alpha}_{k})$ and $\tilde{\alpha}_{k}$ with $H_{m}(k)$ and $\alpha_{k}$ respectively. So the nota-
tions which are introduced for involutions and subgroups of $H_{m}(k)$ in \S 1 will
be used also for those of $G_{m}(k)$ . If there is no confusion, we shall frequently
write $G=G_{m}(k)$ and $H=H_{m}(k)$ . The theorem of the case $k=n$ was treated
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in [3] and [5]. So henceforth we shall assume $k<n$ for simplicity, although
many parts of our subsequent discussions will work, including the case $k=n$ .

In \S 1, we observed that
(i) $G$ contains a subgroup $J$ which is isomorphic to a direct product of

$n$ copies of a dihedral group of order 8, and
(ii) $N_{G}(J)\cap C_{G}(Z(J))=J$.

(ii) follows from (4), because $C_{\mathfrak{A}_{m}}(Z(J))\subseteqq H_{m}(k)$ . Furthermore, we note that
$ Z(J)=\langle\pi_{1}, \pi_{2}, \cdots, \pi_{n}\rangle$ . The following proposition is very fundamental for
our subsequent discussions.

PROPOSITION 2. (i) Every element of $N_{G}(J)$ induces a permutation on the
set $\{\pi_{1}, \pi_{2}, \cdots , \pi_{n}\}$ .

(ii) Every elementary abelian group of $1V_{G}(J)$ of order $2^{2n}$ is contained in $J$.
PROOF. Let $\mathfrak{D}$ be an arbitrary direct factor of $J$ which is isomorphic to

a dihedral group of order 8. Then it follows from a theorem of Krull-Remak-
Schmidt [2 ; p. 66] that we can find an integer $s(1\leqq s\leqq n)$ such that

$\mathfrak{D}=\langle\lambda_{s}z, \pi_{\epsilon}^{\prime}z^{\prime}\rangle$ ,

where $z$ and $Z^{\prime}$ are some elements of $Z\langle J$). Then $\pi_{s}$ is an involution of $Z(\mathfrak{D})$ .
This implies that $\{\pi_{1}, \pi_{2}, \cdots, \pi_{n}\}$ is characterized as the set which consists
of the totality of non-identity elements in the centers of all direct factors
of $J$. From this fact the first statement of our proposition follows. We shall
prove the second statement. Let $E$ be an elementary abelian subgroup of
$N_{G}(J)$ of order $2^{2n}$ . Assume by way of contradiction that E$J. Set

$E=E_{0}\oplus(E\cap J)$ (a direct sum),

$|E_{0}|=2^{\iota}$ $(l\geqq 1)$ .

By the fact that $N_{G}(J)\cap C_{G}(Z(]))=J$ and the first statement of the proposition
which has been just proved, $E_{0}$ operates faithfully on the set $\{\pi_{1}, \pi_{2}, , \pi_{n}\}$ .
Now we need a simple lemma the proof of which is left to readers.

LEMMA. Let $E_{0}$ be an elementary abelian subgroup of order $2^{\iota}$ of the
symmetric group on $n$ letters, and $h$ be the number of distinct orbits $of^{\prime}E_{0}$ .
Then we have $2h+l<2n$ .

Returning to the proof of the proposition, $1etE_{1}$ be an arbitrary elementary
abelian 2-subgroup of $J$ which commutes elementwise with $E_{0}$ . Then in order
to complete the proof of our proposition, it will be sufficient to see

(10) $|E_{1}|\leqq 2^{2h}$ ,

where $h$ is the number of distinct orbits under the action of $E_{0}$ on the set
$\{\pi_{1}, \pi_{2}, , \pi_{n}\}$ , because, by applying (10) to the case $E_{1}=E\cap J$ and using the
above lemma, we get
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$|E|=|E\cap J|\cdot|E_{0}|\leqq 2^{2h+t}<2^{2n}$ ,

which is a contradiction. Let $I$ be one of the orbits under the action of $E_{0}$

on $\{\pi_{1}, \pi_{2}, \cdots, \pi_{n}\}$ . For convenience of description, we shall identify the set
$\{\pi_{1}, \pi_{2}, \cdot.. , \pi_{n}\}$ with the index set $\{$ 1, 2, $\cdot$ .. , $n\}$ . By considering the factor
group $J/Z(J)$ on which $E_{0}$ operates, we can choose one of $\lambda_{i}$ and $\pi_{i}^{\prime}$ for each
$i\in I$ in such a way that, if we let it be $x_{i}$ and the other one be $y_{i},$ $E_{0}$ operates
transitively on the sets $\{\overline{x}_{i}=x_{i}Z(J)|i\in I\}$ and $\{\overline{y}_{i}=y_{i}Z(J)|i\in I\}$ , because
any indecomposable direct factor of $J$ is of the form $\langle\lambda_{s}z, \pi_{s}^{\prime}z\rangle$ for some
$s(1\leqq s\leqq n)$ and some elements $z$ and $z^{\prime}$ in $Z(J)$ as was seen in the first
paragraph of the proof of this proposition. Then set

$\xi_{I}=\prod_{ie_{-}I}x_{i}$ ,

$\eta_{I}=\prod_{i\in I}y_{i}$ ,

$z_{I}=\prod_{i\in I}\pi_{i}$ .

Since $E_{1}$ commutes elementwise with $E_{0},$ $E_{1}$ must be contained in the group
\langle $\overline{\xi}_{I},\overline{\eta}_{I}|I$ ranges over all distinct $orbits\rangle$ . Noting that $\xi_{I}$ and $\eta_{I}$ do not
commute with each other, we can choose one of the groups $\langle\xi_{I}, z_{I}\rangle$ and
$\langle\eta_{I}, z_{I}\rangle$ for each $I$ in such a way that the product of chosen groups, which
is of order $2^{2h}$ , contains $E_{1}$ . This yields $|E_{1}|\leqq 2^{2h}$ . Thus the proof of our
proposition is complete.

LEMMA 3. A 2-Sylow subgroup of $N_{G}(J)$ is that of $G$ .
PROOF. Let $D$ be a 2-Sylow subgroup of $N_{G}(J)$ , and $T$ be a 2-Sylow sub-

group of $G$ containing $D$ . If $T>D$ , we have $N_{T}(D)>D$ by a fundamental
property of groups of prime power order. On the other hand, we have
$N_{\tau}(D)\subseteqq N_{G}(J)$ , because $J$ is a characteristic subgroup of $D$ by Proposition 2.
This contradicts that $D$ is a 2-Sylow subgroup of $N_{G}(J),$ $q$ . $e$ . $d$ .

REMARK. In [3, Th. I], we assumed that the given involution lies in the
center of a 2-Sylow subgroup of the group $G(n, r)$ ($r=2$ or 3). However, this
assumption can be dropped. In fact, let $k=n$ and then we have $N_{G}(J)$

$\subseteqq C_{G}(\alpha_{n})$ by (i) of Proposition 2. So by Lemma 3 $\alpha_{n}$ must be in the center
of 2-Sylow subgroup of $G$ . We note that, in the case $r=1$ of [4, Th. $A$],

the same assumption can be also dropped, though the proof will be omitted
here.

Put for each integer $s$ with $1\leqq s\leqq n$ ,

$L_{s}=\{\pi_{i_{1}}\pi_{i_{2}}\ldots\pi_{i_{S}}|1\leqq i_{1}<i_{2}<\ldots<i_{s}\leqq n\}$ .

If an involution $x$ of $G$ is conjugate in $G$ to one of elements of $Z(])$ , we say
that $x$ is of positive length and write $l(x)>0$ . Otherwise we shall write
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$1(x)=0$. More precisely, if $x$ is conjugate in $G$ to an element of $L_{s}$ , we say
that $x$ is of length $s$ and write $1(x)=s$ .

LEMMA 4. No two elements with distinct positive length are conjugate in $G$ .
PROOF. Since $J$ is weakly closed in 2-Sylow subgroup of $G$ with respect

to $G$ by Proposition 2 and Lemma 3, two elements of $Z(J)$ are conjugate in
$G$ if and only if they are so in $N_{G}(])$ . Then our lemma follows from (i) of
Proposition 2.

LEMMA 5. Let $X$ be an elementary abelian subgroup of $N_{G}(J)$ of order $2^{2n}$ .
If $X$ is normal in $N_{G}(J),$ $X$ is weakly closed in a 2-Sylow subgroup of $G$ with
respect to $G$ .

PROOF. Let $D$ be a 2-Sylow subgroup of $N_{G}(J)$ containing $X$. By Lemma
3, $D$ is a 2-Sylow subgroup of $G$ . Suppose $X^{x}\subseteqq D$ for some $x$ of $G$ . By (ii)
of Proposition 2, we have $X^{x}\subseteqq J$. Since every elementary abelian subgroup
of $J$ of order $2^{2n}$ is normal in $J$, we get $J^{x^{-1}},$ $J\subseteqq N_{G}(X)$ . Since $J$ is generated
by all elementary abelian subgroups of order $2^{2n}$ of any 2-Sylow subgroup of
$G_{-}$ containing $J$ by (ii) of Proposition 2, we can find an element $y\in N_{G}(X)$

such that $J^{x^{-1}}=J^{y}$ . Then we have $yx\in N_{G}(J)$ and so $yx\in N_{G}(X)$ , because $X$

is normal in $N_{G}(J)$ . Then we have $X=X^{yx}=X^{x}$ . This completes the proof.
LEMMA 6. (i) If $N_{G}(J)>N_{H}(J)$ , we have $l(\lambda_{1})>0$ and 1 $(\pi_{1}^{\prime})>0$ .
(ii) If $G$ has no subgroup of index 2, we have $l(\lambda_{1})>0$ .
PROOF. Suppose $N_{G}(J)>N_{H}(J)$ . Then we can find an element $\delta$ of $N_{G}(J)$

such that $\pi_{k}^{\delta}=\pi_{k+1}$ , because there are just two orbits $\{\pi_{1}, \pi_{2}, \cdot.. , \pi_{k}\}$ and
$\{\pi_{k+1}$ , $\cdot$ .. , $\pi_{n}\}$ under the action of $N_{H}(J)$ on the set $\{\pi_{1}, \pi_{2}, \cdot.., \pi_{n}\}$ as was
seen in \S 1. Then we must have $\langle\pi_{k}^{\prime}, \lambda_{k}\rangle^{\delta}=\langle\pi_{k+1}^{\prime}z, \lambda_{k+1}z^{\prime}\rangle$ , where $z$ and $z^{\prime}$

are some elements of $Z(J)$ because any direct factor of $J$ with the center
$\langle\pi_{k+1}\rangle$ must be of the form $\langle\pi_{k+1}^{\prime}z, \lambda_{k+1}z^{\prime}\rangle$ as was seen in the first paragraph
of the proof of Proposition 2. Let $\beta$ and $\gamma$ be elements of $H$ corresponding
to elements with the cycle decompositions $(4k+1,4k+2,4k+3)$ and (4$k+1$ ,
$4k+3,4n+1)(4k+2,4k+4,4n+2)$ respectively. Then by transforming by sui-
table elements of $\langle\beta, \gamma\rangle$ we easily see that all involutions of the group
$\langle\pi_{k+1}^{\prime}z, \lambda_{k\prec\cdot 1}z^{\prime}\rangle$ are of positive length. So we must have $l(\pi_{k}^{\prime})>0$ and $l(\lambda_{k})>0$ ,

and then $l(\pi_{1}^{\prime})>0$ and $l(\lambda_{1})>0$ because $\pi_{1}^{\prime}$ and $\lambda_{1}$ are conjugate in $N_{H}(J)$ to
$\pi_{k}^{\prime}$ and $\lambda_{k}$ respectively. This proves (i). Next we shall prove (ii).

Assume by way of contradiction that $l(\lambda_{1})=0$ . Then by (i) we must have
$N_{G}(J)=N_{H}(J)$ . Since $S$ and $M$ are normal in $N_{G}(J)(=N_{H}(J)),$ $S$ and $M$ are
weakly closed in a 2-Sylow subgroup of $G$ with respect to $G$ by Lemma 5.
Let $W$ be a 2-Sylow subgroup of $C_{G}(\lambda_{1})$ containing $C_{J}(\lambda_{1})$ . If we denote by
$J(W)$ the group generated by all elementary abelian subgroups of $W$ of order
$2^{2n}$ , we have $J(W)=C_{J}(\lambda_{1})$ because $[J:C_{J}(\lambda_{1})]=2$ and $l(\lambda_{1})=0$ . On the other
hand, we have, by (6),
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$ H=(W_{k}\times X_{k})\langle\lambda_{1}\rangle$ ,

and the representatives of conjugacy classes of involutions of $W_{k}\times X_{k}$ can be
taken from S. (This turns out from the knowledge of the conjugacy classes
of involutions of $W_{k}$ which was described in [3; \S 1] or [4; \S 1].) Since
$N_{G}(J)=N_{H}(J)$ , a 2-Sylow subgroup of $H$ is that of $G$ by Lemma 3, and then
a transfer theorem of Thompson yields that $\lambda_{1}$ must be conjugate in $G$ to
some element of $S$. Therefore $S$ must be conjugate in $G$ a subgroup of $J(W)$

$=C_{J}(\lambda_{1})$ . This contradicts the weakly closedness of $S$, because $C_{J}(\lambda_{1})$ does
not contain $S$. This proves (ii).

LEMMA 7. Let $k=n-1$ . Without loss of generality, we may assume that
$S$ and $M$ are normal in $N_{G}(J)$ . (So we shall assume this throughout the present
paper.)

PROOF. If $N_{G}(J)=N_{H}(J)$ , we have nothing to prove, because $S$ and $M$

are normal in $N_{H}(J)$ as is seen from the action of $N_{H}(J)$ on $J$. So we shall
assume $N_{G}(J)>N_{H}(J)$ . Then we have $N_{G}(J)/J\cong \mathfrak{S}_{n}$ , because $N_{H}(J)/J\cong \mathfrak{S}_{n-1}$

by the assumption $k=n-1$ and $N_{G}(J)/J$ is isomorphic to a subgroup of $\mathfrak{S}_{n}$

by the fact that $N_{G}(J)\cap C_{G}(Z(J))=J$ and Proposition 2. Thus we can find
an element $\sigma$ of $N_{G}(J)-N_{H}(J)$ such that $\pi_{n-1}^{\sigma}=\pi_{n}$ and $\pi_{s}^{\sigma}=\pi_{s}(1\leqq s\leqq n-2)$ .
Then $\sigma$ must map $\langle\lambda_{n-1}, \pi_{n-1}^{\prime}\rangle$ onto $\langle\lambda_{n}z, \pi_{n}^{\prime}z^{\prime}\rangle$ where $z$ and $z^{\prime}$ are some
elements of $Z(J)$ . Thus we may assume $\lambda_{n-1}^{\sigma}=\lambda_{n}z$ or $\pi_{n}^{\prime}z^{\prime}$ according as $\pi_{n-1}^{\prime\sigma}$

$=\pi_{n}^{\prime}z^{\prime}$ or $\lambda_{n}z$ . In particular, this means that $S$ is normal in $N_{G}(J)$ if and
only if $M$ is normal in $N_{G}(J)$ . Next we shall show that $S$ or $\langle\pi_{1}^{\prime},$

$\pi_{1},$
$\pi_{2}^{\prime},$

$\pi_{2}$ ,
. , $\pi_{n-1}^{\prime},$

$\pi_{n-1},$ $\lambda_{n},$ $\pi_{n}\rangle$ is normal in $N_{G}(J)$ according as $\pi_{n-1}^{\prime\sigma}=\pi_{n}^{\prime}z^{\prime}$ or $\lambda_{n}z$ . In
order to this, it will be sufficient to prove that

$(*)$ $\pi_{s^{\sigma}}^{\prime}\equiv\pi_{s}^{\prime}$ $mod Z(J)$ $(1 \leqq s\leqq n-2)$ .
Let $\sigma_{1},$ $a_{2}$ , , $\sigma_{n-2}$ be elements of $N_{H}(J)$ which are defined in \S 1. Then we
have

$\sigma_{s}^{2}=1$ and $(\sigma_{S}\sigma_{s+1})^{3}=(\sigma_{t}\sigma_{u})^{2}=1$ $(1 \leqq s, t, u\leqq n-2, |t-u|>1)$ ,

$(\sigma_{s}\sigma)^{2}\equiv 1$ $mod J$ $(1 \leqq s\leqq n-3)$ ,

$(\sigma_{n-2}\sigma)^{3}\equiv 1$ $mod J$

by using $N_{G}(J)\cap C_{G}(Z(J))=J$ and the action of the $\sigma_{s}$ on $\{\pi_{1}, \pi_{2}, \cdot.. , \pi_{n}\}$ .
Now we shall assume $\pi_{n-1}^{\prime_{\sigma}}=\pi_{n}^{\prime}z^{\prime}(i. e. \pi_{n^{d}-1}^{\prime}\equiv\pi_{n}^{\prime}mod Z(J))$ and prove $(*)$ by
induction on the descending order of $s=1,2,$ $\cdots$ , $n-2$ . Note that, also in the
case $\pi_{n-1}^{;_{\sigma}}=\lambda_{n}z$ , the following arguments can be applied without any changes.
Let $s=n-2$ . Since $\pi_{n-2}^{\sigma}=\pi_{n- 2}$ , we must have $\pi_{n-2}^{\prime\sigma}\equiv\pi_{n-2}^{\prime}$ or $\lambda_{n- 2}mod Z(J)$ as
we have frequently seen above. Suppose by way of contradiction that
$\pi_{n-2}^{;_{\sigma}}\equiv\lambda_{n-2}mod Z(J)$ . Then we easily see $\pi_{n-2}^{J(}\sigma_{n- 2}\sigma_{)}3\equiv\lambda_{n-2}mod Z(J)$ , since we
know the action of $\sigma_{n-2}$ and $a$ on $\langle\pi_{n-2}^{\prime}, \lambda_{n-2}, \pi_{n-1}^{\prime}, \lambda_{n-1}, \pi_{n}^{\prime}, \lambda_{n}\rangle mod Z(J)$ . But
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this contradicts $(\sigma_{n- 2}\sigma)^{3}\equiv 1mod J$. Thus $(*)$ holds for $s=n-2$ . Assume that
$(*)$ holds for any $s^{\prime}$ with $s\leqq s^{\prime}\leqq n-2$ . Since $\pi_{l}^{\sigma}=\pi_{s}$ , we have $\pi_{\iota^{\sigma}}^{\prime}\equiv\pi_{\iota}^{\prime}$ or $\lambda_{s}$

$mod Z(J)$ . If $\pi^{\prime\sigma}\equiv\lambda_{s}mod Z(J)$ , we get $\pi_{s^{(\sigma_{\theta}\sigma)^{2}}}^{\prime}\equiv\lambda_{s}mod Z(J)$ which contradicts
$(\sigma_{s}\sigma)^{2}\equiv 1mod J(1\leqq s\leqq n-2)$ . Thus we have proved $(*)$ . Firstly we shall
assume $\uparrow n\equiv 3mod 4$ . In this case, we see from the structure of $H$ that $S$ is
the only elementary abelian subgroup of $J$ of order $2^{2n}$ with the property
that $S$ is not self-centralizing in $G$ . This implies that $S$ is normal in $N_{G}(J)$

and so $M$ is also normal in $N_{G}(J)$ by what we have just seen. Secondly let
$m\equiv 2mod 4$ . Then we have an automorphism $\epsilon_{0}$ of $H$ by Lemma 1 such that
$ S^{\tilde{e}0}=\langle\pi_{1}^{\prime}, \pi_{1}, \cdot.. , \pi_{\acute{n}-1}, \pi_{n- 1}, \lambda_{n}, \pi_{n}\rangle$ . If we let $S^{0}$ be the last group, $S^{0}$ can also
play the role of $S$ if we change the notations suitably. Since we know that
$S$ or $S^{0}$ is normal in $N_{G}(J)$ , we may assume without loss of generality that
$S$ is normal in $N_{G}(J)$ . This proves Lemma 7.

REMARK. If $k<n-1$ , we shall prove later that $S$ and $M$ are always

normal in $N_{G}(J)$ .
The configuration in the following lemma will occur in some points of

our later discussions.
LEMMA 8. Suppose that $J$ is a direct product of $\mathfrak{D}^{(\epsilon)}(1\leqq s\leqq n)$ each of

which is isomorphic to a dihedral group of order 8 and is generated by involutions
$\xi_{s}$ and $\eta$, subject to the relations:

$\xi_{\tilde{*}}^{o}=\eta_{s}^{2}=(\xi_{s}\eta_{\epsilon})^{4}=1$ .
Set $\zeta_{s}=(\xi_{s}\eta_{s})^{2}$ and $ L=\langle\xi_{1}, \zeta_{1}, \xi_{2}, \zeta_{2}, \cdots, \xi_{n}, \zeta_{n}\rangle$ . For $i=1$ and 2, let $u_{i}$ be an
element of $N_{G}(L)$ such that

$u_{i}$ : $\zeta_{i}\rightarrow\xi_{i}\rightarrow\xi_{i}\zeta_{i}$ $(i=1,2)$ ,

$[u_{1}, \xi_{2}\zeta_{1}]=[u_{1}, \zeta_{2}]=[u_{2}, \xi_{1}\zeta_{2}]=[u_{2}, \zeta_{1}]=1$ ,

$[u_{i}, \xi_{j}]=[u_{i}, \zeta_{j}]=1$ if $j\geqq 3$ .
Assume also that $L$ is self-centralizing in G. Then if we set $\delta^{\prime}=u_{1}^{-1}u_{2}u_{1}\eta_{2}$ and
$\delta=(\eta_{1}\eta_{2})^{\delta’}$ we have $\delta\in N_{G}(J)$ and $\zeta_{1}^{\delta}=\zeta_{2},$ $[\zeta_{j}, \delta]=1(j\geqq 3)$ and $\eta_{1}^{\delta}\equiv\eta_{2}mod L$ .

PROOF. From the actions of the elements $\delta$ and $\eta_{s}(1\leqq s\leqq n)$ on $L$ , we
easily see that $\eta_{1}^{\delta}$ and $\eta_{2}$ induce the same action on $L$ , and $\eta_{l}^{\delta}$ and $\eta_{s}(s\geqq 3)$

also induce the same action on $L$ . This means that $\eta_{1}^{\delta}\equiv\eta_{2}mod L$ and
$\eta_{s}^{\delta}\equiv\eta_{s}mod L(s\geqq 3)$ , because $L$ is self-centralizing in $G$ . Then we see $\delta\in$

$N_{G}(J)$ . Similarly the other parts of the Lemma can be checked.

\S 3. Fusion of involutions of $G$ .
3.1. The purpose of this section is to prove the following theorem.
THEOREM 9. Assume that $G=G_{m}(k)$ ($m\equiv 2$ or 3 $mod 4$ and $1\leqq k<n$) has

no subgroup of index 2. Then there exist $2n$ elements $\beta_{s}$ and $\gamma_{s}(1\leqq s\leqq n)$ with
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the following properties:
(i) each $\gamma_{s}$ is of order 3,
(ii) $\gamma_{s}$ : $\pi_{s}\rightarrow\lambda_{s}\rightarrow\lambda_{s}\pi_{s}$ ,
(iii) $[\gamma_{s}, \pi_{t}]=[\gamma_{s}, \lambda_{t}\pi_{s}]=[\gamma_{s}, \pi_{t}^{\prime}]=1(s\neq t)$ ,

(iv) $\gamma_{s}^{\pi_{\$^{\prime}}}=\gamma_{\epsilon}^{-1}$ ,
$(i)^{\gamma}$ each $\beta_{s}$ is of order 3,
$(ii)^{\gamma}$ $\beta_{\epsilon}$ : $\pi_{s}\rightarrow\pi_{\$}^{\prime}\rightarrow\pi_{s}^{\prime}\pi_{s}$ ,
$(iii)^{\prime}$ $[\beta_{s}, \pi_{t}]=[\beta_{s}, \pi_{t}^{\prime}]=[\beta_{s}, \lambda_{t}]=1(s\neq t)$ ,
$(iv)^{\gamma}$ $\beta_{s^{\$}}^{\lambda}=\beta_{\overline{s}}^{1}$ .
REMARK. If $s>k$ , we already have the elements $\beta_{s}$ and $\gamma_{s}$ with the

required properties. In fact, $H_{m}(k)$ contains $\beta_{s}=(4s-3,4s-2,4s-1)(s>k)$

and $\gamma_{s}=(4s-3,4s-1,4n+1)(4s-2,4s, 4n+2)(s>k)$ . These $\beta_{s}$ and $\gamma_{s}$ have all
the required properties, as is easily checked. So what we shall have to do
hereafter is to construct the $\beta_{s}$ and $\gamma_{s}$ for each $s$ when $1\leqq s\leqq k$ . As remarked
at the beginning of \S 2, we shall assume $k<n$ in our subsequent discussions.

3.2. The purpose of this paragraph is to prove, under the assumption
$l(\lambda_{1})>0$ , Lemma 15 which will yield a part of the conclusions of Theorem 9.
By Lemma 6 (ii) this assumption is satisfied if $G$ has no subgroup of index 2.
We note here that the exact same arguments applied to $\pi_{1}^{\prime}$ instead of $\lambda_{1}$ yield
Lemma 16 under the similar assumption $l(\pi_{1}^{\prime})>0$ . Notice that we do not yet
know whether the assumption $l(\pi_{1}^{\prime})>0$ is satisfied or not even if $G$ has no
subgroup of index 2.

For each 2-subgroup $D$ of $G,$ $J(D)$ denotes the group generated by all
elementary abelian subgroups of $D$ of order $2^{2n}$ . Thus if $D$ is a 2-Sylow sub-
group of $N_{G}(J)$ , we have $J(D)=J$ by Proposition 2 (ii). From now on we
shall assume $l(\lambda_{1})>0$ throughout this paragraph.

Set
$ W=C_{J}(\lambda_{1})=\langle\lambda_{1}, \pi_{1}\rangle\times\langle\lambda_{2}, \pi_{2}^{\prime}\rangle\times\cdots\times\langle\lambda_{n}, \pi_{n}^{\prime}\rangle$ .

Then we have
$ W^{\prime}=\langle\pi_{2}, \pi_{3}, \cdots, \pi_{n}\rangle$ ,

$Z(W)=\langle\lambda_{1}, \pi_{1}, \pi_{2}, \cdots, \pi_{n}\rangle=\langle\lambda_{1}\rangle\times Z(J)$ .
Take a 2-Sylow subgroup of $D$ of $C_{G}(\lambda_{1})$ containing $C_{J}(\lambda_{1})$ and set

$ U=\langle J, J(D)\rangle$ .
We shall find the desired element $\gamma_{1}$ in the group $U$ and obtain the properties
which $\gamma_{1}$ should have by examining the action of $\gamma_{1}$ on various subgroups of
$U$. We have

$J(D)\supseteqq W$ ,

$J(D)$ is conjugate in $U$ to $J$ ,
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because $l(\lambda_{1})>0$ and $W$ is generated by elementary abelian subgroups of
order $2^{2n}$ . Furthermore we have

(11) $ Z(U)=\langle\pi_{2}, \pi_{3}, \cdots \pi_{n}\rangle$ ,

(12) $U\triangleright W^{\prime}$ and $Z(W)$ ,

(13) any subgroup of $J\cap J(D)$ containing $Z(W)$ is normal in $U$ .
(13) follows from the fact that $Z(W)$ contains $J^{\prime}=Z(J)$ and $J(D)‘=Z(J(D))$
$=\langle\lambda_{1}, \pi_{2}, \cdots \pi_{n}\rangle$ .

Let $x_{1}$ be an element of $Z(J(D))$ of length 1 other than $\pi_{2},$ $\pi_{3},$ $\cdots,$ $\pi_{n}$ . Such
a unique element exists, because $Z(J)$ has exactly $n$ elements of length 1 and
$Z(J(D))\ni\pi_{2},$ $\pi_{3},$ $\cdots$

$\pi_{n}$ .
LEMMA 10. $x_{1}=\lambda_{1},$ $\lambda_{1}\pi_{2}\cdots\pi_{k},$ $\lambda_{1}\pi_{k+1}\ldots\pi_{n}$ or $\lambda_{1}\pi_{2}\ldots\pi_{n}$ .
PROOF. Noting $\lambda_{1}\in Z(J(D))$ , we can write

$\lambda_{1}=x_{1}\pi_{i_{1}}\pi_{i_{2}}\ldots\pi_{i_{p}}\pi_{j_{1}}\pi_{j_{2}}\ldots\pi_{Jq}$ ,

where $\{i_{1}, i_{2}, \cdots i_{p}\}\subseteqq\{2,3, \cdots k\}$ and $\{j_{1}, j_{2}, \cdots j_{q}\}\subseteqq\{k+1, \cdots , n\}$ . Then we
have

$x_{1}\pi_{2}\ldots\pi_{n}=\lambda_{1}\prod_{I\ni i}\pi_{i}\prod_{I^{\prime\prime}\ni j}\pi_{j}$ ,

where $I^{J}$ and $I^{\nu}$ are the complementary sets in $\{$ 2, 3, $\cdot$
., , $k\}$ and $\{k+1, \cdot.. , n\}$

of $\{i_{1}, i_{2}, , i_{p}\}$ and $\{j_{1}, j_{2}, , j_{q}\}$ respectively. We claim
(14) $I^{\prime}=\{2,3, \cdots k\}$ or $\phi$ ($=the$ empty set) , and
(15) $I^{\prime\prime}=\{k+1, \cdots n\}$ or $\phi$ ,

which will yield our lemma. Suppose that (14) is false. Then take an element
$i_{0}$ of $\{$ 2, $\cdots$ , $k\}$ which does not belong to 1’. Then we see from the action of
$N_{H}(J)$ on $J$, which is described in 1.2, that $\lambda_{1}\prod_{I_{\overline{\lrcorner}}i}\pi_{i}\prod_{I^{\prime\prime}\ni j}\pi_{j}$ and

$\lambda_{1}\pi_{i_{0}}\prod_{I-\{i_{0}\}\ni i}\pi_{i}\prod_{l^{\prime}\ni j}\pi_{j}$

are conjugate in $N_{H}(J)$ where $i_{0}^{\prime}$ is an arbitrary element of $I^{\prime}$ . Thus these
two elements are of length $n$ and are contained in $Z(J(D))$ , because $x_{1}\pi_{2}\cdots\pi_{n}$

is of length $n$ . However, this is impossible because $Z(J)$ has exactly one
element of length $n$ . This proves (14). Similarly, we can prove that (15)
holds, q. e. $d$ .

By (12), we know that $U$ normalizes $Z(W)-W^{\prime}$ . Pick up all elements of
length 1 in $Z(W)-W^{\prime}$ . Then we see that

$\pi_{1},$ $x_{1},$ $x_{1}\pi_{1}$

are just such elements. In fact, it is obvious that $\pi_{1}$ (resp. $x_{1}$) is the only

element of length 1 in the coset $\pi_{1}W^{\prime}$ (resp. $x_{1}W^{\prime}$), and since we have $x_{1}^{\pi_{1}^{\prime}}=$

$x_{1}\pi_{1},$ $x_{1}\pi_{1}$ is also the only element of length 1 in the coset $x_{1}\pi_{1}W^{\prime}$ . Thus it
turns out that $U$ normalizes a four group $\langle x_{1}, \pi_{1}\rangle$ . Since $\pi_{1}\sim x_{1}\sim x_{1}\pi_{1}$ in $U$ ,
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we can find an element $\gamma$ of $U$ such that

\langle 16) $\gamma:\pi_{1}\rightarrow x_{1}\rightarrow x_{1}\pi_{1}$ .
We may assume without loss of generality that $\gamma$ is of odd order. Moreover,
we have

\langle 17) $[\gamma, \pi_{s}]=1$ if $s\geqq 2$ ,

because the $\pi_{s}(s\geqq 2)$ are in $Z(U)$ . By (13), we know that $\gamma$ normalizes
$Z(W),$ $ Z(W)\times\langle\lambda_{t}\rangle$ and $ Z(W)\times\langle\pi_{t}^{\prime}\rangle$ for any $t(2\leqq t\leqq n)$ . Then a theorem of
Maschke [1; p. 66] yields that $\gamma$ must centralize an element of $ Z(W)\times\langle\lambda_{t}\rangle$

$-Z(W)$ and $Z(W)\times\langle\pi_{t}^{\prime}\rangle-Z(W)$ . It follows from (17) that $\gamma$ must centralize
one of elements $\lambda_{t},$ $\lambda_{t}x_{1},$ $\lambda_{t}\pi_{1},$ $\lambda_{t}x_{1}\pi_{1}$ and also one of elements $\pi_{t}^{\prime},$ $\pi_{t}^{\prime}x_{1},$ $\pi_{t}^{\prime}\pi_{1},$ $\pi_{t}^{\prime}x_{1}\pi_{1}$ .
More precisely, we have, however,

LEMMA 11. (i) $\gamma$ centralizes $\lambda_{t}$ or $\lambda_{t}\pi_{1}$ for each $t(2\leqq t\leqq n)$ .
(ii) $\gamma$ centralizes $\pi_{t}^{\prime}$ or $\pi_{t}^{\prime}\pi_{1}$ if $f>k$ .
PROOF. Firstly we shall prove (i). If (i) is false, we have that $\gamma$ must

centralize $\lambda_{t}x_{1}$ or $\lambda_{t}x_{1}\pi_{1}$ by the preceding discussions. Suppose $(\lambda_{t}x_{1})^{\gamma}=\lambda_{t}x_{1}$ .
Then we have $\lambda_{t}^{\gamma}=\lambda_{t}\pi_{1}$ , because $\gamma;\pi_{1}\rightarrow x_{1}\rightarrow x_{1}\pi_{1}$ by (16). If $t>k$ , we have
$J(\lambda_{t}^{\gamma})=l(\lambda_{t})=l(\pi_{t})=1$ and $l(\lambda_{t}\pi_{1})=l(\pi_{t}\pi_{1})$ by $\lambda_{t}=\pi_{t}^{\gamma_{t}}$ and $[\gamma_{t}, \pi_{1}]=1$ . (Note

that, by the remark in 3.1, we already have the elements $\gamma_{t}$ if $t>k.$) This
is a contradiction by Lemma 4. So let $t\leqq k$ . Then we have $l(\lambda_{t}^{\gamma})=l(\lambda_{1})$ and
1 $(\lambda_{t}\pi_{1})=l(\lambda_{1}\pi_{t})$ , because $\lambda_{t}\sim\lambda_{1}$ in $H$ and $\lambda_{t}\pi_{1}\sim\lambda_{1}\pi_{t}$ in $H$ if $t\leqq k$ , as is seen
from the action of $N_{H}(M)$ on $M$. On the other hand, we have, by (16),

$\gamma:\lambda_{1}\rightarrow\lambda_{1}\pi_{1}\rightarrow\pi_{1}(\pi_{2}\ldots\pi_{k})^{\delta}(\pi_{k+1}\ldots\pi_{n})^{\delta^{\prime}}$

if we put $x_{1}=\lambda_{1}(\pi_{2}\ldots\pi_{k})^{\delta}(\pi_{k+1}\ldots\pi_{n})^{\delta^{\prime}}$ ( $\delta,$ $\delta^{\prime}=+1$ or $0$). Then we have $l(\lambda_{1})$

$=1+\delta(k-1)+\delta^{\prime}(n-k)$ and $l(\lambda_{1}\pi_{t})=l((\lambda_{1}\pi_{t})^{\gamma^{2}})=l(\lambda_{1}^{\gamma^{2}}\pi_{t})=1+\delta(k-1)+\delta^{\gamma}(n-k)\pm 1$ ,

which contradicts $l(\lambda_{t})=l(\lambda_{t}\pi_{1})$ . Similarly, if we had $(\lambda_{t}x_{1}\pi_{1})^{\gamma}=\lambda_{t}x_{1}\pi_{1}$ , we
would get a contradiction. This proves (i). Secondly, suppose that (ii) is
false. Then $\gamma$ must centralize $\pi_{t}^{\prime}x_{1}$ or $\pi_{t}^{\prime}x_{1}\pi_{1}$ . If $(\pi_{t}^{\prime}x_{1})^{\gamma}=\pi_{t}^{\prime}x_{1}$ , we get $\pi_{t}^{\prime\gamma}=\pi_{t}^{\prime}\pi_{1}$

and so $l(\pi_{t}^{\prime})=l(\pi_{t}^{\prime}\pi_{1})$ . Since $t>k$ , we have $l(\pi_{\iota}^{\prime})=l(\pi^{\beta_{t}\iota})=l(\pi_{t})=1$ and $l(\pi_{t}^{\prime}\pi_{1})$

$=l((\pi_{t}^{\prime}\pi_{1})^{\beta_{t}})=l(\pi_{t}\pi_{1})=2$ , which contradicts Lemma 4. Similarly we see that
$|(\pi_{t}^{\prime}x_{1}\pi_{1})^{\gamma}=\pi_{t}^{\prime}x_{1}\pi_{1}$ does not occur if $t>k$ . This proves (ii).

LEMMA 12. $x_{1}\neq\lambda_{1}\pi_{k+1}\ldots\pi_{n}$ .
PROOF. Suppose false. We have an element $\gamma$ of odd order such that

$\gamma:\pi_{1}\rightarrow\lambda_{1}\pi_{k+1}\ldots\pi_{n}\rightarrow\lambda_{1}\pi_{1}\pi_{k+1}\ldots\pi_{n}$ , and $[\gamma, \pi_{s}]=1$ $(s\geqq 2)$ ,

by (16) and (17). Furthermore, we know by Lemma 11 (ii) that $\gamma$ centralize
$\pi_{t}^{\prime}$ or $\pi_{t}^{\prime}\pi_{1}$ if $t>k$ . Firstly we shall show that $\gamma$ must centralize $\pi_{t}^{\prime}\pi_{1}$ for each
$t>k$ . In fact, if $\pi_{t}^{\prime\gamma}=\pi_{t}^{\prime}$ , we have $(\pi_{t}^{\prime}\pi_{1})^{\gamma}=\pi_{t}^{\prime}x_{1}=\lambda_{1}\pi_{t}^{\prime}\pi_{k+1}\cdots\pi_{n}$ . Since $t>k$ , we
have $l(\pi_{t}^{\prime}\pi_{1})=l((\pi_{t}^{\prime}\pi_{1})^{\beta_{t}^{-1}})=l(\pi_{t}\pi_{1})=2$ and $l(\lambda_{1}\pi_{t}^{\prime}\pi_{k+1}\ldots\pi_{n})=l((\lambda_{1}\pi_{t}^{\prime}\pi_{k+1}\ldots\pi_{n})^{\beta_{t}})$
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$=l(x_{1})=1$ , which contradicts Lemma 4. Thus we have $(\pi_{\iota}^{\prime}\pi_{1})^{\gamma}=(\pi_{t}^{\prime}\pi_{1})$ for each
$t>k$ . Secondly we shall prove Lemma 12 in the case $k<n-1$ . Then, by
what we have just proved, we have $(\pi_{k+1}^{\prime}\pi_{k+2}^{\prime})^{\gamma}=\pi_{k+1}^{\prime}\pi_{k+2}^{\prime}$ . Then we get

$(\pi_{1}\pi_{k+1}^{\prime}\pi_{k+2}^{\prime})/=\pi_{k+1}^{\prime}\pi_{k+2}^{\prime}x_{1}=\lambda_{1}\pi_{k+1}^{\prime}\pi_{k+2}^{\prime}\pi_{k+1}$ .. . $\pi_{n}$ .
However, we know that

$l(\pi_{1}\pi_{k+1}^{\prime}\pi_{k+\underline{o}}^{\prime})=l((\pi_{1}\pi_{k+1}^{\prime}\pi_{k+2}^{\prime})^{\beta_{k+1}^{-1}\beta_{k+2}^{-1}})=l(\pi_{1}\pi_{k\prec\cdot 1}\pi_{k+2})=3$ and

1 $((\lambda_{1}\pi_{k+1}^{\prime}\pi_{k+2}^{\prime}\pi_{k+1}\ldots\pi_{n})^{\beta_{k+1}\beta_{k+2}})=l(\lambda_{1}\pi_{k+1}\ldots\pi_{n})=l(x_{1})=1$ .
This is acontradiction. $Thuswehaveprovedthel\epsilon$mrra in this case. Finally
let $k=\uparrow\iota-1$ . Then $\gamma$ has the following properties:

$\gamma:\pi_{1}\rightarrow\lambda_{1}\pi_{n}\rightarrow\lambda_{1}\pi_{1}\pi_{n}$ ,

$[\gamma, \pi_{s}]=1$ $(s\geqq 2)$ ,

$[\gamma, \pi_{n}^{\prime}\pi_{1}]=1$ .
We are now in a position to apply Lemma 8 with

$\xi_{1}=\lambda_{1}\pi_{n}$ , $\eta_{1}=\pi_{1}^{\prime}$ , $ u_{1}=\gamma$ ,

$\xi_{2}=\pi_{n}^{\prime}$ , $\eta_{2}=\lambda_{n}$ , $u_{2}=\beta_{n}$ ,

$\xi_{s}=\lambda_{s-1}$ or $\lambda_{s- 1}\pi_{1}(s\geqq 3)$

according as $[\gamma, \lambda_{s}]=1$ or $[\gamma, \lambda_{\epsilon}\pi_{1}]=1$ (cf. Lemma 11) and
$\eta_{s}=\pi_{s-1}^{\prime}(s\geqq 3)$ .

Then the element $\delta$ constructed in Lemma 8 is contained in $N_{G}(J)$ and $\delta:\lambda_{1}\pi_{n}$.
$\rightarrow\pi_{n}^{\prime}$ . However, this is impossible because $k=n-1$ and we have $ M\triangleleft N_{G}(J)\downarrow$

by Lemma 7.
LEMMA 13. $x_{1}\neq\lambda_{1}\pi_{2}\cdots\pi_{n}$ .
PROOF. Suppose false. Then we have an element $\gamma$ such that

$\gamma;\pi_{1}\rightarrow\lambda_{1}\pi_{2}\cdots\pi_{n}\rightarrow\lambda_{1}\pi_{1}\pi_{2}\cdots\pi_{n}$ ,

$[\gamma, \pi_{s}]=1$ $(2\leqq s\leqq n)$ ,

by (16) and (17). Furthermore we know by Lemma 11 (ii) that $\gamma$ must cen-
tralize $\pi_{t}^{\prime}$ or $\pi_{t}^{\prime}\pi_{1}$ if $t>k$ . As in Lemma 12 we can show that $[\gamma, \pi_{t}^{\prime}\pi_{1}]=l$

for each $t>k$ . Also, if $k<n-1$ , we can prove Lemma 13 in the same way
as in Lemma 12. So let $k=n-1$ . Again we shall apply Lemma 8 with

$\xi_{1}=\lambda_{1}\pi_{2}\cdots\pi_{n}$ , $\eta_{1}=\pi_{1}^{\prime}$ , $ u_{1}=\gamma$

$\xi_{2}=\pi_{n}^{\prime}$ , $\eta_{2}=\lambda_{n}$ $u_{2}=\beta_{n}$

$\xi s=\lambda_{s- 1}$ or $\lambda_{S-1}\pi_{1}$ according as $[\gamma, \lambda_{S-1}]=1$ or $[\gamma, \lambda_{S-1}\pi_{1}]$ ,
$\eta_{s}=\pi_{\iota-1}^{\prime}$ $(3\leqq s\leqq n-1)$ .

Then we can get a contradiction with Lemma 7.
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LEMMA 14. Without loss of generality, we may assume $x_{1}\neq\lambda_{1}\pi_{2}\cdots\pi_{k}$ . In
other words, we may assume $x_{1}=\lambda_{1}$ . (So henceforth we shall assume $x_{1}=\lambda_{1}.$)

PROOF. By Lemma 1 (ii), we have an automorphism $\epsilon_{2}$ of $H$. This means
that $\lambda_{1}\alpha_{k}$ can also play the role of $\lambda_{1}$ if we interchange the $\lambda_{S}\alpha_{k}$ by the $\lambda_{s}$

$(1\leqq s\leqq k)$ when necessary. If $x_{1}=\lambda_{1}\pi_{2}\cdots\pi_{k}$ , namely, $l(\lambda_{1}\pi_{2}\cdots\pi_{k})=1$ , we must
have $l(\lambda_{1}\alpha_{k})=1$ because $\lambda_{1}\alpha_{k}\sim\lambda_{1}\pi_{2}\cdots\pi_{k}$ in $H$. Thus if we change the nota-
tion as described above, we may assume $l(\lambda_{1})=1$ , q. e. d.

Now summarizing the preceding results,

LEMMA 15. Under the assumption $l(\lambda_{1})>0$ , there exists an element $\gamma_{1}$ such
that

(i) $\gamma_{1};\pi_{1}\rightarrow\lambda_{1}\rightarrow\lambda_{1}\pi_{1}$ ,
(ii) $[\gamma_{1}, \pi_{t}]=1(t\neq 1)$

(iii) $\gamma_{1}$ centralizes $\lambda_{t}$ or $\lambda_{t}\pi_{1}$ for each $t(t\neq 1)$ and also centralizes one of
elements $\pi_{t}^{\prime},$ $\pi_{t}^{\prime}\pi_{1},$ $\pi_{t}^{\prime}\lambda_{1}$ and $\pi_{t}^{\prime}\lambda_{1}\pi_{1}$ . If $t>k,$ $\gamma$ must centralize $\pi_{t}^{\prime}$ or $\pi_{t}^{\prime}\pi_{1}$ .

PROOF. Set $\gamma_{1}=\gamma$ . Then (i) follows from Lemma 12, 13, 14. (ii) follows
from (17). (iii) follows from Lemma 11.

As remarked at the beginning of this paragraph, we can also obtain the
following results by the same arguments as the preceding ones.

LEMMA 16. Under the assumption $l(\pi_{1}^{\prime})>0$ , there exists an element $\beta_{1}$ such
that

(i) $\beta_{1}:\pi_{1}\rightarrow\pi_{1}^{\prime}\rightarrow\pi_{1}^{\prime}\pi_{1}$

(ii) $[\beta_{1}, \pi_{t}]=1$

(iii) $\beta_{1}cen$tralizes $\pi_{t}^{\prime}$ or $\pi_{t}^{\prime}\pi_{1}$ for each $t(t\neq 1)$ and also centralizes one $0$]

elements $\lambda_{t},$ $\lambda_{t}\pi_{1},$ $\lambda_{t}\pi_{1}^{\prime}$ or $\lambda_{t}\pi_{1}^{\prime}\pi_{1}$ . Moreover, if $t>k,$ $\beta$ must centralize $\lambda_{t}$ or $\lambda_{t}\pi_{1}$ .
3.3. We recall that $H=H_{m}(k)$ contains the elements $\sigma_{1},$ $a_{2}$ , $\cdot$ .. , $\sigma_{k-1}$ of

$N_{G}(J)$ whose action on $J$ were described in \S 1. Set

$\gamma_{s}=\gamma_{1}^{\sigma_{1}\sigma_{2}\cdots\sigma_{s-1}}$ $(1\leqq s\leqq k)$ ,

where $\gamma_{1}$ is the element in Lemma 15 which exists under the assumption
$l(\lambda_{1})>0$ . Then it is easy to see the following:

(18) $\gamma_{s}$ : $\pi_{S}\rightarrow\lambda_{\delta}\rightarrow\lambda_{s}\pi_{s}$ ,

(19) $[\gamma_{s}, \pi_{t}]=1$ $(s\neq t, 1\leqq t\leqq n)$ .
Thus we have now the elements $\gamma_{s}$ for each $s(1\leqq s\leqq n)$ with the properties
(18) and (19) (under the assumption $l(\lambda_{1})>0$).

LEMMA 17. $[\gamma_{s}, \lambda_{t}\pi_{s}]=1(1\leqq s, t\leqq n, s\neq t)$ .
PROOF. We may assume $1\leqq s\leqq k$ . First of all, we shall prove $[\gamma_{1}, \lambda_{t}\pi_{1}]$

$=1(2\leqq t\leqq n)$ . If this is false, we must have $\lambda_{t}^{\gamma_{1}}=\lambda_{t}$ by Lemma 15 (iii) and
so $(\pi_{1}\lambda_{t})^{\gamma_{1}}=\lambda_{1}\lambda_{t}$ . But since $(\pi_{1}\lambda_{t})^{\gamma_{t^{-1}}}=\pi_{1}\pi_{t}$ , we have $l(\pi_{1}\lambda_{t})=2$ , whereas we
have $l(\lambda_{1}\lambda_{t})=1$ because
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$l(\lambda_{1}\lambda_{t})=$

This contradicts Lemma 4. Thus we have proved $[\gamma_{1}, \lambda_{t}\pi_{1}]=1$ . Then it is
easy to see $[\gamma_{s}, \lambda_{t}\pi_{s}]=1$ for $1\leqq s\leqq k$ and $s\neq t$ from the definition of $\gamma_{s}$ .

LEMMA 18. Assume $G$ has no subgroups of index 2. Then we have $l(\lambda_{1})>$ (\rangle

and $l(\pi_{1}^{\prime})>0$ . Moreover, $N_{G}(J)\triangleright M$ and $S$.
PROOF. By Lemma 6 (ii), we have $l(\lambda_{1})>0$ . So we shall prove 1(\mbox{\boldmath $\pi$}\’i)>O.

Since $l(\lambda_{1})>0$, we have the elements $\gamma_{s}$ with the properties of (18), (19) and
Lemma 17. Now we can apply Lemma 8 with

$\xi_{1}=\lambda_{k}$ , $\eta_{1}=\pi_{k}^{\prime}$ , $u_{1}=\gamma_{k}$ ,

$\xi_{2}=\lambda_{k+1}$ , $\eta_{2}=\pi_{k+2}^{\prime}$ , $u_{2}=\gamma_{k+1}$ ,

$\xi_{s}=$ $\eta_{s}=$

Then the element $\delta$ constructed in Lemma 8 is contained in $N_{G}(J)$ and $\pi_{\kappa}^{\sigma}$

$=\pi_{k+1}$ and $[\delta, \pi_{s}]=1(s\neq k, k+1)$ . This implies $N_{G}(J)>N_{H}(J)$ . Then by
Lemma 6 (i), we get $l(\pi_{1}^{\prime})>0$ , as asserted. Furthermore, we have $ N_{G}(J\rangle$

$=\langle N_{H}(J), \delta\rangle$ as is seen from Proposition 2 and the action of $N_{H}(J)$ on the
set $\{\pi_{1}, \pi_{2}, \cdot.. , \pi_{n}\}$ . Since $ N_{G}(M)\ni\delta$ and $N_{H}(J)\triangleright M$, we must have $N_{G}(J)\triangleright M$

and then $N_{G}(J)\triangleright S$.
From now on we shall assume that $G$ has no subgroups of index 2. Then

we have $n$ elements $\gamma_{s}$ which has been described in the preceding discussions.
Furthermore, by Lemma 16 and Lemma 18, we have an element $\beta_{1}$ with the
properties in Lemma 16.

Set
$\beta_{s}=\beta_{1}^{\sigma_{1}\sigma_{2}\cdots\sigma_{S- 1}}$ $(1\leqq s\leqq k)$ .

Then we easily see
(20) $\beta_{s}$ : $\pi_{s}\rightarrow\pi_{s}^{\prime}\rightarrow\pi_{s}^{\prime}\pi_{s}$ ,

(21) $[\beta_{s}, \pi_{t}]=1$ ( $1\leqq t\leqq n$ and $t\neq s$).

Now we can sharpen the third statement of Lemma 15 and Lemma 16 respec-
tively.

LEMMA 19. For each $t(2\leqq t\leqq n)$ , we have
(i) $[\gamma_{1}, \lambda_{t}\pi_{1}]=1$ , (ii) $\gamma_{1}$ centralizes $\pi_{t}^{\prime}$ or $\pi_{t}^{\prime}\pi_{1},$ $(i)^{r}[\beta_{1}, \pi_{\iota}^{\prime}]=1$ , (ii)’ $\beta_{1}$ cen-

tralizes $\lambda_{t}$ or $\lambda_{t}\pi_{1}$ .
PROOF. (i) was proved in Lemma 17. We shall prove (ii). If (ii) is false,

$\gamma_{1}$ must centralize $\pi_{t}^{\prime}\lambda_{1}$ of $\pi_{t}^{\prime}\pi_{1}\lambda_{1}$ . Suppose $(\pi_{t}^{\prime}\lambda_{1})^{\gamma_{1}}=\pi_{t}^{\prime}\lambda_{1}$ . Then we have $\pi_{\iota^{\gamma_{1}}}^{\prime}$

$=\pi_{t}^{\prime}\pi_{1}$ because $\lambda_{1}^{\gamma_{1}}=\lambda_{1}\pi_{1}$ . Since $(\pi_{t}^{\prime}\pi_{1})^{\beta_{t}^{-1}}=\pi_{t}\pi_{1}$ bv (20), we have $l(\pi_{t}^{\prime}\pi_{1})=2$,
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which contradicts Lemma 4 because $l(\pi_{t}^{\prime})=1$ by (20). Similarly $(\pi_{t}^{\prime}\lambda_{1}\pi_{1})^{\gamma_{1}}=\pi_{t}^{\prime}\lambda_{1}\pi_{1}$

does not occur. This proves (ii). (i) and (ii)‘ can be also proved quite simi-
larly by using (18) $-(19)$ .

By using Lemma 19 and the definitions of $\gamma_{s}$ and $\beta_{s}$ , we can easily check
the following:

(22) $[\gamma_{s}, \lambda_{t}\pi_{s}]=1$

(23) $\gamma_{s}$ centralizes $\pi_{t}^{\prime}$ or $\pi_{t}^{\prime}\pi_{s}$

(24) $[\beta_{s}, \pi_{t}^{\prime}]=1$ ,

(25) $\beta_{s}$ centralizes $\lambda_{t}$ or $\lambda_{t}\pi_{s}$ ( $1\leqq s,$ $t\leqq n$ and $s\neq t$).

LEMMA 20. $[\gamma_{s}, \pi_{t}^{\prime}]=[\beta_{s}, \lambda_{t}]=1(1\leqq s, t\leqq n, s\neq t)$ .
PROOF. By (23), we know that for each pair $s$ and $t$ we have $[\gamma_{s}, \pi_{t}^{\prime}]=1$

or $[\gamma_{s}, \pi_{t}^{\prime}\pi_{s}]=1$ . Suppose by way of contradiction that $[\gamma_{s}, \pi_{t}^{\prime}\pi_{s}]=1$ for some
pair $s$ and $t$ . Then we have $\pi_{t}^{;\gamma_{s}}=\pi_{t}^{\prime}\pi_{s}\lambda_{s}$ . If $[\beta_{t}, \lambda_{s}]=1$ , we would have
$1=l(\pi_{t}^{\prime\gamma_{S}})=l(\pi_{t}^{\prime}\pi_{s}\lambda_{s})=l((\pi_{t}^{\prime}\pi_{s}\lambda_{s})^{\beta_{t}^{-1}})=l(\pi_{t}\pi_{s}\lambda_{s})=l((\pi_{t}\pi_{s}\lambda_{s})^{\gamma_{s}})=l(\pi_{t}\pi_{s})=2$ , a contra-
diction. So we must have $[\beta_{t}, \lambda_{s}\pi_{t}]=1$ . For definiteness, let $s=1$ and $t=2$ .
Now we can apply Lemma 8 with

$\xi_{1}=\lambda_{1},$ $\eta_{1}=\pi_{1}^{\prime},$ $u_{1}=\gamma_{1}$

$\xi_{2}=\pi_{2}^{\prime},$ $\eta_{2}=\lambda_{2},$ $u_{2}=\beta_{2}$

$\xi_{i}=\pi_{i}^{\prime}$ or $\pi_{i}^{\prime}\pi_{1}$ according as $[\gamma_{1}, \pi_{t}^{\prime}]=1$ or $[\gamma_{1}, \pi_{i}^{\prime}\pi_{1}]=1$ ,

$\eta_{i}=\lambda_{i}$ $(i\geqq 3)$ .

Then we see that the element $\delta$ constructed in Lemma 8 does not normalize
$M$ which contradicts Lemma 18. Thus we have proved $[\gamma_{s}, \pi_{t}^{\prime}]=1$ for each
pair $s$ and $t$. Then if $[\beta_{t}, \lambda_{s}\pi_{t}]=1$ for some pair $s$ and $t$, we have
$\lambda_{s}^{\beta\iota^{\gamma_{s}^{-1}}}=(\lambda_{s}\pi_{t}\pi_{t}^{\prime})^{\gamma_{s}^{-1}}=\pi_{s}\pi_{t}\pi_{t}^{\prime}$ which is impossible because $l(\lambda_{s})=1$ and $l(\pi_{s}\pi_{t}\pi_{t}^{\prime})=2$ .
Thus we must have $[\beta_{t}, \lambda_{s}]=1$ for each pair $s$ and $t$ . This completes the
proof of Lemma 20.

In order to complete the proof of Theorem 9, it now remains to prove
(i), (iv), (i)t and (iv)’ of Theorem 9. But these can be done easily. So we
shall omit the details. We refer the proofs to those of Lemma (3.4) and (3.5)

of [3].

\S 4. The structure of some $2$-local subgroups.

4.1. Let $G=G_{m}(k)$ as before and we shall assume that $G$ has no sub-
group of index 2.

Set
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$N=C_{G}(\alpha_{n})\cap N_{G}(M)$ ,

$ E=\langle\lambda_{1}\lambda_{2}, \lambda_{2}\lambda_{s}, \lambda_{n-1}\lambda_{n}, \pi_{1}, \pi_{2}, \pi_{n}\rangle$ .
In this paragraph, we shall determine the precise structures of the group $N$

and $N_{G}(E)$ by using Theorem 9, which has been established in the preceding
section.

LEMMA 21. $(\alpha)C_{G}(\alpha_{k})\cap N$ contains involutions $\xi_{1},$
$\eta_{1}$ , $\cdot$ .. , $\eta_{k-1},$

$\xi_{k},$
$\eta_{k+1}$ , $\cdot$ .. ,

$\eta_{n- 1},$
$\xi_{n}$ . (Notice that $\eta_{k}$ is missing) with the following properties:
(i) $\lambda_{\iota}^{\xi_{l}}=\lambda_{s}\pi_{s},$ $[\xi_{\iota}, \lambda_{t}]=[\xi_{s}, \lambda_{t}\pi_{t}]=1(s\neq t)$ ,

(ii) $(\lambda_{s}\pi_{l})^{r}\iota=\lambda_{s+1},$ $[\eta_{s}, \lambda_{t+1}]=[\eta_{\epsilon}, \lambda_{t}\pi_{t}]=1(s\neq t)$ ,

(iii) $\xi_{S}$ and $\eta_{\delta}$ are of length 1.
$(\beta)$ The involutions $\xi_{s}$ and $\eta_{s}$ which satisfy the conditions $(i)-(iii)$ of $(\alpha)$

necessarily have the following properties:
(iv) The group $\langle\xi_{1}, \eta_{1}, \cdots \eta_{k-1}, \xi_{k}\rangle$ (resp. $\langle\xi_{k+1},$

$\eta_{k+1},$ $\eta_{n- x},$
$\xi_{n}\rangle$) is iso-

morphic to $\mathfrak{S}_{2k}$ (resp. $\mathfrak{S}_{2n-2k}$) and the ordered set $\{\xi_{1}, \eta_{1}, \cdots \eta_{k-1}, \xi_{k}\}$ (resp.
$\{\xi_{k+1}, \eta_{k+1}, \cdot.. , \eta_{n-1}, \xi_{n}\})$ is a canonical set of generators of $\mathfrak{S}_{2k}$ (resp. $\mathfrak{S}_{2n-2k}$).

PROOF. $(\alpha)$ Put $\xi_{s}=\pi_{\iota}^{\prime}(1\leqq s\leqq n)$ and $\eta_{t}=a_{t}^{\prime}(1\leqq t\leqq n-1, t\neq k)$ , where
the $\sigma_{t}^{\prime}$ are elements of $H_{m}(k)$ introduced in \S 1. Then the $\xi_{\epsilon}$ and $\eta_{t}$ satisfy
the conditions $(i)-(iii)$ of $(\alpha)$ . $(\beta)$ Let $\xi_{l}^{\prime}$ and $\eta_{\iota}^{\prime}$ be any set of involutions with
the properties $(i)-(iii)$ . Since $M$ is self-centralizing in $G$ , we must have
$\xi_{\iota}^{\prime}=\pi_{s}^{\prime}\mu_{s}$ for some $\mu_{\epsilon}\in M$. Since $\xi_{l}^{\prime}$ is an involution, $\pi_{s}^{\prime}$ must commute with
$\mu_{s}$ and so we have

$\mu_{s}\in\langle\pi_{s}\rangle\times\prod_{\prime\neq s}^{n}\langle\lambda_{\ell}, \lambda_{i^{\sim_{C}}i}\rangle$ .
Then in order that $\xi_{l}^{\prime}$ is of length 1, it follows from Theorem 9 that we must
have $\mu_{\iota}=1$ or $\pi_{\iota}$ . Quite similarly, we must have

$\eta_{t}^{\prime}=\sigma_{l}^{\prime}\lambda_{t- 1}\pi_{t- 1}\lambda_{t}$ or $\sigma_{t}^{\prime}$ .
Then it can be easily checked that the $\xi_{\iota}^{\prime}$ and the $\eta_{t}^{\prime}$ satisfy the condition
(iv), $q$ . $e$ . $d$ .

LEMMA 22. $N$ is isomorphic to the wreathed product $Z_{2}1\mathfrak{S}_{2n}$ . $1n$ parti-
cular, $N$ splits over M. More precisely, there exists a complement of $N$ over $M$

which contains $\pi\{,$ $\pi_{2}^{\prime},$ $\cdots$ $\pi_{n}^{\prime}$ .
PROOF. Set

$x_{s}=\pi_{l}^{\prime}$ $(1\leqq s\leqq n)$ ,

$y_{\iota}=\gamma_{l}^{-1}\gamma_{s\cdot\succ 1}\gamma_{\iota}\pi_{\iota+1}^{\prime}$ $(1\leqq s\leqq n)$ ,

where we define $\gamma_{n+1}=\gamma_{1}$ and $\pi_{n+1}^{\prime}=\pi_{1}^{\prime}$ . Let

$ N_{1}=\langle x_{1}, y_{1}, x_{n- 1}, y_{n-1}, x_{n}, M\rangle$ .
Firstly, we shall show $N_{1}=N$. We see from Theorem 9 that
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$\lambda_{s}^{x_{S}}=\lambda_{s}\pi_{s}$ , $[x_{\epsilon}, \lambda_{t}]=[x_{s}, \lambda_{t}\pi_{t}]=1$ $(s\neq t)$ ,

$(\lambda_{s}\pi_{s})^{y}=\lambda_{s+1}$ , $[y_{s}, \lambda_{t+1}]=[y_{s}, \lambda_{t}\pi_{t}]=1$ $(s\mp\prime t)$ .
These relations imply that every element of $N_{1}$ induces a permutation on the
set $\{\lambda_{1}, \lambda_{1}\pi_{1}, \cdot.. , \lambda_{n}, \lambda_{n}\pi_{n}\}$ and $N_{1}/M\cong \mathfrak{S}_{2n}$ . On the other hand, we also see
from Theorem 9 that every element of $N$ induces a permutation on the set
$\{\lambda_{1}, \lambda_{1}\pi_{1}, \cdot.. , \lambda_{n}, \lambda_{n}\pi_{n}\}$ (cf. [5; the proof of Lemma 4.4]). This implies $N=N_{1}$ ,

because $M$ is self-centralizing. In view of what we have just seen, in order
to complete the proof of our lemma, it will be sufficient to see that the group
$\langle x_{1}, y_{1}, \cdots, y_{n-1}, x_{n}\rangle$ is isomorphic to $\mathfrak{S}_{2n}$ and the ordered set $\{x_{1}, y_{1}, \cdots , y_{n-1}, x_{n}\}$

is a canonical set of generators of $\mathfrak{S}_{2n}$ . If we set $\xi_{s}=x_{s}$ and $\eta_{s}=y_{s}$ in
Lemma 21, then the set of the elements $\{x_{s}, y_{t}|1\leqq s\leqq n, 1\leqq t\leqq n-1, t\neq k\}$

satisfy the conditions $(i)-(iii)$ of Lemma 21. Thus it also satisfies (iv) of
Lemma 21. So in order to see that $\{x_{1}, y_{1}, \cdot.. , y_{n-1}, x_{n}\}$ is a canonical set of
generators of $\mathfrak{S}_{2n}$ , it will be sufficient to see

$(x_{k}y_{k})^{3}=(y_{k}x_{k+1})^{3}=1$ , $[y_{k}, x_{s}]=[y_{k}, y_{t}]=1$

$(s\neq k, k+1,1\leqq t\leqq n-1)$ .

Firstly let $n>2$ . From the action of $N$ on $M$ we see that $N$ contains an
element $\epsilon$ such that

$\epsilon;\lambda_{s}\rightarrow\lambda_{s+1}$ and $\lambda_{s}\pi_{s}\rightarrow\lambda_{s\prec\cdot 1}\pi_{s+1}$ $(1 \leqq s\leqq n, \lambda_{n\triangleleft\cdot 1}=\pi_{1}, \pi_{n+1}=\pi_{1})$ .
By transforming $C_{G}(\alpha_{k})\cap N$ by conjugation by $\epsilon$ , we can apply Lemma 21 to
$C_{G}(\pi_{2}\pi_{8}\cdots\pi_{k+1})\cap N$ and a basis $\{\lambda_{2}, \lambda_{2}\pi_{2}, \lambda_{n}, \lambda_{n}\pi_{n}, \lambda_{1}, \lambda_{1}\pi_{1}\}$ . Then an ordered
set of elements

$\{x_{2}, y_{2}, y_{k}, x_{k+1}, x_{k+2}, x_{n}, y_{n}, x_{1}\}$

must have the property (iv) of Lemma 21. This yields

$(y_{k}x_{k})^{3}=(y_{k}x_{k+1})^{\theta}=1$ , $[y_{k}, y_{t}]=1$ $(t\neq k+1,1)$

$[y_{k}, x_{s}]=1$ $(s\neq k, k+1)$ .
So it remains to show

$[y_{k}, y_{k+1}]=[y_{k}, y_{1}]=1$ .
Again, we can apply Lemma 21 to $C_{G}(\pi_{3}\cdots\pi_{k+2})\cap N$ and a basis of $M$,
$\{\lambda_{3}, \lambda_{a}\pi_{s}, \cdot.. , \lambda_{n}, \lambda_{n}\pi_{n}, \lambda_{1}, \lambda_{1}\pi_{1}, \lambda_{2}, \lambda_{2}\pi_{2}\}$ and an ordered set of elements

$\{x_{3}, y_{3}, y_{k+1}, x_{k\prec\cdot 8}, x_{k+s}, y_{n}, x_{1}, y_{1}, x_{2}\}$ .
Then the property (iv) of Lemma 21 yields $[y_{k}, y_{k+1}]=[y_{k}, y_{1}]=1$ . Finally

let $n=2$ . Set $\delta=(x_{1}x_{2})^{y_{1}}$ . By Theorem 9, we have

$\delta:\lambda_{1}\rightarrow\lambda_{2},$
$\pi_{1}\rightarrow\pi_{2},$

$\pi_{1}^{\prime}\rightarrow\pi_{2}^{\prime}$ or $\pi_{2}^{\prime}\pi_{2}$ .
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The last conjugation follows from the fact that $(z\text{\’{i}} y_{1})^{3}\equiv 1mod M$ and we
must have $l(\pi_{1}^{\prime\delta})=1$ . This implies that $\langle\delta, \pi_{1}^{\prime}, \pi_{2}^{\prime}\rangle$ or $\langle\delta, \pi_{1}^{\prime}, \pi_{2}^{\prime}\pi_{2}\rangle$ is a comple.
ment of $ N_{G}(J)=\langle\delta, ]\rangle$ over $M$. Thus a 2-Sylow subgroup of $G$ , which is
equal to $N_{G}(J)$ in this case, splits over $M$. Then a theorem of Gasch\"utz
yields that $N_{G}(M)/M$ splits. Let $ Q=\langle t_{1}, t_{2}, t_{\theta}\rangle$ be a complement of $N$ over
$\lrcorner lf$ such that $t_{1},$ $t_{2}$ and $t_{3}$ induce transpositions

$t_{1}$ : $\lambda_{1}\leftrightarrow\lambda_{1}\pi_{1}$

$t_{2}$ : $\lambda_{1}\pi_{1}\leftrightarrow\lambda_{2}$

$t_{3}$ : $\lambda_{2}\leftrightarrow\lambda_{2}\pi_{2}$

on the set $\{\lambda_{1}, \lambda_{1}\pi_{1}, \lambda_{2}, \lambda_{2}\pi_{2}\}$ . Such elements exist, because every element of
$N$ induces a permutation on the set $\{\lambda_{1}, \lambda_{1}\pi_{1}, \lambda_{2}, \lambda_{2}\pi_{2}\}$ . Then an elementary
abelian subgroup $\langle t_{1}, \pi_{1}, t_{3}, \pi_{2}\rangle$ must be conjugate in $N$ to $S$. In fact, we
easily see that $\langle t_{1}, \pi_{1}, t_{\theta}, \pi_{2}\rangle$ is normal in a 2-Sylow subgroup $\langle M, t_{1}, t_{3}, (t_{1}t_{2})^{t_{3}}\rangle$

of $G$ which must be conjugate in $G$ to $N_{G}(J)$ , and so $\langle t_{1}, \pi_{1}, t_{\theta}, \pi_{2}\rangle$ must be
conjugate to $S$, because $S$ and $M$ are just two such subgroups of $N_{G}(])$ .
Then we may assume $t_{1}=\pi_{1}^{\prime}$ or $\pi_{1}^{\prime}\pi_{2}$ . If we have $t_{1}=\pi_{1}^{\prime}\pi_{2}$ , interchange $\{t_{1}, t_{2}, t_{3}\}$

by $\{t_{1}\pi_{1}\pi_{2}, t_{2}\pi_{1}\pi_{2}, t_{S}\pi_{1}\pi_{2}\}$ . Then we have $t_{1}^{\gamma_{1}}=\pi_{1}^{\prime}$ . Thus we may assume with-
out loss that $t_{1}=\pi_{1}^{\prime}$ and then $f_{3}=\pi_{2}^{\prime}$ . This completes the proof of Lemma 22.

LEMMA 23. Let $Q$ be a complement of $N$ over M. Then $Q$ is a complement
of $N_{G}(E)$ over $C_{G}(E)$ and $ C_{G}(E)=E\times\langle\nu\rangle$ where $\nu$ is as in (2). In particular,
$N_{G}(E)$ is isomorphic to $C_{\mathfrak{U}_{m}}(\alpha_{n})$ .

PROOF. From the action of $Q$ on $M$, we see that $Q$ normalizes $E$. More-
over, from Theorem 9 we also see that any two elements of $E$ are conjugate
in $G$ if and only if they are so in $Q\cdot C_{G}(E)$ . This implies

$[N_{G}(E):C_{G}(\alpha_{k})\cap N_{G}(E)]=[Q\cdot C_{G}(E):C_{G}(\alpha_{k})\cap N_{G}(E)]$

because $C_{G}(\alpha_{k})\cap N_{G}(E)=C_{G}(\alpha_{k})\cap Q\cdot C_{G}(E)$ . Therefore we must have $ N_{G}(E\rangle$

$=Q\cdot C_{G}(E)$ , because $N_{G}(E)\supseteqq Q\cdot C_{G}(E)$ . Since $C_{G}(E)\subseteqq C_{G}(\alpha_{k})=H_{m}(k)$ , we have
$ C_{G}(E)=E\times\langle\nu\rangle$ . This means $Q\cap C_{G}(E)=1$ and so $Q$ is a complement of
$N_{G}(E)$ over $C_{G}(E)$ . Moreover, since we also know the action of $Q$ on $E$, it
can be easily ckecked that $N_{G}(E)$ is isomorphic to $C_{\mathfrak{U}_{m}}(\alpha_{n}),$ $q$ . $e$ . $d$ .

LEMMA 24. (i) $N_{G}(J)$ splits over J. (ii) Let $D$ be any 2-Sylow subgroup of
$G$ containing $S$ (resp. $M$). Then $S$ (resp. $M$) is weakly closed in a 2-Sylow
subgroup of $G$ with respect to $G$ and $D$ splits over $S$ .

PROOF. Let $Q$ be a complement of $N$ over $M$ which contains { $\pi_{1}^{\prime},$ $\pi_{2}^{\prime},$ $\cdots$

$\pi_{n}^{\prime}\}$ . Such a complement exists by Lemma 22. We know that $Q$ is isomor-
phic to $\mathfrak{S}_{2n}$ and acts on $M$ as the symmetric group on the set { $\lambda_{1},$ $\lambda_{1}\pi_{1}$ , $\cdot$ ., ,
$\lambda_{n},$ $\lambda_{n}\pi_{n}$ }. So we can find $n-1$ involutions $a_{1}^{\prime\prime},$ $a_{2}^{\prime\prime}$ , $\cdot$ .. , $a_{n-1}^{\prime\prime}$ of $Q$ such that
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$(\lambda_{s}\pi_{s})^{\sigma_{s}^{\prime\prime}}=\lambda_{s+1}$ $(1\leqq s\leqq n-1)$

$[a_{s}^{\prime\prime}, \lambda_{\iota+1}]=[a_{s}^{\prime}, \lambda_{t}\pi_{t}]=1$ $(t\neq s)$ .

Then the ordered set $\{\pi_{1}^{\prime}, \sigma_{1}^{\prime\prime}, \cdots \sigma_{n-1}^{\prime\prime}, \pi_{n}^{\prime}\}$ is a canonical set of generators of
$Q$ . Set $\rho_{s}=(\pi_{s}^{\prime}\pi_{s+1}^{\prime})^{\sigma_{s}^{\prime\prime}}(1\leqq s\leqq n-1)$ . Then from the actions of the $\rho_{s}$ on $M$,

we can easily check that the group $\langle\rho_{1}, \rho_{2}, \cdots , \rho_{n-1}\rangle$ normalizes $J$ and is
isomorphic to $\mathfrak{S}_{n}$ and the ordered set $\{\rho_{1}, \rho_{2}, \cdots \rho_{n- 1}\}$ is a canonical set of
generators of $\mathfrak{S}_{n}$ . Since we know $N_{G}(J)/J\cong \mathfrak{S}_{n}$ , we must have that $\langle\rho_{1},$

$\rho_{2}$ ,
... , $\rho_{n-1}\rangle$ is a complement of $N_{G}(J)$ over $J$. Furthermore we see that $N_{G}(J)$

splits over $S$ and $M$. Indeed, $\langle\rho_{1}, \rho_{2}, \cdots \rho_{n-1}, \lambda_{1}, \lambda_{2}, \lambda_{n}\rangle$ (resp. \langle $\rho_{1},$ $\rho_{2},$
$\cdots$ ,

$\rho_{n-1},$
$\pi\{,$ $\pi_{2}^{\prime}$ , $\cdot$ .. , $\pi_{n}^{\prime}\rangle$) is a complement of $N_{G}(S)$ over $S$ (resp. $N_{G}(M)$ over $M$).

We shall prove (ii). We may assume without loss that $D$ is a 2-Sylow sub-
group of $N_{G}(J)$ by Sylow’s theorem and Lemma 3. Then it is obvious that
$D$ splits over $S$ and $M$. From Lemma 5 and Lemma 18 it follows that $S$ and
$M$ are weakly closed in $D$ with respect to $G$ , $q$ . e. d.

4.2. In order to complete the proof of our main theorem, we will have
to determine the centralizer of some involution of $G_{m}(k)$ other than a given
one. We note here that all the information has been obtained which is
necessary to apply the arguments of \S 5 and \S 6 of [3]. Firstly, let $k=1$

and $G=G_{m}(1)$ . Then we can easily check that we can apply the arguments
of \S 6 of [3] without any changes to get $C_{G}(\alpha_{n})\triangleright E$ where $E$ is an elementary
abelian group of order $2^{2n-1}$ introduced in the preceding paragraph. Thus
we obtain $C_{G}(\alpha_{n})=N_{G}(E)$ , because $C_{G}(\alpha_{n})\supseteqq N_{G}(E)$ by Theorem 9. This yields
the desired conclusions $G\cong \mathfrak{A}_{m}$ by Lemma 23 and [3; Theorem I] (cf. the
remark at the end of the proof of Lemma 3). Secondly, let $n>k>1$ and
$G=G_{m}(k)$ . Then we can also check that we can apply the arguments of \S 5
of [3] without any change to determine the structure of $C_{G}(\alpha_{1})$ which will
turn out to be isomorphic to $C_{\mathfrak{A}_{m}}(\alpha_{1})\cong H_{m}(1)$ . Thus, in this case, we get the
conclusion $G\cong \mathfrak{A}_{m}$ by reducing the problem to the preceding case $k=1$ .
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