Some closed subalgebras of measure algebras and a generalization of P.J. Cohen's theorem

By Jyunji INOUE

(Received April 17, 1970) (Revised Sept. 1, 1970)

§0. Introduction.

Let G_1 and G_2 be locally compact abelian groups, and let $L^1(G_1)$ and $M(G_2)$ be the group algebra of G_1 and the measure algebra of G_2 , respectively. Homomorphisms of $L^1(G_1)$ into $M(G_2)$ have been studied by H. Helson, W. Rudin, J. P. Kahane, Z. L. Leibenson, P. J. Cohen and others; and P. J. Cohen [1], [2] determined all the homomorphisms of $L^1(G_1)$ into $M(G_2)$ by the notion of the coset ring and piecewise affine maps. He also proved that every homomorphism of $L^1(G_1)$ into $M(G_2)$ has a natural norm-preserving extension to a homomorphism of $M(G_1)$ into $M(G_2)$, but in general an extension to a homomorphism of $M(G_1)$ into $M(G_2)$ is not unique.

The purpose of this paper is to introduce some closed subalgebra $L^*(G_1)$ of $M(G_1)$, which contains $L^1(G_1)$ properly if G_1 is not discrete, to determine the maximal ideal space of $L^*(G_1)$, and to determine all the homomorphisms of $L^*(G_1)$ into $M(G_2)$ as a generalization of P. J. Cohen's theorem.

We give in §1 some preliminaries, and in §2 we introduce a closed subalgebra $L^*(G_1)$ of $M(G_1)$. In §3 we investigate the maximal ideal space of $L^*(G_1)$, and obtain it as a semi-group. Finally we determine in §4 all the homomorphisms of $L^*(G_1)$ into $M(G_2)$ as a generalization of P.J. Cohen's theorem.

§1. Preliminaries.

Throughout this paper G_1 and G_2 denote locally compact abelian groups (= LCA groups), and Γ_1 and Γ_2 denote their dual groups, respectively. The notations G^r and Γ_r are also used to express an LCA group with underlying group G and topology τ , and its dual group, respectively. Thus by G^r and $G^{r'}$, we mean that they have the same underlying group G.

 $L^{1}(G_{1})$ is the group algebra of G_{1} , i.e. the Banach algebra of all the Haar integrable functions on G_{1} under convolution multiplication, and $M(G_{2})$ is the measure algebra of G_{2} , the Banach algebra of all the regular bounded complex

Borel measures on G_2 under convolution multiplication.

If f is an element of $L^1(G_1)$, and if we define $\mu_f(E) = \int_E f(x) dx$ for each Borel set E in G_1 , μ_f is a regular bounded complex Borel measure on G_1 and

$$L^1(G_1) \ni f \longmapsto \mu_f \in M(G_1)$$

is a norm-preserving isomorphism of $L^1(G_1)$ into $M(G_1)$. Through this isomorphism we identify $L^1(G_1)$ with a subset of $M(G_1)$, and then $L^1(G_1)$ is a closed ideal of $M(G_1)$. The set $L^1(G_1)$ is characterized as the set of all absolutely continuous measures in $M(G_1)$ with respect to the Haar measure of G_1 (cf. [4] Chap. 1).

 $B(\Gamma_1)$ denotes the set of all the Fourier Stieltjes transforms of elements in $M(G_1)$.

DEFINITION 1.1. We mean by an open coset of Γ_2 a coset of some open subgroup of Γ_2 . The coset ring of Γ_2 is the smallest collection Σ of subsets of Γ_2 which satisfies the following conditions:

1) Σ contains all the open cosets of Γ_2 .

2) If $\Sigma \ni A$, B then $A \cup B$, $A^c \in \Sigma$.

DEFINITION 1.2. If E is an open coset of Γ_2 and α is a continuous mapping from E into Γ_1 , then α is called affine if

$$\alpha(r+r'-r'') = \alpha(r) + \alpha(r') - \alpha(r'') \qquad (r, r', r'' \in E)$$

holds. Suppose that

- (a) S_1, S_2, \dots, S_n are pairwise disjoint sets belonging to the coset ring of Γ_2 .
- (b) Each set S_i is contained in an open coset K_i of Γ_2 .
- (c) For each *i*, α_i is an affine map of K_i into Γ_1 .
- (d) α is the map of $Y = S_1 \cup S_2 \cup \cdots \cup S_n$ into Γ_1 , which coincides on S_i with α_i $(i=1, 2, \dots, n)$.
- Then α is said to be a piecewise affine map of Y into Γ_1 .

THEOREM 1 (Cohen). Suppose Y belongs to the coset ring of Γ_2 , and α is a piecewise affine map from Y into Γ_1 .

(i) For each $f \in L^1(G_1)$, put

$$(\hat{f} \circ \alpha)(r) = \begin{cases} \hat{f}(\alpha(r)); & r \in Y \\ 0; & r \notin Y, \end{cases}$$

where \hat{f} is the Fourier transform of f. Then $\hat{f} \circ \alpha$ belongs to $B(\Gamma_2)$, and there exists a unique element h(f) of $M(G_2)$ such that $\hat{f} \circ \alpha$ is the Fourier-Stieltjes transform of h(f). The mapping h of $L^1(G_1)$ into $M(G_2)$ is a homomorphism, and conversely every homomorphism of $L^1(G_1)$ into $M(G_2)$ is obtained in this way.

(ii) For each $\mu \in M(G_1)$, put

$$(\hat{\mu} \circ \alpha)(r) = \begin{cases} \hat{\mu}(\alpha(r)); & r \in Y \\ 0; & r \notin Y \end{cases},$$

where $\hat{\mu}$ is the Fourier-Stieltjes transform of μ . Then we have $\hat{\mu} \circ \alpha \in B(\Gamma_2)$, and we can choose a unique element $h_1(\mu)$ of $M(G_2)$ such that $\hat{\mu} \circ \alpha$ is the Fourier-Stieltjes transform of $h_1(\mu)$. h_1 is a norm-preserving extension of h to a homomorphism of $M(G_1)$ into $M(G_2)$ (cf. [1], [2] and [4] Chap. 4).

§2. A closed subalgebra $L^*(G_1)$ of $M(G_1)$.

We denote by C the complex number field, and by T the set of all the complex numbers of absolute value 1. T is an LCA group with respect to multiplication and usual topology.

PROPOSITION 2.1. Let G_1 and G_2 be two LCA groups, and let η be a continuous isomorphism of G_1 onto G_2 . Then

(i) There exists a natural norm-preserving isomorphism π of $M(G_1)$ into $M(G_2)$, given by

 $\pi(\mu)(E) = \mu(\eta^{-1}(E)) \qquad (E: Borel set of G_2; \ \mu \in M(G_1)).$

(ii) If $\nu \in M(G_2)$, ν belongs to $\pi(M(G_1))$ if and only if there exists a σ -compact subset K of G_1 such that ν is concentrated in $\eta(K)$.

PROOF. (i) Suppose $\mu \in M(G_1)$. Choose a σ -compact open subset K of G_1 , in which μ is concentrated. Since η is continuous, $\eta(K)$ is also σ -compact in G_2 , and hence $\eta(K)$ is a Borel set in G_2 . Choose compact sets Q_i in G_1 such that $\bigcup_{i=1}^{\infty} Q_i = K$. Let U be an open set in G_1 which is contained in K. Then $\eta(Q_i - U)$ is compact, and $\eta(Q_i \cap U)$ $(i = 1, 2, \cdots)$ is a Borel set in G_2 , and hence $\eta(U) = \bigcup_{i=1}^{\infty} \eta(Q_i \cap U)$ is a Borel set in G_2 . Thus if we put

 $\Omega = \{E: E \text{ is a Borel set in } G_1 \text{ and } \eta(E \cap K) \text{ is a Borel set in } G_2\}$,

then Ω contains all the Borel sets in G_1 . Therefore we see that a subset E of K is a Borel set in G_1 if and only if $\eta(E)$ is a Borel set in G_2 .

Define $\pi(\mu)$ by

 $\pi(\mu)(E) = \mu(\eta^{-1}(E)) \qquad (E; \text{ Borel set of } G_2)$

then $\pi(\mu)$ is an element of $M(G_2)$, and from the above discussion we see that $\pi(\mu)$ has the same norm as μ , and hence

$$\pi: \qquad M(G_1) \ni \mu \longmapsto \pi(\mu) \in M(G_2)$$

is a norm-preserving isomorphism, and this completes the proof of (i).

(ii) Necessity is clear from the definition of the mapping π . Suppose that K is a σ -compact set in G_1 such that $\nu \in M(G_2)$ is concentrated in $\eta(K)$. We can assume without loss of generality that K is open in G_1 . By the paragraph in (i), $\eta(E \cap K)$ is a Borel set in G_2 for each Borel set E of G_1 .

We put

$$\nu_1(E) = \nu(\eta(E \cap K))$$
 (E; Borel set in G_1).

Then ν_1 is a bounded complex Borel measure on G_1 .

To show the regularity of ν_1 , we remark here that the total variation of ν_1 is associated to the total variation of ν , that is $|\nu_1|(E) = |\nu|(\eta(E \cap K))$ holds for each Borel set E in G_1 , and thus we can assume without loss of generality that ν is a positive measure.

Let Q_i $(i=1,2,\cdots)$ be a sequence of compact subsets of K such that $Q_1 \subset Q_2 \subset Q_3 \subset \cdots$, and $\bigcup_{i=1}^{\infty} Q_i = K$. Given $\varepsilon > 0$ and a Borel set E in G_1 , which is contained in K, choose a compact subset F of $\eta(E)$ such that $\nu(\eta(E)-F) \leq \varepsilon/2$, and choose a positive integer n such that $\nu_1(\eta^{-1}(F)) - \varepsilon/2 \leq \nu_1(\eta^{-1}(F) \cap Q_n)$, and then we have

$$\nu_{1}(\eta^{-1}(F) \cap Q_{n}) \geq \nu_{1}(\eta^{-1}(F)) - \varepsilon/2$$

= $\nu(F) - \varepsilon/2$
= $\nu(\eta(E)) - \nu(\eta(E) - F) - \varepsilon/2$
 $\geq \nu(\eta(E)) - \varepsilon$
= $\nu_{1}(E) - \varepsilon$.

Since the restriction of η to Q_i is a homeomorphism for each i $(i=1,2,3,\cdots)$, $\eta^{-1}(F) \cap Q_n$ is a compact subset of E, and hence ν_1 is inner regular. Since ν_1 is bounded, ν_1 is also outer regular and this shows that ν_1 is an element of $M(G_1)$ and $\nu = \pi(\nu_1) \in \pi(M(G_1))$.

DEFINITION 2.1. Let G^{r} and $G^{r'}$ be two *LCA* groups with the same underlying group *G* and $\tau \subseteq \tau'$. By Proposition 2.1 we can define the norm-preserving isomorphism π of $M(G^{r'})$ into $M(G^{r})$. We identify $L^{1}(G^{r'})$ and $M(G^{r'})$ with subalgebras of $M(G^{r})$ through π , respectively.

DEFINITION 2.2. If λ and μ are elements of $M(G^{\tau})$, we say that λ and μ are orthogonal each other (notation $\lambda \perp \mu$) if there exist two disjoint Borel sets A and B in G^{τ} such that λ is concentrated in A and μ is concentrated in B. If Λ and Λ' are subsets of $M(G^{\tau})$, we say that Λ and Λ' are orthogonal each other if $\lambda \perp \mu$ for each pair (λ, μ) , where $\lambda \in \Lambda$, $\mu \in \Lambda'$.

PROPOSITION 2.2. Let G^{τ} and $G^{\tau'}$ be two LCA groups with the same underlying group G with $\tau \subseteq \tau'$, and let η be the natural continuous isomorphism of $G^{\tau'}$ onto G^{τ} . If μ is an element of $M(G^{\tau})$, following a), b) and c) are equivalent each other.

a) $\mu \perp M(G^{\tau'})$,

b) $\mu = \mu_1 + \mu_2$, $\mu_1 \in M(G^{\tau'})$ and $\mu_1 \perp \mu_2$ implies $\mu_1 = 0$,

c) $|\mu|(\eta(K)) = 0$ for every compact set K in G^{-} , where $|\mu|$ is the total variation of μ .

PROOF. a) implies b); Suppose a), and if $\mu = \mu_1 + \mu_2$, $\mu_1 \perp \mu_2$ and $0 \neq \mu_{\mathbf{k}} \in M(G^{\tau'})$, then μ and μ_1 are not orthogonal each other and this contradicts a).

b) implies c); Suppose b), and if there exists a compact set K in $G^{r'}$ with $|\mu|(\eta(K)) \neq 0$, we set μ_1 the restriction of μ to $\eta(K)$, that is

$$\mu_1(E) = \mu(\eta(K) \cap E)$$
 (E; Borel set of G^r)

then we have $\mu_1 \in M(G^{r'})$ by Proposition 2.1 (ii), and that $\mu = (\mu - \mu_1) + \mu_1$, $\mu_1 \neq 0$ and $\mu_1 \downarrow (\mu - \mu_1)$, contradicting b).

c) implies a); Soppose c), and let λ be an element of $M(G^{\tau'})$. There exists a σ -compact subset E of $G^{\tau'}$ such that λ is concentrated in $\eta(E)$. Then by c), $|\mu|(\eta(E)) = 0$ and this implies $\mu \perp \lambda$. Since λ was an arbitrary element of $M(G^{\tau'})$, we have $\mu \perp M(G^{\tau'})$.

DEFINITION 2.3. Let G^r be an LCA group. We denote by $\mathfrak{T}(G^r)$ the class of all locally compact group topologies of G, which are equal or stronger than τ .

LEMMA 2.3. Let G^{τ} be an LCA group and let $\mathfrak{T}(G^{\tau}) \ni \tau_1, \tau_2$ with $\tau_2 \subseteq \tau_1$. If $\eta_{\tau_1}^{\tau_2}$ is the natural continuous isomorphism of G^{τ_1} onto G^{τ_2} , then $r \circ \eta_{\tau_1}^{\tau_2}$ ($r \in \Gamma_{\tau_2}$) is an element of Γ_{τ_1} , which we denote by $\varphi_{\tau_1}^{\tau_2}(r)$. $\varphi_{\tau_1}^{\tau_2}$ is a continuous isomorphism of Γ_{τ_2} onto a dense subgroup of Γ_{τ_1} .

PROOF. It is clear that $\varphi_{\tau_1}^{\tau_2}$ is an isomorphism of Γ_{τ_2} into Γ_{τ_1} . Let W be a neighbourhood of 0 in Γ_{τ_1} . There exists a compact subset K of G^{τ_1} and $\varepsilon > 0$ such that $N(K, \varepsilon) = \{r \in \Gamma_{\tau_1}; |(x, r) - 1| < \varepsilon, x \in K\} \subseteq W$. Since $\eta_{\tau_1}^{\tau_2}(K)$ is also compact in G^{τ_2} , $V = N(\eta_{\tau_1}^{\tau_2}(K), \varepsilon)$ is a neighbourhood of 0 in Γ_{τ_2} and that $\varphi_{\tau_1}^{\tau_2}(V) \subseteq W$. This shows that $\varphi_{\tau_1}^{\tau_2}$ is continuous.

Suppose that $\overline{\varphi_{\tau_1}^{\tau_2}(\Gamma_{\tau_2})} = H \subseteq \Gamma_{\tau_1}$. Γ_{τ_1}/H is a non-trivial *LCA* group and there exists a continuous homomorphism $\bar{\beta} \neq 0$ of Γ_{τ_1}/H into *T*. $\bar{\beta}$ induces a non-trivial continuous homomorphism β of Γ_{τ_1} into *T* such that

$$\beta(r) = \overline{\beta}(\overline{r}) \qquad (r \in \Gamma_{\tau_1}),$$

where \bar{r} is a coset of *H* which contains *r*. There exists $0 \neq x \in G^{\tau_1}$ such that

$$\beta(r) = (x, \gamma) \qquad (r \in \Gamma_{\tau_1}),$$

and hence we have

(2.1)
$$1 = \beta(\varphi_{\tau_1}^{\tau_2}(r)) = (x, \varphi_{\tau_1}^{\tau_2}(r)) = (\eta_{\tau_1}^{\tau_2}(x), r) \qquad (r \in \Gamma_{\tau_2}).$$

From (2.1) we have $\eta_{\tau_1}^{\tau_2}(x) = 0$ and this is a contradiction. This proves that $\varphi_{\tau_1}^{\tau_2}(\Gamma_{\tau_2}) = H = \Gamma_{\tau_1}$ and thus $\varphi_{\tau_1}^{\tau_2}(\Gamma_{\tau_2})$ is a dense subgroup of Γ_{τ_1} .

DEFINITION 2.4. Let G^r be an LCA group and let $\mathfrak{T}(G^r) \ni \tau_1, \tau_2$ with $\tau_1 \supseteq \tau_2$, and let $\eta_{\tau_1}^{\tau_2}$ be the natural continuous isomorphism of G^{τ_1} onto G^{τ_2} . By the Lemma 2.3 we define the natural continuous isomorphism $\varphi_{\tau_1}^{\tau_2}$ of Γ_{τ_2} onto a dense subgroup of Γ_{τ_1} such that

$$(\eta_{\tau_1}^{\tau_2}(x), r) = (x, \varphi_{\tau_1}^{\tau_2}(r)) \quad (x \in G^{\tau_1}, r \in \Gamma_{\tau_2}).$$

THEOREM 2.4. Suppose G^{τ} is an LCA group and $\mathfrak{T}(G^{\tau}) \ni \tau_1, \tau_2$. If $L^1(G^{\tau_1}) \cap L^1(G^{\tau_2}) \neq \{0\}$, then we have $L^1(G^{\tau_1}) = L^1(G^{\tau_2})$.

PROOF. Put $L^1(G^{\tau_1}) \cap L^1(G^{\tau_2}) = I \neq 0$. Since $L^1(G^{\tau_1})$ and $L^1(G^{\tau_2})$ are translation invariant closed subspaces of $M(G^{\tau})$, I is also a translation invariant closed subspace of $M(G^{\tau})$, and hence of $L^1(G^{\tau_i})$ (i=1,2). Therefore I is a closed ideal of $L^1(G^{\tau_i})$ (i=1,2). Set $Z(I) = \{r \in \Gamma_{\tau_1} : \hat{f}(r) = 0, f \in I\}$, where \hat{f} denotes the Fourier transform of f. If $r \in \Gamma_{\tau}$, we have $L^1(G^{\tau_i})\varphi_{\tau_i}^{\tau}(r) \subseteq L^1(G^{\tau_i})$ (i=1,2), and hence $I\varphi_{\tau_i}^{\tau}(r) = I$. This implies that

$$Z(I) + \varphi_{\tau_1}^{\mathsf{r}}(r) = Z(I) \qquad (r \in \Gamma_{\tau}).$$

Since $\varphi_{\tau_1}^{\tau}(\Gamma_{\tau})$ is dense in Γ_{τ_1} , Z(I) is either ϕ or Γ_{τ_1} , and since $I \neq 0$ we conclude that $Z(I) = \phi$. By the general Tauberian theorem, we get $I = L^1(G^{\tau_1})$. In the same way we have $I = L^1(G^{\tau_2})$ and this completes the proof.

THEOREM 2.5. Let G^r be an LCA group and $\mathfrak{T}(G^r) \ni \tau_1, \tau_2$. If $M(G^{r_1}) \supseteq L^1(G^{r_2})$, then we have $\tau_1 \subseteq \tau_2$.

PROOF. Let η be the natural isomorphism from G^{τ_2} onto G^{τ_1} . We shall prove that η is continuous, and this will complete the proof.

Let $r \in \Gamma_{\tau_1}$, and there exists a unique $\varphi(r) \in \Gamma_{\tau_2}$ such that

$$\int_{G^{\tau_2}} \varphi(r)(-x) d\mu(x) = \int_{G^{\tau_1}} r(-x) d\mu(x) \qquad (\mu \in L^1(G^{\tau_2})).$$

We shall show that φ is continuous, and that r and $\varphi(r)$ induce the same function on the underlying group G. If these are proved, we can easily show that η is continuous. Thus for each neighbourhood $N(K, \varepsilon) = \{x \in G^{\tau_1}: |(x, r)-1| < \varepsilon, r \in K\}$ of 0 in G^{τ_1} , where K is a compact subset of Γ_{τ_1} and $\varepsilon > 0$, $\varphi(K)$ is a compact set in Γ_{τ_2} , and $\eta(N(\varphi(K), \varepsilon)) = N(K, \varepsilon)$, and hence η is continuous.

Let $\mu \in L^1(G^{\tau_2})$ and let $\hat{\mu}_{(1)}$ and $\hat{\mu}_{(2)}$ be the Fourier-Stieltjes transform of μ into Γ_{τ_1} , and the Fourier transform of μ into Γ_{τ_2} , respectively. Thus we have the relation

$$\hat{\mu}_{(2)}(\varphi(r)) = \hat{\mu}_{(1)}(r) \qquad (r \in \Gamma_{\tau_1}).$$

If U is an open set in C, then $\hat{\mu}_{(1)}^{-1}(U) = \varphi^{-1}(\hat{\mu}_{(2)}^{-1}(U))$ is an open set in Γ_{τ_1} . Since $\hat{\mu}_{(2)}^{-1}(U)$ is open and the topology of Γ_{τ_2} is the weakest one such that each $\hat{\mu}_{(2)}$ is continuous, we conclude that φ is continuous.

If $r \in \varphi_{\tau_1}^{\mathfrak{r}}(\Gamma_{\tau})$, it is clear that r and $\varphi(r)$ induce the same function on G. For $r_0 \in \Gamma_{\tau_1}$ and $x \in G^{\mathfrak{r}_2}$, let $N(K, \varepsilon) + \varphi(r_0)$ be a neighbourhood of $\varphi(r_0)$, where $\varepsilon > 0$ and K is a compact set in $G^{\mathfrak{r}_2}$, which contains x. Since φ is continuous, there exist a compact set K' in $G^{\mathfrak{r}_1}$ and $\varepsilon' > 0$ such that $\varphi(N(K' \cup \eta(x), \varepsilon') + r_0) \subseteq N(K, \varepsilon) + \varphi(r_0)$. Since $\varphi_{\tau_1}^{\mathfrak{r}}(\Gamma_{\tau})$ is dense in Γ_{τ_1} , we can choose an element r_1 in $(N(K' \cup \eta(x), \varepsilon') + r_0) \cap \varphi_{\tau_1}^{\mathfrak{r}}(\Gamma_{\tau})$, and we have J. INOUE

(2.2)
$$\begin{aligned} |(\eta(x), r_1) - (\eta(x), r_0)| < \varepsilon' \\ |(x, \varphi(r_1)) - (x, \varphi(r_0))| < \varepsilon . \end{aligned}$$

The fact that $r_1 \in \varphi_{\tau_1}^{\tau}(\Gamma_{\tau})$ gives

(2.3)
$$(\eta(x), r_1) = (x, \varphi(r_1)).$$

From (2.2) and (2.3), we get

$$\begin{aligned} |(\eta(x), r_0) - (x, \varphi(r_0))| \\ &\leq |(\eta(x), r_0) - (\eta(x), r_1)| + |(x, \varphi(r_1)) - (x, \varphi(r_0))| \\ &\leq \varepsilon + \varepsilon' . \end{aligned}$$

Since we can take ε and ε' arbitrary, we have

 $(\eta(x), r_0) = (x, \varphi(r_0)) \qquad (x \in G^{\tau_2}),$

and hence r_0 and $\varphi(r_0)$ induce the same function on G. This completes the proof of the theorem.

COROLLARY 2.6. If $\mathfrak{T}(G^r) \ni \tau_1, \tau_2$ and $L^1(G^{r_1}) = L^1(G^{r_2})$, then we have $\tau_1 = \tau_2$. COROLLARY 2.7. If $\tau_1, \tau_2 \in \mathfrak{T}(G^r)$ and $\tau_1 \neq \tau_2$, then we have $L^1(G^{r_1}) \perp L^1(G^{r_2})$.

PROOF. Suppose that $L^1(G^{r_1})$ and $L^1(G^{r_2})$ are not orthogonal each other, and choose $\mu \in L^1(G^{r_1})$ and $\nu \in L^1(G^{r_2})$ such that μ is not orthogonal to ν . By Proposition 2.1 there exists a σ -compact set K in G^{r_1} such that μ is concentrated in $\eta_{r_1}^r(K)$. If ν_1 is the restriction of ν to $\eta_{r_1}^r(K)$, then we have $0 \neq \nu_1 \in M(G^{r_1})$. Let $\nu_1 = \nu'_1 + \nu''_1$ be the Lebesgue decomposition of ν_1 such that $\nu'_1 \ll \mu, \nu''_1 \perp \mu$. Then $\nu'_1 \neq 0$ and $\nu'_1 \in L^1(G^{r_1}) \cap L^1(G^{r_2})$, that is $L^1(G^{r_1}) \cap L^1(G^{r_2}) \neq 0$. From Theorem 2.4 we have $L^1(G^{r_1}) = L^1(G^{r_2})$, and from Corollary 2.6 we have $\tau_1 = \tau_2$, and this is a contradiction.

THEOREM 2.8. If $\tau_1, \tau_2 \in \mathfrak{T}(G^r)$, then there exists a unique $\tau_3 \in \mathfrak{T}(G^r)$ such that $L^1(G^{r_1}) * L^1(G^{r_2}) \subseteq L^1(G^{r_3})$. Moreover τ_3 enjoys the additional property such that $\tau_3 \subseteq \tau_1, \tau_2$, and if $\tau_0 \in \mathfrak{T}(G^r)$ with $\tau_0 \subseteq \tau_1, \tau_2$, then $\tau_0 \subseteq \tau_3$.

To prove the theorem we provide the following lemma. R^n denotes the *n*-dimensional Euclidean space, and Z denotes the discrete group of all rational integers.

LEMMA 2.9. Let $H_1 = R^p \times K_1$, $H_2 = R^q \times K_2$ and $H = H_1 \times H_2/K$ be LCA groups, where p and q are non-negative integers, K_1 and K_2 are compact groups, and K is a closed subgroup of $H_1 \times H_2$. B_0 denotes the ring of all the bounded Borel sets of H, and f denotes the natural homomorphism of $H_1 \times H_2$ onto H.

(i) If φ denotes the projection of $H_1 \times H_2$ onto $R^p \times R^q$, then $\varphi(K)$ is a closed subgroup of $R^p \times R^q$, and hence there exists a basis $\{u_1, \dots, u_{n_1}, \dots, u_{n_2}, \dots, u_{p+q}\}$ of the vector space $R^p \times R^q$ over R such that $\varphi(K) = \sum_{i=1}^{n_1} Ru_i + \sum_{i=n_1+1}^{n_2} Zu_i$.

(ii) Put
$$V^{(r)} = \{x \in H_1 \times H_2 : \varphi(x) = \sum_{i=1}^{p+q} \alpha_i u_i, 0 \le \alpha_i < 1 \ (i = 1, 2, \dots, n_2), |\alpha_i| < r$$

 $(i = n_2 + 1, \dots, p+q)$, for each positive number r. If E is an element of B_0 , and if r and r' are positive numbers such that $f(V^{(r)}) \supseteq E$, $f(V^{(r')}) \supseteq E$, then

$$f^{-1}(E) \cap V^{(r)} = f^{-1}(E) \cap V^{(r')}.$$

(iii) For each $E \in B_0$, choose a positive number r such that $f(V^{(r)}) \supseteq E$, and put

$$m^{*}(E) = m(f^{-1}(E) \cap V^{(r)}).$$

Then m^* is well defined by (ii), and m^* is a non-negative finite translation invariant measure on B_0 .

(iv) We can extend m^* to a Borel measure \overline{m}^* of H in a unique way, and \overline{m}^* is the Haar measure of H.

PROOF. (i) Since the latter of (i) is well known, we only prove that $\varphi(K)$ is closed. Suppose x is an element of $\overline{\varphi(K)} - \varphi(K)$. We can choose a sequence $\{x_i\}_{i=1}^{\infty}$ of elements in K such that $\lim_{i \to \infty} \varphi(x_i) = x$. Let ψ be the projection of $H_1 \times H_2$ onto $K_1 \times K_2$. Then we have either $\{\psi(x_i): i=1, 2, \cdots\}$ is a finite set, or $\{\psi(x_i): i=1, 2, \cdots\}$ has accumulating points in $K_1 \times K_2$. In either cases $\{x_i\} = \{\varphi(x_i) + \psi(x_i)\}$ has an accumulating point z in $H_1 \times H_2$, and since K is closed, z belongs to K. Thus we have $x = \varphi(z) \in \varphi(K)$. This is a contradiction and hence we have $\overline{\varphi(K)} = \varphi(K)$.

(ii) Suppose $r' \ge r$ and x is an element of $f^{-1}(E) \cap V^{(r')}$. Then f(x) belongs to E, and since $f(V^{(r)}) \supseteq E$ there exists an element y of $V^{(r)}$ such that f(x) = f(y). We have $x-y \in K$ and so $\varphi(x)$ and $\varphi(y)$ differ only on u_1, \dots, u_{n_2} components, therefore $x \in V^{(r)}$. This shows that $f^{-1}(E) \cap V^{(r')} = f^{-1}(E) \cap V^{(r)}$.

(iii) That m^* is a non-negative finite measure is clear, and we only prove that m^* is translation invariant. Let $E \in B_0$, and let i be a positive number such that $f(V^{(r)}) \supseteq E$, $E + \bar{x}$, where $\bar{x} \in H$. If we choose an element x in $f^{-1}(\bar{x})$, we have $(f^{-1}(E) + x) \cap V^{(r)} = f^{-1}(E + \bar{x}) \cap V^{(r)}$, and hence

$$m^{*}(E) = m(f^{-1}(E) \cap V^{(r)}) = m((f^{-1}(E) + x) \cap V^{(r)})$$

= $m(f^{-1}(E + \bar{x}) \cap V^{(r)}) = m^{*}(E + \bar{x}).$

(iv) Since m^* is a finite non-negative translation invariant measure on B_0 , we can extend m^* uniquely to a σ -finite translation invariant measure \overline{m}^* on $S(B_0)$, the σ -ring generated by B_0 . Since H is σ -compact, $S(B_0)$ is the class of all the Borel sets in H, and hence \overline{m}^* is a Borel measure on H.

To prove that \overline{m}^* is the Haar measure of H, we have only to prove that \overline{m}^* is regular in the sense:

(a) For every open set U in H, we have

$$\overline{m}^*(U) = \sup \left\{ \overline{m}^*(F) : F \text{ is compact and } F \subseteq U \right\}$$
 ,

(b) For each Borel set A in H, we have

$$\overline{m}^*(A) = \inf \{\overline{m}^*(U) : U \text{ is open and } U \supseteq A\}.$$

Suppose first that E is a bounded Borel set in H, r is a positive number such that $f(V^{(r)}) \supseteq E$, and $\varepsilon > 0$. There exists a compact subset F of $f^{-1}(E) \cap V^{(r)}$ such that

$$m(f^{-1}(E) \cap V^{(r)}) \leq m(F) + \varepsilon$$
.

Then f(F) is a compact subset of H and $\overline{m}^*(f(F))+\varepsilon \ge \overline{m}^*(E)$. Since H is σ -compact, this proves (a) for every open set in H. Next choose a bounded open set W which contains E, and by what we have proved in (a) there exists a compact set $F_1 \subseteq W-E$ such that $\overline{m}^*(F_1)+\varepsilon \ge \overline{m}^*(W-E)=\overline{m}^*(W)-\overline{m}^*(E)$, and so we have $\overline{m}^*(E)+\varepsilon \ge \overline{m}^*(W-F_1)$, and again this proves (b) for every Borel set E in H.

PROOF OF THEOREM 2.8. Let H_i be an open subgroup of G^{r_i} (i=1, 2) such that

$$H_1 \cong R^p \times K_1$$
, $H_2 \cong R^q \times K_2$,

where K_1 and K_2 are compact groups. We identify H_1 and H_2 with $R^p \times K_1$ and $R^q \times K_2$, respectively. Let f be a continuous homomorphism of $H_1 \times H_2$ into G^r ,

$$f; \quad H_1 \times H_2 \ni (x, y) \longmapsto x + y \in G^{\tau}.$$

We can introduce in $H = H_1 + H_2 = f(H_1 \times H_2)$ a locally compact group topology τ'_3 in H such that f becomes an open continuous map of $H_1 \times H_2$ onto $H^{\tau'_3}$. This topology τ'_3 in H can be extended uniquely to a locally compact group topology τ_3 in G such that H is open in G^{τ_3} and $\tau_3|_H = \tau'_3$. We shall show that if $\lambda \in L^1(G^{\tau_1})$, $\mu \in L^1(G^{\tau_2})$, then $\lambda * \mu \in L^1(G^{\tau_3})$ and this will complete the proof.

First suppose that λ is concentrated in H_1 and μ is concentrated in H_2 . Then $\lambda * \mu$ is concentrated in H. Since $\tau_3 \subseteq \tau_1, \tau_2$, and by Proposition 2.1 we have $L^1(G^{\tau_1}) * L^1(G^{\tau_2}) \subseteq M(G^{\tau_3})$. Thus we have only to show that $\lambda * \mu$ is absolutely continuous with respect to the Haar measure of G^{τ_3} . We remark here that the Haar measure of $H^{\tau'_3}$ is obtained by restricting the Haar measure of G^{τ_3} to H. The same relation also holds between G^{τ_i} and H_i (i=1, 2). We apply the preceding lemma for the present H_1 , H_2 and the closed subgroup $K = \{(x, y) \in H_1 \times H_2 : x + y = 0\}$ of $H_1 \times H_2$ and introduce the Haar measure \overline{m}^* on $H_1 \times H_2/K \cong H^{\tau'_3}$. We extend \overline{m}^* to the Haar measure of G^{τ_3} and we also represent it by \overline{m}^* .

To prove that $\lambda * \mu$ is absolutely continuous with respect to $\overline{m}*$, suppose first that E is a bounded Borel set in $H^{r's}$ with $\overline{m}*(E)=0$. We can suppose without loss of generality that $\lambda \ge 0$ and $\mu \ge 0$. For each $\varepsilon > 0$, there exist a compact set C_i in H_i (i=1, 2), $\lambda' \in L^1(G^{r_1})$, $\mu' \in L^1(G^{r_2})$, and d > 0, such that

$$dm_{1}|_{C_{1}} \ge \lambda' \ge 0,$$

$$dm_{2}|_{C_{2}} \ge \mu' \ge 0,$$

$$\|\lambda * \mu - \lambda' * \mu'\| < \varepsilon,$$

where m_i denotes the Haar measure of H_i (i=1,2), and $dm_i|_{C_i}$ (i=1,2)denotes the restriction of dm_i to C_i . Choose a positive number r such that $f(V^{(r)}) \supseteq E$, and a finite number of elements $x_1, x_2, \dots, x_t \in H_1 \times H_2$ such that $\bigcup_{i=1}^{t} (V^{(r)} + x_i) \supseteq C_1 \times C_2$. Then

$$\begin{split} \lambda * \mu(E) &\leq \lambda' * \mu'(E) + \varepsilon \\ &\leq (dm_1|_{C_1}) * (dm_2|_{C_2})(E) + \varepsilon \\ &= d^2(m_1|_{C_1}) \times (m_2|_{C_2})(E_{(2)}) + \varepsilon \\ &= d^2(m_1 \times m_2)(f^{-1}(E) \cap C_1 \times C_2) + \varepsilon \\ &\leq d^2 \sum_{i=1}^t (m_1 \times m_2)(f^{-1}(E) \cap (V^{(r)} + x_i)) + \varepsilon \\ &= d^2 \sum_{i=1}^t (m_1 \times m_2)(f^{-1}(E - f(x_i)) \cap V^{(r)}) + \varepsilon \\ &\leq d^2 \sum_{i=1}^t \bar{m} * (E - f(x_i)) + \varepsilon \\ &= \varepsilon , \end{split}$$

where we put $E_{(2)} = \{(x, y) \in G^{\tau_3} \times G^{\tau_3} : x+y \in E\}$. Since $\varepsilon > 0$ was arbitrary, we have $\lambda * \mu(E) = 0$. If $\overline{m} * (E) = 0$ for a Borel set in G^{τ_3} , then E is a union of a subset of $G^{\tau_3} - H$ and a countably many bounded Borel sets in $H^{\tau'_3}$, and so $\lambda * \mu(E) = 0$.

Next let us consider the general case. Since λ and μ are regular, they are concentrated in at most countably many cosets of H_1 and H_2 , respectively. Thus we may assume without loss of generality that λ is concentrated in H_1+x , and μ is concentrated in H_2+y , where $x \in G^{\tau_1}$, and $y \in G^{\tau_2}$. Let $\lambda-x$ and $\mu-y$ be the translations of λ and μ by x and y respectively, that is $(\lambda-x)(E-x) = \lambda(E)$, etc. Then we have

(2.4)
$$\lambda * \mu(E) = ((\lambda - x) * (\mu - y))(E - x - y)$$

and if $\overline{m}^*(E) = 0$, the right side of (2.4) is 0 by the above result, and hence $\lambda * \mu \in L^1(G^{r_3})$. The uniqueness of τ_3 follows from Corollary 2.7.

Now let us prove the remainder of the assertions of the theorem and complete the proof.

Suppose that $\tau_0 \in \mathfrak{T}(G^r)$ and $\tau_0 \subseteq \tau_1, \tau_2$. Then we have $M(G^{r_0}) \supset L^1(G^{r_1})$, $L^1(G^{r_2})$, and hence $M(G^{r_0}) \supset L^1(G^{r_1}) * L^1(G^{r_2})$. Let \mathfrak{A} be the closed subspace generated by $\{\lambda * \mu : \lambda \in L^1(G^{r_1}), \mu \in L^1(G^{r_2})\}$. \mathfrak{A} is a translation invariant

J. INOUE

subspace and hence an ideal of $L^1(G^{\tau_3})$. It is easy to see that $Z(\mathfrak{A}) = \{r \in \Gamma_{\tau_3} : \hat{\nu}(r) = 0, \nu \in \mathfrak{A}\} = \phi$, and from the general Tauberian theorem we have $\mathfrak{A} = L^1(G^{\tau_3})$, and so $L^1(G^{\tau_3}) \subset M(G^{\tau_0})$. From Theorem 2.5 we get $\tau_3 \supset \tau_0$ and this completes the proof of Theorem 2.8.

DEFINITION 2.5. Let G^{τ} be an *LCA* group. By Theorem 2.8 $\sum_{\tau' \in \mathfrak{X}(G^{\tau})} L^1(G^{\tau'})$ is a subalgebra and hence $\overline{\sum_{\tau' \in \mathfrak{X}(G^{\tau})} L^1(G^{\tau'})}$ is a closed subalgebra of $M(G^{\tau})$, which we denote by $L^*(G^{\tau})$. $L^*(G^{\tau})$ contains the identity of $M(G^{\tau})$, and hence $L^*(G^{\tau})$ properly contains $L^1(G^{\tau})$ if G^{τ} is not discrete.

§ 3. The maximal ideal space of $L^*(G^{\tau})$.

If μ is an element of $L^*(G^r)$, we denote by $\hat{\mu}$ the Gelfand transform of μ . DEFINITION 3.1. Let G^r be an LCA group. We introduce a partial order \geq in $\mathfrak{T}(G^r)$ such that, if $\tau_1, \tau_2 \in \mathfrak{T}(G^r)$ then $\tau_1 \geq \tau_2$ if and only if $\tau_1 \subset \tau_2$. $\mathfrak{T}(G^r)$ is a directed set under this binary relation \geq , that is for each pair $\tau_1, \tau_2 \in \mathfrak{T}(G^r)$, there exists $\tau_3 \in \mathfrak{T}(G^r)$ such that $\tau_3 \geq \tau_1, \tau_2$ (cf. Theorem 2.8). A directed subset S of $\mathfrak{T}(G^r)$ is a non-empty subset of $\mathfrak{T}(G^r)$ such that; 1) S is itself a directed set under \geq ; 2) If $S \ni \tau_1, \mathfrak{T}(G^r) \ni \tau_2$ and $\tau_1 \geq \tau_2$, then we have $\tau_2 \in S$.

PROPOSITION 3.1. Let G^r be an LCA group and let h be a non-zero complex homomorphism of $L^*(G^r)$. Then

1) $S = \{\tau' \in \mathfrak{T}(G^{\tau}): h|_{L^{1}(G^{\tau'})} \neq 0\}$ is a directed subset of $\mathfrak{T}(G^{\tau})$.

2) If $\tau_1, \tau_2 \in S$ and $\tau_1 \geq \tau_2$, with

$$h(\lambda) = \int_{G^{\tau_1}} r_{\tau_1}(-x) d\lambda(x) \qquad (\lambda \in L^1(G^{\tau_1})),$$

$$h(\mu) = \int_{G^{\tau_2}} r_{\tau_2}(-x) d\mu(x) \qquad (\mu \in L^1(G^{\tau_2})),$$

where $r_{\tau_1} \in \Gamma_{\tau_1}$, $r_{\tau_2} \in \Gamma_{\tau_2}$, then $\varphi_{\tau_2}^{\tau_1}(r_{\tau_1}) = r_{\tau_2}$.

3) Conversely if S is a directed subset of $\mathfrak{T}(G^{\mathfrak{r}})$, and if $(r_{\mathfrak{r}'})_{\mathfrak{r}'\in S}$ is an element of $\prod_{\mathfrak{r}'\in S}\Gamma_{\mathfrak{r}'}$ such that

$$\varphi_{\tau_2}^{\tau_1}(r_{\tau_1}) = r_{\tau_2}$$
 $(\tau_1, \tau_2 \in S \text{ and } \tau_1 \geq \tau_2)$,

then $(r_{\tau'})_{\tau' \in S}$ induces a non-zero complex homomorphism h' of $L^*(G^{\tau})$ such that

(3.1)
$$h'(\lambda) = \begin{cases} \int_{G^{\tau'}} r_{\tau'}(-x) d\lambda(x) : & \lambda \in L^1(G^{\tau'}), \ \tau' \in S, \\ 0 & : & \lambda \in L^1(G^{\tau'}), \ \tau' \in S. \end{cases}$$

PROOF. 1) Since $h \neq 0$, it is clear that S is not empty. If $S \ni \tau_1, \tau_2$ then there exist $\lambda \in L^1(G^{\tau_1})$ and $\mu \in L^1(G^{\tau_2})$ such that $h(\lambda) \neq 0$, $h(\mu) \neq 0$, and hence $h(\lambda * \mu) \neq 0$. By Theorem 2.8 there exists $\tau_3 \in \mathfrak{T}(G^{\tau})$ such that $\tau_3 \geq \tau_1, \tau_2$ and $\lambda * \mu \in L^1(G^{\tau_3})$, and so $\tau_3 \in S$.

If $\tau_1 \in S$, $\tau_2 \in \mathfrak{T}(G^{\tau})$ and $\tau_1 \geq \tau_2$, then there exist $r_{\tau_1} \in \Gamma_{\tau_1}$ and $\lambda_1 \in L^1(G^{\tau_1})$ such that

$$\begin{cases} h(\lambda) = \int_{G^{\tau_1}} r_{\tau_1}(-x) d\lambda(x) & (\lambda \in L^1(G^{\tau_1})), \\ h(\lambda_1) = \int_{G^{\tau_1}} r_{\tau_1}(-x) d\lambda_1(x) \neq 0. \end{cases}$$

Choose $\mu_1 \in L^1(G^{\tau_2})$ such that

$$\int_{g^{\tau_2}} \varphi_{\tau_2}^{\tau_1}(r_{\tau_1})(-x) d\mu_1(x) \neq 0.$$

Then we have

$$\begin{split} h(\lambda_{1})h(\mu_{1}) &= h(\lambda_{1} * \mu_{1}) \\ &= \int_{g^{\tau_{1}}} r_{\tau_{1}}(-x) d\lambda_{1} * \mu_{1}(x) \\ &= \int_{g^{\tau_{1}}} r_{\tau_{1}}(-x) d\lambda_{1}(x) \int_{g^{\tau_{1}}} r_{\tau_{1}}(-x) d\mu_{1}(x) \\ &= \int_{g^{\tau_{1}}} r_{\tau_{1}}(-x) d\lambda_{1}(x) \int_{g^{\tau_{2}}} \varphi_{\tau_{2}}^{\tau_{1}}(r_{\tau_{1}})(-x) d\mu_{1}(x) \\ &\neq 0 \,. \end{split}$$

Therefore we have $h(\mu_1) \neq 0$, and hence τ_2 belongs to S.

2) If $\tau_1, \tau_2 \in S$ and $\tau_1 \geq \tau_2$, then we have from (3.2)

$$h(\mu_1) = \int_{G^{\tau_2}} \varphi_{\tau_2}^{\tau_1}(r_{\tau_1})(-x) d\mu_1(x) \qquad (\mu_1 \in L^1(G^{\tau_2}))$$

and hence we have $\varphi_{\tau_2}^{r_1}(r_{\tau_1}) = r_{\tau_2}$. 3) Since $L^*(G^r) = \sum_{\tau' \in \mathfrak{X}(G^r)} L^1(G^{\tau'})$, it is obvious from Corollary 2.7 that there exists a linear functional h' such that (3.1) holds. We shall show that h' is a complex homomorphism of $L^*(G^r)$.

Let $\tau_1, \tau_2 \in \mathfrak{T}(G^{\tau})$, and let $\lambda \in L^1(G^{\tau_1})$ and $\mu \in L^1(G^{\tau_2})$. We have only to prove that $h'(\lambda * \mu) = h'(\lambda)h'(\mu)$. By Theorem 2.8 there exists $\tau_3 \in \mathfrak{T}(G^r)$ such that $\lambda * \mu \in L^1(G^{\tau_3})$ and $\tau_3 \ge \tau_1, \tau_2$. If $\tau_1 \notin S$, then τ_3 does not belong to S, and we have

(3.3)
$$h'(\lambda * \mu) = h'(\lambda)h'(\mu) = 0.$$

If $\tau_2 \notin S$, we can prove the same relation as (3.3). If $\tau_1 \in S$ and $\tau_2 \in S$, then by Theorem 2.8 τ_s belongs to S, and

$$h'(\lambda * \mu) = \int_{G^{\tau_8}} r_{\tau_8}(-x) d\lambda * \mu(x)$$
$$= \int_{G^{\tau_8}} r_{\tau_8}(-x) d\lambda(x) \int_{G^{\tau_8}} r_{\tau_8}(-x) d\mu(x)$$

$$= \int_{G^{\tau_1}} r_{\tau_1}(-x) d\lambda(x) \int_{G^{\tau_2}} r_{\tau_2}(-x) d\mu(x)$$
$$= h'(\lambda)h'(\mu),$$

and this completes the proof.

DEFINITION 3.2. If S is a directed subset of $\mathfrak{T}(G^r)$, then

$$\Gamma_{S} = \{ (r_{\tau'})_{\tau' \in S} \in \prod_{\tau' \in S} \Gamma_{\tau'} : \varphi_{\tau_{2}}^{\tau_{1}}(r_{\tau_{1}}) = r_{\tau_{2}}, \text{ if } \tau_{1} \geq \tau_{2}; \tau_{1}, \tau_{2} \in S \}$$

forms a group with respect to the pointwise addition. By Proposition 3.1, $\Gamma^* = \bigcup_{S \subset \mathfrak{X}(G^{\tau})} \Gamma_S$ constitutes the maximal ideal space of $L^*(G^{\tau})$.

If S is a directed subset of $\mathfrak{T}(G^{\tau})$ and $\tau_0 \in S$, we denote by $\varphi_{\tau_0}^S$ the natural homomorphism of Γ_S into Γ_{τ_0} , given by

(3.4)
$$\varphi_{\tau_0}^{\mathcal{S}}((r_{\tau'})_{\tau'\in \mathcal{S}}) = r_{\tau_0} \qquad ((r_{\tau'})_{\tau'\in \mathcal{S}}\in \Gamma_{\mathcal{S}})$$

PROPOSITION 3.2. For each $\Gamma_{s_1} \times \Gamma_{s_2} \ni ((r_{\tau'})_{\tau' \in S_1}, (r'_{\tau'})_{\tau' \in S_2})$, we define

(3.5)
$$(r_{\tau'})_{\tau' \in S_1} + (r'_{\tau'})_{\tau' \in S_2} = (r_{\tau'} + r'_{\tau'})_{\tau' \in S_1 \cap S_2} .$$

Then Γ^* becomes a semi-group with unit.

PROOF. Since intersection of two directed subsets of $\mathfrak{T}(G^r)$ is again a directed subset of $\mathfrak{T}(G^r)$, it is obvious that Γ^* forms a semi-group with unit $(0_{r'})_{r'\in\mathfrak{T}(G^r)}$, where $0_{r'}$ is the unit of $\Gamma_{r'}$.

PROPOSITION 3.3. Suppose that $\Gamma^* \supseteq \Gamma_s \supseteq r_0$. For each $\tau_0 \in S$, a neighbourhood U of $\varphi_{\tau_0}^s(r_0)$ in Γ_{τ_0} and a finite subset $\{\tau_1, \tau_2, \cdots, \tau_m\}$ of $\mathfrak{T}(G^{\tau}) - S$, and a compact subset K_i of Γ_{τ_i} $(i = 1, 2, \cdots, m)$, put

(3.6) $U_{\tau_0}^{(K_1,\tau_1),(K_2,\tau_2),\cdots,(K_m,\tau_m)}$

$$= \bigcup_{S' \ni \tau_0} \{ r \in \Gamma_{S'} : \varphi_{\tau_0}^{S'}(r) \in U, \text{ and if } S' \ni \tau_i \text{ then } \varphi_{\tau_i}^{S'}(r) \notin K_i \ (i=1,\cdots,m) \}.$$

Then the class of all the sets of the form (3.6) constitutes a basis of neighbourhoods of r_0 with respect to the Gelfand topology of Γ^* .

PROOF. The Gelfand topology of Γ^* is the weakest one such that every Gelfand transform $\hat{\mu}$ ($\mu \in L^*(G^r)$) is continuous on Γ^* . Since each element $\hat{\mu}$ ($\mu \in L^*(G^r)$) is a uniform limit of some sequence of elements in $\{\hat{\lambda}: \lambda \in \sum_{\tau' \in \mathfrak{X}(G^r)} L^1(G^{\tau'})\}$, it can be said that the Gelfand topology of Γ^* is the weakest one such that each $\hat{\mu}$ ($\mu \in L^1(G^{\tau'}): \tau' \in \mathfrak{X}(G^r)$) is continuous on Γ^* .

Suppose $\tau_* \in \mathfrak{T}(G^r)$, $\mu \in L^1(G^{r_*})$, and W is a neighbourhood of $\hat{\mu}(r_0)$ in C, where $W \ni 0$ if $\hat{\mu}(r_0) \neq 0$. If $\tau_* \notin S'$, $\hat{\mu}(r) = 0$ for every $r \in \Gamma_{S'}$. If $\tau_* \in S'$, then $\hat{\mu}(r) = \hat{\mu}(\varphi_{\tau_*}^{S'}(r))$, where $\hat{\mu}$ is the Fourier transform of μ into Γ_{τ_*} . Thus we have

Closed subalgebras

$$(3.7) \qquad \hat{\mu}^{-1}(W) = \begin{cases} (\bigcup_{S' \ni \tau_*} \Gamma_{S'}) \cup [\bigcup_{S' \ni \tau_*} \{r \in \Gamma_{S'} : \varphi_{\tau_*}^{S'}(r) \in \hat{\mu}^{-1}(W)\}]: & \text{if } \hat{\mu}(r_0) = 0\\ \bigcup_{S' \ni \tau_*} \{r \in \Gamma_{S'} : \varphi_{\tau_*}^{S'}(r) \in \hat{\mu}^{-1}(W)\}: & \text{if } \hat{\mu}(r_0) \neq 0. \end{cases}$$

Suppose $\tau_1, \tau_2, \dots, \tau_m \in \mathfrak{T}(G^r) - S$, $\tau_{m+1}, \tau_{m+2}, \dots, \tau_n \in S$ (m < n) and $\mu_1 \in L^1(G^{\tau_1}), \dots, \mu_n \in L^1(G^{\tau_n})$, and let W_i be an open neighbourhood of $\hat{\mu}_i(r_0)$ $(i=1,2,\dots,n)$. Let $\tau_0 \in \mathfrak{T}(G^r)$ be the least upper bound of $\{\tau_{m+1},\dots,\tau_n\}$ (cf. Theorem 2.8). Since $\varphi_{\tau_i}^{\tau_0}$ is continuous and $\varphi_{\tau_i}^{\tau_0} \circ \varphi_{\tau_0}^S = \varphi_{\tau_i}^S$, $U = \bigcap_{i=m+1}^n \varphi_{\tau_i}^{\tau_0-1}(\hat{\mu}_i^{-1}(W_i))$ is a neighbourhood of $\varphi_{\tau_0}^S(r_0)$, and we have from (3.7)

$$(3.8) U_{\tau_0} = \bigcup_{S' \ni \tau_0} \{ r \in \Gamma_{S'} : \varphi_{\tau_0}^{S'}(r) \in U \} \subseteq \hat{\mu}_{m+1}^{-1}(W_{m+1}) \cap \cdots \cap \hat{\mu}_n^{-1}(W_n) .$$

Put $(\hat{\mu}_j^{-1}(W_j))^c = K_j$ $(j = 1, 2, \dots, m)$, and since W_j is an open neighbourhood of 0 $(j = 1, 2, \dots, m)$, K_j is a compact subset of Γ_{τ_j} . By (3.7) we have

(3.9)
$$\hat{\mu}_{j}^{-1}(W_{j}) = (\bigcup_{S' \oplus \tau_{j}} \Gamma_{S'}) \cup [\bigcup_{S' \ni \tau_{j}} \{r \in \Gamma_{S'} : \varphi_{\tau_{j}}^{S'}(r) \notin K_{j}\}] \quad (j = 1, 2, \cdots, m).$$

If we put $U_{\tau_0}^{(K_1,\tau_1),\dots,(K_m,\tau_m)}$ as (3.6), we get from (3.8) and (3.9)

$$U_{\tau_0}^{(K_1,\tau_1),\cdots,(K_m,\tau_m)} \subseteq \bigcap_{j=1}^n \hat{\mu}_j^{-1}(W_j).$$

Conversely, let $\tau_0 \in S$, $\tau_1, \dots, \tau_m \in \mathfrak{T}(G^r) - S$, and let U be a neighbourhood of $\varphi_{\tau_0}^s(r_0)$, and suppose K_j is a compact subset of Γ_{τ_j} $(j=1,2,\dots,m)$. Then we can choose $\mu_i \in L^1(G^{\tau_i})$ $(i=0,1,\dots,m)$ and a neighbourhood V of $\hat{\mu}_0(r_0) \in C$ such that

$$\begin{cases} \hat{\mu}_0(\varphi^{\mathcal{S}}_{\tau_0}(r_0)) \neq 0, \\ U \supseteq \hat{\mu}_0^{-1}(V), \quad V \ni 0, \\ \hat{\mu}_j(r) \ge 1 \quad (r \in K_j), \quad (j = 1, 2, \cdots, m). \end{cases}$$

Then we get

$$U^{(K_1,\tau_1),\cdots,(K_m,\tau_m)}_{\tau_0} \supseteq [\bigcap_{j=1}^m \hat{\mu}_j^{-1}(\varDelta)] \cap \hat{\mu}_0^{-1}(V)$$
 ,

where $\Delta = \{\alpha \in C : |\alpha| < 1\}$, and hence the set of the form (3.6) is a neighbourhood of r_0 .

What we have proved above and the fact that

$$\{\hat{\mu}^{-1}(W): \mu \in L^1(G^{\tau'}), \tau' \in \mathfrak{T}(G^{\tau}), W \ni \hat{\mu}(r_0)\}$$

forms a sub-basis of neighbourhoods of r_0 show that the class of the set of the form (3.6) constitutes a basis of neighbourhoods of r_0 in Γ^* .

REMARK. If τ_0 is an element of $\mathfrak{T}(G^r)$, then $S_{\tau_0} = \{\tau' \in \mathfrak{T}(G^r) : \tau' \leq \tau_0\}$ is a directed subset of $\mathfrak{T}(G^r)$. It is easy to see from Proposition 3.3 that $\varphi_{\tau_0}^{S_{\tau_0}}$ is a homeomorphic isomorphism from $\Gamma_{S_{\tau_0}}$ (as a subspace of Γ^*) onto Γ_{τ_0} . PROPOSITION 3.4. Suppose S is a directed subset of $\mathfrak{T}(G^{\mathfrak{r}})$ and μ is an element of $M(G^{\mathfrak{r}})$. Then there exists a unique decomposition $\mu = \mu_1 + \mu_2$, where $\mu_1 \in \overline{\sum_{r' \in S} M(G^{\mathfrak{r'}})}$ and $\mu_2 \perp \overline{\sum_{r' \in S} M(G^{\mathfrak{r'}})}$.

PROOF. We can assume without loss of generality that $\mu \ge 0$. Put $\Sigma = \{\mu' \in \overline{\sum_{r' \in S} M(G^{r'})} : \mu' \perp (\mu - \mu')\}$. It is clear that Σ is an inductive set with respect to the usual partial order in $M(G^{r})$, and so there exists a maximal element in Σ . Let μ_{1} be a maximal element in Σ , and put $\mu_{2} = \mu - \mu_{1}$.

If there exists $\tau_0 \in S$ such that μ_2 is not orthogonal to $M(G^{\tau_0})$, then by Proposition 2.2, there is a decomposition

$$\mu_2=\mu_2'+\mu_2'$$
 , $0
eq\mu_2'\in M(G^{r_0})$, $\mu_2'\perp\mu_2'$,

Then $\mu_1 + \mu'_2 \in \Sigma$, and $\mu_1 + \mu'_2 \ge \mu_1$, and this contradicts the maximality of μ_1 and thus $\mu = \mu_1 + \mu_2$ is the desired decomposition.

THEOREM 3.5. Each complex homomorphism of $L^*(G^r)$ can be extended to a complex homomorphism of $M(G^r)$, and so Γ^* is contained in the maximal ideal space of $M(G^r)$.

PROOF. Let S be a directed subset of $\mathfrak{T}(G^r)$, and suppose $\mu \in M(G^r)$. Then by Proposition 3.4, we have a decomposition

$$\mu = \mu_1 + \mu_2$$
, $\mu_1 \in \overline{\sum_{s \ni \tau'} M(G^{\tau'})}$, $\mu_2 \perp \overline{\sum_{s \ni \tau'} M(G^{\tau'})}$.

 μ_1 has an expression $\mu_1 = \lim_{i \to \infty} \mu_{1i}$, where $\mu_{1i} \in M(G^{\tau_i})$, $S \ni \tau_i$ $(i = 1, 2, \dots)$. Define a function $\hat{\hat{\mu}}$ by

(3.10)
$$\hat{\hat{\mu}}(r) = \lim_{i \to \infty} \int_{G^{\tau_i}} \varphi_{\tau_i}^{\mathcal{S}}(r)(-x) d\mu_{1i}(x) \qquad (r \in \Gamma_{\mathcal{S}}, \ \mu \in M(G^{\tau})).$$

It is clear that the above definition is well posed and $\hat{\hat{\beta}}$ is equal to the Gelfand transform of μ if μ is an element of $L^*(G^r)$. For each fixed $r \in \Gamma^*$, the mapping

$$M(G^r) \ni \mu \longmapsto \hat{\hat{\mu}}(r) \in C$$

is a complex homomorphism, and hence Γ^* is contained in the maximal ideal space of $M(G^{\tau})$.

§ 4. Homomorphisms of $L^*(G^r)$ into $M(G_2)$.

Let h be a homomorphism of $L^*(G^r)$ into $M(G_2)$. For each $r \in \Gamma_2$, we have either $h(\mu)(r) = 0$ for every $\mu \in L^*(G^r)$, or there exists a unique $\alpha(r) \in \Gamma^*$ such that

(4.1)
$$\hat{h(\mu)}(r) = \hat{\mu}(\alpha(r)) \qquad (\mu \in L^*(G^r)).$$

We put

(4.2)
$$Y = \{ r \in \Gamma_2 : \exists \mu \in L^*(G^r), \ h(\mu)(r) \neq 0 \} .$$

For each $\tau' \in \mathfrak{T}(G^{\tau})$, we define

(4.3)
$$Y_{\tau'} = \bigcup_{S \ni \tau'} \{ r \in Y \colon \alpha(r) \in \Gamma_S \}$$
$$\alpha_{\tau'}(r) = \begin{cases} \varphi_{\tau'}^S(\alpha(r)) \colon & r \in Y_{\tau'} \\ 0 & \vdots & r \notin Y_{\tau'} \end{cases}$$

THEOREM 4.1. (i) Let h be a homomorphism of $L^*(G^r)$ into $M(G_2)$, and let $\{(Y, \alpha), (Y_{\tau'}, \alpha_{\tau'}); \tau' \in \mathfrak{T}(G^r)\}$ be defined by (4.1), (4.2) and (4.3). Then

1) $Y_{\tau'}$ is an element of the coset ring of Γ_2 , and $\alpha_{\tau'}$ is a piecewise affine map of $Y_{\tau'}$ into $\Gamma_{\tau'}$.

2) If we express by $h_{\tau'}$ a homomorphism of $L^1(G^{\tau'})$ into $M(G_2)$ determined by $(Y_{\tau'}, \alpha_{\tau'})$, then $\{\|h_{\tau'}\|: \tau' \in \mathfrak{T}(G^{\tau})\}$ is bounded, where $\|h_{\tau'}\|$ denotes $\sup_{\mu \in L^1(G^{\tau'})} \|h_{\tau'}(\mu)\|/\|\mu\|$.

(ii) Conversely, let Y be a subset of Γ_2 and let α be a map of Y into Γ^* . We define $Y_{\tau'}, \alpha_{\tau'}$ ($\tau' \in \mathfrak{T}(G^{\tau})$) by (4.3). Suppose that $\{(Y_{\tau'}, \alpha_{\tau'}): \tau' \in \mathfrak{T}(G^{\tau})\}$ satisfies 1), 2) of (i). Then for each $\mu \in L^*(G^{\tau})$, there exists an element $h'(\mu)$ of $M(G_2)$ such that

$$\widehat{h'(\mu)}(r) = \begin{cases} \widehat{\mu}(\alpha(r)): & r \in Y \\ 0 & : & r \in Y \end{cases} \qquad (r \in \Gamma_2)$$

and h' is a homomorphism of $L^*(G^{\tau})$ into $M(G_2)$.

PROOF. (i) For each $\tau' \in \mathfrak{T}(G^{\tau})$, let $h_{\tau'}$ be the restriction of h to $L^1(G^{\tau'})$. By Theorem 1, there exists an element $Y'_{\tau'}$ of the coset ring of Γ_2 and a piecewise affine map $\alpha'_{\tau'}$ of $Y'_{\tau'}$ into $\Gamma_{\tau'}$ such that

(4.4)
$$\widehat{h(\mu)(r)} = \widehat{h_{\tau'}(\mu)(r)} = \begin{cases} \widehat{\mu}(\alpha'_{\tau'}(r)) : r \in Y'_{\tau'} \\ 0 : r \notin Y'_{\tau'} \end{cases} \quad (\mu \in L^1(G^{\tau'})).$$

On the other hand, we have from the definition of $Y_{\tau'}$ and $\alpha_{\tau'}$,

(4.5)
$$\widehat{h(\mu)}(r) = \begin{cases} \widehat{\mu}(\alpha(r)) = \widehat{\mu}(\varphi^s_{\tau'}(\alpha(r))) : \quad r \in Y_{\tau'} \\ 0 \qquad : \quad r \in Y_{\tau'} \end{cases} \qquad (\mu \in L^1(G^{\tau'})).$$

From (4.4) and (4.5), we have $Y'_{\tau'} = Y_{\tau'}$ and $\alpha'_{\tau'} = \alpha_{\tau'}$, and 1) follows from this, and since 2) is trivial, this completes the proof of (i).

(ii) For each $\mu \in L^*(G^{\tau})$, put

$$\alpha_{\mu}(r) = \begin{cases} \hat{\mu}(\alpha(r)): & r \in Y \\ 0 & : & r \in Y \end{cases} \quad (r \in \Gamma_2).$$

Suppose τ_0 is an element of $\mathfrak{T}(G^r)$, and $\mu \in L^1(G^{r_0})$. Then by the definition of $(Y_{\tau_0}, \alpha_{\tau_0})$, we have

$$\alpha_{\mu}(r) = \begin{cases} \hat{\mu}(\alpha_{\tau_0}(r)): & r \in Y_{\tau_0} \\ 0 & : & r \in Y_{\tau_0} \end{cases}$$

and by the condition 1) of (i), $\alpha_{\mu} \in B(\Gamma_2)$. Therefore we have $\alpha_{\mu} \in B(\Gamma_2)$ for each $\mu \in \sum_{\tau' \in \mathfrak{X}(G^{\tau})} L^1(G^{\tau'})$.

If $\mu \in L^*(G^r)$, choose a sequence of elements $\mu_i \in \sum_{\tau' \in \mathfrak{X}(G^r)} L^1(G^{\tau'})$ $(i=1,2,\cdots)$ such that $\lim_{i\to\infty} \mu_i = \mu$, and since α_{μ} is the uniform limit of $\{\alpha_{\mu_i}: i=1,2,\cdots\}$, we have $\alpha_{\mu} \in B(\Gamma_2)$.

Thus for each $\mu \in L^*(G^r)$, there exists a unique $h'(\mu) \in M(G_2)$ such that $\alpha_{\mu} = h'(\mu)$, and it is easy to see that

$$h': L^*(G^r) \ni \mu \longmapsto h'(\mu) \in M(G_2)$$

is the desired homomorphism of $L^*(G^r)$ into $M(G_2)$ and this completes the proof of the theorem.

REMARKS. If G^r is not discrete, it is easy to see that $L^*(G^r)$ is symmetric, and hence $L^*(G^r)$ is contained properly in $M(G^r)$. Thus $L^*(G^r)$ contains $L^1(G^r)$ properly, and is contained in $M(G^r)$ properly, if G^r is not discrete.

It is natural to think about how large the set $\mathfrak{T}(G^r)$ is. For this we can refer to [5].

Department of Mathematics, Hokkaido University

References

- P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math., 82 (1960), 191-212.
- [2] P.J. Cohen, On homomorphisms of group algebras, Amer. J. Math., 82 (1960), 213-226.
- [3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I (1963), Vol. II (1970), Springer-Verlag, Heiderberg.
- [4] W. Rudin, Fourier analysis on groups, Interscience Publishers Inc., New York, 1962.
- [5] N.W. Rickert, Locally compact topologies for groups, Trans. Amer. Math. Soc., 126 (1967), 225-235.
- [6] J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc., 119 (1965), 150-166.
- [7] J.L. Taylor, L-subalgebra of M(G), Trans. Amer. Math. Soc., 135 (1969), 105-113.