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Semigroups in an ordered Banach space
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This note gives the basic theory of linear and nonlinear semigroups in the
class of Banach spaces $X$ with a cone (which includes Banach lattices and
Banach spaces). A Hille-Yosida theorem and a perturbation theorem are given
for normal cones. Spaces with two cones are considered, obtaining conver-
gence of some integral curves $x(t)$ , where $\frac{dx}{dt}(t)=Ax(t)$ and $A$ is a nonlinear

dispersive operator. We refrain from generalizing all the Banach lattice

results; also some of the theory extends readily to study $\frac{dx}{dt}(t)\in A_{t}x(t)$ ,

where $A_{t}$ depends on $t$, is multivalued, and $X$ is an ordered 1. $c$ . $s$ .
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Operators in ordered spaces.

Suppose $X$ a Banach space over the real numbers $R$ or the complex num-
bers $C$. Suppose $K$ a closed convex subset invariant under multiplication by
positive numbers. $K$ is called a cone, and defines an ordering, $x\leqq y$ if $y-x$ is
in $K$. Let $K^{*}=$ { $f$ in $x*:$ ${\rm Re}(f,$ $x)\geqq 0$ for all $x$ in $K$ }, $B^{*}=$ { $f$ in $x*:$ $\Vert f\Vert\leqq 1$ }
and for $x$ in $X$ define $|x|_{K}=\sup$ { ${\rm Re}(f,$ $x):f$ in $B^{*}\cap K^{*}$ } the support func-
tional of $B^{*}\cap K^{*}$ . Rockafeller [13] page 39 points out that such a functional
has subgradient $J_{K}(x)$ consisting of elements $f$ of $B^{*}\cap K^{*}$ where ${\rm Re}(f, x)$

$=|x|_{K}$ . We recall that $f$ is in the subgradient of $|x|_{K}$ means that for all $y$ in $X$

$|y|_{K}\geqq|x|_{K}+{\rm Re}(f, y-x)$ .
LEMMA 1. Suppose $x(t),$ $y(t)$ are strongly continuous, once weakly differen-

Jiable on the left,

$\frac{dx}{dt}(f)=-Ax(t)$ , $\frac{dy}{dt}(t)=-Ay(t)$ ,

and for each $x(t),$ $y(t)$ , there exists $w(t)$ in $J_{K}(x(t)-y(t))$ with ${\rm Re}(w(t), Ax(t)-Ay(t))$

$\geqq 0$ . Then $|x(t)-y(t)|_{K}$ is nonincreasing.
PROOF.
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$|x(t-h)-y(t-h)|_{K}-|x(t)-y(t)|_{K}$

$\geqq{\rm Re}(w(t), (x(t-h)-x(t))-(y(t-h)-y(t)))$ ,

with $h>0,$ $w(t)$ as above, since $w(f)$ is in the subgradient of $|x(t)-y(t)|_{K\leftarrow}$

Consequently
$\frac{1i}{h-}- m_{0}$. $h^{-1}(|x(t-h)-y(t-h)|_{K}-|x(t)-y(t)|_{K})$

$\geqq{\rm Re}(w(t), Ax(t)-Ay(t))$

$\geqq 0$ ,

giving the result, since $|x(t)-y(t)|_{K}$ is continuous. Q. E. D.
LEMMA 2. Suppose $x(t),$ $y(t)$ are once weakly differentiable on the right,

$\frac{dx}{dt}(t)=-Ax(t)$ , $\frac{d}{d}\frac{y}{t}(f)=-Ay(t)$ ,

and $|x(t)-y(t)|_{K}$ is nonincreasing. Then for any $w(t)$ in $J_{K}(x(t)-y(t)),$ ${\rm Re}(w(t)$ ,
$Ax(t)-Ay(t))\geqq 0$ .

PROOF. Take any $w(t)$ as above, $h>0$ , then

$|x(t+h)-y(t+h)|_{K}\geqq|x(t)-y(f)|_{K}$

$+{\rm Re}(w(t), (x(t+h)-x(t))-(y(t+h)-y(f)))$ .
Dividing by $h$ and letting $h\rightarrow 0$ give the result. Q. E. D.

REMARK. If $X$ is a Banach lattice, then $|x|_{K}=\Vert x^{+}\Vert$ , and $J_{1}(x^{+})\subset J_{K}x$

$\subset J_{t0\}}(x^{+})$ where $J_{t0\}}$ is the subgradient of the support functional of $B^{*}$ and
$\cdot$

$J_{1}(x)$ is any positive duality map. We recall a positive duality map is a
function $J_{1}$ from $X$ to $x*$ with $\Vert J_{1}x\Vert=1,$ $(J_{1}x, x)=\Vert x\Vert,$ $(J_{1}x, y)=0$ if $x1y$ , and
$(J_{1}x, y)\geqq 0$ if $x\geqq 0$ and $y\geqq 0$ . The first assertion follows from [2] Proposition
1.1, and the second from [2] Proposition 1.2, noting that if $w(x)$ is in $J_{K}(x)$

then $w(x)\geqq 0$ .
We recall (Krasnoselskii [9]) that $K$ is normal if and only if there is an

equivalent monotonic norm. The norm is monotonic means that $0\leqq x\leqq y$

implies $\Vert x\Vert\leqq\Vert y\Vert$ .
THEOREM 3. $K$ is normal if and only if $|u|_{K}+|u|_{-K}$ is an equivalent norm.
PROOF. In any case, $|u|_{K}\leqq\Vert u\Vert$ , giving $|u|_{K}+|u|_{-K}\leqq 2\Vert u\Vert$ . Suppose $K$

is normal. As a consequence of Theorem 3.3, page 219 of Schaefer [18], there
exists $n$ in $Z^{+}$ such that for $f$ in $B^{*}$ there exist $f_{1},$ $f_{2}$ in $K^{*},$ $f=f_{1}-f_{2},$ $\Vert f_{1}\Vert$

$\leqq n,$ $\Vert f_{2}\Vert\leqq n$ . For $u$ in $X,$ $f$ in $B^{*},$ $|(f, u)|=|(f_{1}, u)-(f_{2}, u)|\leqq n|u|_{K}+n|u|_{-K}$ .
Consequently, $\Vert u\Vert=\sup$ { $|(f,$ $u)|$ : $f$ in $B^{*}$ } $\leqq n(|u|_{K}+|u|_{-K})$ .

Conversely, suppose $K$ not normal. Then, by Theorem 1 of Krasnoselskii
[9], there exist sequences $x_{n},$ $y_{n}$ in $K,$ $\Vert x_{n}\Vert=\Vert y_{n}\Vert=1$ , with $\Vert x_{n}+y_{n}\Vert\rightarrow 0$ . There-
fore $|x_{n}+y_{n}|_{K}\rightarrow 0$, giving $|x_{n}|_{K}\rightarrow 0$ . Since $|x_{n}|_{K}+|x_{n}|_{-K}\rightarrow 0$, this is not ant
equivalent norm. Q. E. D.
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We say $U:D(U)\rightarrow X,$ $D(U)\subset X$, is $K$ nonexpansive if for $x,$ $y$ in $D(U)$ ,
$\ovalbox{\tt\small REJECT} U(x)-U(y)|_{K}\leqq|x-y|_{K}$ . We say $A:D(A)\rightarrow X,$ $D(A)\subset X$, is $K$ accretive if
for $x,$ $y$ in $D(A)$ , there exists $w$ in $J_{K}(x-y)$ with ${\rm Re}(w, Ax-Ay)\geqq 0$ . Clearly
$U$ is $K$ nonexpansive if and only if $-K$ nonexpansive. We say $A$ is $K$ disper-
sive if $-A$ is $K$ acCretive. We say $U$ is nonexpansive if $K=\{0\}$ , and $A$ is
$g$ accretive or $-A$ is $g$ dissipative if $K=\{0\}$ . See Lumer and Phillips [10].

LEMMA 4. $A$ is $K$ accretive if and only if for all $d>0(I+dA)^{-1}$ is $K$

nonexpansive.
PROOF. Similar to Theorem 9.1 of Browder [1], using the fact that

$x\rightarrow|x|_{K}J_{K}x$ is upper semicontinuous from the strong topology of $X$ to subsets
of $x*with$ the weak* topology ( $c$ . $f$ . Cudia [4], Theorem 4.3.).

The functionals

$\varphi_{0}(f, g)=\lim_{d\rightarrow 0^{+}}d^{-1}(|f+dg|_{K}-|f|_{K})$ ,

$\varphi_{0}^{\prime}(f, g)=-\varphi_{0}(f, -g)$

were introduced by Sato [15] as the maximum and minimum (0) gauge func-
tionals on a Banach lattice.

THEOREM 5.
$\varphi_{0}(f, g)=\sup$ {${\rm Re}(h,$ $g):h$ in $J_{K}(f)$ },

$\varphi_{0}^{/}(f, g)=\inf$ { ${\rm Re}(h,$ $g):h$ in $J_{K}(f)$ }.

PROOF. We prove the first assertion; the second is similar. By definition
of subgradient for $d>0$ and $h$ in $J_{K}(f)$ ,

$|f+dg|_{K}\geqq|f|_{K}+{\rm Re}(h, dg)$ ,

giving $\varphi_{0}(f, g)\geqq{\rm Re}(h, g)$ . Fixing $f,$ $g\varphi(h)=\varphi_{0}(f, h)$ defined on the space
spanned by $f,$ $g$ has $\varphi(\alpha h)=\alpha\varphi(h),$ $\alpha\geqq 0$ , and $\varphi(h)\leqq|h|_{K}$ .

By Theorem 5.4 of Schaefer [18], we can extend $\varphi$ to $\varphi$ in $B*\cap K^{*}$,
i. e. a positive linear functional with norm $\leqq 1$ . Since $\varphi(f)=|f|_{K},$

$\varphi$ is in
$J_{K}(f)$ . Q. E. D.

For a comparison of various functionals as in Sato [14], Phillips [12],
Hasegawa [7], Dorroh [5] we refer to Sato [15].

COROLLARY 6. $A$ is $K$ accretive if and only if $\varphi_{0}(f-g, Af-Ag)\geqq 0$ for $f,$ $g$

in $D(A)$ . If $-A$ generates a $K$ nonexpansive semigroup then $\varphi_{0}^{\prime}(f-g, Af-Ag)$

$\geqq 0$ for $f,$ $g$ in $D(A)$ .
The first assertion foll\‘oWs from Theorem 5, the second from Lemma 2.
THEOREM 7. Suppose $X$ a Banach space with cone $K$.

\langle $a$) Suppose $U(t)$ a $con$tinuous bounded semigroup of positive linear operators
on X. Then the generator $A$ is $K$ dispersive in an equivalent norm, and
$R(I-A)=X$.
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(b) Suppose $K$ is normal, $A$ is a densely defined $K$ accretive linear operator
with $R(I+A)=X$.

Then $-A$ generates a $con$tinuous bounded semigroup ofpositive linear operators
on $X$.

PROOF. (a) Renorm $X$ by $\Vert x\Vert=\sup\{\Vert U(t)x\Vert : t\geqq 0\}$ , so $\Vert U(t)\Vert\leqq 1$ . Given
$f$ in $B^{*}\cap K^{*}$ , and $t\geqq 0$ , then $U(t)^{*}f$ is in $B^{*}\cap K^{*}$ . For $x$ in $X,$ $t\geqq 0$,

$|U(t)x|_{K}=\sup$ { ${\rm Re}(f,$ $U(t)x):f$ in $B^{*}\cap K^{*}$ }

$=\sup$ { ${\rm Re}(U(t)^{*}f,$ $x):f$ in $B^{*}\cap K^{*}$ }

$\leqq|x|_{K}$ .
By Lemma 2, $A$ is $K$ dispersive.

(b) It is enough to show $A$ is $g$ accretive in an equivalent norm. For
$d>0,$ $(I+dA)^{-1}$ is $K$ nonexpansive, and consequently nonexpansive in $|x|_{K}$

$+|x|_{-K}$ , giving $A$ $g$ accretive in this norm, by Theorem 3. Q. E. D.
COROLLARY. That a densely defined linear operator $A$ is the generator of a

$con$tinuous semigroup of positive linear operators on $X$ implies that there exists
$m$ in $R$ with $A-mIK$ dispersive in an equivalent norm, $R(A-nI)=X$ for
$n>m$ , and convers $ely$ if $K$ is normal.

PROOF. Supposing $A$ generates a positive semigroup $T_{t}$ of class $C_{0}$ , then
$\Vert T_{t}\Vert\leqq Me^{mt}$ with constants $m,$ $M$, by Hille’s theorem (Page 232 of Yosida [19]).
Then $U_{t}=e^{-mt}T_{t}$ is positive, and bounded, so the generator $A-m1$ is $K$ dis-
persive in an equivalent norm by (a) of Theorem 7.

Conversely, by (b), $U_{t}$ generated by $A-mI$ is positive, continuous and
bounded, so $e^{mt}U_{t}=T_{t}$ is positive and continuous. Its generator is $A$ . Q. E. D.

This answers a question of Sato [15]. Next we look at pseudo-resolvents.
and see that some results hold without their being a resolvent in the usuaI
sense.

THEOREM 8. Suppose $X$ a Banach space and $\{J_{\lambda} : \lambda\geqq\lambda_{0}\}$ a $pseudo- resolvent_{r}$

$i.e$ . a family of bounded operators in $X$ with

$J_{\lambda}-J_{\mu}=(\mu-\lambda)J_{\lambda}J_{\mu}$ .
Suppose $\Vert\lambda J_{\lambda}\Vert\leqq M$ for all $\lambda$ .
(a) Then the multivalued opera $torA=\lambda I-J_{\lambda}^{-1}$ is well defined.
(b) If $X$ is reflexive, there is a bounded semigroup $U(t)$ on the closure of $ D(A\rangle$

with infinitesimal generator $A_{1}$ having $D(A_{1})=D(A)$ , and for $x$ in $D(A)$ .
$A_{1}(x)$ is in $A^{0}(x)=$ { $y$ in $A(x):\Vert y\Vert=d(0,$ $Ax)$ }.

(c) If $X$ is ordered and $J_{\lambda}$ are all positive then so is $U(t)$ .
PROOF. (a) By Lemma 1’, page 217 of Yosida [19], $N(J)\cap cl(R(J))=\{0\}$ ,

where $R(J)$ is the common range and $N(J)$ the common nullspace of the $\cdot$

family $\{J_{\lambda}\}$ . As in Yosida we have for any $\lambda,$

$\mu$
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$J_{\lambda}J_{\mu}(\lambda I-J_{\lambda^{-1}}-\mu l+J_{\mu}^{-1})=(\lambda-\mu)J_{\lambda}J_{\mu}-J_{\lambda}J_{\mu}(J_{\lambda}^{-1}-J_{\mu}^{-1})$

$=(\lambda-\mu)J_{\lambda}J_{\mu}-(J_{\mu}-J_{\lambda})$

$=0$ .
It follows that for $x$ in $X,$ $J_{\mu}(\lambda I-J_{\lambda}^{-1}-\mu I+J_{\mu}^{-1})x$ is in $N(J)$ , and hence in $N(J)$

$\cap cl(R(J))=\{0\}$ . Consequently $(\lambda I-J_{\lambda}^{-1})x=(\mu I-J_{\beta}^{-1})x$ .
(b) This may be proved as on page 246 of Yosida [19] using a little of

the technique of Theorem 9.23 of Browder [1]. Reflexivity is needed because
$D(A)$ will not be dense unless $A$ is single valued.

(c) As in (a) of Theorem 7 there is an equivalent norm in which $\{\lambda J_{\lambda}\}$

are nonexpansive, hence $K$ nonexpansive, giving $A$ $K$ dispersive, by Lemma
4, and $U(t)K$ nonexpansive by Lemma 1. Q. E. D.

REMARK. There should be a nonlinear extension of this. We note the
condition for the pseudo-resolvent to admit a potential operator $V$ can be
stated in terms of the multivalued $A$ above, giving $V=-A^{-1}$ , (see Sato [16]).

Phillips [12], Gustafson and Sato [17] ask if their (linear) dispersive
operators $A$ are always dissipative. It is understood that $A$ should be a
densely defined operator; counterexamples defined on a one dimensional sub-
space are known. If Bohnenblusts’ property $P$ holds, which says, in the
setting of cones, $|x|_{K}=|y|_{K}$ and $|x|_{-K}=|y|_{-K}$ imply $\Vert x\Vert=\Vert y\Vert$ , then as in
Calvert [3], $K$ nonexpansive implies nonexpansive, so that by Lemma 4, $K$

accretive implies $g$ accretive. This result is contained in Theorem 5.1 of Sato
[15] for linear operators in a lattice.

To study perturbation theory, as in Sato and Gustafson [17], a related
question is whether a $K$ accretive operator is $g$ accretive in some equivalent
norm. By Theorem 3, the answer is yes if $K$ is normal. The multiplicative
perturbation results of [17] then follow from the results of Gustafson in the
$g$ accretive case.

THEOREM 9. Suppose $A$ is $K$ accretive, $(I+A)$ surjective, $D(B)\supset D(A)$ , and
there exists $a<1,$ $b$ in $R^{+}$ , with $\Vert Bx\Vert\leqq a\Vert Ax\Vert+b\Vert x\Vert$ for $x$ in $D(A)$ . Suppose $K$

normal. Suppose
(a) $B$ is $K$ accretive, $(1+B)$ surjective, $J_{K}$ uniformly continuous on bounded

sets, and $X$ reflexive, $or$

(b) $A$ and $B$ are linear, and $A+B$ is $K$ accretive.
Then $-(A+B)$ generates a $K$ nonexpansive semigroup on $cl(D(A))$ .

PROOF. (a) Similar to Theorem 9.22 of Browder [1]. (Cases where JK
is uniformly continuous on bounded sets include $x*$ uniformly convex and
either $K=\{0\}$ or $X$ is a Banach lattice.)

(b) The result follows from the accretivity in an equivalent norm $\Vert\Vert_{e}$ ,
for $a<a_{0}$ , some small $a_{0}$ , for then $\Vert Bx\Vert_{e}\leqq a\Vert Ax\Vert_{e}+b\Vert x\Vert_{e}$ with $a<1$ . The result
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follows by Lemma 5.1 of Gustafson [6]; there exist $c_{j}>0(j=1, \cdots, n)$ ,
$a^{1}<a_{0},$ $ b^{1}<\infty$ , with $\sum c_{j}=1$ and for $k=1,2,$ $\cdots,$ $n,$ $x$ in $D(A)$ ,

$\Vert c_{k}B(x)\Vert\leqq a^{J}\Vert(A+\sum_{j=1}^{k-1}c_{j}B)x\Vert+b^{J}\Vert x\Vert$ . Q. E. D.

LEMMA 10. Suppose $x(t)sf$rongly continuous, once weakly differentiable on
the left, $\frac{dx}{dt}(t)=-Ax(t)$ , and for $t\geqq s$ there is $w$ in $J_{-K}(x(t)-x(s))$ with
${\rm Re}(w, Ax(t)-Ax(s))\geqq 0$ . Then $|Ax(t)|_{K}$ is nonincreasing.

PROOF. Let $y(t)=x(t-h),$ $h>0$ , then $\frac{dy}{dt}(t)=-Ay(t)$ , and by Lemma 1
$|x(t)-y(t)|_{-K}$ is nonincreasing. Dividing by $h$ and letting $h\rightarrow 0$ give the
result. Q. E. D.

Lemmas 1, 2, 10 compare with Propositions 1.10, 1.11, 1.12 of Calvert [2].
THEOREM 11. Suppose $X$ a Banach space with cones $K$ and $H,$ $H\subset K$.

Suppose $x(t)$ is once weakly differentiable, strongly continuous, $\frac{dx}{dt}(f)=-Ax(t)$ ,

and $x(t)$ is increasing with respect to K. Suppose the norm is monotonic with
respect to $K$, and $A$ is $K$ accretive or $g$ accretive. Then $|Ax(t)|_{H}$ is non-
increasing.

PROOF. By Lemma 10, it suffices to show that for $t\geqq s$ there is $w$ in
$J_{-H}(x(t)-x(s))$ with ${\rm Re}(w, Ax(t)-Ax(s))\geqq 0$ . By Lemma 2, if $A$ is $K$ accretive,
any $w$ in $J_{-K}(x(t)-x(s))$ gives ${\rm Re}(w, Ax(t)-Ax(s))\geqq 0$, and if $A$ is $g$ accretive,
any $w$ in $J_{\{0\}}(x(t)-x(s))$ gives ${\rm Re}(w, Ax(f)-Ax(s))\geqq 0$ . Putting $\chi=x(t)-x(s)$ ,
it suffices to show that $x$ in $K$ implies $J_{K}(x)\cap J_{H}(x)$ is nonempty and $J_{t0\}}(x)$

$\cap J_{H}(x)$ is nonempty. Since the norm is monotonic with respect to $K$, Prop-
osition 1.1 of Calvert [2] tells us there is $f$ in $K^{*}\cap B^{*}$ with ${\rm Re}(f, x)=\Vert x\Vert$ .
Since $K^{*}\subset H^{*}$ , this $f$ is in $J_{K}(x)\cap J_{H}(x)\cap J_{\{0)}(x)$ . Q. E. D.

COROLLARY. If in addition $Ax(O)$ is in $-H$ then $Ax(t)$ is in $-H$ as long
as $x(t)$ is defined, and $x(f)$ is increasing with respect to $H$.

REMARK. A broad sufficient condition for $x(t)$ to be increasing if $\frac{dx}{dt}(t)$

$=-Ax(t)$ and $Ax(O)$ is in the cone $-K$ is: for $z$ in $D(A)$ there exists $k$ in
$R^{+}$ and $N$ a neighborhood of $z$ in $X$, such that $A+kI$ restricted to $N\cap D(A)$

is $K$ accretive. The proof is similar to Proposition 1.12 of Calvert [2].
Applications to the problems of [8] can be made: if the resistance function
is differentiable and monotonic, then it satisfies the above by Proposition 1.3
of Calvert [3]. Integral $x(t)$ curves increasing with $f$ were considered by
Olubummo [11].

THEOREM 12. Suppose $X$ a Banach space with monotonic norm with respect
to a cone K. Suppose $A$ is $K$ accretive, demiclosed, and $x(t),$ $t$ in $[0, \infty$), is a
$s$trongly continuous once weakly differentiable curve with $\frac{dx}{dt}(t)=-Ax(t)$ , and
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$Ax(O)\leqq 0$ . Suppose $A^{-1}$ bounded, then $x(t)$ converges to a zero of $A$ .
PROOF. Suppose $e$ in $K$, and for $x$ in $K$ put $\sup x=\inf$ { $p$ in $R:x\leqq pe$ }

\langle possibly $\infty$) and $\inf x=\sup$ { $p$ in $R$ : $pe\leqq x$ }. For $b$ in $(0,1$] let $K(b)=\{x$ in
$K:\inf x\geqq b\sup x\}c$ . $f$ . Krasnoselskii [9] page 27. $K(b)$ is a cone which allows
plastering (i. e. there exists $f$ in $x*,$ $k$ in $R$ , with ${\rm Re}(f,$ $ x)\geqq k\Vert x\Vert$ for $x$ in $K(b)$),

and consequently is fully regular ( $i$ . $e$ . any bounded set directed under $\leqq$ is
convergent).

By the Corollary, $x(t)$ is increasing in $K$. Let $H=K(b)$ , with any $b$ in
$\langle 0,1$] and $e=-Ax(O)$ . By the Corollary, since $Ax(O)$ is in $-H,$ $x(t)$ is in-
creasing with respect to $H$. By Theorem 11, $|Ax(t)|_{-K}$ is decreasing as $t$

increases. By Theorem 3, $\{Ax(t):t\geqq 0\}$ is bounded. Since $A^{-1}$ is bounded,
$x(t)$ is bounded. Since $H$ is fully regular, $x(t)$ converges as $ t\rightarrow\infty$ to a point
”. For $f$ in $-K^{*},$ $(f, Ax(t))$ must converge to $0$ . Since $K^{*}$ is reproducing,
i. e. $X^{*}=K^{*}-K^{*},$ $Ax(t)$ converges weakly to zero. Since $A$ is demiclosed, $x$

is in $D(A)$ and $A(x)=0$ . Q. E. D.
EXAMPLE 13. Suppose $X$ a Banach space with monotonic norm and $U(t)$

a bounded positive continuous linear semigroup, with generator $-A,$ $A^{-1}$

bounded. Then for $x_{0}$ in $D(A),$ $g$ in $X,$ $g\geqq A(x)$ , there is a solution $x(t)$ to

$d^{\frac{x}{t}(t)}\underline{d}=g-Ax(t)$ , with $x(O)=x_{0}$ ,

and $x(t)$ converges to $x$ with $A(x)=g$.
PROOF. By Theorem 7, $A$ is $K$ accretive. The operator $A_{g}$ taking $x$ to

$A(x)-g$ is $K$ accretive. For $x_{0}$ in $D(A)=D(A_{g})$ there is a strong solution to

$\frac{dx}{dt}(t)=-A(x(t))+g,$ $x(O)=x_{0}$ . $A_{g}$ is demiclosed and $A_{g}^{-1}$ is bounded since $A$

has these properties. $A_{g}(x_{0})\leqq 0$ , so that the conclusion follows from Theorem
12. Q. E. D.

DEFINITION. Suppose $X$ a Banach space with fully regular normal cone
$K$. Suppose $A$ is $K$ accretive, $R(I+A)=X$. We say an element $x$ of $X$ is
harmonic if $Ax=0$ , subharmonic if $Ax\leqq 0$ , (as in Yosida [19] page 411).

THEOREM 14. Suppose there exists $z$ with $\{(I+dA)^{-1}z:d>0\}$ bounded. Then
any subharmonic element $x$ has a least harmonic majorant $x_{h}=\lim_{}(1+dA)^{-1}x$ .

PROOF. Given $d>0,$ $(I+dA)x\leqq x$ . Since $(I+dA)^{-1}$ is $K$ nonexpansive,
$x_{d}=(I+dA)^{-1}x\geqq x$ . Moreover if $d>e>0,$ $(I+eA)x_{a}=ed^{-1}x+(1-ed^{-1})x_{a}$ , which
is $\geqq x$ . Consequently $x_{d}\geqq(I+eA)^{-1}x=x_{e}$ . Now $\{x_{a} : d>0\}$ is bounded, since
$K$ normal implies $\{(I+dA)^{-1} : d>0\}$ is equi-Lipschitz. Since $K$ is fully regular,
and $x_{a}$ increases as $d$ increases, there exists $x_{h}=\lim_{d-\infty}x_{d}$ . Now $(I+A)x_{d}$

$=d^{-1}x+(1-d^{-1})x_{d}=y_{a}$ converges to $x_{h}$ . $(1+A)^{-1}y_{d}=x_{d}$ gives $(1+A)^{-1}x_{h}=x_{h}$

by continuity, so that $x_{h}$ is harmonic.
Suppose $x_{H}\geqq x,$ $Ax_{H}=0$, then $x_{H}=(1+dA)^{-1}x_{H}\geqq(I+dA)^{-1}x$ , and taking
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limits gives $x_{H}\geqq x_{h}$ .
REMARK. There exists $z$ with $\{(1+dA)^{-1}z:d>0\}$ bounded if $A$ is linear

$(z=0)$ or $A^{-1}$ is locally bounded, by Theorem 3.2 of Calvert [3].

Generalizations.

Given $\varphi$ a proper convex function of $X$, we say $A$ is $ d\varphi$ accretive if for
$x,$ $y$ in $D(A)$ , there is $f$ in $d\varphi(x-y)$ with ${\rm Re}(f, Ax-Ay)\geqq 0$.

The basic Lemmas 1 and 2 hold in this context. If $ d\varphi$ satisfies conditions
of the type of Chapter 3 of Browder [1], then the basic existence theorem
holds, in the following form for nonlinear operators.

THEOREM 15. Suppose $X$ a reflexive Banach space, $N$ an open neighborhood

of $0,$ $T:N\rightarrow X^{*}$ uniformly continuous, and there exists $c,$ $k>0$ with ${\rm Re}(Tx, x)$

$\geqq c\Vert x\Vert^{2}$ and $\Vert Tx\Vert\leqq k\Vert x\Vert$ for $x$ in N. Suppose $T$ is cyclically monotone, $i.e$ .
(Rockafeller [13]) for any n-tuple $x_{1}\cdots x_{n},$ ${\rm Re}(\sum_{\not\in 1}^{n}(Tx_{i}, x_{i}-x_{i+1})+(Tx_{n}, x_{n}-x_{1}))$

$\geqq 0$ . Suppose $B:D(B)\subset X\rightarrow X$ is $T$ accretive, $i$ . $e$ . ${\rm Re}(T(x-y), Bx-By)\geqq 0$ for
$x,$ $y$ in $D(B),$ $x-y$ in N. Suppose $R(1+B)=X$.

Then for $x_{0}$ in $D(B)$ there exists a unique strongly continuous weakly $C^{1}$

function $ x:[0, \infty$) $\rightarrow X$ with $x(O)=x_{0},$ $\frac{dx}{dt}(t)=-Bx(t)$ . The strong derivative

exists almost everywhere and equals $-Bx(t)$ .
PROOF. By Rockafeller [13], we have a C’ convex function $\varphi:N\rightarrow R$,

with derivative $T$, there are constants $a,$ $b>0$ with

$a\Vert x\Vert^{2}\geqq\varphi(x)\geqq c\Vert x\Vert^{2}$

for $x$ in $N$. Using $\varphi(x)$ instead of $\Vert x\Vert^{2}$ we may easily generalize Theorem
9.15 of Browder [1]. Q. E. D.

University of Colorado
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