On the index of a semi-free S^{1}-action

By Katsuo Kawakubo and Fuichi Uchida

(Received June 29, 1970)

§ 1. Introduction.

Let G be a compact Lie group, M^{n} a closed smooth n-manifold and $\varphi: G \times M^{n} \rightarrow M^{n}$ a smooth action. Then the fixed point set is a disjoint union of smooth k-manifolds $F^{k}, 0 \leqq k \leqq n$.
P. E. Conner and E.E. Floyd [2] obtained several properties of fixed point sets of smooth involutions and one of their results is the following.

Suppose that $T: M^{2 k} \rightarrow M^{2 k}$ is a smooth involution on a closed manifold of odd Euler characteristic. Then some component of the fixed point set is of dimension $\geqq k$.

Now we consider semi-free smooth S^{1}-actions on oriented manifolds and the purpose of this paper is to show the following results.

ThEOREM 1.1. Let M^{n} be an oriented closed smooth n-manifold and $\varphi: S^{1} \times M^{n} \rightarrow M^{n}$ a semi-free smooth action. Then each k-dimensional fixed point set F^{k} can be canonically oriented and the index of M^{n} is the sum of indices of F^{k}, that is,

$$
\boldsymbol{I}\left(M^{n}\right)=\sum_{k=0}^{n} \boldsymbol{I}\left(F^{k}\right) .
$$

Theorem 1.2. Suppose that $\varphi: S^{1} \times M^{4 k} \rightarrow M^{4 k}$ is a semi-free smooth S^{1-} action on an oriented closed manifold of non-zero index. Then some component of the fixed point set is of dimension $\geqq 2 k$.

§ 2. Semi-free S^{1}-action.

Let S^{1} and D^{2} denote the unit circle and the unit disk in the field of complex numbers. Regard S^{1} as a compact Lie group. Let M^{n} be an oriented closed smooth n-manifold and $\varphi: S^{1} \times M^{n} \rightarrow M^{n}$ a smooth action. The action φ is called semi-free if it is free outside the fixed point set. Then we have the following ([4], Lemma 2.2).

Lemma 2.1. The normal bundle of each component of the fixed point set in M^{n} has naturally a complex structure, such that the induced S^{1}-action on this bundle is a scalar multiplication.

From this lemma, a codimension of each component of the fixed point set
in M^{n} is even. Let ν^{k} denote the complex normal bundle to $F^{n-2 k}$. Then ν^{k} is canonically oriented and $F^{n-2 k}$ can be so oriented that the bundle map $\tau\left(F^{n-2 k}\right) \oplus \nu^{k} \rightarrow \tau\left(M^{n}\right)$ is orientation preserving, where $\tau(M)$ denotes the tangent bundle of M.

For each complex vector bundle ξ over an oriented closed smooth manifold X, let $\boldsymbol{S}(\xi)$ and $\boldsymbol{C P}(\xi)$ denote the sphere bundle and the complex projective bundle associated to ξ, respectively. Then the orientations of $\boldsymbol{S}(\xi)$ and $\boldsymbol{C P}(\xi)$ are induced by those of X and ξ. And we have the following result.

Lemma 2.2. Let M^{n} be an oriented closed smooth n-manifold, $\varphi: S^{1} \times M^{n}$ $\rightarrow M^{n}$ a semi-free smooth action and $F^{n-2 k}$ an oriented ($n-2 k$)-dimensional fixed point set. Let ν^{k} denote the complex normal bundle to $F^{n-2 k}$. Then
(a) $\quad \sum_{k \geq 1}\left[\boldsymbol{C P}\left(\nu^{k}\right)\right]=0$
and
(b) $\left[M^{n}\right]=\sum_{k \geq 0}\left[\boldsymbol{C P}\left(\nu^{k} \oplus \theta^{1}\right)\right]$
in the oriented cobordism ring Ω_{*}, where θ^{1} is a trivial complex line bundle.
Proof. For (a), we may suppose $F^{n}=\phi$. Let N_{k} be a S^{1}-invariant tubular neighborhood of $F^{n-2 k}$ (see [2], §22) mutually disjoint for $k \geqq 1$. Then $B^{n}=M^{n}-\bigcup_{k} \operatorname{Int} N_{k}$ is a regularly embedded invariant submanifold with boundary, on which S^{1} acts freely and the boundary of the orbit manifold B^{n} / S^{1} is a disjoint union of $\boldsymbol{C P}\left(\nu^{k}\right)$ for $k \geqq 1$. This shows (a).

Next, we define two actions τ_{1}, τ_{2} of S^{1} on $D^{2} \times M^{n}$ by

$$
\begin{aligned}
& \tau_{1}(\lambda,(z, x))=(\lambda z, x), \\
& \tau_{2}(\lambda,(z, x))=(\lambda z, \varphi(\lambda, x))
\end{aligned}
$$

where λ and z represent complex numbers in S^{1} and D^{2} respectively and $x \in M^{n}$. Restricting to $S^{1} \times M^{n}$ we obtain induced actions ($\tau_{1}, S^{1} \times M^{n}$) and ($\tau_{2}, S^{1} \times M^{n}$) which we shall show to be equivariantly diffeomorphic. Define $f: S^{1} \times M^{n} \rightarrow S^{1} \times M^{n}$ by

$$
f(\lambda, x)=(\lambda, \varphi(\lambda, x))
$$

It is easy to check that f is an equivariant diffeomorphism.
Now from the disjoint union ($\left.\tau_{1}, D^{2} \times M^{n}\right) \cup\left(\tau_{2},-D^{2} \times M^{n}\right)$, we form an oriented closed smooth ($n+2$)-manifold M^{n+2} and a smooth S^{1}-action τ on M^{n+2} by identifying the boundaries ($\tau_{1}, S^{1} \times M^{n}$) and ($\tau_{2}, S^{1} \times M^{n}$) via f. This construction is due to Conner and Floyd ([2], P. 119). Note that in (τ_{1}, $\left.D^{2} \times M^{n}\right), S^{1}$ acts freely on $D^{2} \times M^{n}-\left(0 \times M^{n}\right)$, and leaves every point of $0 \times M^{n}$ stationary. Also in ($\tau_{2}, D^{2} \times M^{n}$), S^{1} acts freely on $D^{2} \times M^{n}-\left(0 \times M^{n}\right)$, while the isotropy subgroup at ($0, x$) is precisely the isotropy subgroup for (φ, M^{n})
at x. Thus the action τ on M^{n+2} is semi-free and the equation (a) on this action implies (b).
q. e.d.

§ 3. Index of a complex projective bundle.

Now we consider the index of $\boldsymbol{C P}\left(\xi^{k}\right)$, the total space of the complex projective bundle associated to a complex k-plane bundle ξ^{k} over an oriented closed manifold V^{n}. For this purpose we prepare the following known result.

LEMMA 3.1. Let M be a real, symmetric, nonsingular matrix of the form

$$
M=\left(\begin{array}{ccc}
0 & 0 & L \\
0 & A & * \\
t_{L} & * & *
\end{array}\right)
$$

where A, L are square matrices (empty matrix is admitted for A). Then there exists a nonsingular matrix T such that

$$
{ }^{t} T M T=\left(\begin{array}{ccc}
E & 0 & 0 \\
0 & A & 0 \\
0 & 0 & -E
\end{array}\right)
$$

where E is an identity matrix. Here, as always, we denote by ${ }^{t} P$ the transpose of P.

Proof. Suppose

$$
M=\left(\begin{array}{ccc}
0 & 0 & L \\
0 & A & B \\
{ }^{t} L & { }^{t} B & C
\end{array}\right)
$$

Then the matrix

$$
T=\left|\begin{array}{ccc}
\frac{Y+E}{\sqrt{2}} & 0 & \frac{Y-E}{\sqrt{2}} \\
\frac{X}{\sqrt{2}} & E & \frac{X}{\sqrt{2}} \\
\frac{L^{-1}}{\sqrt{2}} & 0 & \frac{L^{-1}}{\sqrt{2}}
\end{array}\right|
$$

is a desired matrix, where

$$
\begin{aligned}
& X=-A^{-1} B L^{-1} \\
& Y=\frac{1}{2} t^{t} L^{-1}\left({ }^{t} B A^{-1} B-C\right) L^{-1}
\end{aligned}
$$

q.e.d.

THEOREM 3.2.

$$
\boldsymbol{I}\left(\boldsymbol{C P}\left(\xi^{k}\right)\right)=\frac{1+(-1)^{k-1}}{2} \cdot \boldsymbol{I}\left(V^{n}\right)
$$

Proof. In fact this is an immediate consequence of [1], but we give a proof for the completeness. It suffices to prove this theorem in the case of $\operatorname{dim} \boldsymbol{C P}\left(\xi^{k}\right)=n+2(k-1)=4 m$ for some m.

Let $u \in H^{2}\left(\boldsymbol{C P}\left(\xi^{k}\right) ; \boldsymbol{Z}\right)$ be the first Chern class of the canonical line bundle over $\boldsymbol{C P}\left(\xi^{k}\right)$, then the cohomology ring $H^{*}\left(\boldsymbol{C P}\left(\xi^{k}\right) ; \boldsymbol{R}\right)$ with real coefficients is a free $H^{*}\left(V^{n} ; \boldsymbol{R}\right)$ module with basis $\left\{1, u, u^{2}, \cdots, u^{k-1}\right\}$ by the theorem of Leray-Hirsch (cf. [3], P. 258). Let $\left\{v_{i}^{s}\right\}$ be a basis for $H^{s}\left(V^{n} ; \boldsymbol{R}\right)$, then as a basis for $H^{2 m}\left(\boldsymbol{C P}\left(\xi^{k}\right) ; \boldsymbol{R}\right)$ we can take $\left\{v_{j}^{2(m-t)} u^{t}\right\},\left(\max \left(0, m-\frac{n}{2}\right) \leqq t \leqq\right.$ $\min (m, k-1))$.

For an oriented manifold M^{n}, set

$$
\langle x, y\rangle=(x \cup y)\left[M^{n}\right] \quad \text { for } \quad x, y \in H^{*}\left(M^{n} ; \boldsymbol{R}\right)
$$

where [M^{n}] is the fundamental class of $H_{n}\left(M^{n} ; Z\right)$. Then

$$
\left\langle v_{i}^{2(m-s)} u^{s}, v_{j}^{2(m-t)} u^{t}\right\rangle= \begin{cases}\left\langle v_{i}^{2(m-s)}, v_{j}^{2(m-t)}\right\rangle & \text { if } s+t=k-1, \\ 0 & \text { if } \quad s+t<k-1 .\end{cases}
$$

Arrange the basis $\left\{v_{j}^{2(m-t)} u^{t}\right\}$ in increasing order of t. Then the matrix of coefficients $\left\langle v_{i}^{2(m-s)} u^{s}, v_{j}^{2(m-t)} u^{l}\right\rangle$ has the form in Lemma 3.1. Therefore

$$
\boldsymbol{I}\left(\boldsymbol{C P}\left(\xi^{k}\right)\right)= \begin{cases}\boldsymbol{I}\left(V^{n}\right) & \text { if } \quad k \text { is odd } \\ 0 & \text { if } k \text { is even }\end{cases}
$$

by Lemma 3.1. This completes the proof of Theorem 3.2.

§ 4. Indices of fixed point sets.

In this section we prove Theorem 1.1. Under the notations in Lemma 2.2, we have

$$
\begin{aligned}
\sum_{k: \text { odd }} \boldsymbol{I}\left(F^{n-2 k}\right) & =0, \\
\sum_{k: \text { even }} \boldsymbol{I}\left(F^{n-2 k}\right) & =\boldsymbol{I}\left(M^{n}\right)
\end{aligned}
$$

from Lemma 2.2 and Theorem 3.2. Thus

$$
I\left(M^{n}\right)=\sum_{k=0}^{\left[\frac{n}{2}\right]} \boldsymbol{I}\left(F^{n-2 k}\right)
$$

This completes the proof, since the codimension of each component of the fixed point set is even.

§ 5. Dimension of fixed point sets.

In this section we prove Theorem 1.2, Let

$$
\Delta: \Omega_{n}\left(\boldsymbol{C P}^{\infty}\right) \longrightarrow \Omega_{n-2}\left(\boldsymbol{C P}^{\infty}\right)
$$

be the Smith homomorphism (cf. [2], § 26) and

$$
i_{*}: \Omega_{n}(\boldsymbol{B} \boldsymbol{U}(k)) \longrightarrow \Omega_{n}(\boldsymbol{B} \boldsymbol{U}(k+1))
$$

a homomorphism induced by the canonical inclusion map $i: \boldsymbol{B} \boldsymbol{U}(k) \rightarrow \boldsymbol{B} \boldsymbol{U}(k+1)$. Let

$$
\partial: \Omega_{n}(\boldsymbol{B} \boldsymbol{U}(k)) \longrightarrow \Omega_{n+2 k-2}\left(\boldsymbol{C P}^{\infty}\right)
$$

be a homomorphism as follows (cf. [4], §3). To each complex vector bundle ξ^{k} we have a line bundle $\hat{\xi}$ associated to the principal S^{1}-bundle $\boldsymbol{S}\left(\xi^{k}\right) \rightarrow \boldsymbol{C P}\left(\xi^{k}\right)$, then $\partial\left(\left[\xi^{k}\right]\right)=[\hat{\xi}]$. Then we have the following commutative diagram (cf. [2], 26.4)

And we obtain the following result by the same way as in the case of [2; Theorem 27.3].

Lemma 5.1. Let $\varphi: S^{1} \times M^{n} \rightarrow M^{n}$ be a semi-free smooth S^{1}-action on an oriented closed manifold of non-zero index, and let ν^{k} denote the complex normal bundle to ($n-2 k$)-dimensional fixed point set $F^{n-2 k}$. There exists $a k$ such that $\left[\nu^{k}\right]$ is not in the image of

$$
i_{*}: \Omega_{n-2 k}(\boldsymbol{B} \boldsymbol{U}(k-1)) \longrightarrow \Omega_{n-2 k}(\boldsymbol{B} \boldsymbol{U}(k)) .
$$

Since

$$
i_{*}: \Omega_{m}(\boldsymbol{B} \boldsymbol{U}(k-1)) \cong \Omega_{m}(\boldsymbol{B} \boldsymbol{U}(k)) \quad \text { for } \quad m \leqq 2(k-1),
$$

Theorem 1.2 is an immediate corollary of the above result.

Osaka University

References

[1] S.S. Chern, F. Hirzebruch and J. P. Serre, On the index of a fibered manifold, Proc. Amer. Math. Soc., 8 (1957), 587-596.
[2] P.E. Conner and E.E. Floyd, Differentiable Periodic Maps, Springer-Verlag, Berlin, 1964.
[3] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[4] F. Uchida, Cobordism groups of semi-free S^{1-} and S^{3}-actions, Osaka J. Math., 7 (1970), 345-351.

