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\S 0. Introduction.

Let $G_{1}$ and $G_{2}$ be locally compact abelian groups, and let $L^{1}(G_{1})$ and $M(G_{2})$

be the group algebra of $G_{1}$ and the measure algebra of $G_{2}$ , respectively.
Homomorphisms of $L^{1}(G_{1})$ into $M(G_{2})$ have been studied by H. Helson, W.
Rudin, J. P. Kahane, Z. L. Leibenson, P. J. Cohen and others; and P. J. Cohen
[1], [2] determined all the homomorphisms of $L^{1}(G_{1})$ into $M(G_{2})$ by the notion
of the coset ring and piecewise affine maps. He also proved that every
homomorphism of $L^{1}(G_{1})$ into $M(G_{2})$ has a natural norm-preserving extension
to a homomorphism of $M(G_{1})$ into $M(G_{2})$ , but in general an extension to a
homomorphism of $M(G_{1})$ into $M(G_{2})$ is not unique.

The purpose of this paper is to introduce some closed subalgebra $L^{*}(G_{1})$

of $M(G_{1})$ , which contains $L^{1}(G_{1})$ properly if $G_{1}$ is not discrete, to determine
the maximal ideal space of $L^{*}(G_{1})$ , and to determine all the homomorphisms
of $L^{*}(G_{1})$ into $M(G_{2})$ as a generalization of P. J. Cohen’s theorem.

We give in \S 1 some preliminaries, and in \S 2 we introduce a closed sub-
algebra $L^{*}(G_{1})$ of $M(G_{1})$ . In \S 3 we investigate the maximal ideal space of
$L^{*}(G_{1})$ , and obtain it as a semi-group. Finally we determine in \S 4 all the
homomorphisms of $L^{*}(G_{1})$ into $M(G_{2})$ as a generalization of P. J. Cohen’s
theorem.

\S 1. Preliminaries.

Throughout this paper $G_{1}$ and $G_{2}$ denote locally compact abelian groups
($=LCA$ groups), and $\Gamma_{1}$ and $\Gamma_{2}$ denote their dual groups, respectively. The
notations $G^{\tau}$ and $\Gamma_{\tau}$ are also used to express an $LCA$ group with underlying
group $G$ and topology $\tau$ , and its dual group, respectively. Thus by $G^{\tau}$ and
$G^{\tau^{\prime}}$ , we mean that they have the same underlying group $G$ .

$L^{1}(G_{1})$ is the group algebra of $G_{1},$ $i.e$ . the Banach algebra of all the Haar
integrable functions on $G_{1}$ under convolution multiplication, and $M(G_{2})$ is the
measure algebra of $G_{g}$ , the Banach algebra of all the regular bounded complex
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Borel measures on $G_{2}$ under convolution multiplication.

If $f$ is an element of $L^{1}(G_{1})$ , and if we define $u_{f}(E)=\int_{B}f(x)dx$ for each

Borel set $E$ in $G_{1},$
$\mu_{f}$ is a regular bounded complex Borel measure on $G_{1}$ and

$L^{1}(G_{1})\ni f\leftrightarrow\mu_{f}\in M(G_{1})$

is a norm-preserving isomorphism of $L^{1}(G_{1})$ into $M(G_{1})$ . Through this iso-
morphism we identify $L^{1}(G_{1})$ with a subset of $M(G_{1})$ , and then $L^{1}(G_{1})$ is a
closed ideal of $M(G_{1})$ . The set $L^{1}(G_{1})$ is characterized as the set of all abso-
lutely continuous measures in $M(G_{1})$ with respect to the Haar measure of $G_{1}$

\langle cf. [4] Chap. 1).
$B(\Gamma_{1})$ denotes the set of all the Fourier Stieltjes transforms of elements

in $M(G_{1})$ .
DEFINITION 1.1. We mean by an open coset of $\Gamma_{2}$ a coset of some open

subgroup of $\Gamma_{2}$ . The coset ring of $\Gamma_{2}$ is the smallest collection $\Sigma$ of subsets
of $\Gamma_{2}$ which satisfies the following conditions:

1) $\Sigma$ contains all the open cosets of $\Gamma_{2}$ .
2) If $\Sigma\ni A,$ $B$ then $A\cup B,$ $ A^{c}\in\Sigma$ .
DEFINITION 1.2. If $E$ is an open coset of $\Gamma_{2}$ and $\alpha$ is a continuous mapping

from $E$ into $\Gamma_{1}$ , then $\alpha$ is called affine if
$\alpha(r+\gamma^{\prime}-r^{\prime\prime})=\alpha(r)+a(r^{\prime})-\alpha(r^{\prime\prime})$ $(r, r^{\prime}, r^{\prime\prime}\in E)$

holds. Suppose that
(a) $S_{1},$ $S_{2},$

$\cdots,$
$S_{n}$ are pairwise disjoint sets belonging to the coset ring of $\Gamma_{2}$ .

(b) Each set $S_{i}$ is contained in an open coset $K_{i}$ of $\Gamma_{2}$ .
(c) For each $i,$

$\alpha_{i}$ is an affine map of $K_{i}$ into $\Gamma_{1}$ .
(d) $\alpha$ is the map of $Y=S_{1}\cup S_{2}\cup\cdots\cup S_{n}$ into $\Gamma_{1}$ , which coincides on $S_{i}$

with $\alpha_{i}(i=1,2, \cdots, n)$ .
Then $\alpha$ is said to be a piecewise affine map of $Y$ into $\Gamma_{1}$ .

THEOREM 1 (Cohen). Suppose $Y$ belongs to the coset ring of $\Gamma_{2}$ , and $\alpha$ is
a piecewise affine map from $Y$ into $\Gamma_{1}$ .

(i) For each $f\in L^{1}(G_{1})$ , put

$(f\circ\alpha)(r)=\left\{\begin{array}{l}f(\alpha(r)).\cdot\\ 0 .\end{array}\right.\wedge$ $r\in Yr\not\in Y$

,

where $f$ is the Fourier transform of $f$. Then $ f\circ\alpha$ belongs to $B(\Gamma_{2})$ , and ther
exists a unique element $h(f)$ of $M(G_{2})$ such that $ f\circ\alpha$ is the Fourier-Stieltjes

transform of $h(f)$ . The mapping $h$ of $L^{1}(G_{1})$ into $M(G_{2})$ is a homomorphism,
and conversely every homomorphism of $L^{1}(G_{1})$ into $M(G_{2})$ is obtained in this way.

(ii) For each $\mu\in M(G_{1})$ , put

$(\hat{\mu}\circ\alpha)(r)=\left\{\begin{array}{l}\hat{\mu}(\alpha(r)).\cdot\\ 0 .\end{array}\right.$ $r\not\in Yr\in Y$
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where $\rho$ is the Fourier-Stieltjes transform of $\mu$ . Then we have $\beta\circ\alpha\in B(\Gamma_{2})$.
and we can choose a unique element $h_{1}(\mu)$ of $M(G_{2})$ such that $\beta\circ\alpha$ is the
Fourier-Stieltjes transform of $h_{1}(\mu)$ . $h_{1}$ is a norm-preserving extension of $ ht\sigma$

a homomorphism of $M(G_{1})$ into $M(G_{2})$ (cf. [1], [2] and [4] Chap. 4).

\S 2. A closed subalgebra $L*(G_{1})$ of $M(G_{1})$ .
We denote by $C$ the complex number field, and by $T$ the set of all the

complex numbers of absolute value 1. $T$ is an $LCA$ group with respect to
multiplication and usual topology.

PROPOSITION 2.1. Let $G_{1}$ and $G_{2}$ be two $LCA$ groups, and let $\eta$ be a con-
tinuous isomorphism of $G_{1}$ onto $G_{2}$ . Then

(i) There exists a natural norm-preserving isomorphism $\pi$ of $M(G_{1})$ intci
$M(G_{2})$ , given by

$\pi(\mu)(E)=\mu(\eta^{-1}(E))$ ($E$ : Borel set of $G_{2}$ ; $\mu\in M(G_{1})$).

(ii) If $\nu\in M(G_{2}),$ $\nu$ belongs to $\pi(M(G_{1}))$ if and only if there exists a $\sigma-$

compact subset $K$ of $G_{1}$ such that $\nu$ is concentrated in $\eta(K)$ .
PROOF. (i) Suppose $\mu\in M(G_{1})$ . Choose a $\sigma$-compact open subset $K$ of $G_{1}$ ,

in which $\mu$ is concentrated. Since $\eta$ is continuous, $\eta(K)$ is also $\sigma$ -compact in
$G_{2}$ , and hence $\eta(K)$ is a Borel set in $G_{2}$ . Choose compact sets $Q_{i}$ in $G_{1}$ such

that $\bigcup_{=1}^{\infty}Q_{i}=K$. Let $U$ be an open set in $G_{1}$ which is contained in $K$. Then
$\eta(Q_{i}-U)$ is:compact, and $\eta(Q_{i}\cap U)(i=1,2, \cdots)$ is a Borel set in $G_{2}$ . and hence
$\eta(U)=\underline{\bigcup_{1}^{\infty}}\eta(Q_{i}\cap U)$ is a Borel set in $G_{a}$ . Thus if we put

$\Omega=$ { $E:E$ is a Borel set in $G_{1}$ and $\eta(E\cap K)$ is a Borel set in $G_{2}$ },

then $\Omega$ contains all the Borel sets in $G_{1}$ . Therefore we see that a subset $E^{\triangleright}$

of $K$ is a Borel set in $G_{1}$ if and only if $\eta(E)$ is a Borel set in $G_{2}$ .
Define $\pi(\mu)$ by

$\pi(\mu)(E)=\mu(\eta^{-1}(E))$ ($E$ ; Borel set of $G_{2}$)

then $\pi(\mu)$ is an element of $M(G_{2})$ , and from the above discussion we see $tha\mathfrak{c}$

$\pi(\mu)$ has the same norm as $\mu$, and hence

$\pi$ : $M(G_{1})\ni\mu\leftrightarrow\pi(\mu)\in M(G_{2})$

is a norm-preserving isomorphism, and this completes the proof of (i).
(ii) Necessity is clear from the definition of the mapping $\pi$ . Suppose

that $K$ is a a-compact set in $G_{1}$ such that $\nu\in M(G_{2})$ is concentrated in $\eta(K)$ .
We can assume without loss of generality that $K$ is open in $G_{1}$ . By the
paragraph in (i), $\eta(E\cap K)$ is a Borel set in $G_{2}$ for each Borel set $E$ of $G_{1\leftarrow}$
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We put
$\nu_{1}(E)=\nu(\eta(E\cap K))$ ($E$ ; Borel set in $G_{1}$).

Then $\nu_{1}$ is a bounded complex Borel measure on $G_{1}$ .
To show the regularity of $\nu_{1}$ , we remark here that the total variation of

$11_{1}$ is associated to the total variation of $\nu$ , that is $|\nu_{1}|(E)=|\nu|(\eta(E\cap K))$ holds
for each Borel set $E$ in $G_{1}$ , and thus we can assume without loss of generality
that $\nu$ is a positive measure.

Let $Q_{i}(i=1,2, \cdots)$ be a sequence of compact subsets of $K$ such that
$ Q_{1}\subset Q_{2}\subset Q_{8}\subset\ldots$ , and $\bigcup_{\iota=\iota}^{\infty}Q_{i}=K$. Given $\epsilon>0$ and a Borel set $E$ in $G_{1}$ , which
is contained in $K$, choose a compact subset $F$ of $\eta(E)$ such that $\nu(\eta(E)-F)$

$\leqq\epsilon/2$ , and choose a positive integer $n$ such that $\nu_{1}(\eta^{-1}(F))-\epsilon/2\leqq\nu_{1}(\eta^{-1}(F)\cap Q_{n})$ ,
and then we have

$\nu_{1}(\eta^{-1}(F)\cap Q_{n})\geqq\nu_{1}(\eta^{-1}(F))-\epsilon/2$

$=\nu(F)-\epsilon/2$

$=\nu(\eta(E))-\nu(\eta(E)-F)-\epsilon/2$

$\geqq\nu(\eta(E))-\epsilon$

$=\nu_{1}(E)-\epsilon$ .
Since the restriction of $\eta$ to $Q_{i}$ is a homeomorphism for each $i(i=1,2,3, \cdots)$ ,
$\eta^{-1}(F)\cap Q_{n}$ is a compact subset of $E$ , and hence $\nu_{1}$ is inner regular. Since

$v_{1}$ is bounded, $\nu_{1}$ is also outer regular and this shows that $\nu_{1}$ is an element
of $M(G_{1})$ and $\nu=\pi(\nu_{1})\in\pi(M(G_{1}))$ .

DEFINITION 2.1. Let $G^{\tau}$ and $G^{\tau^{\prime}}$ be two $LCA$ groups with the same under-
lying group $G$ and $\tau\subseteqq\tau^{\prime}$ . By Proposition 2.1 we can define the norm-preserv-
ing isomorphism $\pi$ of $M(G^{\tau^{l}})$ into $M(G^{\tau})$ . We identify $L^{1}(G^{\tau^{\prime}})$ and $M(G^{\tau^{\prime}})$ with
subalgebras of $M(G^{\tau})$ through $\pi$ , respectively.

DEFINITION 2.2. If $\lambda$ and $\mu$ are elements of $M(G^{-})$ , we say that $\lambda$ and $\mu$

are orthogonal each other (notation $\lambda\perp\mu$) if there exist two disjoint Borel
sets $A$ and $B$ in $G^{\tau}$ such that $\lambda$ is concentrated in $A$ and $\mu$ is concentrated
in $B$ . If $\Lambda$ and $\Lambda^{\prime}$ are subsets of $M(G^{\tau})$ , we say that $\Lambda$ and $\Lambda^{\gamma}$ are orthogonal
each other if $\lambda\perp\mu$ for each pair $(\lambda, \mu)$ , where $\lambda\in\Lambda,$ $\mu\in\Lambda$ ‘.

PROPOSITION 2.2. Let $G^{\tau}$ and $G^{\tau}$
‘ be two $LCA$ groups with the same under-

lying group $G$ with $\tau\subseteqq\tau^{\prime}$ , and let $\eta$ be the natural continuous isomorphism of
$G^{\tau}$

‘ onto $G^{\tau}$ . If $\mu$ is an element of $M(G^{\tau})$ , following a), b) and c) are equivalent
each other.

a) $\mu\perp M(G^{\tau}’)$ ,
b) $\mu=\mu_{1}+\mu_{2},$ $\mu_{1}\in M(G^{\tau}’)$ and $\mu_{1}\perp\mu_{2}$ implies $\mu_{1}=0$ ,
c) $|\mu|(\eta(K))=0$ for every compact set $K$ in $G^{-\prime}$ , where $|\mu|$ is the total

variation of $\mu$ .
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PROOF. a) implies b); Suppose a), and if $\mu=\mu_{1}+\mu_{2},$ $\mu_{1}1\mu_{2}$ and $0\neq\mu_{1}$

$\in M(G^{\tau^{\prime}})$ , then $\mu$ and $\mu_{1}$ are not orthogonal each other and this contradicts a).

b) implies c); Suppose b), and if there exists a compact set $K$ in $G^{\tau^{\prime}}$ witb
$|\mu|(\eta(K))\neq 0$ , we set $\mu_{1}$ the restriction of $\mu$ to $\eta(K)$ , that is

$\mu_{1}(E)=\mu(\eta(K)\cap E)$ ($E$ ; Borel set of $G^{\tau}$)

then we have $\mu_{1}\in M(G^{\tau^{\prime}})$ by Proposition 2.1 (ii), and that $\mu=(\mu-\mu_{1})+\mu_{1r}$

$\mu_{1}\neq 0$ and $\mu_{1}\perp(\mu-\mu_{1})$ , contradicting b).

c) implies a); Soppose c), and let $\lambda$ be an element of $M(G^{\tau}$
‘
$)$ . There

exists a $\sigma$-compact subset $E$ of $G^{\tau}$
‘ such that $\lambda$ is concentrated in $\eta(E)$ . Then

by c), $|\mu|(\eta(E))=0$ and this implies $\mu\perp\lambda$ . Since $\lambda$ was an arbitrary element
of $M(G^{\tau^{\prime}})$ , we have $\mu\perp M(G^{\tau}’)$ .

DEFINITION 2.3. Let $G^{\tau}$ be an $LCA$ group. We denote by $\mathfrak{T}(G^{-})$ the class of
all locally compact group topologies of $G$ , which are equal or stronger than $\tau_{-}$

LEMMA 2.3. Let $G^{\tau}$ be an LCA group and let $\mathfrak{T}(G^{\tau})\ni\tau_{1},$
$\tau_{2}$ with $\tau_{2}\subseteqq\tau_{1}$ . If

$\eta_{\tau_{1}^{2}}^{\tau}$ is the natural continuous isomorphism of $G^{\tau_{1}}$ onto $G^{\tau_{2}}$ , then $ r\circ\eta_{\tau_{1}^{2}}^{\tau}(r\in\Gamma_{\tau_{2}}\rangle$

is an element of $\Gamma_{\tau_{1}}$ , which we denote by $\varphi_{\tau^{2}}^{\tau_{1}}(r)$ . $\varphi_{\tau_{1}}^{\tau_{2}}$ is a continuous isomorphism

of $\Gamma_{\tau_{2}}$ onto a dense subgroup of $\Gamma_{\tau_{1}}$ .
PROOF. It is clear that $\varphi_{\tau^{2}}^{\tau_{1}}$ is an isomorphism of $\Gamma_{\tau_{2}}$ into $\Gamma_{\tau_{1}}$ . Let $W$ be

a neighbourhood of $0$ in $\Gamma_{r_{1}}$ . There exists a compact subset $K$ of $G^{\tau_{1}}$ and
$\epsilon>0$ such that $N(K, \epsilon)=\{r\in\Gamma_{\tau_{1}} ; |(x, r)-1|<\epsilon, x\in K\}\subseteqq W$. Since $\eta_{\tau^{2}}^{\tau_{1}}(K)$ is
also compact in $G^{\tau_{2}},$ $V=N(\eta_{\tau_{1}^{2}}^{\tau}(K), \epsilon)$ is a neighbourhood of $0$ in $\Gamma_{\tau_{2}}$ and that
$\varphi_{\tau^{2}}^{\tau_{1}}(V)\subseteqq W$. This shows that $\varphi_{\tau^{2}}^{\tau_{1}}$ is continuous.

Suppose that $\overline{\varphi_{\tau^{2}}^{\tau_{1}}(\Gamma_{\tau_{2}})}=H\subsetneqq\Gamma_{\tau_{1}}$ . $\Gamma_{\tau_{1}}/H$ is a non-trivial $LCA$ group and
there exists a continuous homomorphism $\overline{\beta}\neq 0$ of $\Gamma_{\tau_{1}}/H$ into T. $\overline{\beta}$ induces
a non-trivial continuous homomorphism $\beta$ of $\Gamma_{\tau_{1}}$ into $T$ such that

$\beta(r)=\overline{\beta}(\overline{r})$ $(r\in\Gamma_{\tau_{1}})$ ,

where $\overline{r}$ is a coset of Hwhich contains $r$ . There exists $0\neq x\in G^{\tau_{1}}$ such that

$\beta(r)=(x, \gamma)$ $(r\in\Gamma_{\tau_{1}})$ ,

and hence we have

(2.1) $1=\beta(\varphi_{\tau^{2}}^{\tau_{1}}(r))=(x, \varphi_{\tau^{2}}^{\tau_{1}}(r))=(\eta_{\tau^{2}}^{\tau_{1}}(x), r)$ $(r\in\Gamma_{\tau_{2}})$ .
From (2.1) we have $\eta_{\tau^{2}}^{\tau_{1}}(x)=0$ and this is a contradiction. This proves that
$\overline{\varphi_{\tau^{2}}^{\tau_{1}}(\Gamma_{\tau_{2}})}=H=\Gamma_{\tau_{1}}$ and thus $\varphi_{\tau^{2}}^{\tau_{1}}(\Gamma_{\tau_{2}})$ is a dense subgroup of $\Gamma_{\tau_{1}}$ .

DEFINITION 2.4. Let $G$‘ be an $LCA$ group and let $\mathfrak{T}(G^{\tau})\ni\tau_{1},$
$\tau_{2}$ with $\tau_{1}\supseteqq\tau_{2r}$

and let $\eta_{\tau_{1}^{2}}^{\tau}$ be the natural continuous isomorphism of $G^{\tau_{1}}$ onto $G^{\tau_{2}}$ . By the
Lemma 2.3 we define the natural continuous isomorphism $\varphi_{\tau_{1}^{2}}^{\tau}$ of $\Gamma_{\tau_{2}}$ onto a
dense subgroup of $\Gamma_{\tau_{1}}$ such that

$(\eta_{\tau^{2}}^{\tau_{1}}(x), r)=(x, \varphi_{\tau^{2}}^{\tau_{1}}(r))$ $(x\in G^{\tau_{1}}, r\in\Gamma_{\tau_{2}})$ .
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THEOREM 2.4. Suppose $G^{\tau}$ is an $LCA$ group and $\mathfrak{T}(G^{\tau})\ni\tau_{1},$
$\tau_{2}$ . If $L^{1}(G^{\tau_{1}})$

$\cap L^{1}(G^{\tau_{2}})\neq\{0\}$ , then we have $L^{1}(G^{\tau_{1}})=L^{1}(G^{\tau_{2}})$ .
PROOF. Put $L^{1}(G^{\tau_{1}})\cap L^{1}(G^{\tau_{2}})=I\neq 0$ . Since $L^{1}(G^{\tau_{1}})$ and $L^{1}(G^{\tau_{2}})$ are trans-

lation invariant closed subspaces of $M(G^{\tau}),$ $I$ is also a translation invariant
closed subspace of $M(G^{\tau})$ , and hence of $L^{1}(G^{\tau_{i}})(i=1,2)$ . Therefore $I$ is a
closed ideal of $L^{1}(G^{\tau_{i}})(i=1,2)$ . Set $Z(I)=\{r\in\Gamma_{\tau_{1}} ; f(r)=0, f\in I\}$ , where $f$

denotes the Fourier transform of $f$. If $r\in\Gamma_{\tau}$, we have $L^{1}(G^{-i})\varphi_{\tau}^{\tau_{i}}(r)\subseteqq L^{1}(G^{\tau_{i}})$

$(i=1,2)$ , and hence $I(0_{\tau_{i}}^{\tau}(r)=I$. This implies that

$Z(I)+\varphi_{\tau_{1}}^{\tau}(r)=Z(I)$ $(r\in\Gamma_{\tau})$ .
Since $\varphi_{\tau_{1}}^{\tau}(\Gamma_{\tau})$ is dense in $\Gamma_{\tau_{1}},$ $Z(I)$ is either $\phi$ or $\Gamma_{\tau_{1}}$ , and since $I\neq 0$ we
conclude that $ Z(I)=\phi$ . By the general Tauberian theorem, we get $I=L^{1}(G^{\tau_{1}})$ .
In the same way we have $I=L^{1}(G^{\tau_{2}})$ and this completes the proof.

THEOREM 2.5. Let $G^{\tau}$ be an $LCA$ group and $\mathfrak{T}(G^{\tau})\ni\tau_{1},$
$\tau_{2}$ . If $M(G^{\tau_{1}})$

$\supseteqq L^{1}(G^{\tau_{2}})$ , then we have $\tau_{1}\subseteqq\tau_{2}$ .
PROOF. Let $\eta$ be the natural isomorphism from $G^{\tau_{2}}$ onto $G^{\tau_{1}}$ . We shall

prove that $\eta$ is continuous, and this will complete the proof.

Let $r\in\Gamma_{\tau_{1}}$ , and there exists a unique $\varphi(r)\in\Gamma_{\tau_{2}}$ such that

$\int_{G^{\tau_{2}}}\varphi(r)(-x)d\mu(x)=\int_{G^{\tau_{1}}}r(-x)d\mu(x)$ $(\mu\in L^{1}(G^{\tau_{2}}))$ .

We shall show that $\varphi$ is continuous, and that $r$ and $\varphi(r)$ induce the same
function on the underlying group $G$ . If these are proved, we can easily show
that $\eta$ is continuous. Thus for each neighbourhood $N(K, \epsilon)=\{x\in G^{\tau_{1}}$ :
$|(x, r)-1|<\epsilon,$ $r\in K$ } of $0$ in $G^{\tau_{1}}$ , where $K$ is a compact subset of $\Gamma_{\tau_{1}}$ and
$\epsilon>0,$ $\varphi(K)$ is a compact set in $\Gamma_{\tau_{2}}$ , and $\eta(N(\varphi(K), \epsilon))=N(K, \epsilon)$ , and hence $\eta$

is continuous.
Let $\mu\in L^{1}(G^{\tau_{2}})$ and let $\hat{\mu}_{(1)}$ and $\hat{\mu}_{(2)}$ be the Fourier-Stieltjes transform of

$\mu$ into $\Gamma_{\tau_{1}}$ , and the Fourier transform of $\mu$ into $\Gamma_{\tau_{2}}$ , respectively. Thus we
have the relation

$\beta_{(2)}(\varphi(r))=\beta_{(1)}(r)$ $(r\in\Gamma_{\tau_{1}})$ .

If $U$ is an open set in $C$, then $\rho_{(1)}^{-1}(U)=\varphi^{-1}(\hat{\mu}_{(2)}^{-1}(U))$ is an open set in $\Gamma_{\tau_{1}}$ .
Since $\hat{\mu}_{(2)}^{-1}(U)$ is open and the topology of $\Gamma_{\tau_{2}}$ is the weakest one such that
each $\hat{\mu}_{(2)}$ is continuous, we conclude that $\varphi$ is continuous.

If $r\in\varphi_{\tau}^{\tau_{1}}(\Gamma_{\tau})$ , it is clear that $r$ and $\varphi(r)$ induce the same function on $G$ .
For $r_{0}\in\Gamma_{\tau_{1}}$ and $x\in G^{\tau_{2}}$ , let $N(K, \epsilon)+\varphi(r_{0})$ be a neighbourhood of $\varphi(r_{0})$ , where
$\epsilon>0$ and $K$ is a compact set in $G^{\tau_{2}}$ , which contains $x$ . Since $\varphi$ is continuous,
there exist a compact set $K^{\prime}$ in $G^{\tau_{1}}$ and $\epsilon^{\prime}>0$ such that $\varphi(N(K^{\prime}\cup\eta(x), \epsilon^{\prime})+r_{0})$

$\subseteqq N(K, \epsilon)+\varphi(r_{0})$ . Since $\varphi_{\tau_{1}}^{\tau}(\Gamma_{\tau})$ is dense in $\Gamma_{\tau_{1}}$ , we can choose an element $r_{1}$

in $(N(K^{\prime}\cup\eta(x), \epsilon^{\prime})+r_{0})\cap\varphi_{\tau_{1}}^{\tau}(\Gamma_{\tau})$ , and we have
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$|(\eta(x), r_{1})-(\eta(x), r_{0})|<6^{\prime}$

(2.2)
$|(x, \varphi(r_{1}))-(x, \varphi(r_{0}))|<\epsilon$ .

The fact that $r_{1}\in\varphi_{\tau}^{\tau_{1}}(\Gamma_{\tau})$ gives

\langle 2.3) $(\eta(x), r_{1})=(x, \varphi(r_{1}))$ .
From (2.2) and (2.3), we get

$|(\eta(x), r_{0})-(x, \varphi(r_{0}))|$

$\leqq|(\eta(x), r_{0})-(\eta(x), r_{1})|+|(x, \varphi(r_{1}))-(x, \varphi(r_{0}))|$

$\leqq\epsilon+\epsilon^{\prime}$ .
Since we can take $\epsilon$ and $\epsilon^{\prime}$ arbitrary, we have

$(\eta(x), r_{0})=(x, \varphi(r_{0}))$ $(x\in G^{\tau_{2}})$ ,

and hence $r_{0}$ and $\varphi(r_{0})$ induce the same function on $G$ . This completes the
proof of the theorem.

COROLLARY 2.6. If $\mathfrak{T}(G^{\tau})\ni\tau_{1},$
$\tau_{f}$ and $L^{1}(G^{\tau_{1}})=L^{1}(G^{\tau_{2}})$ , then we have $\tau_{1}=\tau_{2}$ .

COROLLARY 2.7. If $\tau_{1},$ $\tau_{2}\in \mathfrak{T}(G^{\tau})$ and $\tau_{1}\neq\tau_{2}$ , then we have $L^{1}(G^{\tau_{1}})\perp L^{1}(G^{\tau_{2}})$ .
PROOF. Suppose that $L^{1}(G^{\tau_{1}})$ and $L^{1}(G^{\tau_{l}})$ are not orthogonal each other,

and choose $\mu\in L^{1}(G^{\tau_{1}})$ and $\nu\in L^{1}(G^{\tau_{2}})$ such that $\mu$ is not orthogonal to $\nu$ .
By Proposition 2.1 there exists a $\sigma$-compact set $K$ in $G^{f}1$ such that $\mu$ is con-
centrated in $\eta_{\tau}^{\tau_{1}}(K)$ . If $\nu_{1}$ is the restriction of $\nu$ to $\eta_{\tau}^{\tau_{1}}(K)$ , then we have
$0\neq\nu_{1}\in M(G^{\tau_{1}})$ . Let $\nu_{1}=\nu_{1}^{\prime}+\nu_{1^{f}}$ be the Lebesgue decomposition of $\nu_{1}$ such that
$\nu_{1}^{\prime}\ll\mu,$ $\nu_{1}^{\prime\prime}\perp\mu$ . Then $\nu_{1}^{\prime}\neq 0$ and $\nu_{1}^{\prime}\in L^{1}(G^{\tau_{1}})\cap L^{1}(G^{\tau_{2}})$ , that is $L^{1}(G^{\tau_{1}})\cap L^{1}(G^{\tau_{2}})\neq 0$ .
From Theorem 2.4 we have $L^{1}(G^{\tau_{1}})=L^{1}(G^{\tau_{2}})$ , and from Corollary 2.6 we have
$\tau_{1}=\tau_{2}$ , and this is a contradiction.

THEOREM 2.8. $1f\tau_{1},$ $\tau_{2}\in \mathfrak{T}(G^{\tau})$ , then there exists a unique $\tau_{3}\in \mathfrak{T}(G^{\tau})$ such
that $L^{1}(G^{\tau_{1}})*L^{1}(G^{\tau_{2}})\subseteqq L^{1}(G^{\tau_{\$}})$ . Moreover $\tau_{s}$ enjoys the additional property such
that $\tau_{8}\subseteqq\tau_{1},$ $\tau_{2}$ , and if $\tau_{0}\in \mathfrak{T}(G^{\tau})$ with $\tau_{0}\subseteqq\tau_{1},$ $\tau_{2}$ , then $\tau_{0}\subseteqq\tau_{s}$ .

To prove the theorem we provide the following lemma. $R^{n}$ denotes the
n-dimensional Euclidean space, and $Z$ denotes the discrete group of all rational
integers.

LEMMA 2.9. Let $H_{1}=R^{p}\times K_{1},$ $H_{2}=R^{q}\times K_{2}$ and $H=H_{1}\chi H_{2}/K$ be $LCA$

groups, where $p$ and $q$ are non-negative integers, $K_{1}$ and $K_{2}$ are compact groups,
and $K$ is a closed subgroup of $H_{1}\times H_{2}$ . $B_{0}$ denotes the ring of all the bounded
Borel sets of $H$, and $f$ denotes the natural homomorphism of $H_{1}\times H_{2}$ onto $H$.

(i) $ 1f\varphi$ denotes the projection of $H_{1}xH_{2}$ onto $R^{p}\times R^{q}$ , then $\varphi(K)$ is a closed
subgroup of $R^{p}\times R^{q}$ , and hence there exists a basis $\{u_{1}, \cdots, u_{n_{1}}, \cdots, u_{n_{2}}, \cdots, u_{p+q}\}$

of the vector space $R^{p}\times R^{q}$ over $R$ such that $\varphi(K)=\sum_{i=1}^{n_{1}}Ru_{i}+\sum_{J=n_{1}+1}^{n_{2}}Zu_{j}$ .
(ii) Put $V^{(r)}=\{x\in H_{1}\times H_{2}$ : $\varphi(x)=\sum_{i=1}^{p+q}\alpha_{i}u_{i},$ $0\leqq\alpha_{i}<1(i=1,2, \cdots, n_{2}),$ $|\alpha_{i}|<r$
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$(i=n_{2}+1, \cdots, p+q)\}$ , for each positive number $r$. If $E$ is an element of $B_{0}$ , and
if $r$ and $r^{\prime}$ are positive numbers such that $f(V^{(r)})\supseteqq E,$ $f(V^{(r)})\supseteqq E$ , then

$f^{-1}(E)\cap V^{(r)}=f^{-1}(E)\cap V^{(r’)}$ .
(iii) For each $E\in B_{0}$ , choose a positive number $r$ such that $f(V^{(r)})\supseteqq E$ , and

put
$m^{*}(E)=m(f^{-1}(E)\cap V^{(r)})$ .

Then $m^{*}$ is well defined by (ii), and $m^{*}$ is a non-negative finite translation
invariant measure on $B_{0}$ .

(iv) We can extend $m^{*}$ to a Borel measure $\overline{m}^{*}$ of $H$ in a unique way, and
$\overline{m}^{*}$ is the Haar measure of $H$.

PROOF. (i) Since the latter of (i) is well known, we only prove that $\varphi(K)$

is closed. Suppose $x$ is an element of $\overline{\varphi(K)}-\varphi(K)$ . We can choose a sequence
$\{x_{i}\}_{i=1}^{\infty}$ of elements in $K$ such that $\lim_{i-}\varphi(x_{i})=x$ . Let $\psi$ be the projection of

$H_{1}\times H_{2}$ onto $K_{1}\times K_{2}$ . Then we have either $\{\psi(x_{i}):i=1,2, \cdots\}$ is a finite set,

or $\{\psi(x_{i}):i=1,2, \cdots\}$ has accumulating points in $K_{1}\times K_{2}$ . In either cases
$\{x_{i}\}=\{\varphi(x_{i})+\psi(x_{i})\}$ has an accumulating point $z$ in $H_{1}\times H_{2}$ , and since $K$ is
closed, $z$ belongs to $K$. Thus we have $x=\varphi(z)\in\varphi(K)$ . This is a contradiction
and hence we have $\overline{\varphi(K)}=\varphi(K)$ .

(ii) Suppose r’ $\geqq randxisanelementoff^{-1}(E)\cap V^{(r^{\prime})}$ . Then f$(x)belongs$
to $E$ , and since $f(V^{(r)})\supseteqq E$ there exists an element $y$ of $V^{(r)}$ such that $f(x)$

$=f(y)$ . We have $x-y\in K$ and so $\varphi(x)$ and $\varphi(y)$ differ only on $u_{1},$ $\cdots,$ $u_{n_{2}}$

components, therefore $x\in V^{(r)}$ . This shows that $f^{-1}(E)\cap V^{(r^{\prime})}=f^{-1}(E)\cap V^{(r)}$ .
(iii) That $m^{*}$ is a non-negative finite measure is clear, and we only prove

that $m^{*}$ is translation invariant. Let $E\in B_{0}$ , and let 7 be a positive number
such that $f(V^{(r)})\supseteqq E,$ $E+\overline{x}$ , where $\overline{x}\in H_{\backslash }$ If we choose an element $x$ in $f^{-1}(\overline{x})$ ,

we have $(f^{-1}(E)+x)\cap V^{(r)}=f^{-1}(E+\overline{x})\cap V^{(r)}$ , and hence

$m^{*}(E)=m(f^{-1}(E)\cap V^{(r)})=m((f^{-1}(E)+x)\cap V^{(r)})$

$=m(f^{-1}(E+\overline{x})\cap V^{(r)})=m^{*}(E+\overline{x})$ .
(iv) Since $m^{*}$ is a finite non-negative translation invariant measure on

$B_{0}$ , we can extend $m^{*}$ uniquely to a $\sigma- finite$ translation invariant measure $\overline{m}^{*}$

on $S(B_{0})$ , the $\sigma$-ring generated by $B_{0}$ . Since $H$ is $\sigma$-compact, $S(B_{0})$ is the class
of all the Borel sets in $H$, and hence $\overline{m}^{*}$ is a Borel measure on $H$.

To prove that $\overline{m}^{*}$ is the Haar measure of $H$, we have only to prove that $\overline{m}^{*}$

is regular in the sense:
(a) For every open set $U$ in $H$, we have

$\overline{m}^{*}(U)=\sup$ { $\overline{m}^{*}(F):F$ is compact and $F\subseteqq U$ },

(b) For each Borel set $A$ in $H$, we have
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$\overline{m}^{*}(A)=\inf$ { $\overline{m}^{*}(U):U$ is open and $U\supseteqq A$ }.

Suppose first that $E$ is a bounded Borel set in $H,$ $r$ is a positive number such
that $f(V^{(r)})\supseteqq E$, and $\epsilon>0$ . There exists a compact subset $F$ of $f^{-1}(E)\cap V^{(r\rangle}$

such that
$ m(f^{-1}(E)\cap V^{(r)})\leqq m(F)+\epsilon$ .

Then $f(F)$ is a compact subset of $H$ and $\overline{m}^{*}(f(F))+\epsilon\geqq\overline{m}^{*}(E)$ . Since $H$ is
$\sigma- compact$ , this proves (a) for every open set in $H$. Next choose a bounded
open set $W$ which contains $E$, and by what we have proved in (a) there exists
a compact set $F_{1}\subseteqq W-E$ such that $\overline{m}^{*}(F_{1})+\epsilon\geqq\overline{m}^{*}(W-E)=\overline{m}^{*}(W)-\overline{m}^{*}(E)$ ,
and so we have $\overline{m}^{*}(E)+\epsilon\geqq\overline{m}^{*}(W-F_{1})$ , and again this proves (b) for every
Borel set $E$ in $H$.

PROOF OF THEOREM 2.8. Let $H_{i}$ be an open subgroup of $G^{\tau_{i}}(i=1,2)$ such
that

$H_{1}\cong R^{p}\times K_{1}$ , $H_{2}\cong R^{q}\times K_{2}$ ,

where $K_{1}$ and $K_{2}$ are compact groups. We identify $H_{1}$ and $H_{2}$ with $R^{p}\times K_{1}$

and $R^{q}\times K_{2}$ , respectively. Let $f$ be a continuous homomorphism of $H_{1}\times H_{1}$

into $G^{\tau}$ ,
$f$ ; $H_{1}\times H_{2}\ni(x, y)\leftrightarrow x+y\in G^{\tau}$ .

We can introduce in $H=H_{1}+H_{2}=f(H_{1}\times H_{2})$ a locally compact group topology
$\tau_{a}^{\prime}$ in $H$ such that $f$ becomes an open continuous map of $H_{1}\times H_{2}$ onto $H^{\tau_{8}^{\prime}}$ .
This topology $\tau_{3}^{\prime}$ in $H$ can be extended uniquely to a locally compact group
topology $\tau_{3}$ in $G$ such that $H$ is open in $G^{\tau_{3}}$ and $\tau_{S}|_{H}=\tau_{3}^{\prime}$ . We shall show
that if $\lambda\in L^{1}(G^{\tau_{1}}),$ $\mu\in L^{1}(G^{\tau_{2}})$ , then $\lambda*\mu\in L^{1}(G^{\tau_{3}})$ and this will complete the
proof.

First suppose that $\lambda$ is concentrated in $H_{1}$ and $\mu$ is concentrated in $H_{2}$.
Then $\lambda*\mu$ is concentrated in $H$. Since $\tau_{3}\subseteqq\tau_{1},$ $\tau_{2}$ , and by Proposition 2.1 we
have $L^{1}(G^{-}\vee 1)*L^{1}(G^{\tau_{2}})\subseteqq M(G^{\tau_{8}})$ . Thus we have only to show that $\lambda*\mu$ is abso-
lutely continuous with respect to the Haar measure of $G^{\tau_{3}}$ . We remark here
that the Haar measure of $H^{\tau_{3}^{\prime}}$ is obtained by restricting the Haar measure
of $G^{\tau_{3}}$ to $H$. The same relation also holds between $G^{\tau_{i}}$ and $H_{i}(i=1,2)$ . We
apply the preceding lemma for the present $H_{1},$ $H_{2}$ and the closed subgroup
$K=\{(x, y)\in H_{1}\times H_{2} : x+y=0\}$ of $H_{1}\times H_{2}$ and introduce the Haar measure $\overline{m}^{*}$

on $H_{1}\times H_{2}/K\cong H^{\tau_{3}^{\prime}}$ . We extend $\overline{m}^{*}$ to the Haar measure of $G^{\tau_{3}}$ and we also
represent it by $\overline{m}^{*}$ .

To prove that $\lambda*\mu$ is absolutely continuous with respect to $\overline{m}^{*}$ , suppose
first that $E$ is a bounded Borel set in $H^{\tau_{3}^{\prime}}$ with $\overline{m}^{*}(E)=0$ . We can suppose
without loss of generality that $\lambda\geqq 0$ and $\mu\geqq 0$ . For each $\epsilon>0$ , there exist a
compact set $C_{i}$ in $H_{i}(i=1,2),$ $\lambda^{\prime}\in L^{1}(G^{\tau_{1}}),$ $\mu^{\prime}\in L^{1}(G^{\tau_{2}})$ , and $d>0$ , such that
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$\left\{\begin{array}{l}dm_{1}|_{C_{1}}\geqq\lambda^{\prime}\geqq 0,\\dm_{2}|_{C_{2}}\geqq\mu^{\prime}\geqq 0,\\\Vert\lambda*\mu-\lambda^{\prime}*\mu’\Vert<\epsilon,\end{array}\right.$

where $m_{i}$ denotes the Haar measure of $H_{i}(i=1,2)$ , and $dm_{i}|_{C_{i}}(i=1,2)$

denotes the restriction of $dm_{i}$ to $C_{i}$ . Choose a positive number $r$ such that
$f(V^{(r)})\supseteqq E$, and a finite number of elements $x_{1},$ $x_{2},$ $\cdots,$ $x_{t}\in H_{1}\times H_{2}$ such that
$\bigcup_{t=1}^{t}(V^{(r)}+x_{i})\supseteqq C_{1}\times C_{2}$ . Then

$\lambda*\mu(E)\leqq\lambda^{\prime}*\mu^{\prime}(E)+\epsilon$

$\leqq(dm_{1}|_{C_{1}})*(dm_{2}|_{C_{2}})(E)+\epsilon$

$=d^{2}(m_{1}|_{C_{1}})\times(m_{2}|_{C_{2}})(E_{(2)})+\epsilon$

$=d^{2}(m_{1}\times m_{2})(f^{-1}(E)\cap C_{1}\times C_{2})+\epsilon$

$\leqq d^{2}\sum_{i=1}^{t}(m_{1}\times m_{2})(f^{-1}(E)\cap(V^{(r)}+x_{i}))+\epsilon$

$=d^{2}\sum_{i=1}^{t}(m_{1}\times m_{2})(f^{-1}(E-f(x_{i}))\cap V^{(r)})+\epsilon$

$\leqq d^{2}\sum_{i=1}^{t}\overline{m}^{*}(E-f(x_{i}))+\epsilon$

$=\epsilon$ ,

where we put $E_{(2)}=\{(x, y)\in G^{\tau_{3}}\times G^{\tau_{3}} : x+y\in E\}$ . Since $\epsilon>0$ was arbitrary,
we have $\lambda*\mu(E)=0$ . If $\overline{m}^{*}(E)=0$ for a Borel set in $G^{-}s$ then $E$ is a union
of a subset of $G^{\tau_{3}}-H$ and a countably many bounded Borel sets in $H^{\tau_{3}^{\prime}}$ , and
so $\lambda*\mu(E)=0$ .

Next let us consider the general case. Since $\lambda$ and $\mu$ are regular, they
are concentrated in at most countably many cosets of $H_{1}$ and $H_{2}$ , respectively.
Thus we may assume without loss of generality that $\lambda$ is concentrated in
$H_{1}+x$ , and $\mu$ is concentrated in $H_{2}+y$ , where $x\in G^{\tau_{1}}$ , and $y\in G^{\tau_{2}}$ . Let $\lambda-x$

and $\mu-y$ be the translations of $\lambda$ and $\mu$ by $x$ and $y$ respectively, that is
$(\lambda-x)(E-x)=\lambda(E)$ , etc. Then we have
(2.4) $\lambda*\mu(E)=((\lambda-x)*(\mu-y))(E-x-y)$

and if $\overline{m}^{*}(E)=0$, the right side of (2.4) is $0$ by the above result, and hence
$\lambda*\mu\in L^{1}(G^{\tau_{3}})$ . The uniqueness of $\tau_{3}$ follows from Corollary 2.7.

Now let us prove the remainder of the assertions of the theorem and
complete the proof.

Suppose that $\tau_{0}\in \mathfrak{T}(G^{\tau})$ and $\tau_{0}\subseteqq\tau_{1},$ $\tau_{2}$ . Then we have $M(G^{\tau_{0}})\supset L^{1}(G^{\tau_{1}})$ ,
$L^{1}(G^{\tau_{2}})$ , and hence $M(G^{\tau_{0}})\supset L^{1}(G^{\tau_{1}})*L^{1}(G^{\tau_{2}})$ . Let $\mathfrak{A}$ be the closed subspace
generated by $\{\lambda*\mu:\lambda\in L^{1}(G^{\tau_{1}}), \mu\in L^{1}(G^{\tau_{2}})\}$ . $\mathfrak{A}$ is a translation invariant
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subspace and hence an ideal of $L^{1}(G^{\tau_{8}})$ . It is easy to see that $Z(\mathfrak{A})=\{r\in\Gamma_{\tau_{8}}$ :
$\hat{\nu}(r)=0,$ $\nu\in \mathfrak{A}$ } $=\phi$ , and from the general Tauberian theorem we have $\mathfrak{A}=$

$L^{1}(G^{\tau_{\theta}})$ , and so $L^{1}(G^{-\epsilon})\subset\Lambda f(G^{\tau_{0}})$ . From Theorem 2.5 we get $\tau_{\epsilon}\supset\tau_{0}$ and this
completes the proof of Theorem 2.8.

DEFINITION 2.5. Let $G^{\tau}$ be an $LCA$ group. By Theorem 2.8 $\sum_{\tau\in \mathfrak{T}(G^{\tau})}L^{1}(G^{\tau^{\prime}})$

is a subalgebra and hence $\overline{\sum_{\tau\in \mathfrak{T}(G^{\tau})}L^{1}(G^{\tau^{\prime}})}$ is a closed subalgebra of $M(G^{\tau})$ , which

we denote by $L^{*}(G^{\tau})$ . $L^{*}(G^{\tau})$ contains the identity of $M(G^{\tau})$ , and hence $L^{*}(G^{\tau})$

properly contains $L^{1}(G^{\tau})$ if $G^{-}$ is not discrete.

\S 3. The maximal ideal space of $L*(G^{\tau})$ .
If $\mu$ is an element of $L^{*}(G^{\tau})$ , we denote by $\hat{\hat{\mu}}$ the Gelfand transform of $\mu$ .
DEFINITION 3.1. Let $G^{\tau}$ be an $LCA$ group. We introduce a partial order

$\geqq in\mathfrak{T}(G^{\tau})$ such that, if $\tau_{1},$
$\tau_{2}\in \mathfrak{T}(G^{\tau})$ then $\tau_{1}\geqq\tau_{2}$ if and only if $\tau_{1}\subset\tau_{2}$ . $\mathfrak{T}(G^{\tau})$

is a directed set under this binary relation $\geqq$ , that is for each pair $\tau_{1},$
$\tau_{2}\in \mathfrak{T}(G^{\tau})$ ,

there exists $\tau_{3}\in \mathfrak{T}(G^{\tau})$ such that $\tau_{3}\geqq\tau_{1},$
$\tau_{2}$ (cf. Theorem 2.8). A directed

subset $S$ of $\mathfrak{T}(G^{\tau})$ is a non-empty subset of $\mathfrak{T}(G^{\tau})$ such that; 1) $S$ is itself a
directed set under $\geqq;2$) If $S\ni\tau_{1},$ $\mathfrak{T}(G^{\tau})\ni\tau_{2}$ and $\tau_{1}\geqq\tau_{2}$ , then we have $\tau_{2}\in S$.

PROPOSITION 3.1. Let $G^{\tau}$ be an $LCA$ group and let $h$ be a non-zero complex
homomorphism of $L^{*}(G^{\tau})$ . Then

1) $S=\{\tau^{\prime}\in \mathfrak{T}(G^{\tau}):h|_{L^{1}(G^{\tau^{\prime}})}\neq 0\}$ is a directed subset of $\mathfrak{T}(G^{\tau})$ .
2) If $\tau_{1},$ $\tau_{2}\in S$ and $\tau_{1}\geqq\tau_{2}$ , with

$h(\lambda)=\int_{G^{\tau_{1}}}r_{\tau_{1}}(-x)d\lambda(x)$ $(\lambda\in L^{1}(G^{\tau_{1}}))$ ,

$h(\mu)=\int_{G^{\tau_{2}}}r_{\tau_{2}}(-x)d\mu(x)$ $(\mu\in L^{1}(G^{\tau_{2}}))$ ,

where $r_{\tau_{1}}\in\Gamma_{\tau_{1}},$ $r_{\tau_{2}}\in\Gamma_{\tau_{2}}$ , then $\varphi_{\tau^{1}}^{\tau_{2}}(r_{\tau_{1}})=r_{\tau_{2}}$ .
3) Conversely if $S$ is a direcfed subset of $\mathfrak{T}(G$

‘
$)$ , and if $(r_{\tau^{\prime}})_{\tau^{\prime}\in S}$ is an element

of $\prod_{\tau^{\prime}\Leftarrow S}\Gamma_{\tau^{\prime}}$ such that
$\varphi_{\tau^{1}}^{\tau_{2}}(r_{\tau_{1}})=r_{\tau_{2}}$ ( $\tau_{1},$ $\tau_{2}\in S$ and $\tau_{1}\geqq\tau_{2}$),

then $(r_{\tau^{\prime}})_{\tau^{\prime}\in S}$ induces a non-zero complex homomorphism $h^{\prime}$ of $L^{*}(G^{\tau})$ such that

(3.1) $h^{\prime}(\lambda)=$

PROOF. 1) Since $h\neq 0$ , it is clear that $S$ is not empty. If $S\ni\tau_{1},$ $\tau_{2}$ then
there exist $\lambda\in L^{1}(G^{r_{1}})$ and $\mu\in L^{1}(G^{\tau_{2}})$ such that $h(\lambda)\neq 0,$ $h(\mu)\neq 0$ , and hence
$h(\lambda*\mu)\neq 0$ . By Theorem 2.8 there exists $\tau_{3}\in \mathfrak{T}(G^{r})$ such that $\tau_{8}\geqq\tau_{1},$

$\tau_{2}$ and
$\lambda*\mu\in L^{1}(G^{\tau_{8}})$ , and so $T_{3}ES$.
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If $\tau_{1}\in S,$ $\tau_{2}\in \mathfrak{T}(G^{\tau})$ and $\tau_{1}\geqq\tau_{2}$ , then there exist $r_{\tau_{1}}\in\Gamma_{\tau_{1}}$ and $\lambda_{1}\in L^{1}(G^{\tau_{1}})$

such that

$\left\{\begin{array}{l}h(\lambda)=\int_{G^{\tau_{1}}}r_{\tau_{1}}(-x)d\lambda(x) (\lambda\in L^{1}(G^{\tau_{1}})),\\h(\lambda_{1})=\int_{G^{\tau_{1}}}r_{\tau_{l}}(-x)d\lambda_{1}(x)\neq 0.\end{array}\right.$

Choose $\mu_{1}\in L^{1}(G^{\tau_{2}})$ such that

$\int_{o^{\tau_{2}}}\varphi_{\tau^{1}}^{\tau_{2}}(r_{\tau_{1}})(-x)d\mu_{1}(x)\neq 0$ .
Then we have

(3.2) $h(\lambda_{1})h(\mu_{1})=h(\lambda_{1}*\mu_{1})$

$=\int_{G^{\tau_{1}}}r_{\tau_{1}}(-x)d\lambda_{1}*\mu_{1}(x)$

$=\int_{G^{\tau_{1}}}r_{\tau_{1}}(-x)d\lambda_{1}(x)\int_{G^{\tau_{1}}}r_{\tau_{1}}(-x)d\mu_{1}(x)$

$=\int_{G^{\tau_{1}}}r_{\tau_{1}}(-x)d\lambda_{1}(x)\int_{G^{\tau_{2}}}\varphi_{\tau^{1}}^{\tau_{2}}(r_{\tau_{1}})(-x)d\mu_{1}(x)$

$\neq 0$ .
Therefore we have $h(\mu_{1})\neq 0$ , and hence $\tau_{2}$ belongs to $S$.

2) If $\tau_{1},$ $\tau_{2}\in S$ and $\tau_{1}\geqq\tau_{2}$ , then we have from (3.2)

$h(\mu_{1})=\int_{G^{\tau_{2}}}\varphi_{\tau^{1}}^{\tau_{2}}(r_{\tau_{1}})(-x)d\mu_{1}(x)$ $(\mu_{1}\in L^{1}(G^{\tau_{2}}))$

and hence we have $\varphi_{\tau^{1}}^{\tau_{2}}(r_{\tau_{1}})=r_{\tau_{2}}$ .
3) Since $L^{*}(G^{\tau})=\sum_{\tau\in_{-}\mathfrak{T}(G^{\tau})}L^{1}(G^{\tau^{\prime}})$ , it is obvious from Corollary 2.7 that there

exists a linear functional $h^{J}$ such that (3.1) holds. We shall show that $h^{\prime}$ is
a complex homomorphism of $L^{*}(G^{\tau})$ .

Let $\tau_{1},$ $\tau_{2}\in \mathfrak{T}(G^{\tau})$ , and let $\lambda\in L^{1}(G^{\tau_{1}})$ and $\mu\in L^{1}(G^{\tau_{2}})$ . We have only to
prove that $h^{\prime}(\lambda*\mu)=h^{\prime}(\lambda)h^{\prime}(\mu)$ . By Theorem 2.8 there exists $\tau_{3}\in \mathfrak{T}(G^{\tau})$ such
that $\lambda*\mu\in L^{1}(G^{\tau_{3}})$ and $\tau_{3}\geqq\tau_{1},$

$\tau_{2}$ . If $\tau_{1}\not\in S$, then $\tau_{3}$ does not belong to $S$, and
we have

(3.3) $h^{\prime}(\lambda*\mu)=h^{\prime}(\lambda)h^{\prime}(\mu)=0$ .
If $\tau_{2}\not\in S$, we can prove the same relation as (3.3). If $\tau_{1}\in S$ and $\tau_{2}\in S$, then
by Theorem 2.8 $\tau_{8}$ belongs to $S$, and

$h^{\prime}(\lambda*\mu)=\int_{G^{\tau_{8}}}r_{\tau_{8}}(-x)d\lambda*\mu(x)$

$=\int_{G^{\tau_{S}}}r_{r_{8}}(-x)d\lambda(x)\int_{G^{\tau_{\theta}}}r_{\tau_{8}}(-x)d\mu(x)$
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$=\int_{G^{\tau_{1}}}r_{\tau_{1}}(-x)d\lambda(x)\int_{G^{\tau_{2}}}r_{\tau_{2}}(-x)d\mu(x)$

$=h^{J}(\lambda)h^{\prime}(\mu)$ ,

and this completes the proof.
DEFINITION 3.2. If $S$ is a directed subset of $\mathfrak{T}(G^{\tau})$ , then

$\Gamma_{S}=$ { $(r_{\tau^{\prime}})_{\tau^{l}\in S}\in\prod_{\tau^{\prime}\in S}\Gamma_{\tau^{\prime}}$ : $\varphi_{\tau^{1}}^{\tau_{2}}(r_{\tau_{1}})=r_{\tau_{2}}$ , if $\tau_{1}\geqq\tau_{2}$ ; $\tau_{1},$
$\tau_{2}\in S$}

forms a group with respect to the pointwise addition. By Proposition 3.1,

$\Gamma^{*}=\bigcup_{s\subset \mathfrak{T}(G^{\tau})}\Gamma_{S}$ constitutes the maximal ideal space of $L^{*}(G^{r})$ .
If $S$ is a directed subset of $\mathfrak{T}(G^{\tau})$ and $\tau_{0}\in S$, we denote by $\varphi_{\tau}^{s_{0}}$ the natural

homomorphism of $\Gamma_{S}$ into $\Gamma_{\tau_{0}}$ , given by

\langle 3.4) $\varphi_{\tau}^{s_{0}}((r_{\tau^{\prime}})_{-\in S})=r_{\tau_{0}}$ $((r_{\tau^{\prime}})_{\tau^{\prime}\in S}\in\Gamma_{s})$ .
PROPOSITION 3.2. For each $\Gamma_{s_{1}}\times\Gamma_{S_{2}}\ni((r_{\tau’})_{\tau’\in S_{1}}, (r_{\tau^{\prime}}^{\prime})_{\tau^{\prime}\in S_{2}})$ , we define

\langle 3.5) $(r_{\tau},)_{\tau^{\prime}\in S_{1}}+(r_{\tau}^{\prime})_{\tau\in S_{2}}=(r_{\tau^{\prime}}+r_{\tau^{\prime}}^{\prime})_{\tau^{\prime}\in S_{1}\cap S_{2}}$ .
Then $\Gamma^{*}$ becomes a semi-group with unit.

PROOF. Since intersection of two directed subsets of $\mathfrak{T}(G^{\tau})$ is again a
directed subset of $\mathfrak{T}(G^{\tau})$ , it is obvious that $\Gamma^{*}$ forms a semi-group with unit
$\langle 0_{f^{\prime}})_{\tau^{\prime}\in \mathfrak{T}(G^{T})}$ , where $0_{\tau^{\prime}}$ is the unit of $\Gamma_{\tau^{\prime}}$ .

PROPOSITION 3.3. Suppose that $\Gamma*\supseteqq\Gamma_{S}\ni r_{0}$ . For each $\tau_{0}\in S$, a neigh-
bourhood $U$ of $\varphi_{\tau}^{s_{0}}(r_{0})$ in $\Gamma_{\tau_{0}}$ and a finite subset $\{\tau_{1}, \tau_{z}, \cdots , \tau_{m}\}$ of $\mathfrak{T}(G^{\tau})-S$, and
a compact subset $K_{i}$ of $\Gamma_{\tau_{i}}$ $(i=1,2, \cdot.. , m)$ , put

\langle 3.6) $U_{\tau_{0}}^{(K_{1}.\tau_{1}).(K_{2}.\tau_{2})\ldots..(K_{m}.\tau_{m})}$

$=\bigcup_{s’\ni\tau_{0}}$ { $r\in\Gamma_{S^{\prime}}$ : $\varphi_{\tau}^{s_{0}}’(r)\in U$, and if $S^{J}\ni\tau_{i}$ then $\varphi_{\tau}^{S_{i}^{\prime}}(r)\not\in K_{i}(i=1,$ $\cdots,$ $m)$ }.

Then the class of all the sets of the form (3.6) constitutes a basis of neigh-
bourhoods of $r_{0}$ with respect to the Gelfand topology of $\tau*$ .

PROOF. The Gelfand topology of $\tau*is$ the weakest one such that every

Gelfand transform $\hat{\hat{\mu}}(\mu\in L^{*}(G^{\tau}))$ is continuous on $\Gamma^{*}$ . Since each element

fi $(\mu\in L^{*}(G^{\tau}))$ is a uniform limit of some sequence of elements in {
$\hat{\lambda}^{\wedge}$ :

$\lambda\in\sum_{\tau\in \mathfrak{T}(G^{\tau})}L^{1}(G^{\tau}’)\}$ , it can be said that the Gelfand topology of $\Gamma*$ is the

weakest one such that each $\hat{\rho}(\mu\in L^{1}(G^{\tau^{\prime}}):\tau^{\prime}\in \mathfrak{T}(G^{\tau}))$ is continuous on $\Gamma*$ .
Suppose $\tau_{*}\in \mathfrak{T}(G^{\tau}),$ $\mu\in L^{1}(G^{\tau}\cdot)$ , and $W$ is a neighbourhood of $\hat{\beta}(r_{0})$ in $C$,

where $W*O$ if $\hat{\hat{\mu}}(r_{0})\neq 0$ . If $\tau_{*}\not\in S^{\prime},\hat{\hat{\mu}}(r)=0$ for every $\gamma\in\Gamma_{s},$ . If $\tau_{*}\in S^{\prime}$ ,

then $\hat{\hat{\mu}}(r)=\beta(\varphi_{\tau}^{S^{\prime}}.(r))$ , where $\beta$ is the Fourier transform of $\mu$ into $\Gamma_{\tau}.$ . Thus
we have
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(3.7) $\hat{\hat{\mu}}^{-1}(W)=\{s’\ni(U\Gamma_{S})\cup[.\cdot\bigcup_{\varphi^{s^{*_{*^{\prime}}}}\cup^{S^{\prime ae_{\tau^{\tau*}}}}}\{r\in\Gamma_{s}:\varphi^{s}.(r)\in p^{-1}(W)\}]\{r\in^{\prime}\Gamma_{S^{\prime}}(r)\in\beta^{-1^{\prime}}(W)^{\tau}\}^{\prime}.\cdot if\hat{\hat{\mu}}(r_{0})\neq 0S^{\prime}\ni\tau_{\tau}$

if $\hat{\hat{\mu}}(r_{0})=0$

Suppose $\tau_{1},$ $\tau_{2},$ $\cdots,$
$\tau_{m}\in \mathfrak{T}(G^{\tau})-S$, $\tau_{m+1},$ $\tau_{m+2},$ $\cdots,$ $\tau_{n}\in S(m<n)$ and $\mu_{1}\in$

$L^{1}(G^{\tau_{1}}),$ $\cdots$ $\mu_{n}\in L^{1}(G^{\tau_{n}})$ , and let $W_{i}$ be an open neighbourhood of $\hat{\beta}_{i}(r_{0})$

$(i=1,2, \cdot. , n)$ . Let $\tau_{0}\in \mathfrak{T}(G^{\tau})$ be the least upper bound of $\{\tau_{m+1}, \cdots , \tau_{n}\}$ (cf.

Theorem 2.8). Since $\varphi_{\tau^{0}}^{\tau_{i}}$ is continuous and $\varphi_{\tau^{0}}^{\tau_{i}}\circ\varphi_{\tau}^{s_{0}}=\varphi_{\tau}^{s_{i}},$
$U=\cap n\varphi_{\tau^{0}}^{\tau_{i^{-1}}}(\hat{\mu}_{t}^{-1}(W_{i}))$

is a neighbourhood of $\varphi_{\tau}^{s_{0}}(r_{0})$ , and we have from (3.7)
$t=m+1$

(3.8) $U_{\tau_{0}}=\bigcup_{S\ni\tau_{0}}\{f\in\Gamma_{s}, : \varphi_{\tau}^{s_{0^{\prime}}}(r)\in U\}\subseteqq\hat{\beta}_{m+1}^{-1}(W_{m+1})\cap\cdots\cap\hat{\beta}_{n}^{-1}(W_{n})$ .
Put $(\hat{\mu}_{j}^{-1}(W_{j}))^{c}=K_{j}(j=1,2, \cdots, m)$ , and since $W_{j}$ is an open neighbourhood of
$0(j=1,2, \cdots, m),$ $K_{j}$ is a compact subset of $\Gamma_{\tau_{j}}$ . By (3.7) we have

(3.9) $\hat{\hat{\mu}}_{f}^{-1}(W_{j})=(\bigcup_{S^{J}\exists\tau_{f}}\Gamma_{S^{t}})\cup[\bigcup_{S^{\prime}\ni\tau_{j}}\{r\in\Gamma_{S^{\prime}} : \varphi_{\tau_{j}}^{s}’(r)\not\in K_{j}\}]$ $(j=1,2, \cdots, m)$ .
If we put $U_{\tau_{0}}^{(K_{1}.\tau_{1})\ldots..(K_{m}.\tau_{m})}$ as (3.6), we get from (3.8) and (3.9)

$U_{\tau_{0}}^{(K_{1}.\tau_{1})\ldots..(K_{m}.\tau_{m})}\subseteqq\bigcap_{j=1}^{n}\hat{\hat{\mu}}_{j}^{-1}(W_{j})$ .
Conversely, let $\tau_{0}\in S,$ $\tau_{1},$ $\cdots,$ $\tau_{m}\in \mathfrak{T}(G^{\tau})-S$, and let $U$ be a neighbourhood

of $\varphi_{\tau}^{s_{0}}(r_{0})$ , and suppose $K_{j}$ is a compact subset of $\Gamma_{\tau_{j}}(j=1,2, \cdot.. m)$ . Then
we can choose $\mu_{i}\in L^{1}(G^{\tau_{i}})(i=0,1, \cdot.. , m)$ and a neighbourhood $V$ of $\hat{\hat{\mu}}_{0}(r_{0})\in C$

such that

$\left\{\begin{array}{llllll} & & & & & \beta_{0}(\varphi_{\tau}^{s_{0}}(r_{0}))\neq 0,\\ & & & & & U\supseteqq\hat{\mu}_{0}^{-1}(V), V\# 0,\\ & & & & & \hat{\mu}_{j}(r)\geqq 1(r\in K_{j}), (j=1,2,\ldots m).\end{array}\right.$

Then we get

$U_{\tau_{0}}^{(K_{1}.\tau_{1})\ldots..(K_{m},\tau_{m})}\supseteqq[\bigcap_{J=1}^{m}\hat{p}_{j}^{-1}(\Delta)]\cap\hat{\beta}_{0}^{-1}(V)$ ,

where $\Delta=\{\alpha\in C:|a|<1\}$ , and hence the set of the form (3.6) is a neigh-
bourhood of $r_{0}$ .

What we have proved above and the fact that

$\{\hat{\hat{\mu}}^{-1}(W) : \mu\in L^{1}(G^{\tau}’), \tau^{\prime}\in \mathfrak{T}(G^{\tau}), W\ni\hat{\hat{\mu}}(r_{0})\}$

forms a sub-basis of neighbourhoods of $r_{0}$ show that the class of the set of
the form (3.6) constitutes a basis of neighbourhoods of $r_{0}$ in $\Gamma*$ .

REMARK. If $\tau_{0}$ is an element of $\mathfrak{T}(G^{\tau})$ , then $S_{\tau_{0}}=\{\tau^{\prime}\in \mathfrak{T}(G^{\tau}):\tau^{\prime}\leqq\tau_{0}\}$ is
a directed subset of $\mathfrak{T}(G^{\tau})$ . It is easy to see from Proposition 3.3 that $\varphi_{\tau^{\tau_{0}}}^{s_{0}}$ is
a homeomorphic isomorphism from $\Gamma_{S_{\tau_{0}}}$ (as a subspace of $\Gamma^{*}$) onto $\Gamma_{\tau_{0}}$ .
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PROPOSITION 3.4. Suppose $S$ is a directed subset of $\mathfrak{T}(G^{\tau})$ and $\mu$ is an
element of $M(G^{\tau})$ . Then there exists a unique decomposition $\mu=\mu_{1}+\mu_{2}$ , where
$\mu_{1}\in\overline{\sum_{\tau^{\prime}\in S}M(G^{\tau^{\prime}})}$ and $\mu_{2}\perp\overline{\sum_{\tau^{\prime}\in S}M(G^{\tau^{\prime}})}$.

PROOF. We can assume without loss of generality that $\mu\geqq 0$ . Put
$\Sigma=\{\mu^{\prime}\in\overline{\sum_{\tau\in S}M(G^{\tau^{l}})}:\mu^{\prime}\perp(\mu-\mu^{\prime})\}$ . It is clear that $\Sigma$ is an inductive set with

respect to the usual partial order in $M(G^{f})$ , and so there exists a maximal
element in $\Sigma$ . Let $\mu_{1}$ be a maximal element in $\Sigma$ , and put $\mu_{2}=\mu-\mu_{1}$ .

If there exists $\tau_{0}\in S$ such that $\mu_{2}$ is not orthogonal to $M(G^{\tau_{0}})$ , then by
Proposition 2.2, there is a decomposition

$\mu_{2}=\mu_{2}^{\prime}+\mu_{2}$ , $0\neq\mu_{2}^{\prime}\in M(G^{\tau_{0}})$ , $\mu_{2}^{\prime}\perp\mu_{2}^{\prime}$

Then $\mu_{1}+\mu_{2}^{\prime}\in\Sigma$ , and $\mu_{1}+\mu_{2}^{\prime}\geqq\mu_{1}$ , and this contradicts the maximality of $\mu l$

and thus $\mu=\mu_{1}+\mu_{2}$ is the desired decomposition.
THEOREM 3.5. Each complex homomorphism of $L^{*}(G^{\tau})$ can be extended to

a complex homomorphism of $M(G^{\tau})$ , and so $\Gamma*$ is contained in the maximal
ideal space of $M(G^{\tau})$ .

PROOF. Let $S$ be a directed subset of $\mathfrak{T}(G^{\tau})$ , and suppose $\mu\in M(G^{\tau})$ .
Then by Proposition 3.4, we have a decomposition

$\mu=\mu_{1}+\mu_{2}$ , $\mu_{1}\in\overline{\sum_{S\cong)\tau^{\prime}}M(G^{\tau^{\prime}})}$ , $\mu_{2}\perp\overline{\sum_{S\cong d}M(G^{\tau^{\prime}})}$ .
$\mu_{1}$ has an expression $\mu_{1}=\varliminf_{p}\mu_{1i}$ , where $\mu_{1i}\in M(G^{\tau_{i}})$ , $S\ni\tau_{i}(i=1,2, )$ .
Define a function $\hat{\beta^{\wedge}}$ by

(3.10) $\hat{\hat{\mu^{\wedge}}}(r)=\varliminf_{i}\int_{G^{\tau_{i}}}\varphi_{\tau}^{s_{i}}(r)(-x)d\mu_{1i}(x)$ $(r\in\Gamma_{S}, \mu\in M(G^{\tau}))$ .

It is clear that the above definition is well posed and $\hat{\hat{\beta}}$ is equal to the
Gelfand transform of $\mu$ if $\mu$ is an element of $L^{*}(G^{\tau})$ . For each fixed $r\in\Gamma^{*}$ ,
the mapping

$M(G^{\tau})\ni\mu\leftrightarrow\hat{\beta}^{\wedge}(r)\in C$

is a complex homomorphism, and hence $\Gamma*is$ contained in the maximal ideal
space of $M(G^{\tau})$ .

\S 4. Homomorphisms of $L*(G^{\tau})$ into $M(G_{2})$ .
Let $h$ be a homomorphism of $L^{*}(G^{\tau})$ into $M(G_{l})$ . For each $r\in\Gamma_{2}$ , we

have either $h(\mu)(r)\wedge=0$ for every $\mu\in L^{*}(G^{\tau})$ , or there exists a unique $\alpha(r)\in\Gamma*$

such that

(4.1) $ h(\mu)(r)=\hat{\beta}(a(r))\wedge$
$(\mu\in L^{*}(G^{\tau}))$ .

We put
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(4.2) $Y=\{r\in\Gamma_{2} : \exists_{\mu\in L^{*}(G^{\tau})}h(\mu)(r)\neq 0\}\wedge$ .

For each $\tau^{\prime}\in \mathfrak{T}(G^{\tau})$ , we define

(4.3) $Y_{\tau}=\bigcup_{s\ni\tau^{\prime}}\{r\in Y:\alpha(r)\in\Gamma_{S}\}$

$\alpha_{\tau}(r)=\left\{\begin{array}{l}\varphi_{\tau}^{s},(\alpha(r)).\cdot r\in Y_{\tau^{\prime}}\\0 . r\not\in Y_{\tau^{\prime}}.\end{array}\right.$

THEOREM 4.1. (i) Let $h$ be a homomorphism of $L^{*}(G^{\tau})$ into $M(G_{2})$ , and let
$\{(Y, \alpha), (Y_{\tau^{\prime}}, \alpha_{\tau^{\prime}});\tau^{\prime}\in \mathfrak{T}(G^{\tau})\}$ be defined by (4.1), (4.2) and (4.3). Then

1) $Y_{\tau^{l}}$ is an element of the coset ring of $\Gamma_{2}$ , and $\alpha_{\tau}$
, is a piecewise affine

map of $Y_{\tau’}$ into $\Gamma_{\tau},$ .
2) If we express by $h_{\tau^{\prime}}$ a homomorphism of $L^{1}(G^{\tau}$

‘
$)$ into $M(G_{2})$ determined by

$(Y_{\tau^{\prime}}, \alpha_{\tau^{t}})$ , then $\{\Vert h_{\tau^{l}}\Vert:\tau^{\prime}\in \mathfrak{T}(G^{\tau})\}$ is bounded, where $\Vert h_{\tau^{\prime}}\Vert$ denotes $\mu\in L^{1}(G^{\tau})\sup,\Vert h_{\tau^{\prime}}(\mu)\Vert/\Vert\mu\Vert$
.

(ii) Conversely, let $Y$ be a subset of $\Gamma_{2}$ and let $\alpha$ be a map of $Y$ into $\tau*$ .
We define $Y_{\tau’},$ $\alpha_{\tau’}(\tau^{\prime}\in \mathfrak{T}(G^{\tau}))$ by (4.3). Suppose that $\{(Y_{\tau^{\prime}}, \alpha_{\tau’}):\tau^{\prime}\in \mathfrak{T}(G^{\tau})\}$

satisfies 1), 2) of (i). Then for each $\mu\in L^{*}(G^{\tau})$ , there exists an element $h^{\gamma}(\mu)$

of $M(G_{2})$ such that

$ h^{\wedge}(\mu)(r)=\left\{\begin{array}{l}\hat{\mu}(\alpha(r))\cdot. r\in Y\\0 . r\not\in Y\end{array}\right.\wedge$ $(r\in\Gamma_{2})$

and $h$ ‘ is a homomorphism of $L^{*}(G^{\tau})$ into $M(G_{2})$ .
PROOF. (i) For each $T^{\prime}\in \mathfrak{T}(G^{\tau})$ , let $h_{\tau}$ , be the restriction of $h$ to $L^{1}(G^{\tau}’)$ .

By Theorem 1, there exists an element $Y_{\tau}^{\prime}$ , of the coset ring of $\Gamma_{2}$ and a
piecewise affine map $\alpha_{\tau}^{\prime}$ of $Y_{\tau^{l}}^{\prime}$ into $\Gamma_{\tau}$ , such that

(4.4) $h(\wedge\mu)(r)=h_{\tau’}\wedge(\mu)(r)=\{0\hat{\mu}(\alpha_{\tau’}^{\prime}(r))\cdot..$

.
$r\in Y_{\tau}^{\prime}r\not\in Y_{\tau^{\prime}}^{t}$

,
$(\mu\in L^{1}(G^{\tau}’))$ .

On the other hand, we have from the definition of $Y_{\tau^{\prime}}$ and $\alpha_{\tau^{\prime}}$ ,

(4.5) $ h(\mu)(r)=\wedge\left\{\begin{array}{l}\hat{\mu}(\alpha(r))=\hat{\mu}(\varphi_{\tau}^{s_{\prime}}(\alpha(r))).\cdot r\in Y_{\mathcal{T}^{\prime}}\\0 . r\not\in Y_{\tau’}\end{array}\right.\wedge$ $(\mu\in L^{1}(G^{\tau^{\prime}}))$ .

From (4.4) and (4.5), we have $Y_{\tau}^{\prime},$ $=Y_{\tau^{\prime}}$ and $a_{\tau}^{\prime}=\alpha_{\tau^{t}}$ , and 1) follows from this,

and since 2) is trivial, this completes the proof of (i).

(ii) For each $\mu\in L^{*}(G^{\tau})$ , put

$\alpha_{\mu}(r)=\left\{\begin{array}{l}\hat{\hat{\mu}}(\alpha(r))\cdot. r\in Y\\0 . r\not\in Y\end{array}\right.$ $(r\in\Gamma_{2})$ .
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Suppose $\tau_{0}$ is an element of $\mathfrak{T}(G^{\tau})$ , and $\mu\in L^{1}(G^{f}0)$ . Then by the definition
of $(Y_{\tau_{0}}, \alpha_{r0})$ , we have

$\alpha_{\mu}(r)=\left\{\begin{array}{l}\hat{\mu}(\alpha_{\tau_{0}}(r))\cdot. r\in Y_{\tau_{0}}\\0 . r\not\in Y_{\tau_{0}},\end{array}\right.$

and by the condition 1) of (i), $\alpha_{\mu}\in B(\Gamma_{2})$ . Therefore we have $\alpha_{\mu}\in B(\Gamma_{2})$ for
each

$\mu\in\sum_{\tau\in \mathfrak{T}(G^{\tau})}L^{1}(G^{\tau}$

‘
$)$ .

If $\mu\in L^{*}(G^{\tau})$ , choose a sequence of elements $\mu_{i}\in\sum_{\tau\in \mathfrak{T}(G^{\tau})}L^{1}(G^{\tau^{\prime}})(i=1,2, \cdots)$

such that $\lim_{ir}\mu_{i}=\mu$ , and since $\alpha_{\mu}$ is the uniform limit of $\{\alpha_{\mu i} : i=1,2, \cdots\}$ ,

we have $\alpha_{\mu}\in B(\Gamma_{2})$ .
Thus for each $\mu\in L^{*}(G^{\tau})$ , there exists a unique $h^{J}(\mu)\in M(G_{2})$ such that

$\alpha_{\mu}=h^{\prime}(\mu)\wedge$ , and it is easy to see that
$h^{\prime}$ : $L^{*}(G^{\tau})\ni\mu-h^{J}(\mu)\in M(G_{2})$

is the desired homomorphism of $L^{*}(G^{\tau})$ into $M(G_{2})$ and this completes the
proof of the theorem.

REMARKS. If $G^{\tau}$ is not discrete, it is easy to see that $L^{*}(G^{\tau})$ is symmetric,
and hence $L^{*}(G^{\tau})$ is contained properly in $M(G^{\tau})$ . Thus $L^{*}(G^{\tau})$ contains $L^{1}(G^{\tau})$

properly, and is contained in $M(G^{\tau})$ properly, if $G$‘ is not discrete.
It is natural to think about how large the set $\mathfrak{T}(G^{\tau})$ is. For this we can

refer to [5].
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Hokkaido University
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