On the index of a semi-free S^1 -action

By Katsuo KAWAKUBO and Fuichi UCHIDA

(Received June 29, 1970)

§1. Introduction.

Let G be a compact Lie group, M^n a closed smooth *n*-manifold and $\varphi: G \times M^n \to M^n$ a smooth action. Then the fixed point set is a disjoint union of smooth k-manifolds F^k , $0 \le k \le n$.

P.E. Conner and E.E. Floyd [2] obtained several properties of fixed point sets of smooth involutions and one of their results is the following.

Suppose that $T: M^{2k} \to M^{2k}$ is a smooth involution on a closed manifold of odd Euler characteristic. Then some component of the fixed point set is of dimension $\geq k$.

Now we consider semi-free smooth S^1 -actions on oriented manifolds and the purpose of this paper is to show the following results.

THEOREM 1.1. Let M^n be an oriented closed smooth n-manifold and $\varphi: S^1 \times M^n \to M^n$ a semi-free smooth action. Then each k-dimensional fixed point set F^k can be canonically oriented and the index of M^n is the sum of indices of F^k , that is,

$$I(M^n) = \sum_{k=0}^n I(F^k).$$

THEOREM 1.2. Suppose that $\varphi: S^1 \times M^{4k} \to M^{4k}$ is a semi-free smooth S^1 action on an oriented closed manifold of non-zero index. Then some component of the fixed point set is of dimension $\geq 2k$.

§ 2. Semi-free S^1 -action.

Let S^1 and D^2 denote the unit circle and the unit disk in the field of complex numbers. Regard S^1 as a compact Lie group. Let M^n be an oriented closed smooth *n*-manifold and $\varphi: S^1 \times M^n \to M^n$ a smooth action. The action φ is called semi-free if it is free outside the fixed point set. Then we have the following ([4], Lemma 2.2).

LEMMA 2.1. The normal bundle of each component of the fixed point set in M^n has naturally a complex structure, such that the induced S¹-action on this bundle is a scalar multiplication.

From this lemma, a codimension of each component of the fixed point set

in M^n is even. Let ν^k denote the complex normal bundle to F^{n-2k} . Then ν^k is canonically oriented and F^{n-2k} can be so oriented that the bundle map $\tau(F^{n-2k}) \bigoplus \nu^k \to \tau(M^n)$ is orientation preserving, where $\tau(M)$ denotes the tangent bundle of M.

For each complex vector bundle ξ over an oriented closed smooth manifold X, let $S(\xi)$ and $CP(\xi)$ denote the sphere bundle and the complex projective bundle associated to ξ , respectively. Then the orientations of $S(\xi)$ and $CP(\xi)$ are induced by those of X and ξ . And we have the following result.

LEMMA 2.2. Let M^n be an oriented closed smooth n-manifold, $\varphi: S^1 \times M^n \to M^n$ a semi-free smooth action and F^{n-2k} an oriented (n-2k)-dimensional fixed point set. Let ν^k denote the complex normal bundle to F^{n-2k} . Then

(a)
$$\sum_{k\geq 1} [CP(\nu^k)] = 0$$

and

(b)
$$[M^n] = \sum_{k \ge 0} [CP(\nu^k \oplus \theta^1)]$$

in the oriented cobordism ring Ω_* , where θ^1 is a trivial complex line bundle.

PROOF. For (a), we may suppose $F^n = \phi$. Let N_k be a S^1 -invariant tubular neighborhood of F^{n-2k} (see [2], §22) mutually disjoint for $k \ge 1$. Then $B^n = M^n - \bigcup_k$ Int N_k is a regularly embedded invariant submanifold with boundary, on which S^1 acts freely and the boundary of the orbit manifold B^n/S^1 is a disjoint union of $CP(\nu^k)$ for $k \ge 1$. This shows (a).

Next, we define two actions au_1 , au_2 of S^1 on $D^2 imes M^n$ by

$$\tau_1(\lambda, (z, x)) = (\lambda z, x),$$

$$\tau_2(\lambda, (z, x)) = (\lambda z, \varphi(\lambda, x))$$

where λ and z represent complex numbers in S^1 and D^2 respectively and $x \in M^n$. Restricting to $S^1 \times M^n$ we obtain induced actions $(\tau_1, S^1 \times M^n)$ and $(\tau_2, S^1 \times M^n)$ which we shall show to be equivariantly diffeomorphic. Define $f: S^1 \times M^n \to S^1 \times M^n$ by

$$f(\lambda, x) = (\lambda, \varphi(\lambda, x)).$$

It is easy to check that f is an equivariant diffeomorphism.

Now from the disjoint union $(\tau_1, D^2 \times M^n) \cup (\tau_2, -D^2 \times M^n)$, we form an oriented closed smooth (n+2)-manifold M^{n+2} and a smooth S^1 -action τ on M^{n+2} by identifying the boundaries $(\tau_1, S^1 \times M^n)$ and $(\tau_2, S^1 \times M^n)$ via f. This construction is due to Conner and Floyd ([2], P. 119). Note that in $(\tau_1, D^2 \times M^n)$, S^1 acts freely on $D^2 \times M^n - (0 \times M^n)$, and leaves every point of $0 \times M^n$ stationary. Also in $(\tau_2, D^2 \times M^n)$, S^1 acts freely on $D^2 \times M^n$, S^1 acts freely on $D^2 \times M^n$, $M^n = (0 \times M^n)$, while the isotropy subgroup at (0, x) is precisely the isotropy subgroup for (φ, M^n)

at x. Thus the action τ on M^{n+2} is semi-free and the equation (a) on this action implies (b). q. e. d.

§3. Index of a complex projective bundle.

Now we consider the index of $CP(\xi^k)$, the total space of the complex projective bundle associated to a complex k-plane bundle ξ^k over an oriented closed manifold V^n . For this purpose we prepare the following known result.

LEMMA 3.1. Let M be a real, symmetric, nonsingular matrix of the form

$$M = \begin{pmatrix} 0 & 0 & L \\ 0 & A & * \\ {}^{t}L & * & * \end{pmatrix}$$

where A, L are square matrices (empty matrix is admitted for A). Then there exists a nonsingular matrix T such that

$${}^{t}TMT = \begin{pmatrix} E & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & -E \end{pmatrix}$$

where E is an identity matrix. Here, as always, we denote by 'P the transpose of P.

PROOF. Suppose

$$M = \begin{pmatrix} 0 & 0 & L \\ 0 & A & B \\ {}^{t}L & {}^{t}B & C \end{pmatrix}.$$

Then the matrix

$$T = \begin{pmatrix} \frac{Y+E}{\sqrt{2}} & 0 & \frac{Y-E}{\sqrt{2}} \\ \frac{X}{\sqrt{2}} & E & \frac{X}{\sqrt{2}} \\ \frac{L^{-1}}{\sqrt{2}} & 0 & \frac{L^{-1}}{\sqrt{2}} \end{pmatrix}$$

is a desired matrix, where

$$X = -A^{-1}BL^{-1},$$

$$Y = \frac{1}{2}{}^{t}L^{-1}({}^{t}BA^{-1}B - C)L^{-1}.$$
 q. e. d.

THEOREM 3.2.

$$I(CP(\xi^{k})) = \frac{1 + (-1)^{k-1}}{2} \cdot I(V^{n}).$$

PROOF. In fact this is an immediate consequence of [1], but we give a proof for the completeness. It suffices to prove this theorem in the case of dim $CP(\xi^k) = n+2(k-1) = 4m$ for some m.

Let $u \in H^2(\mathbb{CP}(\xi^k); \mathbb{Z})$ be the first Chern class of the canonical line bundle over $\mathbb{CP}(\xi^k)$, then the cohomology ring $H^*(\mathbb{CP}(\xi^k); \mathbb{R})$ with real coefficients is a free $H^*(V^n; \mathbb{R})$ module with basis $\{1, u, u^2, \dots, u^{k-1}\}$ by the theorem of Leray-Hirsch (cf. [3], P. 258). Let $\{v_i^s\}$ be a basis for $H^s(V^n; \mathbb{R})$, then as a basis for $H^{2m}(\mathbb{CP}(\xi^k); \mathbb{R})$ we can take $\{v_j^{2(m-t)}u^t\}, (\max(0, m-\frac{n}{2})) \leq t \leq \min(m, k-1))$.

For an oriented manifold M^n , set

$$\langle x, y \rangle = (x \cup y)[M^n]$$
 for $x, y \in H^*(M^n; \mathbf{R})$

where $[M^n]$ is the fundamental class of $H_n(M^n; \mathbb{Z})$. Then

$$\langle v_i^{2(m-s)} u^s, v_j^{2(m-t)} u^t \rangle = \begin{cases} \langle v_i^{2(m-s)}, v_j^{2(m-t)} \rangle & \text{if } s+t=k-1, \\ 0 & \text{if } s+t< k-1. \end{cases}$$

Arrange the basis $\{v_j^{2(m-t)}u^t\}$ in increasing order of t. Then the matrix of coefficients $\langle v_i^{2(m-s)}u^s, v_j^{2(m-t)}u^t \rangle$ has the form in Lemma 3.1. Therefore

$$I(CP(\xi^k)) = \begin{cases} I(V^n) & \text{if } k \text{ is odd} \\ 0 & \text{if } k \text{ is even} \end{cases}$$

by Lemma 3.1. This completes the proof of Theorem 3.2.

4

§ 4. Indices of fixed point sets.

In this section we prove Theorem 1.1. Under the notations in Lemma 2.2, we have

$$\sum_{\substack{k: \text{ odd}}} I(F^{n-2k}) = 0,$$

$$\sum_{\substack{k: \text{ even}}} I(F^{n-2k}) = I(M^n)$$

from Lemma 2.2 and Theorem 3.2. Thus

$$I(M^n) = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} I(F^{n-2k}).$$

This completes the proof, since the codimension of each component of the fixed point set is even.

354

§5. Dimension of fixed point sets.

In this section we prove Theorem 1.2. Let

$$\Delta: \Omega_n(CP^{\infty}) \longrightarrow \Omega_{n-2}(CP^{\infty})$$

be the Smith homomorphism (cf. [2], § 26) and

$$i_*: \Omega_n(BU(k)) \longrightarrow \Omega_n(BU(k+1))$$

a homomorphism induced by the canonical inclusion map $i: BU(k) \rightarrow BU(k+1)$. Let

$$\partial: \Omega_n(BU(k)) \longrightarrow \Omega_{n+2k-2}(CP^{\infty})$$

be a homomorphism as follows (cf. [4], § 3). To each complex vector bundle ξ^k we have a line bundle $\hat{\xi}$ associated to the principal S^1 -bundle $S(\xi^k) \to CP(\xi^k)$, then $\partial([\xi^k]) = [\hat{\xi}]$. Then we have the following commutative diagram (cf. [2], 26.4)

And we obtain the following result by the same way as in the case of [2; Theorem 27.3].

LEMMA 5.1. Let $\varphi: S^1 \times M^n \to M^n$ be a semi-free smooth S^1 -action on an oriented closed manifold of non-zero index, and let ν^k denote the complex normal bundle to (n-2k)-dimensional fixed point set F^{n-2k} . There exists a k such that $\lceil \nu^k \rceil$ is not in the image of

Since

$$i_*: \Omega_m(BU(k-1)) \cong \Omega_m(BU(k))$$
 for $m \le 2(k-1)$,

 $i_*: \Omega_{n-2k}(BU(k-1)) \longrightarrow \Omega_{n-2k}(BU(k)).$

Theorem 1.2 is an immediate corollary of the above result.

Osaka University

References

- S.S. Chern, F. Hirzebruch and J.P. Serre, On the index of a fibered manifold, Proc. Amer. Math. Soc., 8 (1957), 587-596.
- [2] P.E. Conner and E.E. Floyd, Differentiable Periodic Maps, Springer-Verlag, Berlin, 1964.
- [3] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
- [4] F. Uchida, Cobordism groups of semi-free S¹- and S³-actions, Osaka J. Math., 7 (1970), 345-351.