Some closed subalgebras of measure algebras and a generalization of P. J. Cohen's theorem

By Jyunji Inoue

(Received April 17, 1970)
(Revised Sept. 1, 1970)

§0. Introduction.

Let G_{1} and G_{2} be locally compact abelian groups, and let $L^{1}\left(G_{1}\right)$ and $M\left(G_{2}\right)$ be the group algebra of G_{1} and the measure algebra of G_{2}, respectively. Homomorphisms of $L^{1}\left(G_{1}\right)$ into $M\left(G_{2}\right)$ have been studied by H. Helson, W. Rudin, J. P. Kahane, Z. L. Leibenson, P. J. Cohen and others ; and P. J. Cohen [1], [2] determined all the homomorphisms of $L^{1}\left(G_{1}\right)$ into $M\left(G_{2}\right)$ by the notion of the coset ring and piecewise affine maps. He also proved that every homomorphism of $L^{1}\left(G_{1}\right)$ into $M\left(G_{2}\right)$ has a natural norm-preserving extension to a homomorphism of $M\left(G_{1}\right)$ into $M\left(G_{2}\right)$, but in general an extension to a homomorphism of $M\left(G_{1}\right)$ into $M\left(G_{2}\right)$ is not unique.

The purpose of this paper is to introduce some closed subalgebra $L^{*}\left(G_{1}\right)$ of $M\left(G_{1}\right)$, which contains $L^{1}\left(G_{1}\right)$ properly if G_{1} is not discrete, to determine the maximal ideal space of $L^{*}\left(G_{1}\right)$, and to determine all the homomorphisms of $L^{*}\left(G_{1}\right)$ into $M\left(G_{2}\right)$ as a generalization of P. J. Cohen's theorem.

We give in $\S 1$ some preliminaries, and in $\S 2$ we introduce a closed subalgebra $L^{*}\left(G_{1}\right)$ of $M\left(G_{1}\right)$. In $\S 3$ we investigate the maximal ideal space of $L^{*}\left(G_{1}\right)$, and obtain it as a semi-group. Finally we determine in $\S 4$ all the homomorphisms of $L^{*}\left(G_{1}\right)$ into $M\left(G_{2}\right)$ as a generalization of P. J. Cohen's theorem.

§ 1. Preliminaries.

Throughout this paper G_{1} and G_{2} denote locally compact abelian groups ($=L C A$ groups), and Γ_{1} and Γ_{2} denote their dual groups, respectively. The notations G^{τ} and Γ_{τ} are also used to express an $L C A$ group with underlying group G and topology τ, and its dual group, respectively. Thus by G^{τ} and $G^{r^{\prime}}$, we mean that they have the same underlying group G.
$L^{1}\left(G_{1}\right)$ is the group algebra of G_{1}, i.e. the Banach algebra of all the Haar integrable functions on G_{1} under convolution multiplication, and $M\left(G_{2}\right)$ is the measure algebra of G_{2}, the Banach algebra of all the regular bounded complex

Borel measures on G_{2} under convolution multiplication.
If f is an element of $L^{1}\left(G_{1}\right)$, and if we define $\mu_{f}(E)=\int_{E} f(x) d x$ for each Borel set E in G_{1}, μ_{f} is a regular bounded complex Borel measure on G_{1} and

$$
L^{1}\left(G_{1}\right) \ni f \longmapsto \mu_{f} \in M\left(G_{1}\right)
$$

is a norm-preserving isomorphism of $L^{1}\left(G_{1}\right)$ into $M\left(G_{1}\right)$. Through this isomorphism we identify $L^{1}\left(G_{1}\right)$ with a subset of $M\left(G_{1}\right)$, and then $L^{1}\left(G_{1}\right)$ is a closed ideal of $M\left(G_{1}\right)$. The set $L^{1}\left(G_{1}\right)$ is characterized as the set of all absolutely continuous measures in $M\left(G_{1}\right)$ with respect to the Haar measure of G_{1} (cf. [4] Chap. 1).
$B\left(\Gamma_{1}\right)$ denotes the set of all the Fourier Stieltjes transforms of elements in $M\left(G_{1}\right)$.

Definition 1.1. We mean by an open coset of Γ_{2} a coset of some open subgroup of Γ_{2}. The coset ring of Γ_{2} is the smallest collection Σ of subsets of Γ_{2} which satisfies the following conditions:

1) Σ contains all the open cosets of Γ_{2}.
2) If $\Sigma \ni A, B$ then $A \cup B, A^{c} \in \Sigma$.

Definition 1.2. If E is an open coset of Γ_{2} and α is a continuous mapping from E into Γ_{1}, then α is called affine if

$$
\alpha\left(r+r^{\prime}-r^{\prime \prime}\right)=\alpha(r)+\alpha\left(r^{\prime}\right)-\alpha\left(r^{\prime \prime}\right) \quad\left(r, r^{\prime}, r^{\prime \prime} \in E\right)
$$

holds. Suppose that
(a) $S_{1}, S_{2}, \cdots, S_{n}$ are pairwise disjoint sets belonging to the coset ring of Γ_{2}.
(b) Each set S_{i} is contained in an open coset K_{i} of Γ_{2}.
(c) For each i, α_{i} is an affine map of K_{i} into Γ_{1}.
(d) α is the map of $Y=S_{1} \cup S_{2} \cup \cdots \cup S_{n}$ into Γ_{1}, which coincides on S_{i} with $\alpha_{i}(i=1,2, \cdots, n)$.
Then α is said to be a piecewise affine map of Y into Γ_{1}.
Theorem 1 (Cohen). Suppose Y belongs to the coset ring of Γ_{2}, and α is a piecewise affine map from Y into Γ_{1}.
(i) For each $f \in L^{1}\left(G_{1}\right)$, put

$$
(\hat{f} \circ \alpha)(r)=\left\{\begin{array}{ll}
\hat{f}(\alpha(r)) ; & r \in Y \\
0 & ;
\end{array} \quad r \in Y, ~\right.
$$

where \hat{f} is the Fourier transform of f. Then $\hat{f} \circ \alpha$ belongs to $B\left(\Gamma_{2}\right)$, and ther \cdot exists a unique element $h(f)$ of $M\left(G_{2}\right)$ such that $\hat{f} \circ \alpha$ is the Fourier-Stieltjes transform of $h(f)$. The mapping h of $L^{1}\left(G_{1}\right)$ into $M\left(G_{2}\right)$ is a homomorphism, and conversely every homomorphism of $L^{1}\left(G_{1}\right)$ into $M\left(G_{2}\right)$ is obtained in this way.
(ii) For each $\mu \in M\left(G_{1}\right)$, put

$$
(\hat{\mu} \circ \alpha)(r)= \begin{cases}\hat{\mu}(\alpha(r)) ; & r \in Y \\ 0 ; & r \in Y,\end{cases}
$$

where $\hat{\mu}$ is the Fourier-Stieltjes transform of μ. Then we have $\hat{\mu} \circ \alpha \in B\left(\Gamma_{2}\right)_{>}$ and we can choose a unique element $h_{1}(\mu)$ of $M\left(G_{2}\right)$ such that $\hat{\mu} \circ \alpha$ is the Fourier-Stieltjes transform of $h_{1}(\mu) . \quad h_{1}$ is a norm-preserving extension of h to a homomorphism of $M\left(G_{1}\right)$ into $M\left(G_{2}\right)$ (cf. [1], [2] and [4] Chap. 4).

§ 2. A closed subalgebra $L^{*}\left(G_{1}\right)$ of $M\left(G_{1}\right)$.

We denote by C the complex number field, and by T the set of all the complex numbers of absolute value 1. T is an $L C A$ group with respect to multiplication and usual topology.

Proposition 2.1. Let G_{1} and G_{2} be two LCA groups, and let η be a continuous isomorphism of G_{1} onto G_{2}. Then
(i) There exists a natural norm-preserving isomorphism π of $M\left(G_{1}\right)$ into$M\left(G_{2}\right)$, given by

$$
\pi(\mu)(E)=\mu\left(\eta^{-1}(E)\right) \quad\left(E: \text { Borel set of } G_{2} ; \mu \in M\left(G_{1}\right)\right)
$$

(ii) If $\nu \in M\left(G_{2}\right), \nu$ belongs to $\pi\left(M\left(G_{1}\right)\right)$ if and only if there exists a σ compact subset K of G_{1} such that ν is concentrated in $\eta(K)$.

Proof. (i) Suppose $\mu \in M\left(G_{1}\right)$. Choose a σ-compact open subset K of $G_{1,}$ in which μ is concentrated. Since η is continuous, $\eta(K)$ is also σ-compact in G_{2}, and hence $\eta(K)$ is a Borel set in G_{2}. Choose compact sets Q_{i} in G_{1} such. that $\bigcup_{i=1}^{\infty} Q_{i}=K$. Let U be an open set in G_{1} which is contained in K. Then $\eta\left(Q_{i}-U\right)$ is compact, and $\eta\left(Q_{i} \cap U\right)(i=1,2, \cdots)$ is a Borel set in G_{2}, and hence $\eta(U)=\bigcup_{i=1}^{\infty} \eta\left(Q_{i} \cap U\right)$ is a Borel set in G_{2}. Thus if we put
$\Omega=\left\{E: E\right.$ is a Borel set in G_{1} and $\eta(E \cap K)$ is a Borel set in $\left.G_{2}\right\}$,
then Ω contains all the Borel sets in G_{1}. Therefore we see that a subset E of K is a Borel set in G_{1} if and only if $\eta(E)$ is a Borel set in G_{2}.

Define $\pi(\mu)$ by

$$
\pi(\mu)(E)=\mu\left(\eta^{-1}(E)\right) \quad\left(E ; \text { Borel set of } G_{2}\right)
$$

then $\pi(\mu)$ is an element of $M\left(G_{2}\right)$, and from the above discussion we see that $\pi(\mu)$ has the same norm as μ, and hence

$$
\pi: \quad M\left(G_{1}\right) \ni \mu \longmapsto \pi(\mu) \in M\left(G_{2}\right)
$$

is a norm-preserving isomorphism, and this completes the proof of (i).
(ii) Necessity is clear from the definition of the mapping π. Suppose that K is a σ-compact set in G_{1} such that $\nu \in M\left(G_{2}\right)$ is concentrated in $\eta(K)$. We can assume without loss of generality that K is open in G_{1}. By the paragraph in (i), $\eta(E \cap K)$ is a Borel set in G_{2} for each Borel set E of G_{1-}

We put

$$
\nu_{1}(E)=\nu(\eta(E \cap K)) \quad\left(E ; \text { Borel set in } G_{1}\right) .
$$

Then ν_{1} is a bounded complex Borel measure on G_{1}.
To show the regularity of ν_{1}, we remark here that the total variation of ν_{1} is associated to the total variation of ν, that is $\left|\nu_{1}\right|(E)=|\nu|(\eta(E \cap K))$ holds for each Borel set E in G_{1}, and thus we can assume without loss of generality that ν is a positive measure.

Let $Q_{i}(i=1,2, \cdots)$ be a sequence of compact subsets of K such that $Q_{1} \subset Q_{2} \subset Q_{3} \subset \cdots$, and $\bigcup_{i=1}^{\infty} Q_{i}=K$. Given $\varepsilon>0$ and a Borel set E in G_{1}, which is contained in K, choose a compact subset F of $\eta(E)$ such that $\nu(\eta(E)-F)$ $\leqq \varepsilon / 2$, and choose a positive integer n such that $\nu_{1}\left(\eta^{-1}(F)\right)-\varepsilon / 2 \leqq \nu_{1}\left(\eta^{-1}(F) \cap Q_{n}\right)$, and then we have

$$
\begin{aligned}
\nu_{1}\left(\eta^{-1}(F) \cap Q_{n}\right) & \geqq \nu_{1}\left(\eta^{-1}(F)\right)-\varepsilon / 2 \\
& =\nu(F)-\varepsilon / 2 \\
& =\nu(\eta(E))-\nu(\eta(E)-F)-\varepsilon / 2 \\
& \geqq \nu(\eta(E))-\varepsilon \\
& =\nu_{1}(E)-\varepsilon .
\end{aligned}
$$

Since the restriction of η to Q_{i} is a homeomorphism for each $i(i=1,2,3, \cdots)$, $\eta^{-1}(F) \cap Q_{n}$ is a compact subset of E, and hence ν_{1} is inner regular. Since ν_{1} is bounded, ν_{1} is also outer regular and this shows that ν_{1} is an element of $M\left(G_{1}\right)$ and $\nu=\pi\left(\nu_{1}\right) \in \pi\left(M\left(G_{1}\right)\right)$.

Definition 2.1. Let G^{τ} and $G^{z^{\prime}}$ be two $L C A$ groups with the same underlying group G and $\tau \subseteq \tau^{\prime}$. By Proposition 2.1 we can define the norm-preserving isomorphism π of $M\left(G^{\tau^{\prime}}\right)$ into $M\left(G^{\tau}\right)$. We identify $L^{1}\left(G^{\tau^{\prime}}\right)$ and $M\left(G^{\tau^{\prime}}\right)$ with subalgebras of $M\left(G^{r}\right)$ through π, respectively.

Definition 2.2. If λ and μ are elements of $M\left(G^{*}\right)$, we say that λ and μ are orthogonal each other (notation $\lambda \perp \mu$) if there exist two disjoint Borel sets A and B in G^{τ} such that λ is concentrated in A and μ is concentrated in B. If Λ and Λ^{\prime} are subsets of $M\left(G^{\tau}\right)$, we say that Λ and Λ^{\prime} are orthogonal each other if $\lambda \perp \mu$ for each pair (λ, μ), where $\lambda \in \Lambda, \mu \in \Lambda^{\prime}$.

Proposition 2.2. Let G^{τ} and $G^{\tau^{\prime}}$ be two LCA groups with the same underlying group G with $\tau \cong \tau^{\prime}$, and let η be the natural continuous isomorphism of $G^{\tau^{\prime}}$ onto G^{τ}. If μ is an element of $M\left(G^{\tau}\right)$, following a), b) and c) are equivalent each other.
a) $\mu \perp M\left(G^{\tau^{\prime}}\right)$,
b) $\mu=\mu_{1}+\mu_{2}, \mu_{1} \in M\left(G^{z^{\prime}}\right)$ and $\mu_{1} \perp \mu_{2}$ implies $\mu_{1}=0$,
c) $|\mu|(\eta(K))=0$ for every compact set K in $G^{z^{\prime}}$, where $|\mu|$ is the total variation of μ.

Proof. a) implies b); Suppose a), and if $\mu=\mu_{1}+\mu_{2}, \mu_{1} \perp \mu_{2}$ and $0 \neq \mu_{\mathrm{s}}$ $\in M\left(G^{r^{\prime}}\right)$, then μ and μ_{1} are not orthogonal each other and this contradicts a).
b) implies c); Suppose b), and if there exists a compact set K in $G^{r^{\prime}}$ with $|\mu|(\eta(K)) \neq 0$, we set μ_{1} the restriction of μ to $\eta(K)$, that is

$$
\mu_{1}(E)=\mu(\eta(K) \cap E) \quad\left(E ; \text { Borel set of } G^{\tau}\right)
$$

then we have $\mu_{1} \in M\left(G^{\tau^{\prime}}\right)$ by Proposition 2.1 (ii), and that $\mu=\left(\mu-\mu_{1}\right)+\mu_{1}$, $\mu_{1} \neq 0$ and $\mu_{1} \perp\left(\mu-\mu_{1}\right)$, contradicting b).
c) implies a); Soppose c), and let λ be an element of $M\left(G^{r^{\prime}}\right)$. There exists a σ-compact subset E of $G^{\tau^{\prime}}$ such that λ is concentrated in $\eta(E)$. Then by c), $|\mu|(\eta(E))=0$ and this implies $\mu \perp \lambda$. Since λ was an arbitrary element of $M\left(G^{\tau^{\prime}}\right)$, we have $\mu \perp M\left(G^{\tau^{\prime}}\right)$.

Definition 2.3. Let G^{τ} be an $L C A$ group. We denote by $\mathfrak{T}\left(G^{\tau}\right)$ the class of all locally compact group topologies of G, which are equal or stronger than τ.

LEMMA 2.3. Let G^{τ} be an LCA group and let $\mathfrak{T}\left(G^{\tau}\right) \ni \tau_{1}$, τ_{2} with $\tau_{2} \cong \tau_{1}$. If $\eta_{\tau_{1}}^{\tau_{2}}$ is the natural continuous isomorphism of $G^{\tau_{1}}$ onto $G^{\tau_{2}}$, then $r \circ \eta_{\tau_{1}}^{\tau_{2}}\left(r \in \Gamma_{\tau_{2}}\right)$ is an element of $\Gamma_{\tau_{1}}$, which we denote by $\varphi_{\tau_{1}^{2}}^{\tau_{2}^{2}}(r)$. $\varphi_{\tau_{1}}^{\tau_{2}}$ is a continuous isomorphism. of $\Gamma_{\tau_{2}}$ onto a dense subgroup of $\Gamma_{\tau_{1}}$.

Proof. It is clear that $\varphi_{\tau_{1}}^{\tau_{2}}$ is an isomorphism of $\Gamma_{\tau_{2}}$ into $\Gamma_{\tau_{1}}$. Let W be a neighbourhood of 0 in $\Gamma_{\tau_{1}}$. There exists a compact subset K of $G^{\tau_{1}}$ and $\varepsilon>0$ such that $N(K, \varepsilon)=\left\{r \in \Gamma_{\tau_{1}} ;|(x, r)-1|<\varepsilon, x \in K\right\} \cong W$. Since $\eta_{\tau_{1}}^{\tau_{2}}(K)$ is also compact in $G^{\tau_{2}}, V=N\left(\eta_{\tau_{1}}^{\tau_{2}}(K), \varepsilon\right)$ is a neighbourhood of 0 in $\Gamma_{\tau_{2}}$ and that $\varphi_{\tau_{1}}^{\tau_{2}}(V) \cong W$. This shows that $\varphi_{\tau_{1}^{2}}^{\tau_{2}^{2}}$ is continuous.

Suppose that $\overline{\varphi_{\tau_{1}}^{\tau_{2}}\left(\Gamma_{\tau_{2}}\right)}=H \subsetneq \Gamma_{\tau_{1}} . \quad \Gamma_{\tau_{1}} / H$ is a non-trivial $L C A$ group and there exists a continuous homomorphism $\bar{\beta} \neq 0$ of $\Gamma_{\tau_{1}} / H$ into $T . \bar{\beta}$ induces a non-trivial continuous homomorphism β of $\Gamma_{r_{1}}$ into T such that

$$
\beta(r)=\bar{\beta}(\bar{r}) \quad\left(r \in \Gamma_{\tau_{1}}\right),
$$

where \bar{r} is a coset of H which contains r. There exists $0 \neq x \in G^{\tau_{1}}$ such that

$$
\beta(r)=(x, \gamma) \quad\left(r \in \Gamma_{\tau_{1}}\right),
$$

and hence we have

$$
\begin{equation*}
1=\beta\left(\varphi_{\tau_{1}}^{\tau_{2}}(r)\right)=\left(x, \varphi_{\tau_{1}}^{\tau_{2}}(r)\right)=\left(\eta_{\tau_{1}}^{\tau_{2}}(x), r\right) \quad\left(r \in \Gamma_{\tau_{2}}\right) \tag{2.1}
\end{equation*}
$$

From (2.1) we have $\eta_{\tau_{1}}^{\tau_{2}}(x)=0$ and this is a contradiction. This proves that: $\overline{\varphi_{\tau_{1}}^{\tau_{2}}\left(\Gamma_{\tau_{2}}\right)}=H=\Gamma_{\tau_{1}}$ and thus $\varphi_{\tau_{1}}^{\tau_{2}}\left(\Gamma_{\tau_{2}}\right)$ is a dense subgroup of $\Gamma_{\tau_{1}}$.

Definition 2.4. Let G^{τ} be an $L C A$ group and let $\mathfrak{T}\left(G^{r}\right) \ni \tau_{1}, \tau_{2}$ with $\tau_{1} \supseteq \tau_{2}$, and let $\eta_{\tau_{1}}^{\tau_{2}}$ be the natural continuous isomorphism of $G^{\tau_{1}}$ onto $G^{\tau_{2}}$. By the Lemma 2.3 we define the natural continuous isomorphism $\varphi_{\tau_{1}}^{\tau_{2}}$ of $\Gamma_{\tau_{2}}$ onto a dense subgroup of $\Gamma_{\tau_{1}}$ such that

$$
\left(\eta_{\tau_{1}}^{\tau_{2}^{2}}(x), r\right)=\left(x, \varphi_{\tau_{1}}^{\tau_{2}}(r)\right) \quad\left(x \in G^{\tau_{1}}, r \in \Gamma_{\tau_{2}}\right) .
$$

Theorem 2.4. Suppose G^{τ} is an LCA group and $\mathfrak{I}\left(G^{\tau}\right) \ni \tau_{1}, \tau_{2}$. If $L^{1}\left(G^{\tau_{1}}\right)$ $\cap L^{1}\left(G^{\tau_{2}}\right) \neq\{0\}$, then we have $L^{1}\left(G^{\tau_{1}}\right)=L^{1}\left(G^{\tau_{2}}\right)$.

Proof. Put $L^{1}\left(G^{\tau_{1}}\right) \cap L^{1}\left(G^{\tau_{2}}\right)=I \neq 0$. Since $L^{1}\left(G^{\tau_{1}}\right)$ and $L^{1}\left(G^{\tau_{2}}\right)$ are translation invariant closed subspaces of $M\left(G^{r}\right), I$ is also a translation invariant closed subspace of $M\left(G^{\tau}\right)$, and hence of $L^{1}\left(G^{\tau_{i}}\right)(i=1,2)$. Therefore I is a closed ideal of $L^{1}\left(G^{\tau_{i}}\right)(i=1,2)$. Set $Z(I)=\left\{r \in \Gamma_{\tau_{1}}: \hat{f}(r)=0, f \in I\right\}$, where \hat{f} denotes the Fourier transform of f. If $r \in \Gamma_{\tau}$, we have $L^{1}\left(G^{\tau_{i}}\right) \varphi_{\tau_{i}}^{\tau}(r) \subseteq L^{1}\left(G^{\tau_{i}}\right)$ ($i=1,2$), and hence $I \varphi_{t_{i}}^{\tau}(r)=I$. This implies that

$$
Z(I)+\varphi_{\tau_{1}}^{\tau}(r)=Z(I) \quad\left(r \in \Gamma_{\tau}\right) .
$$

Since $\varphi_{\tau_{1}}^{\tau}\left(\Gamma_{\tau}\right)$ is dense in $\Gamma_{\tau_{1}}, Z(I)$ is either ϕ or $\Gamma_{\tau_{1}}$, and since $I \neq 0$ we conclude that $Z(I)=\phi$. By the general Tauberian theorem, we get $I=L^{1}\left(G^{\tau_{1}}\right)$. In the same way we have $I=L^{1}\left(G^{\tau_{2}}\right)$ and this completes the proof.

Theorem 2.5. Let G^{τ} be an LCA group and $\mathfrak{I}\left(G^{\tau}\right) \ni \tau_{1}, \tau_{2}$. If $M\left(G^{\tau_{1}}\right)$ $\supseteqq L^{1}\left(G^{\tau_{2}}\right)$, then we have $\tau_{1} \cong \tau_{2}$.

Proof. Let η be the natural isomorphism from $G^{\tau_{2}}$ onto $G^{\tau_{1}}$. We shall prove that η is continuous, and this will complete the proof.

Let $r \in \Gamma_{\tau_{1}}$, and there exists a unique $\varphi(r) \in \Gamma_{\tau_{2}}$ such that

$$
\int_{G^{\tau_{2}}} \varphi(r)(-x) d \mu(x)=\int_{G^{\tau_{1}}} r(-x) d \mu(x) \quad\left(\mu \in L^{1}\left(G^{\tau_{2}}\right)\right) .
$$

We shall show that φ is continuous, and that r and $\varphi(r)$ induce the same function on the underlying group G. If these are proved, we can easily show that η is continuous. Thus for each neighbourhood $N(K, \varepsilon)=\left\{x \in G^{\tau_{1}}\right.$: $|(x, r)-1|<\varepsilon, r \in K\}$ of 0 in $G^{\tau_{1}}$, where K is a compact subset of $\Gamma_{\tau_{1}}$ and $\varepsilon>0, \varphi(K)$ is a compact set in $\Gamma_{\tau_{2}}$, and $\eta(N(\varphi(K), \varepsilon))=N(K, \varepsilon)$, and hence η is continuous.

Let $\mu \in L^{1}\left(G^{t_{2}}\right)$ and let $\hat{\mu}_{(1)}$ and $\hat{\mu}_{(2)}$ be the Fourier-Stieltjes transform of μ into $\Gamma_{\tau_{1}}$, and the Fourier transform of μ into $\Gamma_{\tau_{2}}$, respectively. Thus we have the relation

$$
\hat{\mu}_{(2)}(\varphi(r))=\hat{\mu}_{(1)}(r) \quad\left(r \in \Gamma_{\tau_{1}}\right) .
$$

If U is an open set in C, then $\hat{\mu}_{(1)}^{-1}(U)=\varphi^{-1}\left(\hat{\mu}_{(2)}^{-1}(U)\right)$ is an open set in $\Gamma_{\tau_{1}}$. Since $\hat{\mu}_{(2)}^{-1}(U)$ is open and the topology of $\Gamma_{\tau_{2}}$ is the weakest one such that each $\hat{\mu}_{(2)}$ is continuous, we conclude that φ is continuous.

If $r \in \varphi_{\tau_{1}}^{\tau}\left(\Gamma_{\tau}\right)$, it is clear that r and $\varphi(r)$ induce the same function on G. For $r_{0} \in \Gamma_{\tau_{1}}$ and $x \in G^{\tau_{2}}$, let $N(K, \varepsilon)+\varphi\left(r_{0}\right)$ be a neighbourhood of $\varphi\left(r_{0}\right)$, where $\varepsilon>0$ and K is a compact set in $G^{\tau 2}$, which contains x. Since φ is continuous, there exist a compact set K^{\prime} in $G^{\tau_{1}}$ and $\varepsilon^{\prime}>0$ such that $\varphi\left(N\left(K^{\prime} \cup \eta(x), \varepsilon^{\prime}\right)+r_{0}\right)$ $\cong N(K, \varepsilon)+\varphi\left(r_{0}\right)$. Since $\varphi_{\tau_{1}}^{\tau}\left(\Gamma_{\tau}\right)$ is dense in $\Gamma_{\tau_{1}}$, we can choose an element r_{1} in $\left(N\left(K^{\prime} \cup \eta(x), \varepsilon^{\prime}\right)+r_{0}\right) \cap \varphi_{\tau_{1}}^{\tau}\left(\Gamma_{\tau}\right)$, and we have

$$
\begin{align*}
& \left|\left(\eta(x), r_{1}\right)-\left(\eta(x), r_{0}\right)\right|<\varepsilon^{\prime} \\
& \left|\left(x, \varphi\left(r_{1}\right)\right)-\left(x, \varphi\left(r_{0}\right)\right)\right|<\varepsilon . \tag{2.2}
\end{align*}
$$

The fact that $r_{1} \in \varphi_{\tau_{1}}^{\tau}\left(\Gamma_{\tau}\right)$ gives

$$
\begin{equation*}
\left(\eta(x), r_{1}\right)=\left(x, \varphi\left(r_{1}\right)\right) . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we get

$$
\begin{aligned}
& \left|\left(\eta(x), r_{0}\right)-\left(x, \varphi\left(r_{0}\right)\right)\right| \\
& \quad \leqq\left|\left(\eta(x), r_{0}\right)-\left(\eta(x), r_{1}\right)\right|+\left|\left(x, \varphi\left(r_{1}\right)\right)-\left(x, \varphi\left(r_{0}\right)\right)\right| \\
& \quad \leqq \varepsilon+\varepsilon^{\prime} .
\end{aligned}
$$

Since we can take ε and ε^{\prime} arbitrary, we have

$$
\left(\eta(x), r_{0}\right)=\left(x, \varphi\left(r_{0}\right)\right) \quad\left(x \in G^{\tau_{2}}\right),
$$

and hence r_{0} and $\varphi\left(r_{0}\right)$ induce the same function on G. This completes the proof of the theorem.

Corollary 2.6. If $\mathfrak{I}\left(G^{\tau}\right) \ni \tau_{1}, \tau_{2}$ and $L^{1}\left(G^{\tau_{1}}\right)=L^{1}\left(G^{\tau_{2}}\right)$, then we have $\tau_{1}=\tau_{2}$.
Corollary 2.7. If $\tau_{1}, \tau_{2} \in \mathscr{T}\left(G^{\tau}\right)$ and $\tau_{1} \neq \tau_{2}$, then we have $L^{1}\left(G^{\tau_{1}}\right) \perp L^{1}\left(G^{\tau_{2}}\right)$.
Proof. Suppose that $L^{1}\left(G^{\tau_{1}}\right)$ and $L^{1}\left(G^{\tau_{2}}\right)$ are not orthogonal each other, and choose $\mu \in L^{1}\left(G^{\tau_{1}}\right)$ and $\nu \in L^{1}\left(G^{\tau_{2}}\right)$ such that μ is not orthogonal to ν. By Proposition 2.1 there exists a σ-compact set K in $G^{\tau_{1}}$ such that μ is concentrated in $\eta_{\tau_{1}}^{\tau}(K)$. If ν_{1} is the restriction of ν to $\eta_{\tau_{1}}^{\tau}(K)$, then we have $0 \neq \nu_{1} \in M\left(G^{r_{1}}\right)$. Let $\nu_{1}=\nu_{1}^{\prime}+\nu_{1}^{\prime \prime}$ be the Lebesgue decomposition of ν_{1} such that $\nu_{1}^{\prime} \ll \mu, \nu_{1}^{\prime \prime} \perp \mu$. Then $\nu_{1}^{\prime} \neq 0$ and $\nu_{1}^{\prime} \in L^{1}\left(G^{\tau_{1}}\right) \cap L^{1}\left(G^{\tau_{2}}\right)$, that is $L^{1}\left(G^{\tau_{1}}\right) \cap L^{1}\left(G^{\tau_{2}}\right) \neq 0$. From Theorem 2.4 we have $L^{1}\left(G^{\tau_{1}}\right)=L^{1}\left(G^{\tau_{2}}\right)$, and from Corollary 2.6 we have $\tau_{1}=\tau_{2}$, and this is a contradiction.

Theorem 2.8. If $\tau_{1}, \tau_{2} \in \mathfrak{T}\left(G^{r}\right)$, then there exists a unique $\tau_{3} \in \mathfrak{Z}\left(G^{r}\right)$ such that $L^{1}\left(G^{\tau_{1}}\right) * L^{1}\left(G^{\tau_{2}}\right) \subseteq L^{1}\left(G^{\tau_{3}}\right)$. Moreover τ_{3} enjoys the additional property such that $\tau_{3} \cong \tau_{1}, \tau_{2}$, and if $\tau_{0} \in \mathscr{T}\left(G^{\tau}\right)$ with $\tau_{0} \subseteq \tau_{1}, \tau_{2}$, then $\tau_{0} \cong \tau_{3}$.

To prove the theorem we provide the following lemma. R^{n} denotes the n-dimensional Euclidean space, and Z denotes the discrete group of all rational integers.

Lemma 2.9. Let $H_{1}=R^{p} \times K_{1}, H_{2}=R^{q} \times K_{2}$ and $H=H_{1} \times H_{2} / K$ be LCA groups, where p and q are non-negative integers, K_{1} and K_{2} are compact groups, and K is a closed subgroup of $H_{1} \times H_{2} . \quad B_{0}$ denotes the ring of all the bounded Borel sets of H, and f denotes the natural homomorphism of $H_{1} \times H_{2}$ onto H.
(i) If φ denotes the projection of $H_{1} \times H_{2}$ onto $R^{p} \times R^{q}$, then $\varphi(K)$ is a closed subgroup of $R^{p} \times R^{q}$, and hence there exists a basis $\left\{u_{1}, \cdots, u_{n_{1}}, \cdots, u_{n_{2}}, \cdots, u_{p+q}\right\}$ of the vector space $R^{p} \times R^{q}$ over R such that $\varphi(K)=\sum_{i=1}^{n_{1}} R u_{i}+\sum_{j=n_{1}+1}^{n_{2}} Z u_{j}$.
(ii) Put $V^{(r)}=\left\{x \in H_{1} \times H_{2}: \varphi(x)=\sum_{i=1}^{p+q} \alpha_{i} u_{i}, 0 \leqq \alpha_{i}<1\left(i=1,2, \cdots, n_{2}\right),\left|\alpha_{i}\right|<r\right.$
($\left.\left.i=n_{2}+1, \cdots, p+q\right)\right\}$, for each positive number r. If E is an element of B_{0}, and if r and r^{\prime} are positive numbers such that $f\left(V^{(r)}\right) \supseteqq E, f\left(V^{\left(r^{\prime}\right)}\right) \supseteqq E$, then

$$
f^{-1}(E) \cap V^{(r)}=f^{-1}(E) \cap V^{\left(r^{\prime}\right)}
$$

(iii) For each $E \in B_{0}$, choose a positive number r such that $f\left(V^{(r)}\right) \supseteqq E$, and put

$$
m^{*}(E)=m\left(f^{-1}(E) \cap V^{(r)}\right)
$$

Then m^{*} is well defined by (ii), and m^{*} is a non-negative finite translation invariant measure on B_{0}.
(iv) We can extend m^{*} to a Borel measure \bar{m}^{*} of H in a unique way, and \bar{m}^{*} is the Haar measure of H.

Proof. (i) Since the latter of (i) is well known, we only prove that $\varphi(K)$ is closed. Suppose x is an element of $\overline{\varphi(K)}-\varphi(K)$. We can choose a sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ of elements in K such that $\lim _{i \rightarrow \infty} \varphi\left(x_{i}\right)=x$. Let ψ be the projection of $H_{1} \times H_{2}$ onto $K_{1} \times K_{2}$. Then we have either $\left\{\psi\left(x_{i}\right): i=1,2, \cdots\right\}$ is a finite set, or $\left\{\psi\left(x_{i}\right): i=1,2, \cdots\right\}$ has accumulating points in $K_{1} \times K_{2}$. In either cases $\left\{x_{i}\right\}=\left\{\varphi\left(x_{i}\right)+\psi\left(x_{i}\right)\right\}$ has an accumulating point z in $H_{1} \times H_{2}$, and since K is closed, z belongs to K. Thus we have $x=\varphi(z) \in \varphi(K)$. This is a contradiction and hence we have $\overline{\varphi(K)}=\varphi(K)$.
(ii) Suppose $r^{\prime} \geqq r$ and x is an element of $f^{-1}(E) \cap V^{\left(r^{\prime}\right)}$. Then $f(x)$ belongs to E, and since $f\left(V^{(r)}\right) \supseteq E$ there exists an element y of $V^{(r)}$ such that $f(x)$ $=f(y)$. We have $x-y \in K$ and so $\varphi(x)$ and $\varphi(y)$ differ only on $u_{1}, \cdots, u_{n_{2}}$ components, therefore $x \in V^{(r)}$. This shows that $f^{-1}(E) \cap V^{\left(r^{\prime}\right)}=f^{-1}(E) \cap V^{(r)}$.
(iii) That m^{*} is a non-negative finite measure is clear, and we only prove that m^{*} is translation invariant. Let $E \in B_{0}$, and let r be a positive number such that $f\left(V^{(r)}\right) \supseteq E, E+\bar{x}$, where $\bar{x} \in H$. If we choose an element x in $f^{-1}(\bar{x})$, we have $\left(f^{-1}(E)+x\right) \cap V^{(r)}=f^{-1}(E+\bar{x}) \cap V^{(r)}$, and hence

$$
\begin{aligned}
m^{*}(E) & =m\left(f^{-1}(E) \cap V^{(r)}\right)=m\left(\left(f^{-1}(E)+x\right) \cap V^{(r)}\right) \\
& =m\left(f^{-1}(E+\bar{x}) \cap V^{(r)}\right)=m^{*}(E+\bar{x}) .
\end{aligned}
$$

(iv) Since m^{*} is a finite non-negative translation invariant measure on B_{0}, we can extend m^{*} uniquely to a σ-finite translation invariant measure \bar{m}^{*} on $S\left(B_{0}\right)$, the σ-ring generated by B_{0}. Since H is σ-compact, $S\left(B_{0}\right)$ is the class of all the Borel sets in H, and hence \bar{m}^{*} is a Borel measure on H.

To prove that \bar{m}^{*} is the Haar measure of H, we have only to prove that \bar{m}^{*} is regular in the sense:
(a) For every open set U in H, we have

$$
\bar{m}^{*}(U)=\sup \left\{\bar{m}^{*}(F): F \text { is compact and } F \cong U\right\}
$$

(b) For each Borel set A in H, we have

$$
\bar{m}^{*}(A)=\inf \left\{\bar{m}^{*}(U): U \text { is open and } U \supseteqq A\right\}
$$

Suppose first that E is a bounded Borel set in H, r is a positive number such that $f\left(V^{(r)}\right) \supseteqq E$, and $\varepsilon>0$. There exists a compact subset F of $f^{-1}(E) \cap V^{(r)}$ such that

$$
m\left(f^{-1}(E) \cap V^{(r)}\right) \leqq m(F)+\varepsilon .
$$

Then $f(F)$ is a compact subset of H and $\bar{m}^{*}(f(F))+\varepsilon \geqq \bar{m}^{*}(E)$. Since H is σ-compact, this proves (a) for every open set in H. Next choose a bounded open set W which contains E, and by what we have proved in (a) there exists a compact set $F_{1} \cong W-E$ such that $\bar{m}^{*}\left(F_{1}\right)+\varepsilon \geqq \bar{m}^{*}(W-E)=\bar{m}^{*}(W)-\bar{m}^{*}(E)$, and so we have $\bar{m}^{*}(E)+\varepsilon \geqq \bar{m}^{*}\left(W-F_{1}\right)$, and again this proves (b) for every Borel set E in H.

Proof of Theorem 2.8. Let H_{i} be an open subgroup of $G^{r^{i}}(i=1,2)$ such that

$$
H_{1} \cong R^{p} \times K_{1}, \quad H_{2} \cong R^{q} \times K_{2},
$$

where K_{1} and K_{2} are compact groups. We identify H_{1} and H_{2} with $R^{p} \times K_{1}$ and $R^{q} \times K_{2}$, respectively. Let f be a continuous homomorphism of $H_{1} \times H_{2}$ into G^{τ},

$$
f ; \quad H_{1} \times H_{2} \ni(x, y) \longmapsto x+y \in G^{\tau} .
$$

We can introduce in $H=H_{1}+H_{2}=f\left(H_{1} \times H_{2}\right)$ a locally compact group topology τ_{3}^{\prime} in H such that f becomes an open continuous map of $H_{1} \times H_{2}$ onto $H^{\tau^{\prime} s}$. This topology τ_{3}^{\prime} in H can be extended uniquely to a locally compact group topology τ_{3} in G such that H is open in $G^{\tau_{3}}$ and $\left.\tau_{3}\right|_{H}=\tau_{3}^{\prime}$. We shall show that if $\lambda \in L^{1}\left(G^{\tau_{1}}\right), \mu \in L^{1}\left(G^{\tau_{2}}\right)$, then $\lambda * \mu \in L^{1}\left(G^{\tau_{3}}\right)$ and this will complete the proof.

First suppose that λ is concentrated in H_{1} and μ is concentrated in H_{2}. Then $\lambda * \mu$ is concentrated in H. Since $\tau_{3} \subseteq \tau_{1}, \tau_{2}$, and by Proposition 2.1 we have $L^{1}\left(G^{\tau_{1}}\right) * L^{1}\left(G^{\tau_{2}}\right) \subseteq M\left(G^{\tau_{3}}\right)$. Thus we have only to show that $\lambda * \mu$ is absolutely continuous with respect to the Haar measure of $G^{\tau_{3}}$. We remark here that the Haar measure of $H^{\tau^{\prime} s}$ is obtained by restricting the Haar measure of $G^{\tau_{3}}$ to H. The same relation also holds between $G^{\tau_{i}}$ and $H_{i}(i=1,2)$. We apply the preceding lemma for the present H_{1}, H_{2} and the closed subgroup $K=\left\{(x, y) \in H_{1} \times H_{2}: x+y=0\right\}$ of $H_{1} \times H_{2}$ and introduce the Haar measure \bar{m}^{*} on $H_{1} \times H_{2} / K \cong H^{\tau^{\prime}}$. We extend \bar{m}^{*} to the Haar measure of $G^{\tau_{3}}$ and we also represent it by \bar{m}^{*}.

To prove that $\lambda * \mu$ is absolutely continuous with respect to \bar{m}^{*}, suppose first that E is a bounded Borel set in $H^{\tau^{\prime} 3}$ with $\bar{m}^{*}(E)=0$. We can suppose without loss of generality that $\lambda \geqq 0$ and $\mu \geqq 0$. For each $\varepsilon>0$, there exist a compact set C_{i} in $H_{i}(i=1,2), \lambda^{\prime} \in L^{1}\left(G^{\tau_{1}}\right), \mu^{\prime} \in L^{1}\left(G^{\tau_{2}}\right)$, and $d>0$, such that

$$
\left\{\begin{array}{l}
\left.d m_{1}\right|_{c_{1}} \geqq \lambda^{\prime} \geqq 0 \\
\left.d m_{2}\right|_{c_{2}} \geqq \mu^{\prime} \geqq 0 \\
\left\|\lambda * \mu-\lambda^{\prime} * \mu^{\prime}\right\|<\varepsilon,
\end{array}\right.
$$

where m_{i} denotes the Haar measure of $H_{i}(i=1,2)$, and $\left.d m_{i}\right|_{c_{i}}(\mathrm{i}=1,2)$ denotes the restriction of $d m_{i}$ to C_{i}. Choose a positive number r such that $f\left(V^{(r)}\right) \supseteqq E$, and a finite number of elements $x_{1}, x_{2}, \cdots, x_{t} \in H_{1} \times H_{2}$ such that $\bigcup_{i=1}^{t}\left(V^{(r)}+x_{i}\right) \supseteqq C_{1} \times C_{2}$. Then

$$
\begin{aligned}
\lambda * \mu(E) & \leqq \lambda^{\prime} * \mu^{\prime}(E)+\varepsilon \\
& \leqq\left(\left.d m_{1}\right|_{C_{1}}\right) *\left(\left.d m_{2}\right|_{C_{2}}\right)(E)+\varepsilon \\
& =d^{2}\left(\left.m_{1}\right|_{C_{1}}\right) \times\left(\left.m_{2}\right|_{C_{2}}\right)\left(E_{(2)}\right)+\varepsilon \\
& =d^{2}\left(m_{1} \times m_{2}\right)\left(f^{-1}(E) \cap C_{1} \times C_{2}\right)+\varepsilon \\
& \leqq d^{2} \sum_{i=1}^{t}\left(m_{1} \times m_{2}\right)\left(f^{-1}(E) \cap\left(V^{(r)}+x_{i}\right)\right)+\varepsilon \\
& =d^{2} \sum_{i=1}^{t}\left(m_{1} \times m_{2}\right)\left(f^{-1}\left(E-f\left(x_{i}\right)\right) \cap V^{(r)}\right)+\varepsilon \\
& \leqq d^{2} \sum_{i=1}^{t} \bar{m}^{*}\left(E-f\left(x_{i}\right)\right)+\varepsilon \\
& =\varepsilon,
\end{aligned}
$$

where we put $E_{(2)}=\left\{(x, y) \in G^{\tau_{3}} \times G^{\tau_{3}}: x+y \in E\right\}$. Since $\varepsilon>0$ was arbitrary, we have $\lambda * \mu(E)=0$. If $\bar{m}^{*}(E)=0$ for a Borel set in $G^{\tau_{3}}$, then E is a union of a subset of $G^{\tau_{3}}-H$ and a countably many bounded Borel sets in $H^{\tau^{\prime}}$, and so $\lambda * \mu(E)=0$.

Next let us consider the general case. Since λ and μ are regular, they are concentrated in at most countably many cosets of H_{1} and H_{2}, respectively. Thus we may assume without loss of generality that λ is concentrated in $H_{1}+x$, and μ is concentrated in $H_{2}+y$, where $x \in G^{\tau_{1}}$, and $y \in G^{\tau_{2}}$. Let $\lambda-x$ and $\mu-y$ be the translations of λ and μ by x and y respectively, that is $(\lambda-x)(E-x)=\lambda(E)$, etc. Then we have

$$
\begin{equation*}
\lambda * \mu(E)=((\lambda-x) *(\mu-y))(E-x-y) \tag{2.4}
\end{equation*}
$$

and if $\bar{m}^{*}(E)=0$, the right side of (2.4) is 0 by the above result, and hence $\lambda * \mu \in L^{1}\left(G^{\tau_{3}}\right)$. The uniqueness of τ_{3} follows from Corollary 2.7.

Now let us prove the remainder of the assertions of the theorem and complete the proof.

Suppose that $\tau_{0} \in \mathfrak{I}\left(G^{\tau}\right)$ and $\tau_{0} \subseteq \tau_{1}, \tau_{2}$. Then we have $M\left(G^{\tau_{0}}\right) \supset L^{1}\left(G^{\tau_{1}}\right)$, $L^{1}\left(G^{\tau_{2}}\right)$, and hence $M\left(G^{\tau_{0}}\right) \supset L^{1}\left(G^{\tau_{1}}\right) * L^{1}\left(G^{\tau_{2}}\right)$. Let \mathfrak{A} be the closed subspace generated by $\left\{\lambda * \mu: \lambda \in L^{1}\left(G^{\tau_{1}}\right), \mu \in L^{1}\left(G^{\tau_{2}}\right)\right\}$. \mathfrak{H} is a translation invariant
subspace and hence an ideal of $L^{1}\left(G^{\tau_{8}}\right)$. It is easy to see that $Z(\mathfrak{\Re})=\left\{r \in \Gamma_{\tau_{3}}\right.$: $\hat{\nu}(r)=0, \nu \in \mathfrak{A}\}=\phi$, and from the general Tauberian theorem we have $\mathfrak{A}=$ $L^{1}\left(G^{\tau_{s}}\right)$, and so $L^{1}\left(G^{\tau 8}\right) \subset M\left(G^{\tau_{0}}\right)$. From Theorem 2.5 we get $\tau_{s} \supset \tau_{0}$ and this completes the proof of Theorem 2.8.

Definition 2.5. Let G^{τ} be an $L C A$ group. By Theorem $2.8 \sum_{\tau^{\prime} \in \mathfrak{x}\left(G^{\tau}\right)} L^{1}\left(G^{\tau^{\prime}}\right)$ is a subalgebra and hence $\sum_{\tau^{\prime} \in \mathfrak{Z}\left(G^{\tau}\right)} L^{1}\left(G^{\tau^{\prime}}\right)$ is a closed subalgebra of $M\left(G^{\tau}\right)$, which we denote by $L^{*}\left(G^{\tau}\right)$. $L^{*}\left(G^{\tau}\right)$ contains the identity of $M\left(G^{\tau}\right)$, and hence $L^{*}\left(G^{\tau}\right)$ properly contains $L^{1}\left(G^{r}\right)$ if G^{τ} is not discrete.

§ 3. The maximal ideal space of $L^{*}\left(G^{\tau}\right)$.

If μ is an element of $L^{*}\left(G^{\tau}\right)$, we denote by $\hat{\hat{\mu}}$ the Gelfand transform of μ.
Definition 3.1. Let G^{τ} be an $L C A$ group. We introduce a partial order \geqq in $\mathfrak{I}\left(G^{\tau}\right)$ such that, if $\tau_{1}, \tau_{2} \in \mathfrak{T}\left(G^{\tau}\right)$ then $\tau_{1} \geqq \tau_{2}$ if and only if $\tau_{1} \subset \tau_{2}$. $\mathfrak{I}\left(G^{\tau}\right)$ is a directed set under this binary relation \geqq, that is for each pair $\tau_{1}, \tau_{2} \in \mathfrak{T}\left(G^{\tau}\right)$, there exists $\tau_{3} \in \mathfrak{I}\left(G^{\tau}\right)$ such that $\tau_{3} \geqq \tau_{1}, \tau_{2}$ (cf. Theorem 2.8). A directed subset S of $\mathscr{I}\left(G^{r}\right)$ is a non-empty subset of $\mathscr{I}\left(G^{r}\right)$ such that; 1) S is itself a directed set under \geqq; 2) If $S \ni \tau_{1}, \mathscr{Z}\left(G^{\tau}\right) \ni \tau_{2}$ and $\tau_{1} \geqq \tau_{2}$, then we have $\tau_{2} \in S$.

Proposition 3.1. Let G^{r} be an LCA group and let h be a non-zero complex homomorphism of $L^{*}\left(G^{r}\right)$. Then

1) $S=\left\{\tau^{\prime} \in \mathfrak{T}\left(G^{\tau}\right):\left.h\right|_{L^{1}\left(G^{\tau}\right)} \neq 0\right\}$ is a directed subset of $\mathfrak{T}\left(G^{\tau}\right)$.
2) If $\tau_{1}, \tau_{2} \in S$ and $\tau_{1} \geqq \tau_{2}$, with

$$
\begin{array}{ll}
h(\lambda)=\int_{G^{\tau_{1}}} r_{\tau_{1}}(-x) d \lambda(x) & \left(\lambda \in L^{1}\left(G^{\tau_{1}}\right)\right), \\
h(\mu)=\int_{G^{\tau_{2}}} r_{\tau_{2}}(-x) d \mu(x) & \left(\mu \in L^{1}\left(G^{\tau_{2}}\right)\right),
\end{array}
$$

where $r_{\tau_{1}} \in \Gamma_{\tau_{1}}, r_{\tau_{2}} \in \Gamma_{\tau_{2}}$, then $\varphi_{\tau_{2} \tau_{1}}^{\tau_{1}}\left(r_{\tau_{1}}\right)=r_{\tau_{2}}$.
3) Conversely if S is a directed subset of $\mathscr{T}\left(G^{r}\right)$, and if $\left(r_{r^{\prime}}\right)_{\tau^{\prime} \in S}$ is an element of $\prod_{\tau^{\prime} \in S} \Gamma_{\tau^{\prime}}$ such that

$$
\varphi_{\tau_{2}}^{\tau_{1}}\left(r_{\tau_{1}}\right)=r_{\tau_{2}} \quad\left(\tau_{1}, \tau_{2} \in S \text { and } \tau_{1} \geqq \tau_{2}\right),
$$

then $\left(r_{\tau^{\prime}}\right)_{r^{\prime} \in S}$ induces a non-zero complex homomorphism h^{\prime} of $L^{*}\left(G^{\tau}\right)$ such that

Proof. 1) Since $h \neq 0$, it is clear that S is not empty. If $S \ni \tau_{1}, \tau_{2}$ then there exist $\lambda \in L^{1}\left(G^{\tau_{1}}\right)$ and $\mu \in L^{1}\left(G^{\tau_{2}}\right)$ such that $h(\lambda) \neq 0, h(\mu) \neq 0$, and hence $h(\lambda * \mu) \neq 0$. By Theorem 2.8 there exists $\tau_{s} \in \mathscr{T}\left(G^{\tau}\right)$ such that $\tau_{3} \geqq \tau_{1}, \tau_{2}$ and $\lambda * \mu \in L^{1}\left(G^{\tau_{3}}\right)$, and so $\tau_{3} \in S$.

If $\tau_{1} \in S, \tau_{2} \in \mathscr{T}\left(G^{\tau}\right)$ and $\tau_{1} \geqq \tau_{2}$, then there exist $r_{\tau_{1}} \in \Gamma_{\tau_{1}}$ and $\lambda_{1} \in L^{1}\left(G^{\tau_{1}}\right)$ such that

$$
\left\{\begin{array}{l}
h(\lambda)=\int_{G^{\tau_{1}}} r_{\tau_{1}}(-x) d \lambda(x) \quad\left(\lambda \in L^{1}\left(G^{\tau_{1}}\right)\right), \\
h\left(\lambda_{1}\right)=\int_{G^{\tau_{1}}} r_{\tau_{1}}(-x) d \lambda_{1}(x) \neq 0
\end{array}\right.
$$

Choose $\mu_{1} \in L^{1}\left(G^{\tau_{2}}\right)$ such that

$$
\int_{G^{\tau_{2}}} \varphi_{\tau_{2}^{1}}^{\tau_{1}}\left(r_{\tau_{1}}\right)(-x) d \mu_{1}(x) \neq 0 .
$$

Then we have

$$
\begin{align*}
h\left(\lambda_{1}\right) h\left(\mu_{1}\right) & =h\left(\lambda_{1} * \mu_{1}\right) \tag{3.2}\\
& =\int_{G^{\tau_{1}}} r_{\tau_{1}}(-x) d \lambda_{1} * \mu_{1}(x) \\
& =\int_{G^{\tau_{1}}} r_{\tau_{1}}(-x) d \lambda_{1}(x) \int_{G^{\tau_{1}}} r_{\tau_{1}}(-x) d \mu_{1}(x) \\
& =\int_{G^{\tau_{1}}} r_{\tau_{1}}(-x) d \lambda_{1}(x) \int_{G^{\tau_{2}}} \varphi_{\tau_{2}}^{\tau_{1}}\left(r_{\tau_{1}}\right)(-x) d \mu_{1}(x) \\
& \neq 0 .
\end{align*}
$$

Therefore we have $h\left(\mu_{1}\right) \neq 0$, and hence τ_{2} belongs to S.
2) If $\tau_{1}, \tau_{2} \in S$ and $\tau_{1} \geqq \tau_{2}$, then we have from (3.2)

$$
h\left(\mu_{1}\right)=\int_{G^{\tau_{2}}} \varphi_{\tau_{2} \tau_{1}}^{\tau_{1}}\left(r_{\tau_{1}}\right)(-x) d \mu_{1}(x) \quad\left(\mu_{1} \in L^{1}\left(G^{\tau_{2}}\right)\right)
$$

and hence we have $\varphi_{\tau_{2}}^{\tau_{1}}\left(r_{\tau_{1}}\right)=r_{\tau_{2}}$.
3) Since $L^{*}\left(G^{\tau}\right)=\underset{\tau^{\prime} \in \in\left(G^{\tau}\right)}{ } L^{1}\left(G^{\tau^{\tau}}\right)$, it is obvious from Corollary 2.7 that there exists a linear functional h^{\prime} such that (3.1) holds. We shall show that h^{\prime} is a complex homomorphism of $L^{*}\left(G^{\tau}\right)$.

Let $\tau_{1}, \tau_{2} \in \mathscr{T}\left(G^{\tau}\right)$, and let $\lambda \in L^{1}\left(G^{\tau_{1}}\right)$ and $\mu \in L^{1}\left(G^{\tau_{2}}\right)$. We have only to prove that $h^{\prime}(\lambda * \mu)=h^{\prime}(\lambda) h^{\prime}(\mu)$. By Theorem 2.8 there exists $\tau_{3} \in \mathfrak{I}\left(G^{\tau}\right)$ such that $\lambda * \mu \in L^{1}\left(G^{\tau_{3}}\right)$ and $\tau_{3} \geqq \tau_{1}, \tau_{2}$. If $\tau_{1} \in S$, then τ_{3} does not belong to S, and we have

$$
\begin{equation*}
h^{\prime}(\lambda * \mu)=h^{\prime}(\lambda) h^{\prime}(\mu)=0 . \tag{3.3}
\end{equation*}
$$

If $\tau_{2} \notin S$, we can prove the same relation as (3.3), If $\tau_{1} \in S$ and $\tau_{2} \in S$, then by Theorem $2.8 \tau_{s}$ belongs to S, and

$$
\begin{aligned}
h^{\prime}(\lambda * \mu) & =\int_{G^{\tau_{3}}} r_{\tau_{3}}(-x) d \lambda * \mu(x) \\
& =\int_{G^{\tau_{3}}} r_{\tau_{3}}(-x) d \lambda(x) \int_{G^{\tau_{3}}} r_{\tau_{8}}(-x) d \mu(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{G^{\tau_{1}}} r_{\tau_{1}}(-x) d \lambda(x) \int_{G^{\tau_{2}}} r_{\tau_{2}}(-x) d \mu(x) \\
& =h^{\prime}(\lambda) h^{\prime}(\mu),
\end{aligned}
$$

and this completes the proof.
Definition 3.2. If S is a directed subset of $\mathfrak{T}\left(G^{\tau}\right)$, then

$$
\Gamma_{S}=\left\{\left(r_{\tau^{\prime}}\right)_{\tau^{\prime} \in S} \in \prod_{\tau^{\prime} \in S} \Gamma_{\tau^{\prime}}: \varphi_{\tau_{2}}^{\tau_{1}}\left(r_{\tau_{1}}\right)=r_{\tau_{2}}, \text { if } \tau_{1} \geqq \tau_{2} ; \tau_{1}, \tau_{2} \in S\right\}
$$

forms a group with respect to the pointwise addition. By Proposition 3.1, $\Gamma^{*}=\underset{S \subset\left(G^{\tau}\right)}{ } \Gamma_{S}$ constitutes the maximal ideal space of $L^{*}\left(G^{\tau}\right)$.

If S is a directed subset of $\mathfrak{I}\left(G^{\tau}\right)$ and $\tau_{0} \in S$, we denote by $\varphi_{\tau_{0}}^{S}$ the natural homomorphism of Γ_{S} into $\Gamma_{\tau_{0}}$, given by

$$
\begin{equation*}
\varphi_{\tau_{0}}^{S}\left(\left(r_{\tau^{\prime}}\right)_{\tau^{\prime} \in S}\right)=r_{\tau_{0}} \quad\left(\left(r_{\tau^{\prime}}\right)_{\tau^{\prime} \in S} \in \Gamma_{S}\right) . \tag{3.4}
\end{equation*}
$$

Proposition 3.2. For each $\Gamma_{S_{1}} \times \Gamma_{S_{2}} \ni\left(\left(r_{\tau^{\prime}}\right)_{\tau^{\prime} \in S_{1}},\left(r_{\tau^{\prime}}^{\prime}\right)_{\tau^{\bullet} \in S_{2}}\right)$, we define

$$
\begin{equation*}
\left(r_{\tau^{\prime}}\right)_{\tau^{\prime} \in S_{1}}+\left(r_{\tau^{\prime}}^{\prime}\right)_{\tau^{*} \in S_{2}}=\left(r_{\tau^{\prime}}+r_{\tau^{\prime}}^{\prime}\right)_{\tau^{\prime} \in S_{1} \cap S_{2}} . \tag{3.5}
\end{equation*}
$$

Then Γ^{*} becomes a semi-group with unit.
Proof. Since intersection of two directed subsets of $\mathfrak{I}\left(G^{r}\right)$ is again a directed subset of $\mathfrak{T}\left(G^{\tau}\right)$, it is obvious that Γ^{*} forms a semi-group with unit $\left(0_{\tau^{\prime}}\right)_{\tau^{\prime} \in\{(G \pi)}$, where $0_{\tau^{\prime}}$ is the unit of $\Gamma_{\tau^{\prime}}$.

PROPOSITION 3.3. Suppose that $\Gamma^{*} \supseteq \Gamma_{S} \ni r_{0}$. For each $\tau_{0} \in S$, a neighbourhood U of $\varphi_{\tau_{0}}^{S}\left(r_{0}\right)$ in $\Gamma_{\tau_{0}}$ and a finite subset $\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{m}\right\}$ of $\mathfrak{T}\left(G^{r}\right)-S$, and a compact subset K_{i} of $\Gamma_{\tau_{i}}(i=1,2, \cdots, m)$, put

$$
\begin{align*}
& U_{\tau_{0}}^{\left(K_{1}, \tau_{1}\right),\left(K_{2}, \tau_{2}\right), \ldots,\left(K_{m}, \tau_{m}\right)} \tag{3.6}\\
& \quad=\bigcup_{S^{\prime} \ni \tau_{0}}\left\{r \in \Gamma_{S^{\prime}}: \varphi_{\tau_{0}}^{S_{0}^{\prime}}(r) \in U, \text { and if } S^{\prime} \ni \tau_{i} \text { then } \varphi_{\tau_{i}}^{S^{\prime}}(r) \oplus K_{i}(i=1, \cdots, m)\right\} .
\end{align*}
$$

Then the class of all the sets of the form (3.6) constitutes a basis of neighbourhoods of r_{0} with respect to the Gelfand topology of Γ^{*}.

Proof. The Gelfand topology of Γ^{*} is the weakest one such that every Gelfand transform $\hat{\mu}\left(\mu \in L^{*}\left(G^{\tau}\right)\right)$ is continuous on Γ^{*}. Since each element $\hat{\hat{\mu}}\left(\mu \in L^{*}\left(G^{r}\right)\right)$ is a uniform limit of some sequence of elements in $\{\hat{\hat{\lambda}}$: $\left.\lambda \in \sum_{\tau^{\prime} \in \mathbb{X}\left(G^{\tau}\right)} L^{1}\left(G^{\tau^{\prime}}\right)\right\}$, it can be said that the Gelfand topology of Γ^{*} is the weakest one such that each $\hat{\mu}\left(\mu \in L^{1}\left(G^{\tau^{\prime}}\right): \tau^{\prime} \in \mathscr{T}\left(G^{r}\right)\right)$ is continuous on Γ^{*}.

Suppose $\tau_{*} \in \mathfrak{T}\left(G^{\tau}\right), \mu \in L^{1}\left(G^{\tau *}\right)$, and W is a neighbourhood of $\hat{\mu}\left(r_{0}\right)$ in C, where $W \nRightarrow 0$ if $\hat{\hat{\mu}}\left(r_{0}\right) \neq 0$. If $\tau_{*} \notin S^{\prime}, \hat{\hat{\mu}}(r)=0$ for every $r \in \Gamma_{S^{\prime}}$. If $\tau_{*} \in S^{\prime}$, then $\hat{\hat{\mu}}(r)=\hat{\mu}\left(\varphi_{r_{t}^{\prime}}^{S^{\prime}}(r)\right)$, where $\hat{\mu}$ is the Fourier transform of μ into $\Gamma_{r_{*}}$. Thus we have

$$
\hat{\mu}^{-1}(W)=\left\{\begin{array}{l}
\left(\bigcup_{S^{\prime} \nexists \tau_{*}}^{\bigcup} \Gamma_{S^{\prime}}\right) \cup\left[\bigcup_{S^{\prime} \ni \tau_{*}}^{\bigcup}\left\{r \in \Gamma_{S^{\prime}}: \varphi_{\tau_{*}}^{S^{\prime}}(r) \in \hat{\mu}^{-1}(W)\right\}\right]: \text { if } \hat{\mu}\left(r_{0}\right)=0 \tag{3.7}\\
\bigcup \\
S_{S^{\prime} \ni \tau_{*}}\left\{r \in \Gamma_{S^{\prime}}: \varphi_{\tau_{*}}^{S^{\prime}}(r) \in \hat{\mu}^{-1}(W)\right\}: \text { if } \hat{\hat{\mu}}\left(r_{0}\right) \neq 0 .
\end{array}\right.
$$

Suppose $\tau_{1}, \tau_{2}, \cdots, \tau_{m} \in \mathscr{T}\left(G^{\tau}\right)-S, \tau_{m+1}, \tau_{m+2}, \cdots, \tau_{n} \in S(m<n)$ and $\mu_{1} \in$ $L^{1}\left(G^{\tau_{1}}\right), \cdots, \mu_{n} \in L^{1}\left(G^{\tau_{n}}\right)$, and let W_{i} be an open neighbourhood of $\hat{\mu}_{i}\left(r_{0}\right)$ ($i=1,2, \cdots, n$). Let $\tau_{0} \in \mathscr{I}\left(G^{\tau}\right)$ be the least upper bound of $\left\{\tau_{m+1}, \cdots, \tau_{n}\right\}$ (cf. Theorem 2.8). Since $\varphi_{\tau_{i}}^{\tau_{0}}$ is continuous and $\varphi_{\tau_{i}}^{\tau_{0}} \circ \varphi_{\tau_{0}}^{S}=\varphi_{\tau_{i}}^{S}, U=\overbrace{i=m+1}^{n} \varphi_{\tau_{i}}^{\tau_{0}-1}\left(\hat{\mu}_{i}^{-1}\left(W_{i}\right)\right)$ is a neighbourhood of $\varphi_{\mathrm{r}_{0}}^{S}\left(r_{0}\right)$, and we have from (3.7)

$$
\begin{equation*}
U_{\tau_{0}}=\bigcup_{S^{\prime} \ni \tau_{0}}\left\{r \in \Gamma_{S^{\prime}}: \varphi_{\tau_{0}}^{\left.S^{\prime}(r) \in U\right\} \subseteq \hat{\mu}_{m+1}^{-1}\left(W_{m+1}\right) \cap \cdots \cap \hat{\mu}_{n}^{-1}\left(W_{n}\right)}\right. \tag{3.8}
\end{equation*}
$$

Put $\left(\hat{\mu}_{j}^{-1}\left(W_{j}\right)\right)^{c}=K_{j}(j=1,2, \cdots, m)$, and since W_{j} is an open neighbourhood of $0(j=1,2, \cdots, m), K_{j}$ is a compact subset of $\Gamma_{\tau_{j}}$. By (3.7) we have

$$
\begin{equation*}
\hat{\hat{\mu}}_{j}^{-1}\left(W_{j}\right)=\left(\bigcup_{S^{\prime} \ni \tau_{j}} \Gamma_{S^{\prime}}\right) \cup\left[\bigcup_{S^{\prime} \ni \tau_{j}}\left\{r \in \Gamma_{s^{\prime}}: \varphi_{\tau_{j}}^{s^{\prime}}(r) \notin K_{j}\right\}\right] \quad(j=1,2, \cdots, m) \tag{3.9}
\end{equation*}
$$

If we put $U_{r_{0}}^{\left(K_{1}, r_{1}\right), \ldots,\left(K_{m}, \tau_{m}\right)}$ as (3.6), we get from (3.8) and (3.9)

$$
U_{\tau_{0}}^{\left.\left(\kappa_{1}, \tau_{1}\right), \ldots, K_{m}, \tau_{m}\right)} \subseteq \bigcap_{j=1}^{n} \hat{\hat{\mu}}_{j}^{-1}\left(W_{j}\right)
$$

Conversely, let $\tau_{0} \in S, \tau_{1}, \cdots, \tau_{m} \in \mathscr{I}\left(G^{\tau}\right)-S$, and let U be a neighbourhood of $\varphi_{\mathrm{r}_{0}}^{S}\left(r_{0}\right)$, and suppose K_{j} is a compact subset of $\Gamma_{\tau_{j}}(j=1,2, \cdots, m)$. Then we can choose $\mu_{i} \in L^{1}\left(G^{\tau i}\right)(i=0,1, \cdots, m)$ and a neighbourhood V of $\hat{\mu}_{0}\left(r_{0}\right) \in C$ such that

$$
\left\{\begin{array}{l}
\hat{\mu}_{0}\left(\varphi_{\tau_{0}}^{S}\left(r_{0}\right)\right) \neq 0, \\
U \supseteqq \hat{\mu}_{0}^{-1}(V), \quad V \nRightarrow 0, \\
\hat{\mu}_{j}(r) \geqq 1\left(r \in K_{j}\right), \quad(j=1,2, \cdots, m)
\end{array}\right.
$$

Then we get

$$
U_{\tau_{0}}^{\left(\mathcal{K}_{1}, \tau_{1}\right), \cdots,\left(\mathbb{K}_{m}, \tau_{m}\right)} \supseteq\left[\bigcap_{j=1}^{m} \hat{\hat{\mu}}_{j}^{-1}(\Delta)\right] \cap \hat{\hat{\mu}}_{0}^{-1}(V),
$$

where $\Delta=\{\alpha \in C:|\alpha|<1\}$, and hence the set of the form (3.6) is a neighbourhood of r_{0}.

What we have proved above and the fact that

$$
\left\{\hat{\mu}^{-1}(W): \mu \in L^{1}\left(G^{\tau^{\prime}}\right), \tau^{\prime} \in \mathfrak{T}\left(G^{\tau}\right), W \ni \hat{\hat{\mu}}\left(r_{0}\right)\right\}
$$

forms a sub-basis of neighbourhoods of r_{0} show that the class of the set of the form (3.6) constitutes a basis of neighbourhoods of r_{0} in Γ^{*}.

REmARK. If τ_{0} is an element of $\mathfrak{T}\left(G^{\tau}\right)$, then $S_{\tau_{0}}=\left\{\tau^{\prime} \in \mathscr{F}\left(G^{\tau}\right): \tau^{\prime} \leqq \tau_{0}\right\}$ is a directed subset of $\mathscr{T}\left(G^{\tau}\right)$. It is easy to see from Proposition 3.3 that $\varphi_{\tau_{0}}^{S_{\tau_{0}}}$ is a homeomorphic isomorphism from $\Gamma s_{\tau_{0}}$ (as a subspace of Γ^{*}) onto $\Gamma_{\tau_{0}}$.

Proposition 3.4. Suppose S is a directed subset of $\mathfrak{T}\left(G^{r}\right)$ and μ is an element of $M\left(G^{\tau}\right)$. Then there exists a unique decomposition $\mu=\mu_{1}+\mu_{2}$, where $\mu_{1} \in \overline{\sum_{\tau^{\prime} \in S} M\left(G^{r^{\prime}}\right)}$ and $\mu_{2} \perp \overline{\sum_{\tau^{\prime} \in S} M\left(G^{r^{\prime}}\right)}$.

Proof. We can assume without loss of generality that $\mu \geqq 0$. Put $\Sigma=\left\{\mu^{\prime} \in \overline{\sum_{\tau^{\prime} \in S} M\left(G^{r^{\prime}}\right)}: \mu^{\prime} \perp\left(\mu-\mu^{\prime}\right)\right\}$. It is clear that Σ is an inductive set with respect to the usual partial order in $M\left(G^{r}\right)$, and so there exists a maximal element in Σ. Let μ_{1} be a maximal element in Σ, and put $\mu_{2}=\mu-\mu_{1}$.

If there exists $\tau_{0} \in S$ such that μ_{2} is not orthogonal to $M\left(G^{\tau_{0}}\right)$, then by Proposition 2.2, there is a decomposition

$$
\mu_{2}=\mu_{2}^{\prime}+\mu_{2}^{\prime}, \quad 0 \neq \mu_{2}^{\prime} \in M\left(G^{\tau_{0}}\right), \quad \mu_{2}^{\prime} \perp \mu_{2}^{\prime} .
$$

Then $\mu_{1}+\mu_{2}^{\prime} \in \Sigma$, and $\mu_{1}+\mu_{2}^{\prime} \geqq \mu_{1}$, and this contradicts the maximality of μ_{1} and thus $\mu=\mu_{1}+\mu_{2}$ is the desired decomposition.

THEOREM 3.5. Each complex homomorphism of $L^{*}\left(G^{r}\right)$ can be extended to a complex homomorphism of $M\left(G^{\tau}\right)$, and so Γ^{*} is contained in the maximal ideal space of $M\left(G^{\tau}\right)$.

Proof. Let S be a directed subset of $\mathfrak{T}\left(G^{r}\right)$, and suppose $\mu \in M\left(G^{\tau}\right)$. Then by Proposition 3.4, we have a decomposition

$$
\mu=\mu_{1}+\mu_{2}, \quad \mu_{1} \in \overline{\sum_{s \tau^{\prime}} M\left(G^{r^{\prime}}\right)}, \quad \mu_{2} \perp \overline{\sum_{s \rightarrow \tau^{\prime}} M\left(G^{r^{\prime}}\right)}
$$

μ_{1} has an expression $\mu_{1}=\lim _{i \rightarrow \infty} \mu_{1 i}$, where $\mu_{1 i} \in M\left(G^{r_{i}}\right), S \ni \tau_{i}(i=1,2, \cdots)$. Define a function $\hat{\hat{\mu}}$ by

$$
\begin{equation*}
\hat{\hat{\mu}}(r)=\lim _{i \rightarrow \infty} \int_{G^{\tau_{i}}} \varphi_{\tau_{i}}^{S}(r)(-x) d \mu_{1 i}(x) \quad\left(r \in \Gamma_{S}, \mu \in M\left(G^{\tau}\right)\right) \tag{3.10}
\end{equation*}
$$

It is clear that the above definition is well posed and $\hat{\hat{\mu}}$ is equal to the Gelfand transform of μ if μ is an element of $L^{*}\left(G^{r}\right)$. For each fixed $r \in \Gamma^{*}$, the mapping

$$
M\left(G^{\tau}\right) \ni \mu \longmapsto \hat{\hat{\mu}}(r) \in C
$$

is a complex homomorphism, and hence Γ^{*} is contained in the maximal ideal space of $M\left(G^{\tau}\right)$.
§ 4. Homomorphisms of $L^{*}\left(G^{\tau}\right)$ into $M\left(G_{2}\right)$.
Let h be a homomorphism of $L^{*}\left(G^{r}\right)$ into $M\left(G_{2}\right)$. For each $r \in \Gamma_{2}$, we have either $\widehat{h(\mu)}(r)=0$ for every $\mu \in L^{*}\left(G^{r}\right)$, or there exists a unique $\alpha(r) \in \Gamma^{*}$ such that

$$
\begin{equation*}
\widehat{h(\mu)}(r)=\hat{\hat{\mu}}(\alpha(r)) \quad\left(\mu \in L^{*}\left(G^{r}\right)\right) . \tag{4.1}
\end{equation*}
$$

We put

$$
\begin{equation*}
Y=\left\{r \in \Gamma_{2}:{ }^{\exists} \mu \in L^{*}\left(G^{\tau}\right), \widehat{h(\mu)}(r) \neq 0\right\} . \tag{4.2}
\end{equation*}
$$

For each $\tau^{\prime} \in \mathfrak{T}\left(G^{\tau}\right)$, we define

$$
\begin{align*}
& Y_{\tau^{\prime}}=\bigcup_{S \exists \tau^{\prime}}\left\{r \in Y: \alpha(r) \in \Gamma_{S}\right\} \tag{4.3}\\
& \alpha_{\tau^{\prime}}(r)= \begin{cases}\varphi_{\tau^{\prime}}^{S}(\alpha(r)): & r \in Y_{\tau^{\prime}} \\
0: & r \notin Y_{\tau^{\prime}} .\end{cases}
\end{align*}
$$

Theorem 4.1. (i) Let h be a homomorphism of $L^{*}\left(G^{r}\right)$ into $M\left(G_{2}\right)$, and let $\left\{(Y, \alpha),\left(Y_{\tau^{\prime}}, \alpha_{\tau^{\prime}}\right) ; \tau^{\prime} \in \mathfrak{I}\left(G^{\tau}\right)\right\}$ be defined by (4.1), (4.2) and (4.3). Then

1) $Y_{\tau^{\prime}}$ is an element of the coset ring of Γ_{2}, and $\alpha_{\tau^{\prime}}$ is a piecewise affine map of $Y_{\tau^{\prime}}$ into $\Gamma_{\tau^{\prime}}$.
2) If we express by $h_{\tau^{\prime}}$ a homomorphism of $L^{1}\left(G^{\tau^{\prime}}\right)$ into $M\left(G_{2}\right)$ determined by $\left(Y_{\tau^{\prime}}, \alpha_{\tau^{\prime}}\right)$, then $\left\{\left\|h_{\tau^{\prime}}\right\|: \tau^{\prime} \in \mathscr{Z}\left(G^{\tau}\right)\right\}$ is bounded, where $\left\|h_{\tau^{\prime}}\right\|$ denotes $\sup _{\mu \in L^{1}\left(G \tau^{\prime}\right.}\left\|h_{\tau^{\prime}}(\mu)\right\| /\|\mu\|$.
(ii) Conversely, let Y be a subset of Γ_{2} and let α be a map of Y into Γ^{*}. We define $Y_{\tau^{\prime}}, \alpha_{\tau^{\prime}}\left(\tau^{\prime} \in \mathfrak{T}\left(G^{\tau}\right)\right)$ by (4.3). Suppose that $\left\{\left(Y_{\tau^{\prime}}, \alpha_{\tau^{\prime}}\right): \tau^{\prime} \in \mathfrak{I}\left(G^{\tau}\right)\right\}$ satisfies 1), 2) of (i). Then for each $\mu \in L^{*}\left(G^{\tau}\right)$, there exists an element $h^{\prime}(\mu)$ of $M\left(G_{2}\right)$ such that

$$
h^{\widehat{ }(\mu)(r)}=\left\{\begin{array}{ll}
\hat{\mu}(\alpha(r)): & r \in Y \\
0 & : \\
r \notin Y
\end{array} \quad\left(r \in \Gamma_{2}\right)\right.
$$

and h^{\prime} is a homomorphism of $L^{*}\left(G^{\tau}\right)$ into $M\left(G_{2}\right)$.
Proof. (i) For each $\tau^{\prime} \in \mathfrak{T}\left(G^{\tau}\right)$, let $h_{\tau^{\prime}}$ be the restriction of h to $L^{1}\left(G^{\tau^{\prime}}\right)$. By Theorem 1, there exists an element $Y_{\tau^{\prime}}^{\prime}$ of the coset ring of Γ_{2} and a piecewise affine map $\alpha_{\tau^{\prime}}^{\prime}$ of $Y_{\tau^{\prime}}^{\prime}$ into $\Gamma_{\tau^{\prime}}$ such that

$$
\widehat{h(\mu)}(r)=\widehat{h_{\tau^{\prime}}(\mu)}(r)=\left\{\begin{array}{ll}
\hat{\mu}\left(\alpha_{\tau^{\prime}}^{\prime}(r)\right): & r \in Y_{\tau^{\prime}}^{\prime} \tag{4.4}\\
0 & : \quad r \in Y_{\tau^{\prime}}^{\prime}
\end{array} \quad\left(\mu \in L^{1}\left(G^{\tau^{\prime}}\right)\right)\right.
$$

On the other hand, we have from the definition of $Y_{\tau^{\prime}}$ and $\alpha_{\tau^{\prime}}$,

$$
\widehat{h(\mu)}(r)=\left\{\begin{array}{ll}
\hat{\mu}(\alpha(r))=\hat{\mu}\left(\varphi_{\tau^{\prime}}^{S}(\alpha(r))\right): & r \in Y_{\tau^{\prime}} \tag{4.5}\\
0 & : \quad r \in Y_{\tau^{\prime}}
\end{array} \quad\left(\mu \in L^{1}\left(G^{\tau^{\prime}}\right)\right)\right.
$$

From (4.4) and (4.5), we have $Y_{\tau^{\prime}}^{\prime}=Y_{\tau^{\prime}}$ and $\alpha_{\tau^{\prime}}^{\prime}=\alpha_{\tau^{\prime}}$, and 1) follows from this, and since 2) is trivial, this completes the proof of (i).
(ii) For each $\mu \in L^{*}\left(G^{\tau}\right)$, put

$$
\alpha_{\mu}(r)=\left\{\begin{array}{ll}
\hat{\hat{\mu}}(\alpha(r)): & r \in Y \\
0 & : \\
r \notin Y
\end{array} \quad\left(r \in \Gamma_{2}\right) .\right.
$$

Suppose τ_{0} is an element of $\mathscr{I}\left(G^{\tau}\right)$, and $\mu \in L^{1}\left(G^{\tau_{0}}\right)$. Then by the definition of ($Y_{\tau_{0}}, \alpha_{\tau_{0}}$), we have

$$
\alpha_{\mu}(r)= \begin{cases}\hat{\mu}\left(\alpha_{\tau_{0}}(r)\right): & r \in Y_{\tau_{0}} \\ 0 & : r \notin Y_{\tau_{0}},\end{cases}
$$

and by the condition 1) of (i), $\alpha_{\mu} \in B\left(\Gamma_{2}\right)$. Therefore we have $\alpha_{\mu} \in B\left(\Gamma_{2}\right)$ for each $\mu \in \sum_{\boldsymbol{z}^{\prime} \in \mathbb{X}\left(G^{r}\right)} L^{1}\left(G^{\tau^{\prime}}\right)$.

If $\mu \in L^{*}\left(G^{\tau}\right)$, choose a sequence of elements $\mu_{i} \in \sum_{\tau^{\prime} \in \mathfrak{X}\left(G^{\tau}\right)} L^{1}\left(G^{\tau^{\prime}}\right)(i=1,2, \cdots)$ such that $\lim _{i \rightarrow \infty} \mu_{i}=\mu$, and since α_{μ} is the uniform limit of $\left\{\alpha_{\mu_{i}}: i=1,2, \cdots\right\}$, we have $\alpha_{\mu} \in B\left(\Gamma_{2}\right)$.

Thus for each $\mu \in L^{*}\left(G^{\tau}\right)$, there exists a unique $h^{\prime}(\mu) \in M\left(G_{2}\right)$ such that $\alpha_{\mu}=h^{\prime}(\mu)$, and it is easy to see that

$$
h^{\prime}: \quad L^{*}\left(G^{r}\right) \ni \mu \longmapsto h^{\prime}(\mu) \in M\left(G_{2}\right)
$$

is the desired homomorphism of $L^{*}\left(G^{r}\right)$ into $M\left(G_{2}\right)$ and this completes the proof of the theorem.

Remarks. If G^{τ} is not discrete, it is easy to see that $L^{*}\left(G^{\tau}\right)$ is symmetric, and hence $L^{*}\left(G^{\tau}\right)$ is contained properly in $M\left(G^{\tau}\right)$. Thus $L^{*}\left(G^{\tau}\right)$ contains $L^{1}\left(G^{\tau}\right)$ properly, and is contained in $M\left(G^{\tau}\right)$ properly, if G^{τ} is not discrete.

It is natural to think about how large the set $\mathfrak{L}\left(G^{r}\right)$ is. For this we can refer to [5].

Department of Mathematics, Hokkaido University

References

[1] P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math., 82 (1960), 191-212.
[2] P. J. Cohen, On homomorphisms of group algebras, Amer. J. Math., 82 (1960), 213-226.
[3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I (1963), Vol. II (1970), Springer-Verlag, Heiderberg.
[4] W. Rudin, Fourier analysis on groups, Interscience Publishers Inc., New York, 1962.
[5] N. W. Rickert, Locally compact topologies for groups, Trans. Amer. Math. Soc., 126 (1967), 225-235.
[6] J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc., 119 (1965), 150-166.
[7] J. L. Taylor, L-subalgebra of $M(G)$, Trans. Amer. Math. Soc., 135 (1969), 105-113.

