On certain character groups attached to algebraic groups

By Takashi TASAKA

(Received Dec: 8, 1969)

§ 0. Introduction.

This paper is a continuation of my previous papers [9] and [10]. Using the duality theorems of Tate [1], we simplify the results in [9] and [10]Our main tools are the auxiliary g-modules defined in [11]. Then our main results become mere applications of the duality theorems of Tate to the fundamental groups of simple algebraic groups. The $g(\bar{k} / k)$-module structuresof the fundamental groups and their Galois cohomology over an algebraic number field k are already treated in Ono's [6] which is mainly concerned with the relative Tamagawa number of algebraic groups.

Let F be a quasi-split simple algebraic group defined over an algebraic number field k, and Z be the fundamental group of F (in the sense of algebraic groups) which is a finite g-module. Note that we denote by g the Galois. group of an algebraic closure \bar{k} of k over k. We denote by F_{A} the adele group of F over k. It is shown in [9] and [10] that $F_{k} \cdot\left[F_{A}, F_{A}\right]$ is closed in F_{A}, where $\left[F_{A}, F_{A}\right]$ is the commutator subgroup of F_{A}, and that the quotient group $A_{k}(F)=F_{A} / F_{k} \cdot\left[F_{A}, F_{A}\right]$ is a totally disconnected compact group. In this paper, we consider the dual group $\Phi_{k}(F)$ of $A_{k}(F)$ in the sense of Pontrjagin, and show that

$$
\Phi_{k}(F) \simeq H^{1}\left(\mathfrak{g}, Z^{\prime}\right),
$$

where $Z^{\prime}=\operatorname{Hom}\left(Z, \boldsymbol{G}_{m}\right)$ (See Theorem 4). This is our main theorem.
In § 2, we investigate the g-module structure of the fundamental group Z, using the auxiliary g-modules defined in (4) and (5). In $\S 3$, we consider their cohomology groups. In $\S 4$, we give an alternative proof of the Hasse principle to the fundamental group Z (Theorem 2) (cf. [6], p. 106-107). In §5, we prove our main theorems (Theorem 3 and Theorem 4). In $\S 6$, we investigate more explicit structure of $H^{1}\left(\mathrm{~g}, Z^{\prime}\right)$ for some cases. In §7, we apply our main theorems to calculate the class number of a lattice in its genus.

Some special notations.
We denote by μ_{e} the group of e-th roots of unity in \bar{k} which has a natural \mathfrak{g}-module structure, and by \boldsymbol{Z}_{e} the cyclic group of order e on which g operates
trivially. For a locally compact abelian group G, we denote by G^{*} the dual group of G in the sense of Pontrjagin. For a field k, we denote by k^{\times}the multiplicative group $k-\{0\}$ of k, and by $\left(k^{\star}\right)^{e}$ the subgroup of k generated by x^{e}, where x is contained in k^{\times}.

§ 1. Preliminaries.

Let F be a linear algebraic group defined over an algebraic number field k. The adele group F_{A} of F over k is, by definition, a restricted direct product of F_{v}, where v runs the set of all places of k and F_{v} denotes $F_{k_{v}}$. We call a class character of F over k a continuous representation of F_{A} into $\boldsymbol{R} / \boldsymbol{Z}$ which is trivial on F_{k}. We denote by $\Phi_{k}(F)$ the group of all class characters of F over k. Thus, if we put $B_{k}(F)=F_{A} / \overline{F_{k} \cdot\left[F_{A}, F_{A}\right]}$, where $\left[F_{A}, F_{A}\right]$ is the commutator subgroup of F_{A}, then $\Phi_{k}(F)$ is the dual group of $B_{k}(F)$ in the sense of Pontrjagin.

We assume that F is contained in $G L(V)$, where V is a finite dimensional vector space defined over k. We assume also that the canonical injection of F into $G L(V)$ is defined over k. A lattice L in V is a finitely generated 0 -module which spans V_{k} over k, where \mathfrak{o} is the ring of integers of k. For a finite place $v=\mathfrak{p}$, we put $L_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}} \cdot L$, where $\mathfrak{o}_{\mathfrak{p}}$ is the ring of \mathfrak{p}-adic integers in k_{p}. Then L_{p} is an D_{p}-lattice in $V_{k_{p}}$. Put $F_{p}(L)=\left\{g \in F_{p}: g L_{p}=L_{p}\right\}$. Then $F_{\mathfrak{p}}(L)$ is an open compact subgroup of $F_{\mathfrak{p}}$. We fix a finite set S of places of k containing the set S_{∞} of all infinite places of k. We put

$$
\begin{equation*}
F_{A(S, L)}=\prod_{v \in S} F_{v} \times \prod_{v \in S} F_{v}(L) . \tag{1}
\end{equation*}
$$

Definition 1. For a class character $\chi \in \Phi_{k}(F)$, we define a symbol $f(\chi)$ which will be called the conductor of χ. For a lattice L in V, and a finite set S of places of k, we define a symbol $\mathfrak{f}(S, L)$. We define that

$$
\begin{equation*}
\mathrm{f}(\chi) \supset \mathrm{f}(S, L) \tag{2}
\end{equation*}
$$

means that χ is trivial on $F_{A(S, L)}$, and we say that the conductor $f(\chi)$ of χ contains $\mathrm{f}(S, L)$.

We put

$$
\begin{equation*}
C l_{F}(S, L)=\left\{\chi \in \Phi_{k}(F): \mathfrak{f}(\chi) \supset \mathfrak{f}(S, L)\right\} . \tag{3}
\end{equation*}
$$

We call the class number of the lattice L relative to S the order $h_{F}(S, L)$ of $C l_{F}(S, L)$ which may be infinite. M. Kneser has shown that, if F is semisimple (and has no simple factors of certain type of E_{8}) and $F_{S}=\prod_{v \in S} F_{v}$ is not compact, then $h_{F}(S, L)$ is finite and equal to the number of double cosets in $F_{k} \backslash F_{A} / F_{A(S, L)}$, and that this number is also equal to the class number of the
genus of the lattice L if $S=S_{\infty}$ ([3]). If F is the multiplicative group \boldsymbol{G}_{m} of the universal domain of k, then $h_{F}\left(S_{\infty}, L\right)$ is equal to the class number of the field k, where L is a canonical lattice. If F is the additive group \boldsymbol{G}_{a} of the universal domain, then $B_{k}\left(\boldsymbol{G}_{a}\right)=\left(\boldsymbol{G}_{a}\right)_{A} /\left(\boldsymbol{G}_{a}\right)_{k}=k_{A} / k$ is a compact group. It is easy to see that $\Phi_{k}\left(\boldsymbol{G}_{a}\right) \simeq k$. By the strong approximation theorem, we have $h(S, L)=1$ for any non-empty set S and any lattice L.

In this paper, we concern ourselves mainly with the quasi-split simple algebraic groups. In this paper, simple group means the algebraic group defined over k which is simple over the algebraic closure \bar{k} of k, and which may have non-trivial center (of course, whose order is finite).

§ 2. g-module structures of the fundamental groups of simple algebraic groups.

Let k be a field of characteristic zero, and K be a finite extension of k of degree d, and \bar{k} be an algebraic closure of k. We denote by g the Galois group of \bar{k} over k, and by \mathfrak{h} that of \bar{k} over K. Clearly g has the Krull topology, and \mathfrak{h} is an open subgroup of g in this topology.

We consider three auxiliary g-modules defined in the following way (cf. [11] $\mathrm{n}^{\circ} 1$);
(4)

$$
\begin{aligned}
& \Lambda=Z[\mathrm{~g} / \mathrm{h}]=\sum_{i=1}^{d} Z a_{i}, \\
0 \longrightarrow & C \longrightarrow \Lambda \xrightarrow{c} Z \longrightarrow 0
\end{aligned}
$$

$$
0 \longrightarrow \boldsymbol{Z} u \xrightarrow{r} \Lambda \longrightarrow R \longrightarrow 0
$$

where $a_{i}=g_{i} \mathfrak{h}$ is the coset of g_{i} modulo \mathfrak{h}, and the map c is such that $c\left(\sum p_{i} a_{i}\right)=\Sigma p_{i}$, and $u=\Sigma a_{i}$, and r is the canonical injection and $R=\Lambda / r(\boldsymbol{Z} \cdot u)$. Thus $\boldsymbol{Z} \cdot u \simeq \boldsymbol{Z}$ as g -modules. These modules Λ, C and R are \boldsymbol{Z}-free g -modules whose ranks over \boldsymbol{Z} are $d, d-1$ and $d-1$, respectively. It is known that, for any g -module M, we have

$$
\begin{equation*}
H^{i}(\mathfrak{g}, \Lambda \otimes M) \simeq H^{i}(\mathfrak{h}, M), \quad(i \geqq 1) . \tag{7}
\end{equation*}
$$

Tensoring (5) and (6) by M, we have the following exact sequences:

$$
\begin{equation*}
0 \longrightarrow C \otimes M \longrightarrow \Lambda \otimes M \xrightarrow{c \otimes 1} M \longrightarrow 0, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
0 \longrightarrow M \xrightarrow{r \otimes 1} \Lambda \otimes M \longrightarrow R \otimes M \longrightarrow 0 . \tag{9}
\end{equation*}
$$

In the derived cohomology sequences, through the identifications (7), $c \otimes 1$ induces the corestriction map of $H^{i}(\mathfrak{h}, M)$ into $H^{i}(\mathfrak{g}, M)$, and $r \otimes 1$ induces the restriction map of $H^{i}(\mathrm{~g}, M)$ into $H^{i}(\mathfrak{h}, M)$ (See [11] $\left.\mathrm{n}^{\circ} 1\right)$.

Sometimes, we denote C and R by ${ }^{d} C$ and ${ }^{d} R$, respectively, to emphasize the degree d of the extension K of k. It is easy to see that $C \simeq R$ as g-modules if K is a cyclic extension of k.

Let F_{1} be an algebraic group defined over k which is simple over \bar{k}. Let E_{1} be a universal covering group of F_{1}, and π_{1} be the covering isogeny of E_{1} onto F_{1}. We may suppose that these are both defined over k. We call the fundamental group of F_{1} the kernel Z_{1} of π_{1} which is contained in the center of E_{1}. When the fundamental group of F_{1} coincides the center of E_{1}, we call F_{1} the adjoint group. It is known that F_{1} is an inner twist of certain quasisplit group F defined over k. So the fundamental group Z_{1} of F_{1} is g -isomorphic to that of F. Thus the problem is reduced to the problem to determine the g -module structure of the center of simply connected quasi-split group and to determine the g-submodules of this center. We express the \mathbf{g}-module structures of these centers using the auxiliary g -modules defined above. Then it becomes easy to describe their cohomology groups.

Let F be a quasi-split simple group defined over k which is of adjoint type. Then there exists a unique finite Galois extension K of k such that F is quasi-split over k with respect to K (See [10] $\mathrm{n}^{\circ} 1$). We denote the type of F by ${ }^{d} X_{n}$, where $d=[K: k]$ and X_{n} is the type of F over the universal domain of k. Let E be a universal covering of F, and π be the covering isogeny of E onto F. We assume that these are defined over k. Then the kernel of π is the center Z of E which is a finite g-module.

According to Tate [1], we put $A^{\prime}=\operatorname{Hom}\left(A, \boldsymbol{G}_{m}\right)$, for a finite \mathfrak{g}-module A. Clearly $\left(A^{\prime}\right)^{\prime}=A$ as g-modules. For example, if we put $A=\mu_{e}$ (the group of e-th root of the unity in \boldsymbol{G}_{m}), then $A^{\prime} \cong \boldsymbol{Z}_{e}$ (the cyclic group of order e on which g operates trivially).

Lemma 1. Let k be a field of characteristic zero, and K be its finite extension. Let \mathfrak{g} be the Galois group of \bar{k} over k, and \mathfrak{h} be that of \bar{k} over K. We define g -modules Λ, C and R as in (4), (5) and (6). For a finite g-module A, we have

$$
\begin{align*}
& (\Lambda \otimes A)^{\prime} \simeq \Lambda \otimes A^{\prime} \tag{10}\\
& (C \otimes A)^{\prime} \simeq R \otimes A^{\prime}
\end{align*}
$$

(11)
where tensor products are taken over \boldsymbol{Z}.
Proof. For a \boldsymbol{Z}-free g-module Y whose rank over \boldsymbol{Z} is finite, we put $Y^{0}=\operatorname{Hom}(Y, Z)$. It suffices to show that

$$
\begin{equation*}
(Y \otimes A)^{\prime} \simeq Y^{0} \otimes A^{\prime} \tag{12}
\end{equation*}
$$

because, in our case, we have $\Lambda^{0} \simeq \Lambda$ and $C^{0} \simeq R$ ([11]). The proof of (12) can be done by straightforward computations.

THEOREM 1. Let Z be the fundamental group of an adjoint group F defined over a field k which is simple over \bar{k}. For the g-module structures of Z and Z^{\prime}, we have the following table:

${ }^{d} X_{n}:$	\boldsymbol{Z}	Z^{\prime}
${ }^{1} A_{n}:$	μ_{n+1}	\boldsymbol{Z}_{n+1}
${ }^{2} A_{n}:$	${ }^{2} C \otimes \mu_{n+1}$	${ }^{2} C \otimes \boldsymbol{Z}_{n+1}$
$B_{n}, C_{n}:$	μ_{2}	\boldsymbol{Z}_{2}
${ }^{1} D_{2 m}:$	$\mu_{2} \times \mu_{2}$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
${ }^{2} D_{2 m}:$	${ }^{2} \Lambda \otimes \mu_{2}$	${ }^{2} \Lambda \otimes \boldsymbol{Z}_{2}$
${ }^{1} D_{2 m+1}:$	μ_{4}	\boldsymbol{Z}_{4}
${ }^{2} D_{2 m+1}:$	${ }^{2} C \otimes \mu_{4}$	${ }^{2} C \otimes \boldsymbol{Z}_{4}$
${ }^{1} E_{6}:$	μ_{3}	\boldsymbol{Z}_{3}
${ }^{2} E_{6}:$	${ }^{2} C \otimes \mu_{3}$	${ }^{2} C \otimes \boldsymbol{Z}_{3}$
$E_{7}:$	μ_{2}	\boldsymbol{Z}_{2}
$E_{8}, F_{4}, G_{2}:$		trivial
${ }^{3} D_{4}:$	${ }^{3} C \otimes \mu_{2}$	${ }^{3} C \otimes \boldsymbol{Z}_{2}$
${ }^{6} D_{4}:$	$C_{1} \otimes \mu_{2}$	$C_{1} \otimes \boldsymbol{Z}_{2}$

where C_{1} and R_{1} are the g -modules defined in (5) and (6) relative to a cubic extension L of k which is contained in the Galois extension K of k whose Galois group is the symmetric group on three letters.

Of course, we have $\mu_{2} \simeq Z_{2}$ as g-modules. Note also that, in the case ${ }^{6} D_{4}$, we have

$$
R_{1} \otimes \mu_{2} \simeq C_{1} \otimes \mu_{2}
$$

Proof. Let A be a maximal k-trivial torus of F. Then $T=Z(A)$ is a maximal torus of F defined over k ([10]). Let \tilde{A} and \tilde{T} be the corresponding tori of E. Then \tilde{T} contains the center Z of E, and the kernel of the restriction of π to \tilde{T} is equal to Z. If $[K: k]=1$, that is, F is a split group defined over k, the results are clear. We restrict ourselves to the case ${ }^{3} D_{4}$. The others can be proved also in the similar way. For example, in the case ${ }^{2} A_{n}$ (see [7], p. 245).

In the case ${ }^{3} D_{4}$, we have $T \simeq \tilde{T} \simeq R_{K / k}\left(\boldsymbol{G}_{m}\right) \times \boldsymbol{G}_{m}$, where K is a cyclic extension of degree 3 ([10]). The covering isogeny π is given by

$$
\pi\left(t_{1}, t_{2}, \bar{t}_{2}, \bar{t}_{2}\right)=\left(t_{1}^{2} \cdot\left(t_{2} \bar{t}_{2} \bar{t}_{2}\right)^{-1}, t_{2}^{2} \cdot t_{1}^{-1}, \bar{t}_{2}^{2} \cdot t_{1}^{-1}, \bar{t}_{2}^{2} \cdot t_{1}^{-1}\right),
$$

where $t_{1} \in \boldsymbol{G}_{m}$ and $\left(t_{2}, \bar{t}_{2}, \bar{t}_{2}\right) \in R_{K / k}\left(\boldsymbol{G}_{m}\right)$. So the kernel of π consists of the elements ($t_{1}, t_{2}, \bar{t}_{2}, \bar{t}_{2}$), where $t_{1}=1, t_{2}= \pm 1, \bar{t}_{2}= \pm 1, \bar{t}_{2}= \pm 1$, and $t_{2} \cdot \bar{t}_{2} \cdot \bar{t}_{2}=1$. Then it is easy to see that the kernel of π and ${ }^{3} C \otimes \mu_{2}$ are isomorphic g modules.

Now it is easy to determine the g-submodules of Z. Except the case ${ }^{1} A_{n},{ }^{2} A_{n},{ }^{1} D_{n}$ and ${ }^{2} D_{n}$, there are no proper g-submodules of Z.

In the case ${ }^{1} A_{n}$, the g-submodules of Z are μ_{e}, where e divides $n+1$. In the case ${ }^{2} A_{n}$, the g-submodules of Z are ${ }^{2} C \otimes \mu_{e}$, where e divides $n+1$. In the case ${ }^{1} D_{2 m+1}$, there are three proper g-submodules which are isomorphic to μ_{2}, and the special orthogonal group corresponds to one of them. In the case ${ }^{2} D_{2 m+1},{ }^{1} D_{2 m}$ and ${ }^{2} D_{2 m}$, there is only one proper g-submodule which is isomorphic to μ_{2}.
§ 3. Determination of $H^{1}(k, Z)$ and $H^{2}(k, Z)$.
Let $Z=\mu_{e}$ be the group of e-th roots of the unity in \boldsymbol{G}_{m}. Putting $M=\bar{k}^{\times}=\left(\boldsymbol{G}_{m}\right) \overline{\bar{k}}$, we have the following exact sequence

$$
\begin{equation*}
0 \longrightarrow \mu_{e} \longrightarrow M \xrightarrow{e} M \longrightarrow 0 \tag{13}
\end{equation*}
$$

where $e(x)=x^{e}$. Considering the derived cohomology sequence, we have, by the theorem 90 of Hilbert,

$$
\begin{gather*}
H^{1}\left(k, \mu_{e}\right)=k^{\times} /\left(k^{\times}\right)^{e} \tag{14}\\
H^{2}\left(k, \mu_{e}\right)=\{\alpha \in B(k): e \alpha=0\} \tag{15}
\end{gather*}
$$

where $B(k)$ is the Brauer group of k. Note that we use the notations $H^{i}(k, Z)$ $=H^{i}(\mathrm{~g}, Z)$, etc.

Let K be a quadratic extension of k. Tensoring (13) by $C={ }^{2} C$, we have

$$
0 \longrightarrow C \otimes \mu_{e} \longrightarrow C \otimes M \xrightarrow{e} C \otimes M \longrightarrow 0
$$

We know that

$$
\begin{align*}
& H^{0}(\mathrm{~g}, C \otimes M) \cong D\left(K^{\times}\right)=\left\{x \in K^{\times}: N x=1\right\} \tag{16}\\
& H^{1}(\mathrm{~g}, C \otimes M) \cong k^{\times} / N K^{\times} \tag{17}\\
& H^{2}(\mathrm{~g}, C \otimes M) \cong\{\beta \in B(K): c(\beta)=0\} \tag{18}
\end{align*}
$$

where N is the norm map of K^{\times}into k^{\times}, and c is the corestriction map of $B(K)$ into $B(k)$ (See [11] $\mathrm{n}^{\circ} 2$). So the derived cohomology sequence becomes

$$
\begin{aligned}
0 & \longrightarrow H^{0}\left(C \otimes \mu_{e}\right) \longrightarrow D\left(K^{\times}\right) \xrightarrow{e} D\left(K^{\times}\right) \\
& \longrightarrow H^{1}\left(C \otimes \mu_{e}\right) \longrightarrow k^{\times} / N K^{\times} \xrightarrow{e^{*}} k^{\times} / N K^{\times} \\
& \longrightarrow H^{2}\left(C \otimes \mu_{e}\right) \longrightarrow H^{2}(C \otimes M) \xrightarrow{e} H^{2}(C \otimes M) .
\end{aligned}
$$

It is easy to see that e^{*} is the identity map if e is odd, and that e^{*} is zeromap if e is even. We denote by $D_{K / k}(e)$ the quotient group $D\left(K^{\times}\right) / D\left(K^{\times}\right)^{e}$.

Sometimes we denote this group by $D_{k}(e)$ or $D(e)$. Thus we have
Proposition 1. Let K be a quadratic extension of k, and C be the g-modules defined in (5). Let μ_{e} be the group of e-th roots of unity.
(i) If e is odd, we have

$$
\begin{align*}
& H^{1}\left(k, C \otimes \mu_{e}\right) \simeq D(e) \tag{19}\\
& H^{2}\left(k, C \otimes \mu_{e}\right) \simeq\{\beta \in B(K): e \beta=0, c(\beta)=0\} .
\end{align*}
$$

(ii) If e is even, we have

$$
\begin{align*}
& 0 \longrightarrow D(e) \longrightarrow H^{1}\left(k, C \otimes \mu_{e}\right) \longrightarrow k^{\times} / N K^{\times} \longrightarrow 0 \tag{21}\\
& 0 \longrightarrow k^{\times} / N K^{\times} \longrightarrow H^{2}\left(k, C \otimes \mu_{e}\right) \longrightarrow Q \longrightarrow 0 \tag{22}
\end{align*}
$$

where $Q=\{\beta \in B(K): e \beta=0, c(\beta)=0\}$.
In my previous paper [11] $\mathrm{n}^{\circ} 3$, we have given more exact structure of $H^{2}\left(k, C \otimes \mu_{e}\right)$ which is characterized as that of the center of the group of type ${ }^{2} A_{e-1}$. That is, when e is even, we have

$$
\begin{equation*}
H^{2}\left(k, C \otimes \mu_{e}\right)=\left\{(\alpha, \beta) \in B(k) \times B(K): 2 \alpha=0, r(\alpha)=\frac{e}{2}-\beta, c(\beta)=0\right\} \tag{22}
\end{equation*}
$$

where r is the restriction map of $B(k)$ into $B(K)$.
Now we determine $H^{1}\left(k, Z^{\prime}\right)$ in the foregoing two cases. When $Z^{\prime} \simeq Z_{e}$, we know that

$$
\begin{equation*}
H^{1}\left(\mathfrak{g}, Z_{e}\right) \simeq \operatorname{Hom}\left(\mathfrak{g}, Z_{e}\right), \tag{23}
\end{equation*}
$$

where Hom ($\mathrm{g}, \boldsymbol{Z}_{e}$) is the group of all continuous homomorphisms of g into \boldsymbol{Z}_{e}.
Tensoring (5) by \boldsymbol{Z}_{e}, we have

$$
0 \longrightarrow C \otimes \boldsymbol{Z}_{e} \longrightarrow \Lambda \otimes \boldsymbol{Z}_{e} \longrightarrow \boldsymbol{Z}_{e} \longrightarrow 0
$$

The derived cohomology sequence becomes

$$
\begin{aligned}
0 & \longrightarrow H^{0}\left(\mathrm{~g}, C \otimes \boldsymbol{Z}_{e}\right) \longrightarrow H^{0}\left(\mathfrak{h}, \boldsymbol{Z}_{e}\right) \xrightarrow{c_{0}} H^{0}\left(\mathfrak{g}, \boldsymbol{Z}_{e}\right) \\
& \longrightarrow H^{1}\left(\mathrm{~g}, C \otimes \boldsymbol{Z}_{e}\right) \longrightarrow \operatorname{Hom}\left(\mathfrak{h}, \boldsymbol{Z}_{e}\right) \xrightarrow{c_{1}} \operatorname{Hom}\left(\mathfrak{g}, \boldsymbol{Z}_{e}\right) .
\end{aligned}
$$

Clearly $H^{0}\left(\mathfrak{h}, \boldsymbol{Z}_{e}\right)$ and $H^{0}\left(\mathrm{~g}, \boldsymbol{Z}_{e}\right)$ are equal to \boldsymbol{Z}_{t}, and the map $c_{0}: \boldsymbol{Z}_{e} \rightarrow \boldsymbol{Z}_{e}$ is given by $c_{0}(x)=2 x$, where $x \in Z_{e}$. We denote by $\Delta_{K / k}(e)$ the kernel of c_{1} which we will investigate in the later section. Sometimes we denote this group simply by $\Delta_{k}(e)$ or $\Delta(e)$. Thus we have

Proposition 2. The notations being as above.
(i) If e is odd, we have

$$
\begin{equation*}
H^{1}\left(\mathrm{~g}, C \otimes \boldsymbol{Z}_{e}\right) \simeq \Delta(e) \tag{24}
\end{equation*}
$$

(ii) If e is even, we have

$$
\begin{equation*}
0 \longrightarrow \boldsymbol{Z}_{2} \longrightarrow H^{1}\left(k, C \otimes \boldsymbol{Z}_{e}\right) \longrightarrow \Delta(e) \longrightarrow 0 \tag{25}
\end{equation*}
$$

In $\S 6$, we will show that

$$
\begin{equation*}
H^{1}\left(k, C \otimes \boldsymbol{Z}_{e}\right) \simeq \boldsymbol{Z}_{2} \times \Delta(e) \quad(\text { direct product }) \tag{25}
\end{equation*}
$$

But this decomposition in direct product is not a canonical one (cf. Proposition 5).

If $Z=\Lambda \otimes A$, with a finite g-module A, we can utilize the formula (7). That is,

$$
\begin{equation*}
H^{i}(k, \Lambda \otimes A) \simeq H^{i}(K, A) \tag{26}
\end{equation*}
$$

The same holds for $Z^{\prime}=\Lambda \otimes A^{\prime}$ (cf. Lemma 1).
Now let K be a cubic extension of k (cyclic or non-cyclic). We consider the exact sequence

$$
\begin{equation*}
0 \longrightarrow C \otimes \mu_{2} \longrightarrow C \otimes M \xrightarrow{2} C \otimes M \longrightarrow 0 \tag{27}
\end{equation*}
$$

The derived cohomology sequence becomes

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(C \otimes \mu_{2}\right) \longrightarrow D\left(K^{\times}\right) \longrightarrow D\left(K^{\times}\right) \\
& \longrightarrow H^{1}\left(C \otimes \mu_{2}\right) \longrightarrow k^{\times} / N K^{\times} \xrightarrow{2^{*}} k^{\times} / N K^{\times} \\
& \longrightarrow H^{2}\left(C \otimes \mu_{2}\right) \longrightarrow H^{2}(C \otimes M) \longrightarrow H^{2}(C \otimes M) \text {. }
\end{aligned}
$$

It is clear that 2^{*} is the inverse map, that is, $2^{*}(y)=y^{-1}$ for any element $y \in k^{\times} / N K^{\times}$. Thus

Proposition 3. Let K be a cubic extension of k, and $C={ }^{3} C$. Then we have

$$
\begin{align*}
& H^{1}\left(k, C \otimes \mu_{2}\right) \simeq D\left(K^{\times}\right) / D\left(K^{\times}\right)^{2} \tag{28}\\
& H^{2}\left(k, C \otimes \mu_{2}\right) \simeq\{\beta \in B(K): 2 \beta=0, c(\beta)=0\} \tag{29}
\end{align*}
$$

In this case, $Z^{\prime} \simeq Z$, because $Z_{2} \simeq \mu_{2}$.

§ 4. Localizations and Hasse principle.

Let k be an algebraic number field of finite degree over \boldsymbol{Q}. We denote by v a place of k, and by k_{v} the completion of k with respect to v. We denote by g the Galois group of \bar{k} over k, and by g_{v} the Galois group of $\bar{k}_{v}=\bar{k} \cdot k_{v}$ over k_{v}. The group g_{v} can be identified with the decomposition group of an extension w of v in \bar{k}. For a finite g-module A, by restriction of the group of operators to g_{v}, we have a finite g_{v}-module which we will denote by A_{v}. We denote $H^{i}\left(g_{v}, A_{v}\right)$ by $H^{i}\left(k_{v}, A_{v}\right)$. For an infinite place v of k, we use the Tate cohomology groups, that is, $H^{i}\left(k_{v}, A_{v}\right)=\hat{H}^{i}\left(k_{v}, A_{v}\right)$. In particular, if v is a complex place, we have $H^{i}\left(k_{v}, A_{v}\right)=0$. When v is a finite
place of k, we denote by $k_{v}(n r)$ the maximal unramified extension of k_{v}, whose Galois group over k_{v} will be denoted by a_{v}. Thus we have $a_{v} \simeq g_{v} / \mathfrak{b}_{v}$, where \mathfrak{b}_{v} denotes the Galois group of \bar{k}_{v} over $k_{v}(n r)$. A finite g-module A is called to be unramified over v if \mathfrak{b}_{v} operates trivially on A_{v}. In this case, A_{v} becomes \mathfrak{a}_{v}-module in natural way, whose cohomology group $H^{i}\left(\mathfrak{a}_{v}, A_{v}\right)$ will be denoted by $H^{i}\left(\mathfrak{o}_{v}, A_{v}\right)$ or by $H_{n r}^{i}\left(k_{v}, A_{v}\right)$ (See [1] and [8]).

It is easy to see that a finite g -module A is unramified over almost all v (that is, except finite number of places). According to Serre [8], we denote by $P^{i}(k, A)$ the restricted direct product of $H^{i}\left(k_{v}, A_{v}\right)$ with respect to $H^{i}\left(\mathfrak{0}_{v}, A_{v}\right)$

$$
\begin{equation*}
P^{i}(k, A)=\prod_{v}\left(H^{i}\left(k_{v}, A_{v}\right), H^{i}\left(\mathfrak{p}_{v}, A_{v}\right)\right), \tag{30}
\end{equation*}
$$

where $H^{i}\left(\mathfrak{p}_{v}, A_{v}\right)=H^{i}\left(k_{v}, A_{v}\right)$ if A is ramified over v. It is known that $P^{0}(k, A)$ is the direct product of $H^{0}\left(k_{v}, A_{v}\right)$, and $P^{2}(k, A)$ is the direct sum of $H^{2}\left(k_{v}, A_{v}\right)$. Because $H^{i}\left(k_{v}, A_{v}\right)$ are finite groups, $P^{0}(k, A)$ has a compact topology, and $P^{2}(k, A)$ has a discrete topology. But, in general, $P^{1}(k, A)$ is locally compact.

For the finite g-module $A^{\prime}=\operatorname{Hom}\left(A, \boldsymbol{G}_{m}\right)$, we have $\left(A_{v}\right)^{\prime}=\left(A^{\prime}\right)_{v}$. So we denote this g_{v}-module by $A_{v}{ }^{\prime}$.

Theorem (Tate [1]). $H^{i}\left(k_{v}, A_{v}\right)$ and $H^{2-i}\left(k_{v}, A_{v}^{\prime}\right)$ are in exact duality with respect to the pairing "cup product".

If A and A^{\prime} are unramified over v, the annihilator of the subgroup $H^{1}\left(0_{v}, A_{v}\right)$ is exactly $H^{1}\left(0_{v}, A_{v}^{\prime}\right)$.

Thus $P^{i}(k, A)$ and $P^{2-i}\left(k, A^{\prime}\right)$ are in exact duality (in the sense of Pontrjagin) for $i=0,1,2$.

From the restriction map $H^{i}(k, A) \rightarrow H^{i}\left(k_{v}, A_{v}\right)$, we have the natural map

$$
\begin{equation*}
\rho_{i}: H^{i}(k, A) \longrightarrow P^{i}(k, A) . \tag{31}
\end{equation*}
$$

Then the fundamental exact sequence of Tate is described in the following way;

$$
\begin{align*}
& 0 \longrightarrow H^{0}(k, A) \xrightarrow{\rho_{0}} P^{0}(k, A) \longrightarrow H^{2}\left(k, A^{\prime}\right)^{*} \longrightarrow H^{1}(k, A) \stackrel{\rho_{1}}{\longleftrightarrow} P^{1}(k, A) . \tag{32}\\
& 0 \longleftarrow H^{0}\left(k, A^{\prime}\right)^{*} \longleftarrow P^{2}(k, A) \longleftarrow H^{2}(k, A) \longleftarrow H^{1}\left(k, A^{\prime}\right)^{*}
\end{align*}
$$

For the meaning of unlabelled arrows, see [1].
Theorem 2 (Hasse principle).*) Let Z be the fundamental group of an algebraic group F defined over an algebraic number field k which is simple over \bar{k}. Then the map ρ_{2} relative to Z is injective. It follows that

$$
0 \longrightarrow \rho_{1}\left(H^{1}(k, Z)\right) \longrightarrow P^{1}(k, Z) \longrightarrow H^{1}\left(k, Z^{\prime}\right)^{*} \longrightarrow 0
$$

[^0]is an exact sequence. This means that $H^{1}\left(k, Z^{\prime}\right)$ is the exact annihilator of $\rho_{1}\left(H^{1}(k, Z)\right)$ in $P^{i}\left(k, Z^{\prime}\right)=P^{1}(k, Z)^{*}$.

Proof. It suffices to show the Hasse principle for the g -modules given in the Theorem 1.

If $Z=\mu_{e}$, then Z_{v} is also μ_{e} considered in \bar{R}_{v}, and the Hasse principle is clear from the class field theory.

Let K be a quadratic extension of k, and C is the \mathfrak{g}-module relative to K defined in (5). We consider the g-module $C \otimes \mu_{e}$. If a place v of k decomposes in K, then $\left(C \otimes \mu_{e}\right)_{v} \simeq \mu_{e}$. If v does not decompose in K, we denote by V the unique extension of v in K. Then $\left(C \otimes \mu_{e}\right) \simeq C_{v} \otimes \mu_{e}$, where C_{v} is the g_{v}-module relative to K_{v} defined in (5). It is well-known that, in the local fields, the corestriction map c of $B(L)$ into $B\left(k_{v}\right)$ is injective, where L is a finite extension of k_{v}. If e is odd, it follows from Proposition 1 that

$$
P^{2}\left(k, C \otimes \mu_{e}\right)=\sum_{v}^{\prime} H^{2}\left(k_{v}, \mu_{e}\right),
$$

where v runs the set of all places of k decomposing in K. So the Hasse principle is clear, because the algebra class β of $B(K)$ such that $c(\beta)=0$ has the local invariant 0 at v if v does not decompose, and the local invariants y and $-y$ at V_{1} and at V_{2}, respectively, if v decomposes, where V_{1} and V_{2} are the two extensions of v in K. Note that $y \in \boldsymbol{Q} / \boldsymbol{Z}$, and that, if $e \beta=0$, then $e y=0$.

Now suppose that e is even. From Proposition 1, it follows that $H^{2}\left(k_{v}\right.$, $\left.\left(C \otimes \mu_{e}\right)_{v}\right) \simeq \boldsymbol{Z}_{2}$ if v does not decompose, and that $H^{2}\left(k_{v},\left(C \otimes \mu_{e}\right)_{v}\right) \simeq \boldsymbol{Z}_{e}$ if v decomposes. Thus we have

$$
P^{2}\left(k, C \otimes \mu_{e}\right)=\Sigma_{v}^{\prime} \boldsymbol{Z}_{e} \oplus \Sigma^{\prime \prime} \boldsymbol{Z}_{2},
$$

where Σ^{\prime} means the direct sum over the places decomposing in K, and $\Sigma^{\prime \prime}$ means the direct sum over the places which do not decompose in K. Considering the local invariants of a pair $(\alpha, \beta) \in B(k) \times B(K)$ such that $2 \alpha=0$, $r(\alpha)=\frac{e}{2} \beta$ and $c(\beta)=0$, which is a general element of $H^{2}\left(k, C \otimes \mu_{e}\right)$ according to (22)', we can see that the Hasse principle holds. Note that r is the restriction map of $B(k)$ into $B(K)$.

Now consider the case where $Z \simeq \Lambda \otimes \mu_{e}$. Note that Λ is the g-module relative to a quadratic extension K defined in (4). If v decomposes, then $Z_{v} \simeq \mu_{e} \times \mu_{e}$ (direct product). If v does not decompose, then $Z_{v}=\Lambda_{v} \otimes \mu_{e}$, where Λ_{v} is the g_{v}-module relative to K_{v} defined in (4). Thus we have $P^{2}\left(k, \Lambda \otimes \mu_{e}\right)$ $\simeq P^{2}\left(K, \mu_{e}\right)$, and the Hasse principle holds clearly, because of the formula (7).

Let K be a cubic extension of k (cyclic or non-cyclic), and $C={ }^{3} C$ be the \boldsymbol{g}-module relative to K defined in (5). We put $Z=C \otimes \mu_{e}$.

If v decomposes completely, that is, v has three extensions V_{1}, V_{2} and V_{3}
in K, then $K_{V_{i}} \simeq k_{v}$, and g_{v} is contained in the maximal normal subgroup of g contained in \mathfrak{h}. Thus we have $\left(C \otimes \mu_{e}\right)_{v} \simeq \mu_{e} \times \mu_{e}$ (direct product).

If v does not decompose in K, denoting by V the unique extension of v in K, the completion K_{V} is a cubic extension of k_{v}. It is easy to see that $\left(C \otimes \mu_{e}\right)_{v} \simeq C_{v} \otimes \mu_{e}$, where C_{v} is the g_{v}-module relative to K_{V} defined in (5).

If v decomposes partially, that is, v has two extensions V_{1} and V_{2} in K such that one of $K_{V_{i}}$ is equal to k_{v}, and the other is a quadratic extension of k_{v}. We assume that $K_{V_{2}}$ is a quadratic extension of k_{v}. So $K_{V_{1}}=k_{v}$. Note that this case occurs only if K is not cyclic over k. We consider the Galois group g_{v} as the decomposition group of an extension w of v in \bar{k} which is also an extension of V_{1}. Let N be the minimal Galois extension of k containing K, and \mathfrak{n} be the Galois group of \bar{k} over N. Then the Galois group $G=\mathrm{g} / \mathfrak{n}$ of N over k is isomorphic to the symmetric group on 3 letters. The group G is generated by s and t such that $s^{2}=1, t^{3}=1$ and $s t s=t^{-1}$. We suppose that the Galois group $H=\mathfrak{h} / \mathfrak{n}$ of N over K is equal to the subgroup generated by s. Then the decomposition group of V_{1} is equal to H. Thus \mathfrak{g}_{v} is contained in \mathfrak{h}. The Galois group of \bar{k}_{v} over $K_{V_{2}}$ is $\mathfrak{n}_{v}=\mathfrak{n} \cap \mathfrak{g}_{v}$. In this case, we have

$$
\begin{equation*}
\left(C \otimes \mu_{e}\right)_{v} \simeq \Lambda_{v} \otimes \mu_{e} \tag{33}
\end{equation*}
$$

where Λ_{v} is the g_{v}-module relative to $K_{V_{2}}$ definedin (4).
We prove (33). The g-module C is g-isomorphic to a Z-free module generated by $c_{1}=a_{1}-a_{0}$ and $c_{2}=a_{2}-a_{0}$, where $a_{0}=H, a_{1}=t H$ and $a_{2}=t^{2} H$. Obviously \mathfrak{n}_{v} operates trivially on C. Fix an element of $\mathfrak{g}_{v}-\mathfrak{n}_{v}$. This element induces the element s of H. It is easy to see that $s c_{1}=c_{2}$ and $s c_{2}=c_{1}$. This proves the formula (33).

Now we consider $H^{2}\left(k_{v},\left(C \otimes \mu_{2}\right)_{v}\right)$. From the arguments above, it follows that $H^{2}\left(k_{v},\left(C \otimes \mu_{2}\right)_{v}\right) \simeq \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$ if v decomposes completely, and $H^{2}\left(k_{v},\left(C \otimes \mu_{2}\right)_{v}{ }^{\prime}\right.$ $=0$ if v does not decompose, and $H^{2}\left(k_{v},\left(C \otimes \mu_{2}\right)_{v}\right)=\boldsymbol{Z}_{2}$ if v decomposes partially. An algebra class $\beta \in B(K)$ such that $c(\beta)=0$ has the local invariants y_{1}, y_{2} and y_{3} at V_{1}, V_{2} and V_{3}, respectively, where $\Sigma y_{i}=0$, if v decomposes completely, and the local invariant 0 at V if v does not decompose, and the local invariants y and $-y$ at V_{1} and V_{2}, respectively, if v decomposes partially. If $2 \beta=0$, then each local invariant y is such that $2 y=0$. This shows that the Hasse principle holds for $Z={ }^{3} C \otimes \mu_{2}$. For the behaviour of the local invariants under the restriction map and the corestriction map, see ArtinTate [2] Chapter 7, 3.

The rest of the theorem is clear from the duality theorem of Pontrjagin. This completes the proof.

§ 5. The character group $\boldsymbol{\Phi}_{k}(F)$.

Let F be a quasi-split simple algebraic group over a field k of characteristic zero with respect to a finite Galois extension K of k, and Z be its fundamental group. Let A be a maximal k-trivial torus of F, and $T=Z(A)$ be the centralizer of A in F. It is known that T is a maximal torus of F defined over k. We denote by \tilde{T} the maximal torus of the universal covering group E of F corresponding to T by the covering isogeny π. It is known that $H^{1}(k, \tilde{T})=0\left([11] \mathrm{n}^{\circ} 3\right)$, and that the following two formulae hold ([10] Theorem 1) :

$$
\begin{align*}
& {\left[E_{k}, E_{k}\right]=E_{k},} \tag{34}\\
& F_{k} / \pi\left(E_{k}\right) \simeq T_{k} / \pi\left(\tilde{T}_{k}\right) \simeq H^{1}(k, Z) \tag{35}
\end{align*}
$$

where $\left[E_{k}, E_{k}\right]$ is the commutator subgroup of E_{k}. It follows that the sequence

$$
\begin{equation*}
1 \longrightarrow Z_{k} \longrightarrow E_{k} \xrightarrow{\pi} F_{k} \longrightarrow H^{1}(k, Z) \longrightarrow 1 \tag{36}
\end{equation*}
$$

is exact.
Now suppose that k is an algebraic number field. It is easy to see that, for a place v of k, the group F is quasi-split over k_{v} with respect to K_{V}, where V is an extension of v in K, except the case where F is of type ${ }^{6} D_{4}$ and v decomposes partially in K, and that, in the exceptional case, the group F is quasi-split over k_{v} with respect to $K_{V_{2}}$, where V_{2} is an extension of v in K such that $K_{V_{2}}$ is a quadratic extension of k_{v}. For these, it suffices to examine the structure of T over k_{v}, because T is characterized as $T=Z(A)$. It follows from these that g_{v}-module Z_{v} is isomorphic to the fundamental group of F considered as an algebraic group defined over k_{v}, where Z is the fundamental group of F over k which is a finite g-module (cf. Theorem 1 and the proof of Theorem 2). By abuse of notation, we use the notations $F_{v}=F_{k_{v}}$, etc.

Theorem 3. Let F be a quasi-split simple group defined over an algebraic number field k, and Z be its fundamental group. Then the commutator subgroup $\left[F_{A}, F_{A}\right]$ of the adele group F_{A} of F over k is closed in F_{A}. For the quotient group, we have a topological isomorphism

$$
\begin{equation*}
F_{A} /\left[F_{A}, F_{A}\right] \cong P^{1}(k, Z), \tag{37}
\end{equation*}
$$

where $P^{1}(k, Z)$ is the group defined in (30).
Proof. The first statement is already shown in [10], p. 163. It is easy to see that

$$
\begin{equation*}
F_{A} /\left[F_{A}, F_{A}\right] \simeq \prod_{v}\left(F_{v} / \pi\left(E_{v}\right), F_{o_{v}} \cdot \pi\left(E_{v}\right) / \pi\left(E_{v}\right)\right) \tag{38}
\end{equation*}
$$

where the second term means the restricted direct product of $F_{v} / \pi\left(E_{v}\right)$ with
respect to $F_{0_{0}} \cdot \pi\left(E_{v}\right) / \pi\left(E_{v}\right)$ ([10] the formula (53)). Note that $\pi\left(E_{v}\right)$ coincides with $\left[F_{v}, F_{v}\right]$ ([10], Theorem 1). From the exact sequence (36), it follows that $F_{v} / \pi\left(E_{v}\right) \simeq H^{1}\left(k_{v}, Z_{v}\right)$ for all places v of k. Thus it suffices to show that $F_{0_{v}} \cdot \pi\left(E_{v}\right) / \pi\left(E_{v}\right)$ is isomorphic to $H^{1}\left(\mathrm{o}_{v}, Z_{v}\right)$ for almost all v.

Consider the set of finite places v of k which are unramified in the finite Galois extension K, and which do not divide the order of Z. Then it is easily seen that Z is unramified over places of this set, and that almost all places of k are contained in this set. For a place v of this set, we have

$$
\begin{equation*}
F_{\circ_{v}} \cdot \pi\left(E_{v}\right) / \pi\left(E_{v}\right) \simeq F_{\circ_{v}} / F_{\circ_{v}} \cap \pi\left(E_{v}\right) \simeq F_{\circ_{v}} / \pi\left(E_{\circ_{v}}\right) \simeq T_{\circ_{v}} / \pi\left(\widetilde{T}_{\circ_{v}}\right) . \tag{39}
\end{equation*}
$$

(See [10], Theorem 3 and its proof). Let $k_{v}(n r)$ be the maximal unramified extension of k_{v}, and \mathfrak{a}_{v} be its Galois group over k_{v}. We denote by U the unit group of $k_{v}(n r)$, and by $T_{v}(U)$ the group of all $k_{v}(n r)$-rational points of T whose coordinates are contained in U. Then we have the following exact sequence of \mathfrak{a}_{v}-modules:

$$
\begin{equation*}
0 \longrightarrow Z_{v} \longrightarrow \widetilde{T}_{v}(U) \xrightarrow{\pi} T_{v}(U) \longrightarrow 0 . \tag{40}
\end{equation*}
$$

The surjectivity of π comes from the following fact: If v does not divide a natural number e, then the sequence

$$
\begin{equation*}
0 \longrightarrow \mu_{e} \longrightarrow U \xrightarrow{e} U \longrightarrow 0 \tag{41}
\end{equation*}
$$

is exact, where $e(x)=x^{e}$ for $x \in U$. From the theorem of Nakayama [4], Theorem 2, considering the derived cohomology sequence of (40), it follows that

$$
\begin{equation*}
0 \longrightarrow Z_{v}^{a_{v}} \longrightarrow \tilde{T}_{\nu_{v}} \xrightarrow{\pi} T_{\nu_{v}} \longrightarrow H^{1}\left(\mathfrak{a}_{v}, Z_{v}\right) \longrightarrow 0 \tag{42}
\end{equation*}
$$

(See also [5], footnotes 10 and 11 in p. 118). From the definition, $H^{1}\left(\mathfrak{a}_{v}, Z_{v}\right)$ is equal to $H^{1}\left(\mathfrak{o}_{v}, Z_{v}\right)$ (cf. §4). Thus our theorem is proved.

Remark. The references are made only for non-split quasi-split groups. The corresponding results for split groups have been proved in [9].

Corollary. Under the isomorphism (37), the subgroup $F_{k} \cdot\left[F_{A}, F_{A}\right] /\left[F_{A}, F_{A}\right]$ is mapped onto the subgroup $\rho_{1}\left(H^{1}(k, Z)\right)$, where ρ_{1} is the mapping defined in (31).

Proof. Because of the sequence (36), this corollary is clear.
THEOREM 4. Let F be a quasi-split simple algebraic group over an algebraic number field k, and Z be its fundamental group. We denote by $\Phi_{k}(F)$ the group of all class characters of F. Then we have

$$
\begin{equation*}
\Phi_{k}(F) \simeq H^{1}\left(k, Z^{\prime}\right) \tag{43}
\end{equation*}
$$

where $Z^{\prime}=\operatorname{Hom}\left(Z, G_{m}\right)$.
Proof. We denote by $X\left(F_{A}\right)$ the group of all continuous representations of F_{A} into $\boldsymbol{R} / \boldsymbol{Z}$. Then $X\left(F_{A}\right)$ is the dual group of $F_{A} /\left[F_{A}, F_{A}\right]$. From Theorem

3, this dual group is isomorphic to $P^{1}(k, Z)^{*} \simeq P^{1}\left(k, Z^{\prime}\right)$. A class character of F is a character of F_{A} which annihilates $F_{k} \cdot\left[F_{A}, F_{A}\right]$. From the Corollary to Theorem 3, it follows that $\Phi_{k}(F)$ is isomorphic to the annihilator of $\rho_{1}\left(H^{1}(k, Z)\right)$. Thus the theorem follows from the theorem 2 in $\S 4$. (q.e.d.)

§ 6. Dihedral extensions.

Let k be a field of characteristic zero, and K be its quadratic extension. We denote by g the Galois group of \bar{k} over k, and by \mathfrak{G} the Galois group of \bar{k} over K. We investigate the group $\Delta(e)=\Delta_{K / k}(e)$ which is the kernel of the corestriction map c of $\operatorname{Hom}\left(\mathfrak{h}, \boldsymbol{Z}_{e}\right)$ into $\operatorname{Hom}\left(g, \boldsymbol{Z}_{e}\right)$. At first, we know that $H^{1}\left(\mathfrak{h}, Z_{e}\right) \simeq H^{1}\left(\mathrm{~g}, \Lambda \otimes \boldsymbol{Z}_{e}\right)$, where Λ is the g-module relative to K defined in (4). We make the explicit correspondence between these groups. For an element φ of $H^{1}\left(\mathfrak{h}, \boldsymbol{Z}_{e}\right)=\operatorname{Hom}\left(\mathfrak{h}, \boldsymbol{Z}_{e}\right)$, we put

$$
\left\{\begin{array} { l }
{ \varphi _ { 1 } (S) = \varphi (S) } \tag{44}\\
{ \varphi _ { 1 } (\sigma S) = \varphi (\sigma S \sigma) , }
\end{array} \quad \left\{\begin{array}{l}
\varphi_{2}(S)=\sigma \varphi\left(\sigma^{-1} S \sigma\right) \\
\varphi_{2}(\sigma S)=\sigma \varphi(S)
\end{array}\right.\right.
$$

where $S \in \mathfrak{h}$, and σ is a fixed element of $\mathfrak{g}-\mathfrak{h}$, and $\sigma \varphi(S)=\sigma(\varphi(S)$), for example. So we have $\varphi_{2}(S)=\varphi\left(\sigma^{-1} S \sigma\right)$ and $\varphi_{2}(\sigma S)=\varphi(S)$ in our case. Then $a_{1} \otimes \varphi_{1}(X)$ $+a_{2} \otimes \varphi_{2}(X)$ with $X \in \mathrm{~g}$ is 1 -cocycle of g into $\Lambda \otimes \boldsymbol{Z}_{e}$, where a_{1} and a_{2} are the canonical base of Λ. The inverse correspondence is given by the restriction of φ_{1} to \mathfrak{h}. The corestriction map c of $\operatorname{Hom}\left(\mathfrak{h}, \boldsymbol{Z}_{e}\right)$ into $\operatorname{Hom}\left(\mathrm{g}, \boldsymbol{Z}_{e}\right)$ is given by $c(\varphi)(X)=\varphi_{1}(X)+\varphi_{2}(X)$. Thus $c(\varphi)=0$ means that

$$
\left\{\begin{array}{l}
\varphi(S)+\varphi\left(\sigma^{-1} S \sigma\right)=0 \tag{45}\\
\varphi(\sigma S \sigma)+\varphi(S)=0 .
\end{array}\right.
$$

This condition is equivalent to

$$
\left\{\begin{array}{l}
\varphi\left(\sigma^{-1} S \sigma\right)=-\varphi(S) \tag{46}\\
\varphi\left(\sigma^{2}\right)=0 .
\end{array}\right.
$$

We denote by b the closed subgroup of \mathfrak{h} generated by $[\mathfrak{h}, \mathfrak{h}]$ and τ^{2} ($\tau \in \mathrm{g}-\mathfrak{h}$). Clearly d is a normal subgroup of g . It is easy to see that, for an element φ of $\operatorname{Hom}\left(\mathfrak{h}, \boldsymbol{Z}_{e}\right)$, the condition $c(\varphi)=0$ is equivalent to the condition $\operatorname{ker} \varphi \supset \mathfrak{b}$.

For an element $\varphi \in \Delta(e)$, we denote by \mathfrak{n} the kernel of φ, and by N the extension of K corresponding to \mathfrak{n}. Clearly \mathfrak{n} is a normal subgroup of g.

Proposition 4. We put $G=\mathfrak{g} / \mathfrak{n}$ and $H=\mathfrak{h} / \mathfrak{n}$. Then G is a dihedral group of degree f with the canonical cyclic subgroup H, where $f=[N: K]$ is the order of H which is equal to that of the image of φ.

Proof. From the first equation of (46), the operation of G on H is clearly
that of the dihedral groups. As τ^{2} is contained in $\mathfrak{b} \subset \mathfrak{n}$ for $\tau \in \mathfrak{g}-\mathfrak{h}$, the elements of $G-H$ are of order two. This shows that G is a dihedral group. (q.e.d.)

Definition 2. We call an element φ of $\Delta(e)$ a dihedral character of \mathfrak{h}. Let N be the extension of K corresponding to $\mathfrak{n}=\operatorname{ker} \varphi$. We call N a dihedral extension of k of degree f relative to K, where $f=[N: K]$.

Now we will prove (25)'. That is
Proposition 5. Let C be the g-module relative to K defined in (5). If e is an even number, we have

$$
\begin{equation*}
H^{1}\left(\mathrm{~g}, C \otimes \boldsymbol{Z}_{e}\right) \simeq \boldsymbol{Z}_{2} \times \Delta(e) \quad(\text { direct product }) \tag{25}
\end{equation*}
$$

But this decomposition is not a canonical one.
Proof. We put $b=a_{2}-a_{1}$ which is the canonical base of C, where a_{1} and a_{2} are the canonical base of Λ. Thus $C \otimes Z_{e}=\left\{b \otimes \alpha: \alpha \in Z_{e}\right\}$. We denote by λ the canonical generator of Z_{e}. Note that we use the additive notation in \boldsymbol{Z}_{e}. Let $g_{s}=b \otimes \alpha_{s}$ be a 1-cocycle of g into $C \otimes \boldsymbol{Z}_{e}$. From the cocycle condition $g_{s t}=s g_{t}+g_{s}$, it follows that

$$
\begin{cases}\alpha_{s t}=\alpha_{s}+\alpha_{t}: & s \in \mathfrak{h} \tag{47}\\ \alpha_{s t}=\alpha_{s}-\alpha_{t}: & s \notin \mathfrak{G} .\end{cases}
$$

Denoting by φ the restriction of α to \mathfrak{h}, we can see that φ is a dihedral character. Conversely for a dihedral character φ in $\Delta(e)$, we put $\alpha_{S}=\varphi(S)$ and $\alpha_{S \sigma}=\varphi(S)$ for $S \in \mathfrak{h}$, where σ is a fixed element of $g-\mathfrak{h}$. It is easy to see that $g_{s}=b \otimes \alpha_{s}$ is a 1 -cocycle of g into $C \otimes \boldsymbol{Z}_{e}$. This map gives a crosssection of $\Delta(e)$ into $H^{1}\left(\mathrm{~g}, C \otimes \boldsymbol{Z}_{e}\right)$ in the sequence (25). Note that this crosssection depends on the choice of σ.

Now we put

$$
\left\{\begin{array}{l}
\alpha_{S}=0 \tag{48}\\
\alpha_{S o}=\lambda
\end{array}\right.
$$

for $S \in \mathfrak{h}$. Then $g_{s}=b \otimes \alpha_{s}$ is a 1 -cocycle of g into $C \otimes Z_{e}$ which is non-trivial because of the assumption that e is even. We denote by ω the element of $H^{1}\left(\mathrm{~g}, C \otimes Z_{e}\right)$ corresponding to this cocycle. Clearly the order of ω is two. The subgroup $\langle 0, \omega\rangle$ of $H^{1}\left(g, C \otimes \boldsymbol{Z}_{e}\right)$ is the canonical image of \boldsymbol{Z}_{2} in the sequence (25). This proves the proposition.

Remark. Two elements σ and τ in $g-h$ give the same direct decomposition if and only if $\sigma \tau^{-1} \in \mathfrak{H}_{2}$, where \mathfrak{h}_{2} is the subgroup of \mathfrak{h} generated by S^{2} with $S \in \mathfrak{h}$. Clearly \mathfrak{h}_{2} is a normal subgroup of g.

Now we suppose that the base field k is a p-adic field, and that K is a quadratic extension of k. From the local class field theory, it follows that $k^{\times} / N K^{\times} \simeq Z_{2}$. Thus the sequence (21) becomes

$$
\begin{equation*}
0 \longrightarrow D(e) \longrightarrow H^{1}\left(k, C \otimes \mu_{e}\right) \longrightarrow \boldsymbol{Z}_{2} \longrightarrow 0 . \tag{49}
\end{equation*}
$$

From the local duality theorem of Tate, we know that $H^{1}\left(k, C \otimes \mu_{e}\right) \simeq$ $H^{1}\left(k, C \otimes \boldsymbol{Z}_{e}\right)^{*}$. Moreover, we have

Theorem 5. Let k be a \mathfrak{p}-adic field, and K be its quadratic extension. We suppose that e is an even number. The annihilator of $D(e)$ in $H^{1}\left(k, C \otimes \mu_{e}\right)$ is exactly the subgroup $\langle 0, \omega\rangle$ of $H^{1}\left(k, C \otimes \boldsymbol{Z}_{e}\right)$, where ω is the element defined in (48). It follows that

$$
\begin{equation*}
\Delta(e)^{*} \simeq D(e) \tag{50}
\end{equation*}
$$

and this isomorphism is defined in a canonical way.
Proof. It is known from the duality theorems of Pontrjagin that the order of the annihilator of $D(e)$ is two. Thus it suffices to show that ω is contained in this annihilator. The pairing between $H^{1}\left(k, C \otimes \mu_{e}\right)$ and $H^{1}(k$, $C \otimes \boldsymbol{Z}_{e}$) is given by "cup-product". An element x of $D\left(K^{\times}\right)$gives 1-cocycle $\xi_{s}=b \otimes y-s(b \otimes y)$ of g into $C \otimes \mu_{e}$, where y is an element of $M=\bar{k}^{\times}$such that $x=y^{e}$. These 1 -cocycles generate the subgroup $D(e)$. Clearly $\xi_{s}=b \otimes\left(y \cdot s\left(y^{-1}\right)\right)$ if $s \in \mathfrak{h}$, and $\xi_{s}=b \otimes(y \cdot s(y))$ if $s \notin \mathfrak{h}$. Note that we use the multiplicative notation in μ_{e}. Cup-product $\omega \cup \xi$ of ξ and ω is given by

$$
(\omega \cup \xi)_{s, t}=\omega_{s}\left(s \xi_{t}\right)= \begin{cases}1 & : \tag{51}\\ s\left(y^{-1}\right) \cdot s t(y) & : \\ (s \in \mathfrak{h}, t \in \mathfrak{h}, \\ (y) \cdot s t(y))^{-1}: & s, t \notin \mathfrak{h} .\end{cases}
$$

Note that λ is the canonical generator of $\boldsymbol{Z}_{e}=\mu_{e}^{\prime}$. This is a 2-cocycle of g into μ_{e}. It suffices to show that this 2-cocycle is split in $H^{2}(\mathrm{~g}, M)$, because $H^{2}\left(\mathrm{~g}, \mu_{e}\right)$ is mapped into $H^{2}(g, M)$ injectively. We put

$$
z_{s}= \begin{cases}y_{1} \cdot s\left(y_{1}^{-1}\right): & s \in \mathfrak{H}, \\ y_{1} \cdot s\left(y_{1}\right): & s \notin \mathfrak{h},\end{cases}
$$

where y_{1} is an element of M such that $y_{1}^{2}=y$. Then it is easy to show that $(\omega \cup \xi)_{s, t} \cdot(\delta z)_{s, t}=1$, where δz means the coboundary of 1 -cochain z. This proves the first statement of the theorem. The rest is clear because of the Pontrjagin duality.
(q.e.d.)

Remark 1. The formula (50) holds also if e is an odd number.
Remark 2. The formula (50) holds trivially for the real number field with respect to the complex number field, because $\Delta(e)=0$ and $D(e)=0$, in our case.

§ 7. Class number.

Let k be an algebraic number field, and K be its finite extension. We denote by g the Galois group of \bar{k} over k, and by \mathfrak{G} the Galois group of \bar{k} over K. We want to calculate the class number for a quasi-split simple group F defined over k (cf. § 1).

In view of Theorem 3 and Theorem 4, we define a class number for $P^{1}(k, Z)$ (with respect to some finite set S of places of k), where Z is a finite g -module. We assume that the Hasse principle holds for Z. That is, the map ρ_{2} relative to Z in (31) is injective. From Tate's exact sequence, it follows that the map ρ_{1}^{\prime} of $H^{1}\left(k, Z^{\prime}\right)$ into $P^{1}\left(k, Z^{\prime}\right)$ is injective, and that the annihilator of $\rho_{1}\left(H^{1}(k, Z)\right.$) is exactly $H^{1}\left(k, Z^{\prime}\right)$ (cf. Theorem 2).

Definition 3. Let S be a finite set of places of k containing all infinite places and all places over which Z or Z^{\prime} is ramified (cf. §4). Putting

$$
\begin{align*}
& C l_{Z}(S)=\left\{\chi \in H^{1}\left(k, Z^{\prime}\right): \chi_{v}=0 \text { for all } v \in S\right. \tag{52}\\
& \left.\quad \text { and } \chi_{v} \in H^{1}\left(\mathfrak{o}_{v}, Z_{v}^{\prime}\right) \text { for other } v\right\}
\end{align*}
$$

where χ_{v} denotes the canonical image of χ in $H^{1}\left(k_{v}, Z_{v}^{\prime}\right)$, we denote by $h_{z}(S)$ the cardinality of $C l_{z}(S)$, and we call $h_{z}(S)$ the class number of Z relative to S.

We can apply this class number to calculate the class number of a lattice in its genus for a quasi-split simple group defined over k with some modifications.

We calculate the class numbers for the finite g-modules $Z=\mu_{e},{ }^{2} C \otimes \mu_{e}$ and ${ }^{3} C \otimes \mu_{2}$, and we denote these class numbers by $h_{1}(e, S), h_{2}(e, S)$ and $h_{3}(2, S)$, respectively. Note that, if $Z=\Lambda \otimes \mu_{e}$, where Λ is the g-module relative to K defined in (4), the problem is reduced to the case where the base field is K.

Case $h_{1}(e, S)$: We denote by $k(e)$ the composite of all cyclic extensions of k of degree f, where f is a divisor of e. We also denote by $L(S)$ the maximal unramified abelian extension of k in which the places in S decompose completely. Putting $L(e, S)=k(e) \cap L(S)$, we have the following proposition (cf. [9] Theorem 2) :

Proposition 6. The notations being as above, we have

$$
\begin{equation*}
h_{1}(e, S)=[L(e, S): k] . \tag{53}
\end{equation*}
$$

Proof. In our case, we have $H^{1}\left(k, Z^{\prime}\right)=\operatorname{Hom}\left(\mathrm{g}, \boldsymbol{Z}_{e}\right)$. For an element χ of $C l_{1}(e, S)$ (the class group for $Z=\mu_{e}$), we denote by N_{χ} the cyclic extension of k corresponding to the kernel of χ. From the class field theory, it follows that the composite of all N_{χ} with $\chi \in C l_{1}(e, S)$ is equal to $L(e, S)$, and that the Galois group of $L(e, S)$ over k is isomorphic to $C l_{1}(e, S)$. Thus (53) is proved.
(q. e. d.)

Case $h_{2}(e, S)$: We denote by \bar{S} the set of all places above S in K. We denote by $\mathfrak{f}(e)$ the composite of all dihedral extensions of k of degree f, where f is a divisor of e. We also denote by $M(S)$ the maximal unramified abelian extension of K in which all places of K in \bar{S} decompose completely. We put $M(e, S)=f(e) \cap M(S)$. Then $M(e, S)$ is a generalized dihedral extension of k, that is, a composite of dihedral extensions of k relative to K.

Proposition 7. The notations being as above:
(i) If e is odd, we have

$$
\begin{equation*}
h_{2}(e, S)=[M(e, S): K] . \tag{54}
\end{equation*}
$$

(ii) If e is even, we have

$$
\begin{equation*}
h_{2}(e, S) \leqq[M(e, S): K] . \tag{55}
\end{equation*}
$$

Proof. If e is odd, we have $H^{1}\left(k, Z^{\prime}\right) \simeq \Delta(e)$ (See Proposition 2). For an element of $\Delta(e)$, there corresponds a dihedral extension ${ }^{\text {Fof } k}$ (See Proposition 4). Thus the proof of (54) is similar to that of (53). If e is even, then we have the following exact sequence:

$$
0 \longrightarrow Z_{2} \longrightarrow H^{1}\left(k, Z^{\prime}\right) \xrightarrow{i} \Delta(e) \longrightarrow 0
$$

(See (25)). Thus, for an element $\varphi \in \Delta(e)$, there exist exactly two elements χ and χ_{1} of $H^{1}\left(k, Z^{\prime}\right)$ such that $i(\chi)=i\left(\chi_{1}\right)=\varphi$. Their difference $\chi-\chi_{1}$ is the element ω defined in (48). For a place v of $k, \omega_{v}=0$ if v decomposes in K, and ω_{v} is the corresponding element in $H^{1}\left(k_{v}, C_{v} \otimes Z_{e}\right)$ if v does not decompose. We fix a place v of k which is not contained in S. It is easy to see that ω_{v} is contained in $H^{1}\left(\mathfrak{p}_{v}, Z_{v}^{\prime}\right)$, and that $\chi_{v} \in H^{1}\left(\mathfrak{p}_{v}, Z_{v}^{\prime}\right)$ iffand only if $\left(\chi_{1}\right)_{v} \in H^{1}\left(\mathfrak{p}_{v}, Z_{v}^{\prime}\right)$. For example, use the Inflation-Restriction sequence. When v does not decompose we denote by $\Delta_{o_{v}}(e)$ the image $i_{v}\left(H^{1}\left(\rho_{v}, Z_{v}^{\prime}\right)\right)$ which is the kernel of the corestriction map of $H^{1}\left(\mathfrak{D}_{V}, \boldsymbol{Z}_{e}\right)$ into $H^{1}\left(\mathfrak{D}_{v}, \boldsymbol{Z}_{e}\right)$, where \mathfrak{D}_{V} is the integer ring of K_{V}. When v decomposes, we denote also by $\Delta_{\mathrm{o} v}(e)$ the group $H^{1}\left(\mathfrak{o}_{v}, Z_{v}^{\prime}\right)$. For $\Delta(e)$, we put

$$
C_{2}^{0}(e, S)=\left\{\varphi \in \Delta(e): \varphi_{v}=0 \text { for all } v \in S \text { and } \varphi_{v} \in \Delta_{\text {ov }}(e) \text { for other } v\right\} .
$$

Then the cardinality $h_{2}^{0}(e, S)$ of $C l_{2}^{0}(e, S)$ is equal to $[M(e, S): K]$ as in the case (54). If $\varphi_{v}=0$, then one of χ_{v} and $\left(\chi_{1}\right)_{v}$ is zero, and the other is equal to ω_{v}. Thus we have $h_{2}(e, S) \leqq h_{2}^{0}(e, S)$. This proves (55). (q. e.d.)

Remark. In general, we can not expect the equality in the inequality (55). For example, put $e=2$. Then $\mu_{2} \simeq C \otimes \mu_{2}$, and we have $h_{1}(e, S)=h_{2}(2, S)$. But, in general, $h_{2}^{0}(2, S)$ is not equal to $h_{1}(2, S)$.

Case $h_{3}(2, e)$: Let K be a cubic extension of k, and ${ }^{3} C$ be the g-module relative to K defined in (5). We denote by \bar{S} the set of all places above S in K. As in Proposition 2, we can see that $H^{1}\left(k,{ }^{3} C \otimes \boldsymbol{Z}_{2}\right)$ is equal to the
kernel of the corestriction map of $H^{1}\left(\mathfrak{h}, Z_{2}\right)$ into $H^{1}\left(\mathfrak{g}, Z_{2}\right)$. We denote this kernel by ${ }^{3} \Delta(2)$. We put $C l_{3}(2, S)=\left\{\chi \in{ }^{3} \Delta(2): \chi_{v}=0\right.$ for all $v \in S$ and $\chi_{v} \in$ $H^{1}\left(\mathfrak{o}_{v}, Z^{\prime}\right)$ for other $\left.v\right\}$. For an element $\chi \in C l_{8}(2, S)$, we denote by N_{χ} the extension of K corresponding to the kernel of χ. It is clear that, if χ is not zero, N_{χ} is an unramified quadratic extension in which the place of \bar{S} decomposes (completely). Denoting by $N(S)$ the composite of all N_{x} with $\chi \in C l_{3}(2, S)$, we have

$$
\begin{equation*}
h_{s}(2, S)=[N(S): K] . \tag{56}
\end{equation*}
$$

Clearly, $h_{8}(2, S)$ is a power of 2.
I have no idea to characterize the quadratic extension N_{χ} of K, or the extension $N(S)$ of K.

College of General Education University of Tokyo

References

[1] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Congress, Stockholm, 1962, 288-295.
[2] E. Artin and J. Tate, Class field theory, Harvard, 1961.
[3] M. Kneser, Strong approximation, Algebraic groups and discontinuous subgroups, Proc. of Symp. in pure Math., Amer. Math. Soc., IX (1966), Part II, 187-196.
[4] T. Nakayama, Cohomology of class field theory and tensor product modules, I, Ann. of Math., 65 (1957), 255-267.
[5] T. Ono, Arithmetic of algebraic tori, Ann. of Math., 74 (1961), 101-139.
[6] T. Ono, On the relative theory of Tamagawa numbers, Ann. of Math., 82 (1965), 88-111.
[7] I. Satake, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math., 117 (1967), 215-279.
[8] J.-P. Serre, Cohomologie galoisienne, Lecture notes in Math., 5 (1965), SpringerVerlag.
[9] T. Tasaka, Sur les groupes algébriques semi-simples déployés, J. Math. Soc. Japan, 20 (1968), 390-399.
[10] T. Tasaka, On the quasi-split simple algebraic groups defined over an algebraic number field, J. Fac. Sci. Univ. Tokyo Sect. I, 15 (1968), 147-168.
[11] T. Tasaka, On the second cohomology groups of the fundamental group of simple algebraic groups over perfect field, J. Math. Soc. Japan, 21 (1969), 244-258.

[^0]: *) In T. Ono [6], 3.2, an equivalent assertion that $i^{1}(\hat{M})=1$ in the notation of [6] was proved. So the proof of Theorem 2 is an alternative one.

