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\S 1. Introduction.

Let $G$ be a compact Lie group, $M^{n}$ a closed smooth n-manifold and
$\varphi:G\times M^{n}\rightarrow M^{n}$ a smooth action. Then the fixed point set is a disjoint union
of smooth k-manifolds $F^{k},$ $0\leqq k\leqq n$ .

P. E. Conner and E. E. Floyd [2] obtained several properties of fixed
point sets of smooth involutions and one of their results is the following.

Suppose that $T:M^{2k}\rightarrow M^{2k}$ is a smooth involution on a closed manifold of
odd Euler characteristic. Then some component of the fixed point set is of
dimension $\geqq k$ .

Now we consider semi-free smooth $S^{1}$-actions on oriented manifolds and
the purpose of this paper is to show the following results.

THEOREM 1.1. Let $M^{n}$ be an oriented closed smooth n-manifold and
$\varphi:S^{1}\times M^{n}\rightarrow M^{n}$ a semi-free smooth action. Then each k-dimensional fixed
point set $F^{k}$ can be canonically oriented and the index of $M^{n}$ is the sum of
indices of $F^{k}$ , that is,

$I(M^{n})=\sum_{k=0}^{n}I(F^{k})$ .
THEOREM 1.2. Suppose that $\varphi:S^{1}\times M^{4k}\rightarrow M^{4k}$ is a semi-free smooth $S^{1_{-}}$

action on an oriented closed manifold of non-zero index. Then some component
of the fixed point set is of dimension $\geqq 2k$ .

\S 2. Semi-free $S^{1}$-action.

Let $S^{1}$ and $D^{2}$ denote the unit circle and the unit disk in the field of
complex numbers. Regard $S^{1}$ as a compact Lie group. Let $M^{n}$ be an oriented
closed smooth n-manifold and $\varphi:S^{1}\times M^{n}\rightarrow M^{n}$ a smooth action. The action
$\varphi$ is called semi-free if it is free outside the fixed point set. Then we have
the following ([4], Lemma 2.2).

LEMMA 2.1. The normal bundle of each component of the fixed point set
in $M^{n}$ has naturally a complex structure, such that the induced S’-action on
this bundle is a scalar multiplication.

From this lemma, a codimension of each component of the fixed point set
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in $M^{n}$ is even. Let $\nu^{k}$ denote the complex normal bundle to $F^{n-2k}$ . Then $\nu^{k}$

is canonically oriented and $F^{n-2k}$ can be so oriented that the bundle map
$\tau(F^{n-2k})\oplus\nu^{k}\rightarrow\tau(M^{n})$ is orientation preserving, where $\tau(M)$ denotes the tangent
bundle of $M$.

For each complex vector bundle $\xi$ over an oriented closed smooth mani-
fold $X$, let $S(\xi)$ and $CP(\xi)$ denote the sphere bundle and the complex projec-
tive bundle associated to $\xi$ , respectively. Then the orientations of $S(\xi)$ and
$CP(\xi)$ are induced by those of $X$ and $\xi$ . And we have the following result.

LEMMA 2.2. Let $M^{n}$ be an oriented closed smooth n-manifold, $\varphi:S^{1}\times M^{n}$

$\rightarrow M^{n}$ a semi-free smooth action and $F^{n-2k}$ an oriented $(n-2k)$-dimensional fixed
point set. Let $\nu^{k}$ denote the complex normal bundle to $F^{n-2k}$ . Then

(a) $\sum_{\iota\cdot\geqq 1}[CP(\nu^{k})]=0$

and
(b) $[M^{n}]=\sum_{k\geqq 0}[CP(\nu^{k}\oplus\theta^{1})]$

in the oriented cobordism ring $\Omega_{*}$ , where $\theta^{1}$ is a trivial complex line bundle.
PROOF. For (a), we may suppose $ F^{n}=\phi$ . Let $N_{k}$ be a $S^{1}$-invariant

tubular neighborhood of $F^{n-2k}$ (see [2], \S 22) mutually disjoint for $k\geqq 1$ .
Then $B^{n}=M^{n}-\bigcup_{k}$ Int $N_{k}$ is a regularly embedded invariant submanifold with

boundary, on which $S^{1}$ acts freely and the boundary of the orbit manifold
$B^{n}/S^{1}$ is a disjoint union of $CP(\nu^{k})$ for $k\geqq 1$ . This shows (a).

Next, we define two actions $\tau_{1},$ $\tau_{2}$ of $S^{1}$ on $D^{2}\times M^{n}$ by

$\tau_{1}(\lambda, (z, x))=(\lambda z, x)$ ,

$\tau_{2}(\lambda, (z, x))=(\lambda z, \varphi(\lambda, x))$

where $\lambda$ and $z$ represent complex numbers in $S^{1}$ and $D^{2}$ respectively and
$x\in M^{n}$ . Restricting to $S^{1}\times M^{n}$ we obtain induced actions $(\tau_{1}, S^{1}\times M^{n})$ and
$(\tau_{2}, S^{1}\times M^{n})$ which we shall show to be equivariantly diffeomorphic. Define
$f:S^{1}\times M^{n}\rightarrow S^{1}\times M^{n}$ by

$f(\lambda, x)=(\lambda, \varphi(\lambda, x))$ .

It is easy to check that $f$ is an equivariant diffeomorphism.
Now from the disjoint union $(\tau_{1}, D^{2}\times M^{n})\cup(\tau_{2}, -D^{2}\times M^{n})$ , we form an

oriented closed smooth $(n+2)$-manifold $M^{n+2}$ and a smooth $S^{1}$ -action $\tau$ on
$M^{n+2}$ by identifying the boundaries $(\tau_{1}, S^{1}\times M^{n})$ and $(\tau_{2}, S^{1}\times M^{n})$ via $f$. This
construction is due to Conner and Floyd ([2], P. 119). Note that in $(\tau_{1}$ ,
$D^{2}\times M^{n}),$ $S^{1}$ acts freely on $D^{2}\times M^{n}-(0\times M^{n})$ , and leaves every point of $0\times M^{n}$

stationary. Also in $(\tau_{2}, D^{2}\times M^{n}),$ $S^{1}$ acts freely on $D^{2}\times M^{n}-(0\times M^{n})$ , while
the isotropy subgroup at $(0, x)$ is precisely the isotropy subgroup for $(\varphi, M^{n})$
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at $x$ . Thus the action $\tau$ on $M^{n+2}$ is semi-free and the equation (a) on this
action implies (b). $q$ . $e$ . $d$ .

\S 3. Index of a complex projective bundle.

Now we consider the index of $CP(\xi^{k})$ , the total space of the compleX
projective bundle associated to a complex k-plane bundle $\xi^{k}$ over an oriented
closed manifold $V^{n}$ . For this purpose we prepare the following known result.

LEMMA 3.1. Let $M$ be a real, symmetric, nonsingular matrix of the form

$M=$

where $A,$ $L$ are square matrices (empty matrix is admitted for $A$). Then there
exists a nonsingular matrix $T$ such that

${}^{t}TMT=$

where $E$ is an identity matrix. Here, as always, we denote by ${}^{t}P$ the transpose

of $P$.
PROOF. Suppose

$M=$

Then the matrix

$T=$

is a desired matrix, where

$X=-A^{-1}BL^{-1}$ ,

$Y=\frac{1}{2}{}^{t}L^{-1}({}^{t}BA^{-1}B-C)L^{-1}$ . q. e. d.
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THEOREM 3.2.
$I(CP(\xi^{k}))=\frac{1+(-1)^{k-1}}{2}$ . $I(V^{n})$ .

PROOF. In fact this is an immediate consequence of [1], but we give a
proof for the completeness. It suffices to prove this theorem in the case of
$\dim CP(\xi^{k})=n+2(k-1)=4m$ for some $m$ .

Let $u\in H^{2}(CP(\xi^{k});Z)$ be the first Chern class of the canonical line bundle
over $CP(\xi^{k})$ , then the cohomology ring $H^{*}(CP(\xi^{k});R)$ with real coefficients
is a free $H^{*}(V^{n} ; R)$ module with basis $\{1, u, u^{2}, \cdot.. , u^{k- 1}\}$ by the theorem of
Leray-Hirsch (cf. [3], P. 258). Let $\{v_{i}^{s}\}$ be a basis for $H^{s}(V^{n};R)$ , then as
a basis for $H^{2m}(CP(\xi^{k});R)$ we can take $\{v_{j}^{2(m-t)}u^{t}\},$ $(\max(0,$ $ m-\frac{n}{2})\leqq r\leqq$

$\min(m, k-1))$ .
For an oriented manifold $M^{n}$ , set

$\langle x, y\rangle=(x\cup y)[M^{n}]$ for $x,$ $y\in H^{*}(M^{n} ; R)$

where $[M^{n}]$ is the fundamental class of $H_{n}(M^{n} ; Z)$ . Then

$\langle v_{i}^{2(m-s)}u^{s}, v_{j^{(m-t)}}^{2}u^{t}\rangle=\{0\langle v_{i}^{2(m-s)}, v_{j}^{2(m-t)}\rangle$

if $s+t=k-1$ ,

if $s+t<k-1$ .
Arrange the basis $\{v_{f^{(m-t)}}^{2}u^{t}\}$ in increasing order of $t$ . Then the matrix

of coefficients $\langle v_{i}^{2(m-s)}u^{\epsilon}, v_{f}^{2(m-t)}u^{\iota}\rangle$ has the form in Lemma 3.1. Therefore

$I(CP(\xi^{k}))=\{0I(V^{n})$
if $k$ is odd

if $k$ is even
by Lemma 3.1. This completes the proof of Theorem 3.2.

\S 4. Indices of fixed point sets.

In this section we prove Theorem 1.1. Under the notations in Lemma 2.2,
we have

$\sum_{k:odd}I(F^{n-2k})=0$ ,

$\sum_{k;even}I(F^{n-2k})=I(M^{n})$

from Lemma 2.2 and Theorem 3.2. Thus
$[^{n_{2^{-}}}]$

$I(M^{n})=\sum_{k=0}I(F^{n-2k})$ .

This completes the proof, since the codimension of each component of the
fixed point set is even.
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\S 5. Dimension of fixed point sets.

In this section we prove Theorem 1.2. Let

$\Delta:\Omega_{n}(CP^{\infty})\rightarrow\Omega_{n-2}(CP^{\infty})$

be the Smith homomorphism (cf. [2], \S 26) and

$i_{*}:$ $\Omega_{n}(BU(k))\rightarrow\Omega_{n}(BU(k+1))$

a homomorphism induced by the canonical inclusion map $i:BU(k)\rightarrow BU(k+1)$ .
Let

$\partial:\Omega_{n}(BU(k))\rightarrow\Omega_{n+2k-2}(CP^{\infty})$

be a homomorphism as follows (cf. [4], \S 3). To each complex vector bundle
$\xi^{k}$ we have a line bundle $\xi$ associated to the principal $S^{1}$ -bundle $S(\xi^{k})\rightarrow CP(\xi^{k})$ ,

then $\partial([\xi^{k}])=[\hat{\xi}]$ . Then we have the following commutative diagram (cf. [2],

26.4)

$\Omega_{n}(BU(k))$
$\rightarrow^{\partial}\Omega_{n+2k-2}(CP^{\infty})$

$\Omega_{n}(BU(k+1))*\Omega_{n+2k}(CP^{\infty})\downarrow i_{*}\uparrow\Delta\underline{\partial}$

.

And we obtain the following result by the same way as in the case of [2;

Theorem 27.3].

LEMMA 5.1. Let $\varphi:S^{1}\times M^{n}\rightarrow M^{n}$ be a semi-free smooth $S^{1}$ -action on an
oriented closed manifold of non-zero index, and let $\nu^{k}$ denote the complex normal
bundle to $(n-2k)$-dimensional fixed point set $F^{n-2k}$ . There exists a $k$ such that
$[\nu^{k}]$ is not in the image of

$i_{*}:$ $\Omega_{n- 2k}(BU(k-1))\rightarrow\Omega_{n- 2k}(BU(k))$ .
Since

$i_{*}:$ $\Omega_{m}(BU(k-1))\cong\Omega_{m}(BU(k))$ for $m\leqq 2(k-1)$ ,

Theorem 1.2 is an immediate corollary of the above result.
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