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§ 0. Introduction.

This paper is a continuation of my previous papers and [10]. Using
the duality theorems of Tate [1], we simplify the results in and [10].
Our main tools are the auxiliary g-modules defined in [11]. Then our main
results become mere applications of the duality theorems of Tate to the
fundamental groups of simple algebraic groups. The g(k/k)-module structures.
of the fundamental groups and their Galois cohomology over an algebraic
number field % are already treated in Ono’s [6] which is mainly concerned
with the relative Tamagawa number of algebraic groups.

Let F be a quasi-split simple algebraic group defined over an algebraic
number field 2, and Z be the fundamental group of F' (in the sense of algebraic
groups) which is a finite g-module. Note that we denote by g the Galois
group of an algebraic closure £ of £ over k. We denote by F, the adele
group of F over k. It is shown in [9] and that Fy-[F4, F4] is closed
in F,, where [F,, F,] is the commutator subgroup of F,, and that the quotient
group A (F)=F,/F,-[Fa, F,] is a totally disconnected compact group. In
this paper, we consider the dual group @.(F) of A(F) in the sense of Pontr-
jagin, and show that

O,(F)=Hg, Z'),

where Z’=Hom (Z, G,.) (See Theorem 4). This is our main theorem.

In § 2, we investigate the g-module structure of the fundamental group
Z, using the auxiliary g-modules defined in (4) and (5). In §3, we consider
their cohomology groups. In §4, we give an alternative proof of the Hasse
principle to the fundamental group Z (Theorem 2) (cf. [6], p. 106-107). In §5,
we prove our main theorems (Theorem 3 and Theorem 4). In §6, we inves-
tigate more explicit structure of H(g, Z’) for some cases. In §7, we apply
our main theorems to calculate the class number of a lattice in its genus.

Some special notations.

We denote by g, the group of e-th roots of unity in E which has a natural
g-module structure, and by Z, the cyclic group of order e on which g operates



Character groups 251

trivially. For a locally compact abelian group G, we denote by G* the dual
group of G in the sense of Pontrjagin. For a field 2, we denote by £k* the
multiplicative group £—{0} of %k, and by (k*)° the subgroup of k2 generated
by x° where x is contained in &*.

§1. Preliminaries.

Let F be a linear algebraic group defined over an algebraic number field
k. The adele group F, of F over k% is, by definition, a restricted direct
product of F,, where v runs the set of all places of 2 and F, denotes Fy,.
We call a class character of F over k a continuous representation of F, into
R/Z which is trivial on F;,. We denote by @,(F) the group of all class char-
acters of F over k. Thus, if we put By(F)=F,/F; [ Fa4, F4], where [F,, F,]
is the commutator subgroup of F,, then @.(F) is the dual group of Bk(F) in
the sense of Pontrjagin.

We assume that F is contained in GL(V), where V is a finite dimensional
vector space defined over k. We assume also that the canonical injection of
F into GL(V) is defined over k. A lattice L in V is a finitely generated
o-module which spans V, over %, where o is the ring of integers of .. For
a finite place v=9p, we put Ly=oy - L, where 0y, is the ring of p-adic integers
in ky. Then L, is an oy-lattice in Vy,. Put Fy(l)={ge Fy: gly=L,}. Then
Fy(L) is an open compact subgroup of F,. We fix a finite set S of places of
k containing the set S, of all infinite places of 2. We put

@® FA(S,L)ZIIFvX HFv(L)-
vES veEES

DEFINITION 1. For a class character X € @,(F), we define a symbol {(X)
which will be called the conductor of X. For a lattice L in V, and a finite
set S of places of k, we define a symbol (S, L). We define that

2 X)) DS, L)
means that X is trivial on F,es,,, and we say that the conductor j(X) of X%

contains (S, L).
We put

3 Clpe(S, )= {X € ®(F): 1) Di(S, L)} .
We call the class number of the lattice L relative to S the order Ax(S, L) of

Clp(S, L) which may be infinite. M. Kneser has shown that, if F is semi-
simple (and has no simple factors of certain type of E;) and Fg= HSF” is not

compact, then 2z(S, L) is finite and equal to the number of double cosets in
F\F4/F 4,1y, and that this number is also equal to the class number of the
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genus of the lattice L if S=S. (). If F is the multiplicative group G,, of
the universal domain of k&, then hg(S., L) is equal to the class number of the
field k£, where L is a canonical lattice. If F is the additive group G, of the
universal domain, then By(G,)=(G.)4/(G,)=k4/k is a compact group. It is
easy to see that @,(G,) = k. By the strong approximation theorem, we have
h(S, L)y=1 for any non-empty set S and any lattice L.

In this paper, we concern ourselves mainly with the quasi-split simple
algebraic groups. In this paper, simple group means the algebraic group
defined over k which is simple over the algebraic closure 2 of £, and which
may have non-trivial center (of course, whose order is finite).

§2. g-module structures of the fundamental groups of simple algebraic
groups.

Let £ be a field of characteristic zero, and K be a finite extension of %
of degree d, and & be an algebraic closure of k. We denote by g the Galois
group of £ over k, and by ) that of £ over K. Clearly g has the Krull topo-
logy, and Y is an open subgroup of g in this topology.

We consider three auxiliary g-modules defined in the following way (cf.

n°l);

@ A=Zle/8]= 3 Za,,

c
) 0—>C—>A—>Z—>0
©6) 0——>Zu—r——>/1———->R_>0

where a;=gf is the coset of g; modulo §, and the map ¢ is such that
(2 pia)=>p;, and u=3 a;, and r is the canonical injection and R=A4/r(Z- u).
Thus Z-u=Z as g-modules. These modules 4, C and R are Z-free g-modules
whose ranks over Z are d, d—1 and d—1, respectively. It is known that, for
any g-module M, wc have

) Hi'(g, AQM)=H'(®G, M), (z1.

Tensoring (5) and (6) by M, we have the following exact sequences:

c®1
® 0—CQM — ARQM — M —0,
r®1
® 0—M~—AQM—RQQM—0.

In the derived cohomology sequences, through the identifications (7), c®1
induces the corestriction map of H(j, M) into Hi(g, M), and r®1 induces the
restriction map of H(g, M) into H'(h, M) (See n°l).
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Sometimes, we denote C and R by ¢C and %R, respectively, to emphasize the ™}
degree d of the extension K of k. It is easy to see that C=~ R as g-modules
if K is a cyclic extension of k.

Let F, be an algebraic group defined over 2 which is simple over 2. Let
E, be a universal covering group of F,, and =, be the covering isogeny of FE,
onto F,. We may suppose that these are both defined over 2. We call the
fundamental group of F, the kernel Z, of =; which is contained in the center
of E,. When the fundamental group of F, coincides the center of E,, we call
F, the adjoint group. It is known that F, is an inner twist of certain quasi-
split group F defined over k. So the fundamental group Z, of F, is g-iso-
morphic' to that of F. Thus the problem is reduced to the problem to
determine the g-module structure of the center of simply connected quasi-split
group and to determine the g-submodules of this center. We express the
g-module structures of these centers using the auxiliary g-modules defined
above. Then it becomes easy to describe their cohomology groups.

Let F be a quasi-split simple group defined over %2 which is of adjoint
type. Then there exists a unique finite Galois extension K of % such that F
is quasi-split over £ with respect to K (See n°l). We denote the type
of F by ¢X,, where d=[K:k] and X, is the type of F over the universal
domain of 2. Let E be a universal covering of F, and n be the covering
isogeny of E onto F. We assume that these are defined over 2. Then the
kernel of = is the center Z of E which is a finite g-module.

According to Tate [1], we put A’=Hom (4, G), for a finite g-module A.
Clearly (A’ = A as g-modules. For example, if we put A= g, (the group of
e-th root of the unity in G,), then A’ = Z, (the cyclic group of order e on
which g operates trivially).

LEMMA 1. Let k be a field of characteristic zero, and K be its finite ex-
tension. Let g be the Galois group of k over k, and Y) be that of E over K.
We define g-modules A, C and R as in (4), (5) and (6). For a finite g-module
A, we have

10) (ARQAY =AR A,
11) (CRAY=RRA’

where tensor products are taken over Z.

PROOF. For a Z-free g-module Y whose rank over Z is finite, we put
Y°=Hom (Y, Z). It suffices"to show that
12) TYRA=Y'®R4,

because, in our case, we have A°= A4 and C°= R ([11]). The proof of (12)
can be done by straightforward computations. (q.e.d)
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THEOREM 1. Let Z be the fundamental group of an adjoint group F definea
over a field B which is simple over k. For the g-module structures of Z and Z/,
we have the following table:

‘X, : Z Y4
IA" : Hns1 Zn+1
21471. : 2C® ﬂn-kl 2C® Zn+1
B,, Cy: He Z,
1l)Zm : P2 X MLy Z, X Z,
*Dom AQ p, NQZ,
1D2m+1 : Ha Z,
*Dymas : CQR s CRZ,
IEG : M3 Z3
’E, : 2CRus CRZ,
E, : 7R Z,

Ey F,, G,: trivial
3D, : CR u, ICRZ,
*D, : C,QRQu, C,RZ,

where C, and R, are the g-modules defined in (5) and (6) relative to a cubic
extension L of k which is contained in the Galois extension K of k whose Galois
group 1s the symmetric group on three letters.

Of course, we have pu,~ Z, as g-modules. Note also that, in the case °D,,

we have
R QQu,=CiQu,.

PrROOF. Let A be a maximal k-trivial torus of F. Then T=Z(A) is a
maximal torus of F defined over 2 ([10]). Let A and T be the corresponding
tori of E. Then T contains the center Z of E, and the kernel of the restric-
tion of = to T is equal to Z. If [K:k]=1, that is, F is a split group defined
over k, the results are clear. We restrict ourselves to the case ®D,. The
others can be proved also in the similar way. For example, in the case %24,
(see [7], p. 245).

In the case ®*D,, we have T =T =~ Ry, (G,)XG, where K is a cyclic ex-
tension of degree 3 ([10]). The covering isogeny =z is given by

n(tly tz: fz» .t=2) == (t? ° (thZTZ)_lJ tg. * ti_lr t-g ° tl—lﬁ 7: : tl_l) ]

where t, € G,, and (t,,1,, t:)eRK,k(Gm). So the kernel of = consists of the
elements (ty, t,, I, 1,), where 3, =1, t,=+1, f,==+1,f,=+1, and ¢,-F,-f,=1.
Then it is easy to see that the kernel of = and 3CQ p, are isomorphic g-
modules. (q.e.d))
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Now it is easy to determine the g-submodules of Z. Except the case
14,, *A,, ‘D, and %D,, there are no proper g-submodules of Z.

In the case 'A,, the g-submodules of Z are p,, where ¢ divides n+1. In
the case ?A,, the g-submodules of Z are *CQ y., where e divides n+41. In the
case 'D,,.;, there are three proper g-submodules which are isomorphic to y,,
and the special orthogonal group corresponds to one of them. In the case
2Dom+1s *Dom and 2D,,,, there is only one proper g-submodule which is iso-
morphic to g,.

§ 3. Determination of H(k, Z) and H?*(, Z).
Let Z=y, be the group of e-th roots of the unity in G,. Putting
M=F*=(G,)%, we have the following exact sequence

e
13) 0—> ptg—> M—> M—>0

where e(x)=x° Considering the derived cohomology sequence, we have, by
the theorem 90 of Hilbert,

14 H(k, pe) = k" /(R)°,
(15) H¥k, p)={a € B(k): ea =0}

where B(k) is the Brauer group of 2. Note that we use the notations H(k, Z)
= H¥g, Z), etc.

Let K be a quadratic extension of k.. Tensoring by C=2C, we have

e
0—CRQUe—CRQIM —>CRM—0.
We know that

(16) H%g, CQM)=DEK*)={xeK*: Nx=1}
a7 H'(g, CQ M)=k*/NK*
18 H*g, CQM)={f e BK): c(pf)=0}

where N is the norm map of K* into k%, and ¢ is the corestriction map of
B(K) into B(k) (See [11] n°2). So the derived cohomology sequence becomes

e
0 — HY(CR pe) —> D(K*) —> D(K ™)

e*

—> H(C® pe) —> k*/NK* —> k*/NK *

e
—> H¥(CQ pe) —> HH(CR M) —> H(CQRQM).

It is easy to see that e* is the identity map if ¢ is odd, and that e* is zero-
map if ¢ is even. We denote by Dg,(e) the quotient group D(K*)/D(K *)e.



256 T. TASAKA

Sometimes we denote this group by D,(e) or D(¢). Thus we have
PROPOSITION 1. Let K be a quadratic extension of k, and C be the g-modules
defined in (5). Let p, be the group of e-th roots of unity.
(i) If e is odd, we have

(19) H'(k, C® ) = Dle)

20) H(k, CQp) = (B BK): ef=0, c(8)=0}.
(ii) If e is even, we have

1) 0— D(e) —> H'(k, CQ pte) —> k*/NK* —> 0

22) 0 —> k*/NK* —> H*k, CQu) — Q —0,

where Q={Be B(K): ef=0, c¢(8)=0}.

In my previous paper n°3, we have given more exact structure of
H?(k, C® pe) which is characterized as that of the center of the group of type
2A4,_,. That is, when e is even, we have

@2ZY HE, CQpo={(a,p e Bl)xBK): 2a=0, rl@)=5-8, «(H=0},

where 7 is the restriction map of B(k) into B(K).
Now we determine H'(k, Z’) in the foregoing two cases. When Z'=~ Z,
we know that

(23) H'(g, Z;)~Hom (g, Z),

where Hom (g, Z,) is the group of all continuous homomorphisms of g into Z..
Tensoring (5) by Z,, we have

0—CR~Z, — AQRZ,— Z,—> 0.

The derived cohomology sequence becomes

C
0 —> Hg, CR Z) —> H'(Y, Z) —> H%g, Z.)

C
— > HY(g, C® Z,) —> Hom (4, Z,) —> Hom (g, Z,) .

Clearly H°(b, Z;) and H°(g, Z,) are equal to Z,, and the map ¢,: Z,— Z, is given
by c¢o(x) =2x, where x € Z,. We denote by dg,.(e) the kernel of ¢, which we
will investigate in the later section. Sometimes we denote this group simply
by 4.(e) or 4(e¢). Thus we have

PROPOSITION 2. The notations being as above.

(i) If e is odd, we have

249 HY(g, CQZ) = A(e).

(ii) If e is even, we have
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(25) 0—> Z,—> H(k, CRZ) —> d(e) —> 0.
In § 6, we will show that
(25)/ Hk, CRQZ,) = Z,x d(e) (direct product).

But this decomposition in direct product is not a canonical one (cf. Proposi-
tion 5).

If Z=A® A, with a finite g-module A, we can utilize the formula (7).
That is,

(26) Hi(k, AQ A) = HYK, A).

The same holds for Z/=AQ A’ (cf. Lemma 1).
Now let K be a cubic extension of % (cyclic or non-cyclic). We consider
the exact sequence

2
27 0—>CQu,—>CQM—>CRM—0.
The derived cohomology sequence becomes

0 —> H(CQ p,) —> DK *) —> D(K ™)
2*
—> HY{C® p,) —> k*/NK* —> k*/NK *
—> HYC® ;) —> HHCRQ M) —> HYCQ M) .

It is clear that 2* is the inverse map, that is, 2*(y)=y"' for any element
ye k*/NK*. Thus
PROPOSITION 3. Let K be a cubic extension of k, and C=3C. Then we have

(28) H'(k, C® ;) = DK *) /DK *)*
(29) H(k, CQ )= {Be BK): 28=0, c(8)=0}.

In this case, Z' = Z, because Z,= u,.

§4. Localizations and Hasse principle.

Let & be an algebraic number field of finite degree over @. We denote
by v a place of k, and by £k, the completion of 2 with respect to v. We
denote by g the Galois group of % over k, and by g, the Galois group of
E,=FE-k, over k,. The group g, can be identified with the decomposition
group of an extension w of v in 2. For a finite g-module A, by restriction
of the group of operators to g,, we have a finite g,-module which we will
denote by A,. We denote H'(g,, A,) by H(k,, A,). For an infinite place v
of k, we use the Tate cohomology groups, that is, Hi(k,, Av):ﬁ‘(kv, A,). In
particular, if v is a complex place, we have H'(k,, A,)=0. When v is a finite
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place of k, we denote by k,(nr) the maximal unramified extension of %,, whose
Galois group over k, will be denoted by a,. Thus we have a,=g,/b,, where
b, denotes the Galois group of %, over k,(nr). A finite g-module A is called
to be unramified over v if b, operates trivially on A,. In this case, A,
becomes a,-module in natural way, whose cohomology group H'(a,, A,) will
be denoted by H*(o,, A,) or by Hi.(k,, A,) (See and [8).

It is easy to see that a finite g-module A is unramified over almost all v
(that is, except finite number of places). According to Serre [8], we denote
by P(k, A) the restricted direct product of H(k,, A,) with respect to H(o,, A,)

30) Pk, A)=T1(H(ko, Ay), H(00, Av)) ,

where H'(o,, A,) = H*(k,, A,) if A is ramified over v. It is known that P°k, A)
is the direct product of H°(%,, A,), and P*k, A) is the direct sum of H?*(k,, Ay).
Because H%(k,, A,) are finite groups, P°%, A) has a compact topology, and
P2k, A) has a discrete topology. But, in general, P(k, A) is locally compact.

For the finite g-module A’=Hom (4, G,), we have (4,) =(4"),. So we
denote this g,-module by A4,’.

THEOREM (Tate [1)). H(k,, A,) and H*'(k,, A,) are in exact duality with
respect to the pairing *“ cup product”.

If A and A’ are unramified over v, the annihilator of the subgroup H(0,, Ay)
is exactly H(o,, AL).

Thus Pi(k, A) and P?*%(k, A’) are in exact duality (in the sense of Pontr-
jagin) for 1=0, 1, 2.

From the restriction map Hi(k, A)— H(k,, A,), we have the natural map
@A pi: Hi(k, A) —> Pi(k, A).

Then the fundamental exact sequence of Tate is described in the following

way ;

0 — H%k, A) _Po) P(k, A) —> H*k, AY* —> H'(k, A) L1

32 0 Pi(k, A).
2
0 «<— Hk, A)Y* <— P%*k, A) <— H¥k, A) <— H'(k, A))*
For the meaning of unlabelled arrows, see [1].
THEOREM 2 (Hasse principle).®® Let Z be the fundamental group of an

algebraic group F defined over an algebraic number field k which is simple over k.
Then the map p, relative to Z is injective. It follows that

0 —> p,(HY(k, Z)) —> P'(k, Z) —> H'(k, Z')* —> 0

*) In T. Ono [6], 3.2, an equivalent assertion that i1(M)=1 in the notation of
was proved. So the proof of Theorem 2 is an alternative one.
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is an exact sequence. This means that H'(k, Z’) is the exact annihilator of
0.(H¥(k, 2)) in Pk, Z')= P'(k, Z)*.

Proor. It suffices to show the Hasse principle for the g-modules given
in the Theorem 1.

If Z=y,, then Z, is also p, considered in k,, and the Hasse principle is
clear from the class field theory.

Let K be a quadratic extension of k2, and C is the g-module relative to K
defined in (5). We consider the g-module C& p.. If a place v of £ decomposes
in K, then (CQ pte)» = pte- If v does not decompose in K, we denote by V the
unique extension of v in K. Then (CQ ge) = C, @ e, where C, is the g,-module
relative to K, defined in (5). It is well-known that, in the local fields, the
corestriction map ¢ of B(L) into B(k,) is injective, where L is a finite ex-
tension of k,. If e is odd, it follows from Proposition 1 that

P2k, C® F‘e) = ;le(km F’e) s

where v runs the set of all places of % decomposing in K. So the Hasse
principle is clear, because the algebra class 8 of B(K) such that ¢(8)=0 has
the local invariant 0 at v if v does not decompose, and the local invariants
vy and —y at V, and at V,, respectively, if v decomposes, where V, and V,
are the two extensions of v in K. Note that y= Q/Z, and that, if ¢f=0, then
ey =20,

Now suppose that e is even. From Proposition 1, it follows that H?(k,,
CQ pe)y) = Z, if v does not decompose, and that H%*k,, (CQ pe)) = Z, if v
decomposes. Thus we have

P2<k) C® /13) == ;l Ze@ 2” Zz s

where > means the direct sum over the places decomposing in K, and >”
means the direct sum over the places which do not decompose in K. Con-
sidering the local invariants of a pair (a, §) € B(k)XB(K) such that 2a=0,

r(a) :%ﬁ and c¢(8) =0, which is a general element of H*(k, CQ y,) according

to (22)’, we can see that the Hasse principle holds. Note that » is the re-
striction map of B(k) into B(K).

Now consider the case where Z=~= A® u,. Note that A is the g-module
relative to a quadratic extension K defined in (4). If v decomposes, then
Zy = p,X pe (direct product). If v does not decompose, then Z, = 4, pe, where
A, is the g,-module relative to K, defined in (4). Thus we have Pk, AR )
= P*K, p.), and the Hasse principle holds clearly, because of the formula (7).

Let K be a cubic extension of %k (cyclic or non-cyclic), and C=>°C be the
g-module relative to K defined in (5). We put Z=C .

If v decomposes completely, that is, v has three extensions V,, V, and V,
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in K, then K, ~k,, and g, is contained in the maximal normal subgroup of
g contained in §. Thus we have (CQ p)» = e X pt. (direct product).

If v does not decompose in K, denoting by V the unique extension of v
in K, the completion K, is a cubic extension of k,. It is easy to see that
(CR pte)p = C, @ pte, where C, is the g,-module relative to K, defined in (5).

If v decomposes partially, that is, v has two extensions V, and V, in K
such that one of Ky, is equal to k,, and the other is a quadratic extension
of k,. We assume that K,, is a quadratic extension of k,. So K, , =k,.
Note that this case occurs only if K is not cyclic over .. We consider the
Galois group g, as the decomposition group of an extension w of v in £ which
is also an extension of V,. Let N be the minimal Galois extension of &
containing K, and n be the Galois group of 2 over N. Then the Galois group
G=g/n of N over k is isomorphic to the symmetric group on 3 letters. The
group G is generated by s and t such that s’=1, t*=1 and sts=t"*. We
suppose that the Galois group H=Y%/n of N over K is equal to the subgroup
generated by s. Then the decomposition group of V, is equal to H. Thus
g, is contained in ). The Galois group of &, over K, is n,=nnNg,. In this
case, we have

(33 (CR o = Ao @ e

where 4, is the g,-module relative to K, definedjin (4).

We prove [33). The g-module C is g-isomorphic to a Z-free module
generated by ¢,=a,—a, and ¢,=a,—a, where a,= H, a,=tH and a,=1t*H.
Obviously n, operates trivially on C. Fix an element”of g,—n,. This element
induces the element s of H. It is easy to see that sc;=c¢, and s¢c,=c¢,. This
proves the formula [(33).

Now we consider H?*(k,, (CQ t¢,),). From the arguments above, it follows
that H?(k,, (CQ t2)o) = Z,X Z, if v decomposes completely, and H2(k,, (CR )y
=0 if v does not decompose, and H?*(k,, (CQRQu,)») = Z, if v decomposes partially.
An algebra class 8 B(K) such that ¢(8)=0 has the local invariants y,, y,
and y, at V,, V, and V,, respectively, where >y, =0, if v decomposes com-
pletely, and the local invariant 0 at V if v does not decompose, and the local
invariants ¥y and —y at V, and V,, respectively, if v decomposes partially.
If 28=0, then each local invariant y is such that 2y=0. This shows that
the Hasse principle holds for Z=*C®y,. For the behaviour of the local
invariants under the restriction map and the corestriction map, see Artin-
Tate Chapter 7, 3.

The rest of the theorem is clear from the duality theorem of Pontrjagin.
This completes the proof.
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§5. The character group @, (F).

Let F be a quasi-split simple algebraic group over a field 2 of character-
istic zero with respect to a finite Galois extension K of k, and Z be its
fundamental group. Let A be a maximal k-trivial torus of F, and T =Z(A)
be the centralizer of A in F. It is known that T is a maximal torus of F
defined over .. We denote by 7" the maximal torus of the universal covering
group E of F corresponding to T by the covering isogeny =z. It is known
that H'(k, T)=0 ([11] n°3), and that the following two formulae hold
Theorem 1)): \

(34) [Ek, Ek] =FE,

(35) Fy/n(Ey) = Tk/n'(Tk) = Hk, Z)

where [E,, E,] is the commutator subgroup of E,. It follows that the sequence
T

is exact.

Now suppose that % is an algebraic number field. It is easy to see that,
for a place v of k, the group F is quasi-split over %, with respect to Ky,
where V is an extension of v in K, except the case where F is of type ®D,
and v decomposes partially in K, and that, in the exceptional case, the group
F is quasi-split over k, with respect to Ky, where V, is an extension of v
in K such that K, is a quadratic extension of %.,. For these, it suffices to
examine the structure of T over k,, because T is characterized as T = Z(A).
It follows from these that g,-module Z, is isomorphic to the fundamental
group of F considered as an algebraic group defined over k,, where Z is the
fundamental group of F over k¢ which is a finite g-module (cf.
and the proof of Theorem 2). By abuse of notation, we use the notations
Fy,=Fy, etc.

THEOREM 3. Let F be a quasi-split simple group defined over an algebraic
number field k, and Z be its fundamental group. Then the commutator subgroup
CF4, F4] of the adele group F, of F over k is closed in F,. For the quotient
group, we have a topological isomorphism

(37> FA/[FA: FA] = Pl(k; Z) ’

where P'(k, Z) is the group defined in [(30).
PrROOF. The first statement is already shown in [10], p. 163. It is easy
to see that

(3%) Fa/lF 4 F =TI (Fo/m(Ey), Fo, - ©(Ey)/n(Ey)

where the second term means the restricted direct product of F,/z(E,) with
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respect to F., - n(E,)/n(E,) the formula [(53)). Note that n(E,) coincides
with [F,, F,] ((10], [Theorem I). From the exact sequence [(36), it follows that
F,/n(E,) =~ Hk,, Z,) for all places v of k. Thus it suffices to show that
F., - n(Ey)/n(E,) is isomorphic to H(o,, Z,) for almost all v.

Consider the set of finite places v of £ which are unramified in the finite
Galois extension K, and which do not divide the order of Z. Then it is easily
seen that Z is unramified over places of this set, and that almost all places
of k are contained in this set. For a place v of this set, we have

(39) Foy - T(Ey)/T(Ey) = Fay /Foy \T(Ey) = Fo, /7(Eo;) = To,/7(T%) .

(See [10], Theorem 3 and its proof). Let k,(n¥) be the maximal unramified
extension of k,, and a, be its Galois group over k2,. We denote by U the unit
group of k,(nr), and by T,U) the group of all k,(nr)-rational points of T
whose coordinates are contained in U. Then we have the following exact
sequence of a,-modules:

T
(40) 0—>Z, —> Ty (U) —> T,(U) — 0.

The surjectivity of # comes from the following fact: If v does not divide a
natural number ¢, then the sequence
e
(41) 0 He U U 0
is exact, where e(x)=x¢ for x U. From the theorem of Nakayama [4],

Theorem 2, considering the derived cohomology sequence of it follows
that

T

42) 0 Zw — T, o0 Hay, Z,) —> 0.
(See also [5], footnotes 10 and 11 in p. 118). From the definition, H(a,, Z,)
is equal to H¥(o,, Z,) (cf. §4). Thus our theorem is proved.

REMARK. The references are made only for non-split quasi-split groups.
The corresponding results for split groups have been proved in [9].

COROLLARY. Under the isomorphism (37), the subgroup Fy-[F 4, F,]/[F4, F4]
is mapped onto the subgroup p,(H'(k, Z)), where p, is the mapping defined in (31).

PROOF. Because of the sequence (36), this corollary is clear.

THEOREM 4. Let F be a quasi-split simple algebraic group over an algebraic
number field k, and Z be its fundamental group. We denote by @ (F) the group
of all class characters of F. Then we have

43) @, (F)=H'k, Z")
where Z' = Hom (Z, G,,).

PrROOF. We denote by X(F,) the group of all continuous representations
of F, into R/Z. Then X(F,) is the dual group of F,/[F4, F,]. From Theorem
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3, this dual group is isomorphic to P(k, Z)* = Pk, Z’). A class character of
F is a character of F, which annihilates Fy-[Fy4, F4]. From the Corollary
to Theorem 3, it follows that @,(F) is isomorphic to the annihilator of
0:(H'(k, Z)). Thus the theorem follows from the theorem 2 in §4. (q.e.d.)

§ 6. Dihedral extensions.

Let & be a field of characteristic zero, and K be its quadratic extension.
We denote by g the Galois group of 2 over k, and by § the Galois group of
% over K. We investigate the group 4(¢)= dg,(¢) which is the kernel of the
corestriction map ¢ of Hom (9, Z,) into Hom (g, Z,). At first, we know that
H'(Y, Z,) ~ H'(g, AR Z,), where A is the g-module relative to K defined in (4).
We make the explicit correspondence between these groups. For an element
¢ of H'(Y), Z,)=Hom (§, Z,), we put

©.(S) = ¢(S) { ¢:(S) = o0¢p(c7'So)
©,(6S) =¢(aS0) , ©5(0S) = 0¢(S)

where S, and ¢ is a fixed element of g—Y, and g¢(S) = a(¢(S)), for example.
So we have ¢,(S)=¢(67'So) and ¢,(6S)=¢(S) in our case. Then a;® ¢,(X)
+a,R ¢.(X) with X =g is 1-cocycle of g into 4X Z,, where a, and a, are the
canonical base of 4. The inverse correspondence is given by the restriction
of ¢, to ). The corestriction map ¢ of Hom (8, Z,) into Hom (g, Z;) is given

by c(p)(X) = @(X)+¢,(X). Thus c(p)=0 means that
{ ©(S)+¢(e~*Sa) =0
p(6Sa)+¢(S)=0.

This condition is equivalent to

49

45)

{ ©(07'So) = —(S)
o(e?)=0.

We denote by b the closed subgroup of § generated by [h, §] and 72
{(zt =g—)). Clearly b is a normal subgroup of g. It is easy to see that, for
an element ¢ of Hom (§, Z.), the condition ¢(¢)=0 is equivalent to the condition

ker ¢ Db.

For an element ¢ € 4(¢), we denote by n the kernel of ¢, and by N the
extension of K corresponding to n. Clearly n is a normal subgroup of g.

PROPOSITION 4. We put G=g/n and H=Y/n. Then G is a dihedral group
of degree f with the canonical cyclic subgroup H, where f=[N: K] is the order
of H which is equal to that of the image of ¢.

PrOOF. From the first equation of (46), the operation of G on H is clearly

(46)
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that of the dihedral groups. As z® is contained in bcCn for zeg—}, the
elements of G—H are of ordéer two. This shows that G is a dihedral group.
(gq.e.d)
DEFINITION 2. We call an element ¢ of 4(¢) a dihedral character of Y.
Let N be the extension of K corresponding to n=Xker ¢. We call N a dihedral
extension of 2 of degree f relative to K, where f=[N: K].
Now we will prove (25)’. That is

PROPOSITION 5. Let C be the g-module relative to K defined in (5). If e is
an even number, we have

(25)/ H'(Q, CRZ,)= Z,x d(e) (direct product).

But this decomposition is not a canonical one.

ProOF. We put b=a,—a, which is the canonical base of C, where a, and
a, are the canonical base of 4. Thus CRZ.={hQa: as Z,}. We denote
by A the canonical generator of Z,. Note that we use the additive notation
in Z,, Let g,=bQ@a, be a 1l-cocycle of g into CR Z.. From the cocycle
condition g, = sg,+ g, it follows that

Oy = sty se)
47y {

Qg = Qg— O, ° seEY.

Denoting by ¢ the restriction of @ to §, we can see that ¢ is a dihedral
character. Conversely for a dihedral character ¢ in d(e), we put as=¢(S)
and as,=¢(S) for S, where o is a fixed element of g—}. It is easy to
see that g, =0, is a 1l-cocycle of g into CQR Z,. This map gives a cross-

section of 4(e) into H'(g, CR Z.) in the sequence (25). Note that this cross-
section depends on the choice of o.

Now we put

48) [ as=0,

aszzy

for SY). Then g,=bQa, is a 1-cocycle of g into CKR Z, which is non-trivial
because of the assumption that e¢ is even. We denote by » the element of
H(g, CR Z,) corresponding to this cocycle. Clearly the order of w is two.
The subgroup <0,w)> of H¥g, CRZ,) is the canonical image of Z, in the
sequence (25). This proves the proposition.

REMARK. Two elements ¢ and z in g—Y) give the same direct decom-
position if and only if ez~* Y),, where ¥, is the subgroup of ) generated by
S? with S). Clearly %, is a normal subgroup of g.

Now we suppose that the base field %2 is a p-adic field, and that K is a
quadratic extension of k.. From the local class field theory, it follows that
k*/NK* = Z,. Thus the sequence (21) becomes
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(49) 0 —> D(e) —> H'(k, CQ o) —> Z, —> 0.

From the local duality theorem of Tate, we know that H'(k, CQ ) =
HY(k, CRZ.)*. Moreover, we have

THEOREM 5. Let k be a p-adic field, and K be its quadratic extension. We _;
suppose that e is an even number. The annihilator of D(e) in H'(k, CQ p.) is
exactly the subgroup <0, w> of H'(k, CQRQZ,), where w is the element defined in
(48). It follows that

£50) 4(e)* = D(e),

and this isomorphism is defined in a canonical way.

PrOOF. It is known from the duality theorems of Pontrjagin that the
order of the annihilator of D(e) is two. Thus it suffices to show that w is
contained in this annihilator. The pairing between H'(k, CQ . and H(k,
CRZ,) is given by “cup-product”. An element x of D(K*) gives l-cocycle
E=bRy—s(bXy) of ginto CR p., Wwhere ¥ is an element of M=F%* such that
x=»% 'These 1l-cocycles generate the subgroup D(e). Clearly & =bXR(y-s(y™ )
if s=), and &=0R(y-s(y)) if s« Y. Note that we use the multiplicative
notation in g, Cup-product w\J§ of § and w is given by

1 : seh,
(51) (W\J &), =ws(s&E) =1 s(y™)-st(y) : se&h, teh,
(s() - st(y)™': s, ta&Eh.

Note that A is the canonical generator of Z,= ;. This is a 2-cocycle of g into
.- It suffices to show that this 2-cocycle is split in H*(g, M), because H*(g, p.)
is mapped into H?%*(g, M) injectively. We put

. _{yl-s(yf‘): seh,
' yi-8(y) ¢ se&b,

where y, is an element of M such that y}=y. Then it is easy to show that
(W\J &), (02);,,=1, where 0z means the coboundary of l-cochain z. This
proves the first statement of the theorem. The rest is clear because of the
Pontrjagin duality. (q.e.d)

REMARK 1. The formula (50) holds also if ¢ is an odd number.

REMARK 2. The formula (50) holds trivially for the real number field
with respect to the complex number field, because 4(¢) =0 and D(e¢) =0, in
our case.
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§7. Class number.

Let & be an algebraic number field, and K be its finite extension. We
denote by g the Galois group of %2 over %, and by § the Galois group of %
over K. We want to calculate the class number for a quasi-split simple group
F defined over £ (cf. §1).

In view of Theorem 3 and Theorem 4, we define a class number for
Pk, Z) (with respect to some finite set S of places of k), where Z is a finite
g-module. We assume that the Hasse principle holds for Z. That is, the map
p. relative to Z in (31) is injective. From Tate’s exact sequence, it follows
that the map p; of H'(k, Z’) into P'(k, Z’) is injective, and that the annihilator
of p,(H(k, 2)) is exactly H'(k, Z’) (cf. Theorem 2). '

DerFINITION 3. Let S be a finite set of places of k2 containing all infinite
places and all places over which Z or Z’ is ramified (cf. §4). Putting

(52) Cl;(S)={XxeH'(k, 2"): X,=0 for all ve S
and X, € H(o,, Z,) for other v},

where X, denotes the canonical image of X in H(k,, Z,), we denote by hz(S)
the cardinality of Cl;(S), and we call 2,(S) the class number of Z relative
to S.

We can apply this class number to calculate the class number of a lattice
in its genus for a quasi-split simple group defined over 2 with some modi-
fications.

We calculate the class numbers for the finite g-modules Z = g,, *CQ p, and
SCQ s, and we denote these class numbers by #,(e, S), h,(e, S) and h42, S),
respectively. Note that, if Z= A4 p,, where A is the g-module relative to K
defined in (4), the problem is reduced to the case where the base field is K.

CASE h,(e, S): We denote by k(e) the composite of all cyclic extensions
of 2 of degree f, where f is a divisor of e. We also denote by L(S) the
maximal unramified abelian extension of %2 in which the places in S decompose
completely. Putting L(e, S) = k(e) N\ L(S), we have the following proposition
(cf. [9] Theorem 2):

PROPOSITION 6. The notations being as above, we have

(63) hi(e, S)=[L(e, S): k] .

ProoF. In our case, we have H(k, Z’)=Hom (g, Z,). For an element X
of Cl,(e, S) (the class group for Z=p,), we denote by N, the cyclic extension
of £ corresponding to the kernel of X. From the class field theory, it follows
that the composite of all Ny with X € Cl(e, S) is equal to L(e, S), and that
the Galois group of L(e, S) over k is isomorphic to Cl(e, S). Thus (53) is
proved. (q.e.d.)
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CASE hy(e, S): We denote by S the set of all places above S in K. We
denote by f(e¢) the composite of all dihedral extensions of 2 of degree f, where
f is a divisor of ¢. We also denote by M(S) the maximal unramified abelian
extension of K in which all places of K in S decompose completely. We put
Me, S)=1%(e) "\ M(S). Then M(e, S) is a generalized dihedral extension of &,
that is, a composite of dihedral extensions of % relative to K.

PROPOSITION 7. The notations being as above:

(i) If e is odd, we have

B4 ‘ hy(e, Sy=[M(e, S): K].
(i) If e is even, we have
(55) hye, S)=[M(e, S): K].

ProOOF. If ¢ is odd, we have H*(k, Z') = 4(e) (See Proposition 2). For an
element of 4(e), there corresponds a dihedral extensionof % (See Proposition 4).
Thus the proof of (54) is similar to that of (63). If ¢ is even, then we have
the following exact sequence:

]
0—Z,—> HY(k,Z)) —> d(e) —> 0

(See (25)). Thus, for an element ¢ = 4(¢), there exist exactly two elements X
and X, of H(k, Z’) such that i(X)=i(X,)=¢. Their difference X—X, is the
element @ defined in (48). For a place v of k, w,=0 if v decomposes in K,
and w, is the corresponding element in H(k,, C,Q Z,) if v does not decompose.
We fix a place v of & which is not contained in S. It is easy to see that w,
is contained in H*(o,, Z7), and that X, € H'(0,, Z;) iffand only if (X,), € H(o,, Z5).
For example, use the Inflation-Restriction sequence. When v does not de-
compose we denote by 4, (e) the image i,(H*(0,, Z;)) which is the kernel of
the corestriction map of H'(Oy, Z,) into H(o,, Z,), where £, is the integer
ring of K. When v decomposes, we denote also by 4,,(e) the group H(o,, Z;).
For 4d(e), we put

Clie, S)y={p = 4d(): ¢,=0 for all ve S and ¢, € 4,,(¢) for other v}.

Then the cardinality hi(e, S) of Cl(e, S) is equal to [M(e, S): K] as in the
case (54). If ¢,=0, then one of X, and (X,), is zero, and the other is equal
to w,. Thus we have h,(e, S) < hi(e, S). This proves (55). (q.e.d))

REMARK. In general, we can not expect the equality in the inequality (55).
For example, put e=2. Then g, ~CQu, and we have h,(e, S)=h,(2, S).
But, in general, h}(2, S) is not equal to h,(2, S).

CASE hy(2,¢): Let K be a cubic extension of %, and *C be the g-module
relative to K defined in (5). We denote by S the set of all places above S
in K. As in Proposition 2, we can see that H'(k,*CR Z,) is equal to the
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kernel of the corestriction map of H(Y, Z,) into H(g, Z,). We denote this
kernel by %4(2). We put CL(2, S)={X<%42): X,=0 for all ve S and X,
H'(0,, Z’) for other v}. For an element X € Cly2, S), we denote by N, the
extension of K corresponding to the kernel of X. It is clear that, if X is not
zero, Ny is an unramified quadratic extension in which the place of S de-
composes (completely). Denoting by N(S) the composite of all N, with
X € Cly(2, S), we have

(56) hy(2, S)=[N(S): K].

Clearly, hy(2, S) is a power of 2.
I have no idea to characterize the quadratic extension N, of K, or the
extension N(S) of K.

College of General Education
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