J. Math. Soc. Japan Vol. 23, No. 2, 1971

On certain character groups attached to algebraic groups

By Takashi TASAKA

(Received Dec. 8, 1969)

§0. Introduction.

This paper is a continuation of my previous papers [9] and [10]. Using the duality theorems of Tate [1], we simplify the results in [9] and [10]. Our main tools are the auxiliary g-modules defined in [11]. Then our main results become mere applications of the duality theorems of Tate to the fundamental groups of simple algebraic groups. The $g(\bar{k}/k)$ -module structures of the fundamental groups and their Galois cohomology over an algebraic number field k are already treated in Ono's [6] which is mainly concerned with the relative Tamagawa number of algebraic groups.

Let F be a quasi-split simple algebraic group defined over an algebraic number field k, and Z be the fundamental group of F (in the sense of algebraic groups) which is a finite g-module. Note that we denote by g the Galois group of an algebraic closure \bar{k} of k over k. We denote by F_A the adele group of F over k. It is shown in [9] and [10] that $F_k \cdot [F_A, F_A]$ is closed in F_A , where $[F_A, F_A]$ is the commutator subgroup of F_A , and that the quotient group $A_k(F) = F_A/F_k \cdot [F_A, F_A]$ is a totally disconnected compact group. In this paper, we consider the dual group $\Phi_k(F)$ of $A_k(F)$ in the sense of Pontrjagin, and show that

$$\boldsymbol{\Phi}_{k}(F) \simeq H^{1}(\mathfrak{g}, Z'),$$

where $Z' = \text{Hom}(Z, G_m)$ (See Theorem 4). This is our main theorem.

In §2, we investigate the g-module structure of the fundamental group Z, using the auxiliary g-modules defined in (4) and (5). In §3, we consider their cohomology groups. In §4, we give an alternative proof of the Hasse principle to the fundamental group Z (Theorem 2) (cf. [6], p. 106-107). In §5, we prove our main theorems (Theorem 3 and Theorem 4). In §6, we investigate more explicit structure of $H^1(\mathfrak{g}, Z')$ for some cases. In §7, we apply our main theorems to calculate the class number of a lattice in its genus.

Some special notations.

We denote by μ_e the group of *e*-th roots of unity in \bar{k} which has a natural g-module structure, and by Z_e the cyclic group of order *e* on which g operates

trivially. For a locally compact abelian group G, we denote by G^* the dual group of G in the sense of Pontrjagin. For a field k, we denote by k^* the multiplicative group $k - \{0\}$ of k, and by $(k^*)^e$ the subgroup of k generated by x^e , where x is contained in k^* .

§1. Preliminaries.

Let F be a linear algebraic group defined over an algebraic number field k. The adele group F_A of F over k is, by definition, a restricted direct product of F_v , where v runs the set of all places of k and F_v denotes F_{kv} . We call a *class character* of F over k a continuous representation of F_A into R/Z which is trivial on F_k . We denote by $\Phi_k(F)$ the group of all class character acters of F over k. Thus, if we put $B_k(F) = F_A/\overline{F_k \cdot [F_A, F_A]}$, where $[F_A, F_A]$ is the commutator subgroup of F_A , then $\Phi_k(F)$ is the dual group of $B_k(F)$ in the sense of Pontrjagin.

We assume that F is contained in GL(V), where V is a finite dimensional vector space defined over k. We assume also that the canonical injection of F into GL(V) is defined over k. A lattice L in V is a finitely generated \mathfrak{o} -module which spans V_k over k, where \mathfrak{o} is the ring of integers of k. For a finite place $v = \mathfrak{p}$, we put $L_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}} \cdot L$, where $\mathfrak{o}_{\mathfrak{p}}$ is the ring of \mathfrak{p} -adic integers in $k_{\mathfrak{p}}$. Then $L_{\mathfrak{p}}$ is an $\mathfrak{o}_{\mathfrak{p}}$ -lattice in $V_{k_{\mathfrak{p}}}$. Put $F_{\mathfrak{p}}(L) = \{g \in F_{\mathfrak{p}} : gL_{\mathfrak{p}} = L_{\mathfrak{p}}\}$. Then $F_{\mathfrak{p}}(L)$ is an open compact subgroup of $F_{\mathfrak{p}}$. We fix a finite set S of places of k containing the set S_{∞} of all infinite places of k. We put

(1)
$$F_{A(S,L)} = \prod_{v \in S} F_v \times \prod_{v \notin S} F_v(L) .$$

DEFINITION 1. For a class character $\chi \in \Phi_k(F)$, we define a symbol $\mathfrak{f}(\chi)$ which will be called the conductor of χ . For a lattice L in V, and a finite set S of places of k, we define a symbol $\mathfrak{f}(S, L)$. We define that

(2) $f(\chi) \supset f(S, L)$

means that χ is trivial on $F_{A(S,L)}$, and we say that the conductor $\mathfrak{f}(\chi)$ of χ contains $\mathfrak{f}(S, L)$.

We put

(3)
$$Cl_F(S, L) = \{ \chi \in \Phi_k(F) : \mathfrak{f}(\chi) \supset \mathfrak{f}(S, L) \}.$$

We call the class number of the lattice L relative to S the order $h_F(S, L)$ of $Cl_F(S, L)$ which may be infinite. M. Kneser has shown that, if F is semisimple (and has no simple factors of certain type of E_8) and $F_S = \prod_{v \in S} F_v$ is not compact, then $h_F(S, L)$ is finite and equal to the number of double cosets in $F_k \setminus F_A / F_{A(S,L)}$, and that this number is also equal to the class number of the

T. TASAKA

genus of the lattice L if $S = S_{\infty}$ ([3]). If F is the multiplicative group G_m of the universal domain of k, then $h_F(S_{\infty}, L)$ is equal to the class number of the field k, where L is a canonical lattice. If F is the additive group G_a of the universal domain, then $B_k(G_a) = (G_a)_A/(G_a)_k = k_A/k$ is a compact group. It is easy to see that $\Phi_k(G_a) \simeq k$. By the strong approximation theorem, we have h(S, L) = 1 for any non-empty set S and any lattice L.

In this paper, we concern ourselves mainly with the quasi-split simple algebraic groups. In this paper, simple group means the algebraic group defined over k which is simple over the algebraic closure \overline{k} of k, and which may have non-trivial center (of course, whose order is finite).

§ 2. g-module structures of the fundamental groups of simple algebraic groups.

Let k be a field of characteristic zero, and K be a finite extension of k of degree d, and \overline{k} be an algebraic closure of k. We denote by g the Galois group of \overline{k} over k, and by h that of \overline{k} over K. Clearly g has the Krull topology, and h is an open subgroup of g in this topology.

We consider three auxiliary g-modules defined in the following way (cf. $[11] n^{\circ}1$);

(4)
$$\Lambda = Z[\mathfrak{g}/\mathfrak{h}] = \sum_{i=1}^{d} Za_{i},$$

$$(5) \qquad 0 \longrightarrow C \longrightarrow A \xrightarrow{c} Z \longrightarrow 0$$

$$(6) \qquad \qquad 0 \longrightarrow \mathbf{Z}u \xrightarrow{T} \Lambda \longrightarrow R \longrightarrow 0$$

where $a_i = g_i \mathfrak{h}$ is the coset of g_i modulo \mathfrak{h} , and the map c is such that $c(\sum p_i a_i) = \sum p_i$, and $u = \sum a_i$, and r is the canonical injection and $R = \Lambda/r(\mathbf{Z} \cdot u)$. Thus $\mathbf{Z} \cdot u \simeq \mathbf{Z}$ as g-modules. These modules Λ , C and R are \mathbf{Z} -free g-modules whose ranks over \mathbf{Z} are d, d-1 and d-1, respectively. It is known that, for any g-module M, we have

(7)
$$H^i(\mathfrak{g}, \Lambda \otimes M) \simeq H^i(\mathfrak{h}, M), \quad (i \ge 1).$$

Tensoring (5) and (6) by M, we have the following exact sequences:

(8)
$$0 \longrightarrow C \otimes M \longrightarrow A \otimes M \xrightarrow{c \otimes 1} M \longrightarrow 0,$$

(9)
$$0 \longrightarrow M \xrightarrow{r \otimes 1} A \otimes M \longrightarrow R \otimes M \longrightarrow 0.$$

In the derived cohomology sequences, through the identifications (7), $c \otimes 1$ induces the corestriction map of $H^i(\mathfrak{h}, M)$ into $H^i(\mathfrak{g}, M)$, and $r \otimes 1$ induces the restriction map of $H^i(\mathfrak{g}, M)$ into $H^i(\mathfrak{h}, M)$ (See [11] n°1).

Sometimes, we denote C and R by ${}^{d}C$ and ${}^{d}R$, respectively, to emphasize the degree d of the extension K of k. It is easy to see that $C \simeq R$ as g-modules if K is a cyclic extension of k.

Let F_1 be an algebraic group defined over k which is simple over \bar{k} . Let E_1 be a universal covering group of F_1 , and π_1 be the covering isogeny of E_1 onto F_1 . We may suppose that these are both defined over k. We call the fundamental group of F_1 the kernel Z_1 of π_1 which is contained in the center of E_1 . When the fundamental group of F_1 coincides the center of E_1 , we call F_1 the adjoint group. It is known that F_1 is an inner twist of certain quasisplit group F defined over k. So the fundamental group Z_1 of F_1 is g-isomorphic to that of F. Thus the problem is reduced to the problem to determine the g-module structure of the center of simply connected quasi-split group and to determine the g-submodules of this center. We express the g-module structures of these centers using the auxiliary g-modules defined above. Then it becomes easy to describe their cohomology groups.

Let F be a quasi-split simple group defined over k which is of adjoint type. Then there exists a unique finite Galois extension K of k such that Fis quasi-split over k with respect to K (See [10] n°1). We denote the type of F by ${}^{d}X_{n}$, where d = [K:k] and X_{n} is the type of F over the universal domain of k. Let E be a universal covering of F, and π be the covering isogeny of E onto F. We assume that these are defined over k. Then the kernel of π is the center Z of E which is a finite g-module.

According to Tate [1], we put $A' = \text{Hom}(A, G_m)$, for a finite g-module A. Clearly (A')' = A as g-modules. For example, if we put $A = \mu_e$ (the group of *e*-th root of the unity in G_m), then $A' \cong \mathbb{Z}_e$ (the cyclic group of order *e* on which g operates trivially).

LEMMA 1. Let k be a field of characteristic zero, and K be its finite extension. Let g be the Galois group of \overline{k} over k, and b be that of \overline{k} over K. We define g-modules Λ , C and R as in (4), (5) and (6). For a finite g-module A, we have

(10) $(\Lambda \otimes A)' \simeq \Lambda \otimes A',$

(11)
$$(C \otimes A)' \simeq R \otimes A'$$

where tensor products are taken over Z.

PROOF. For a Z-free g-module Y whose rank over Z is finite, we put $Y^{0} = \text{Hom}(Y, Z)$. It suffices to show that

(12)
$$(Y \otimes A)' \simeq Y^{\circ} \otimes A',$$

because, in our case, we have $\Lambda^0 \simeq \Lambda$ and $C^0 \simeq R$ ([11]). The proof of (12) can be done by straightforward computations. (q.e.d.)

Τ. ΤΑSAKA

THEOREM 1. Let Z be the fundamental group of an adjoint group F defined over a field k which is simple over \bar{k} . For the g-module structures of Z and Z', we have the following table:

$^{d}X_{n}$:	Z	Z'
${}^{1}A_{n}$:	μ_{n+1}	Z_{n+1}
${}^{2}A_{n}$:	$^{2}C \otimes \mu_{n+1}$	${}^{2}C \otimes \mathbb{Z}_{n+1}$
B_n , C_n :	μ_2	Z_2
${}^{1}D_{2m}$:	$\mu_2 imes \mu_2$	$Z_2 imes Z_2$
${}^{2}D_{2m}$:	${}^{\scriptscriptstyle 2} \Lambda \otimes \mu_{\scriptscriptstyle 2}$	${}^{2}\Lambda \otimes Z_{2}$
${}^{1}D_{2m+1}$:	μ_{4}	Z_4
${}^{2}D_{2m+1}$:	$^{2}C \otimes \mu_{4}$	${}^{2}C \otimes Z_{4}$
${}^{1}E_{6}$:	μ_{3}	$oldsymbol{Z}_3$
${}^{2}E_{6}$:	$^{2}C \otimes \mu_{3}$	$^{2}C \otimes Z_{3}$
E_{τ} :	μ_2	Z_2
$E_{8}, F_{4}, G_{2}:$	trivial	
³ D ₄ :	$^{ m s}C\!\otimes\!\mu_{ m 2}$	${}^{3}C \bigotimes \boldsymbol{Z_2}$
⁶ D ₄ :	$C_1 \otimes \mu_2$	$C_1 \otimes Z_2$

where C_1 and R_1 are the g-modules defined in (5) and (6) relative to a cubic extension L of k which is contained in the Galois extension K of k whose Galois group is the symmetric group on three letters.

Of course, we have $\mu_2 \simeq Z_2$ as g-modules. Note also that, in the case 6D_4 , we have

$$R_1 \otimes \mu_2 \simeq C_1 \otimes \mu_2.$$

PROOF. Let A be a maximal k-trivial torus of F. Then T = Z(A) is a maximal torus of F defined over k ([10]). Let \tilde{A} and \tilde{T} be the corresponding tori of E. Then \tilde{T} contains the center Z of E, and the kernel of the restriction of π to \tilde{T} is equal to Z. If [K:k] = 1, that is, F is a split group defined over k, the results are clear. We restrict ourselves to the case ${}^{3}D_{4}$. The others can be proved also in the similar way. For example, in the case ${}^{2}A_{n}$ (see [7], p. 245).

In the case ${}^{3}D_{4}$, we have $T \simeq \tilde{T} \simeq R_{K/k}(G_{m}) \times G_{m}$, where K is a cyclic extension of degree 3 ([10]). The covering isogeny π is given by

$$\pi(t_1, t_2, \bar{t}_2, \bar{t}_2) = (t_1^2 \cdot (t_2 \bar{t}_2 \bar{t}_2)^{-1}, t_2^2 \cdot t_1^{-1}, \bar{t}_2^2 \cdot t_1^{-1}, \bar{t}_2^2 \cdot t_1^{-1}),$$

where $t_1 \in G_m$ and $(t_2, \overline{t}_2, \overline{t}_2) \in R_{K/k}(G_m)$. So the kernel of π consists of the elements $(t_1, t_2, \overline{t}_2, \overline{t}_2)$, where $t_1 = 1$, $t_2 = \pm 1$, $\overline{t}_2 = \pm 1$, $\overline{t}_2 = \pm 1$, and $t_2 \cdot \overline{t}_2 \cdot \overline{t}_2 = 1$. Then it is easy to see that the kernel of π and ${}^3C \otimes \mu_2$ are isomorphic g-modules. (q. e. d.)

Now it is easy to determine the g-submodules of Z. Except the case ${}^{1}A_{n}$, ${}^{2}A_{n}$, ${}^{1}D_{n}$ and ${}^{2}D_{n}$, there are no proper g-submodules of Z.

In the case ${}^{1}A_{n}$, the g-submodules of Z are μ_{e} , where e divides n+1. In the case ${}^{2}A_{n}$, the g-submodules of Z are ${}^{2}C \otimes \mu_{e}$, where e divides n+1. In the case ${}^{1}D_{2m+1}$, there are three proper g-submodules which are isomorphic to μ_{2} , and the special orthogonal group corresponds to one of them. In the case ${}^{2}D_{2m+1}$, ${}^{1}D_{2m}$ and ${}^{2}D_{2m}$, there is only one proper g-submodule which is isomorphic to μ_{2} .

§ 3. Determination of $H^1(k, Z)$ and $H^2(k, Z)$.

Let $Z = \mu_e$ be the group of *e*-th roots of the unity in G_m . Putting $M = \bar{k}^{\times} = (G_m)_{\bar{k}}$, we have the following exact sequence

$$(13) \qquad \qquad 0 \longrightarrow \mu_e \longrightarrow M \xrightarrow{e} M \longrightarrow 0$$

where $e(x) = x^{e}$. Considering the derived cohomology sequence, we have, by the theorem 90 of Hilbert,

(14)
$$H^1(k, \mu_e) = k^{\times}/(k^{\times})^e$$
,

(15)
$$H^2(k, \mu_e) = \{ \alpha \in B(k) : e\alpha = 0 \}$$

where B(k) is the Brauer group of k. Note that we use the notations $H^{i}(k, Z) = H^{i}(\mathfrak{g}, Z)$, etc.

Let K be a quadratic extension of k. Tensoring (13) by $C = {}^{2}C$, we have

$$0 \longrightarrow C \otimes \mu_e \longrightarrow C \otimes M \stackrel{e}{\longrightarrow} C \otimes M \longrightarrow 0.$$

We know that

(16)
$$H^{0}(\mathfrak{g}, C \otimes M) \cong D(K^{\times}) = \{x \in K^{\times} : Nx = 1\}$$

(17)
$$H^1(\mathfrak{g}, C \otimes M) \cong k^{\times}/NK^{\times}$$

(18)
$$H^{2}(\mathfrak{g}, C \otimes M) \simeq \{\beta \in B(K) : c(\beta) = 0\}$$

where N is the norm map of K^{\times} into k^{\times} , and c is the corestriction map of B(K) into B(k) (See [11] n°2). So the derived cohomology sequence becomes

$$0 \longrightarrow H^{0}(C \otimes \mu_{e}) \longrightarrow D(K^{\times}) \xrightarrow{e} D(K^{\times})$$
$$\longrightarrow H^{1}(C \otimes \mu_{e}) \longrightarrow k^{\times}/NK^{\times} \xrightarrow{e^{*}} k^{\times}/NK^{\times}$$
$$\longrightarrow H^{2}(C \otimes \mu_{e}) \longrightarrow H^{2}(C \otimes M) \xrightarrow{e} H^{2}(C \otimes M)$$

It is easy to see that e^* is the identity map if e is odd, and that e^* is zeromap if e is even. We denote by $D_{K/k}(e)$ the quotient group $D(K^{\times})/D(K^{\times})^e$. Sometimes we denote this group by $D_k(e)$ or D(e). Thus we have

PROPOSITION 1. Let K be a quadratic extension of k, and C be the g-modules defined in (5). Let μ_e be the group of e-th roots of unity.

(i) If e is odd, we have

(19)
$$H^{1}(k, C \otimes \mu_{e}) \simeq D(e)$$

(20)
$$H^2(k, C \otimes \mu_e) \simeq \{\beta \in B(K) : e\beta = 0, c(\beta) = 0\}$$

(ii) If e is even, we have

(21)
$$0 \longrightarrow D(e) \longrightarrow H^{1}(k, C \otimes \mu_{e}) \longrightarrow k^{\times}/NK^{\times} \longrightarrow 0$$

(22)
$$0 \longrightarrow k^{\times}/NK^{\times} \longrightarrow H^{2}(k, C \otimes \mu_{e}) \longrightarrow Q \longrightarrow 0 ,$$

where $Q = \{\beta \in B(K) : e\beta = 0, c(\beta) = 0\}.$

In my previous paper [11] n°3, we have given more exact structure of $H^2(k, C \otimes \mu_e)$ which is characterized as that of the center of the group of type ${}^{2}A_{e-1}$. That is, when *e* is even, we have

(22)'
$$H^{2}(k, C \otimes \mu_{e}) = \left\{ (\alpha, \beta) \in B(k) \times B(K) : 2\alpha = 0, r(\alpha) = -\frac{e}{2} - \beta, c(\beta) = 0 \right\},$$

where r is the restriction map of B(k) into B(K).

Now we determine $H^1(k, Z')$ in the foregoing two cases. When $Z' \simeq \mathbb{Z}_e$, we know that

(23)
$$H^{1}(\mathfrak{g}, \mathbb{Z}_{e}) \simeq \operatorname{Hom}(\mathfrak{g}, \mathbb{Z}_{e}),$$

where Hom (g, \mathbb{Z}_e) is the group of all continuous homomorphisms of g into \mathbb{Z}_e . Tensoring (5) by \mathbb{Z}_e , we have

 $0 \longrightarrow C \otimes Z_e \longrightarrow \Lambda \otimes Z_e \longrightarrow Z_e \longrightarrow 0.$

The derived cohomology sequence becomes

$$0 \longrightarrow H^{0}(\mathfrak{g}, C \otimes \mathbb{Z}_{e}) \longrightarrow H^{0}(\mathfrak{h}, \mathbb{Z}_{e}) \xrightarrow{C_{0}} H^{0}(\mathfrak{g}, \mathbb{Z}_{e})$$
$$\longrightarrow H^{1}(\mathfrak{g}, C \otimes \mathbb{Z}_{e}) \longrightarrow \operatorname{Hom}(\mathfrak{h}, \mathbb{Z}_{e}) \xrightarrow{C_{1}} \operatorname{Hom}(\mathfrak{g}, \mathbb{Z}_{e}).$$

Clearly $H^{0}(\mathfrak{h}, \mathbb{Z}_{e})$ and $H^{0}(\mathfrak{g}, \mathbb{Z}_{e})$ are equal to \mathbb{Z}_{ϵ} , and the map $c_{0}: \mathbb{Z}_{e} \to \mathbb{Z}_{e}$ is given by $c_{0}(x) = 2x$, where $x \in \mathbb{Z}_{e}$. We denote by $\mathcal{A}_{K/k}(e)$ the kernel of c_{1} which we will investigate in the later section. Sometimes we denote this group simply by $\mathcal{A}_{k}(e)$ or $\mathcal{A}(e)$. Thus we have

PROPOSITION 2. The notations being as above.

(i) If e is odd, we have

(24)
$$H^{1}(\mathfrak{g}, C \otimes \mathbb{Z}_{e}) \simeq \mathfrak{A}(e) .$$

(ii) If e is even, we have

(25)
$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow H^1(k, \mathbb{C} \otimes \mathbb{Z}_e) \longrightarrow \mathbb{A}(e) \longrightarrow 0$$
.

In §6, we will show that

(25)'
$$H^1(k, C \otimes \mathbb{Z}_e) \simeq \mathbb{Z}_2 \times \mathcal{\Delta}(e)$$
 (direct product).

But this decomposition in direct product is not a canonical one (cf. Proposition 5).

If $Z = \Lambda \otimes A$, with a finite g-module A, we can utilize the formula (7). That is,

(26)
$$H^{i}(k, \Lambda \otimes A) \simeq H^{i}(K, A) .$$

The same holds for $Z' = \Lambda \otimes A'$ (cf. Lemma 1).

Now let K be a cubic extension of k (cyclic or non-cyclic). We consider the exact sequence

(27)
$$0 \longrightarrow C \otimes \mu_2 \longrightarrow C \otimes M \xrightarrow{2} C \otimes M \longrightarrow 0.$$

The derived cohomology sequence becomes

$$0 \longrightarrow H^{0}(C \otimes \mu_{2}) \longrightarrow D(K^{\times}) \longrightarrow D(K^{\times})$$
$$\longrightarrow H^{1}(C \otimes \mu_{2}) \longrightarrow k^{\times}/NK^{\times} \xrightarrow{2^{*}} k^{\times}/NK^{\times}$$
$$\longrightarrow H^{2}(C \otimes \mu_{2}) \longrightarrow H^{2}(C \otimes M) \longrightarrow H^{2}(C \otimes M) .$$

It is clear that 2* is the inverse map, that is, $2^*(y) = y^{-1}$ for any element $y \in k^*/NK^*$. Thus

PROPOSITION 3. Let K be a cubic extension of k, and $C = {}^{s}C$. Then we have

(28)
$$H^{1}(k, C \otimes \mu_{2}) \simeq D(K^{\times})/D(K^{\times})^{2}$$

(29)
$$H^{2}(k, C \otimes \mu_{2}) \simeq \{\beta \in B(K): 2\beta = 0, c(\beta) = 0\}$$

In this case, $Z' \simeq Z$, because $Z_2 \simeq \mu_2$.

§4. Localizations and Hasse principle.

Let k be an algebraic number field of finite degree over Q. We denote by v a place of k, and by k_v the completion of k with respect to v. We denote by g the Galois group of \bar{k} over k, and by g_v the Galois group of $\bar{k}_v = \bar{k} \cdot k_v$ over k_v . The group g_v can be identified with the decomposition group of an extension w of v in \bar{k} . For a finite g-module A, by restriction of the group of operators to g_v , we have a finite g_v -module which we will denote by A_v . We denote $H^i(g_v, A_v)$ by $H^i(k_v, A_v)$. For an infinite place vof k, we use the Tate cohomology groups, that is, $H^i(k_v, A_v) = \hat{H}^i(k_v, A_v)$. In particular, if v is a complex place, we have $H^i(k_v, A_v) = 0$. When v is a finite

Τ. ΤΑSAKA

place of k, we denote by $k_v(nr)$ the maximal unramified extension of k_v , whose Galois group over k_v will be denoted by a_v . Thus we have $a_v \simeq g_v/b_v$, where b_v denotes the Galois group of \bar{k}_v over $k_v(nr)$. A finite g-module A is called to be unramified over v if b_v operates trivially on A_v . In this case, A_v becomes a_v -module in natural way, whose cohomology group $H^i(a_v, A_v)$ will be denoted by $H^i(o_v, A_v)$ or by $H^i_{nr}(k_v, A_v)$ (See [1] and [8]).

It is easy to see that a finite g-module A is unramified over almost all v (that is, except finite number of places). According to Serre [8], we denote by $P^{i}(k, A)$ the restricted direct product of $H^{i}(k_{v}, A_{v})$ with respect to $H^{i}(o_{v}, A_{v})$

(30)
$$P^{i}(k, A) = \prod_{v} (H^{i}(k_{v}, A_{v}), H^{i}(\mathfrak{o}_{v}, A_{v})),$$

where $H^{i}(\mathfrak{o}_{v}, A_{v}) = H^{i}(k_{v}, A_{v})$ if A is ramified over v. It is known that $P^{0}(k, A)$ is the direct product of $H^{0}(k_{v}, A_{v})$, and $P^{2}(k, A)$ is the direct sum of $H^{2}(k_{v}, A_{v})$. Because $H^{i}(k_{v}, A_{v})$ are finite groups, $P^{0}(k, A)$ has a compact topology, and $P^{2}(k, A)$ has a discrete topology. But, in general, $P^{1}(k, A)$ is locally compact.

For the finite g-module $A' = \text{Hom}(A, G_m)$, we have $(A_v)' = (A')_v$. So we denote this g_v -module by $A_{v'}$.

THEOREM (Tate [1]). $H^{i}(k_{v}, A_{v})$ and $H^{2-i}(k_{v}, A'_{v})$ are in exact duality with respect to the pairing "cup product".

If A and A' are unramified over v, the annihilator of the subgroup $H^1(\mathfrak{o}_v, A_v)$ is exactly $H^1(\mathfrak{o}_v, A'_v)$.

Thus $P^{i}(k, A)$ and $P^{2-i}(k, A')$ are in exact duality (in the sense of Pontrjagin) for i=0, 1, 2.

From the restriction map $H^i(k, A) \to H^i(k_v, A_v)$, we have the natural map (31) $\rho_i: H^i(k, A) \longrightarrow P^i(k, A)$.

Then the fundamental exact sequence of Tate is described in the following way;

$$\begin{array}{cccc} 0 \longrightarrow H^{0}(k, A) & \stackrel{\rho_{0}}{\longrightarrow} P^{0}(k, A) \longrightarrow H^{2}(k, A')^{*} \longrightarrow H^{1}(k, A) & \stackrel{\rho_{1}}{\longrightarrow} P^{1}(k, A) \\ (32) & & & & \\ 0 \longleftarrow H^{0}(k, A')^{*} \longleftarrow P^{2}(k, A) \xleftarrow{\rho_{2}} H^{2}(k, A) & \longleftarrow H^{1}(k, A')^{*} & \stackrel{\rho_{1}}{\longleftarrow} P^{1}(k, A) \end{array}$$

For the meaning of unlabelled arrows, see [1].

THEOREM 2 (Hasse principle).*' Let Z be the fundamental group of an algebraic group F defined over an algebraic number field k which is simple over \bar{k} . Then the map ρ_2 relative to Z is injective. It follows that

$$0 \longrightarrow \rho_1(H^1(k, Z)) \longrightarrow P^1(k, Z) \longrightarrow H^1(k, Z')^* \longrightarrow 0$$

^{*)} In T. Ono [6], 3.2, an equivalent assertion that $i^1(\hat{M}) = 1$ in the notation of [6] was proved. So the proof of Theorem 2 is an alternative one.

is an exact sequence. This means that $H^{1}(k, Z')$ is the exact annihilator of $\rho_{1}(H^{1}(k, Z))$ in $P^{i}(k, Z') = P^{1}(k, Z)^{*}$.

PROOF. It suffices to show the Hasse principle for the g-modules given in the Theorem 1.

If $Z = \mu_e$, then Z_v is also μ_e considered in \bar{k}_v , and the Hasse principle is clear from the class field theory.

Let K be a quadratic extension of k, and C is the g-module relative to K defined in (5). We consider the g-module $C \otimes \mu_e$. If a place v of k decomposes in K, then $(C \otimes \mu_e)_v \simeq \mu_e$. If v does not decompose in K, we denote by V the unique extension of v in K. Then $(C \otimes \mu_e) \simeq C_v \otimes \mu_e$, where C_v is the g_v -module relative to K_v defined in (5). It is well-known that, in the local fields, the corestriction map c of B(L) into $B(k_v)$ is injective, where L is a finite extension of k_v . If e is odd, it follows from Proposition 1 that

$$P^2(k, C\otimes \mu_e) = \sum' H^2(k_v, \mu_e),$$

where v runs the set of all places of k decomposing in K. So the Hasse principle is clear, because the algebra class β of B(K) such that $c(\beta) = 0$ has the local invariant 0 at v if v does not decompose, and the local invariants y and -y at V_1 and at V_2 , respectively, if v decomposes, where V_1 and V_2 are the two extensions of v in K. Note that $y \in Q/Z$, and that, if $e\beta = 0$, then ey = 0.

Now suppose that e is even. From Proposition 1, it follows that $H^2(k_v, (C \otimes \mu_e)_v) \simeq \mathbb{Z}_2$ if v does not decompose, and that $H^2(k_v, (C \otimes \mu_e)_v) \simeq \mathbb{Z}_e$ if v decomposes. Thus we have

$$P^{2}(k,\,C\!\otimes\mu_{e})\,{=}\,\Sigma^{\prime}\,oldsymbol{Z}_{e}\,{\oplus}\,\Sigma^{\prime\prime}\,oldsymbol{Z}_{2}$$
 ,

where Σ' means the direct sum over the places decomposing in K, and Σ'' means the direct sum over the places which do not decompose in K. Considering the local invariants of a pair $(\alpha, \beta) \in B(k) \times B(K)$ such that $2\alpha = 0$, $r(\alpha) = \frac{e}{2}\beta$ and $c(\beta) = 0$, which is a general element of $H^2(k, C \otimes \mu_e)$ according to (22)', we can see that the Hasse principle holds. Note that r is the restriction map of B(k) into B(K).

Now consider the case where $Z \simeq \Lambda \otimes \mu_e$. Note that Λ is the g-module relative to a quadratic extension K defined in (4). If v decomposes, then $Z_v \simeq \mu_e \times \mu_e$ (direct product). If v does not decompose, then $Z_v = \Lambda_v \otimes \mu_e$, where Λ_v is the g_v -module relative to K_v defined in (4). Thus we have $P^2(k, \Lambda \otimes \mu_e)$ $\simeq P^2(K, \mu_e)$, and the Hasse principle holds clearly, because of the formula (7).

Let K be a cubic extension of k (cyclic or non-cyclic), and $C = {}^{s}C$ be the g-module relative to K defined in (5). We put $Z = C \otimes \mu_{e}$.

If v decomposes completely, that is, v has three extensions V_1 , V_2 and V_3

in K, then $K_{V_i} \simeq k_v$, and g_v is contained in the maximal normal subgroup of g contained in h. Thus we have $(C \otimes \mu_e)_v \simeq \mu_e \times \mu_e$ (direct product).

If v does not decompose in K, denoting by V the unique extension of v in K, the completion K_V is a cubic extension of k_v . It is easy to see that $(C \otimes \mu_e)_v \simeq C_v \otimes \mu_e$, where C_v is the g_v -module relative to K_V defined in (5).

If v decomposes partially, that is, v has two extensions V_1 and V_2 in K such that one of K_{V_i} is equal to k_v , and the other is a quadratic extension of k_v . We assume that K_{V_2} is a quadratic extension of k_v . So $K_{V_1} = k_v$. Note that this case occurs only if K is not cyclic over k. We consider the Galois group g_v as the decomposition group of an extension w of v in \bar{k} which is also an extension of V_1 . Let N be the minimal Galois extension of k containing K, and \mathfrak{n} be the Galois group of \bar{k} over N. Then the Galois group $G = \mathfrak{g}/\mathfrak{n}$ of N over k is isomorphic to the symmetric group on 3 letters. The group G is generated by s and t such that $s^2 = 1$, $t^3 = 1$ and $sts = t^{-1}$. We suppose that the Galois group $H = \mathfrak{h}/\mathfrak{n}$ of N over K is equal to the subgroup generated by s. Then the decomposition group of V_1 is equal to H. Thus \mathfrak{g}_v is contained in \mathfrak{h} . The Galois group of \bar{k}_v over K_{V_2} is $\mathfrak{n}_v = \mathfrak{n} \cap \mathfrak{g}_v$. In this case, we have

 $(C\otimes \mu_e)_v \simeq \Lambda_v \otimes \mu_e$

where Λ_v is the g_v -module relative to K_{v_2} defined in (4).

We prove (33). The g-module C is g-isomorphic to a Z-free module generated by $c_1 = a_1 - a_0$ and $c_2 = a_2 - a_0$, where $a_0 = H$, $a_1 = tH$ and $a_2 = t^2 H$. Obviously n_v operates trivially on C. Fix an element of $g_v - n_v$. This element induces the element s of H. It is easy to see that $sc_1 = c_2$ and $sc_2 = c_1$. This proves the formula (33).

Now we consider $H^2(k_v, (C \otimes \mu_2)_v)$. From the arguments above, it follows that $H^2(k_v, (C \otimes \mu_2)_v) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ if v decomposes completely, and $H^2(k_v, (C \otimes \mu_2)_v)$ = 0 if v does not decompose, and $H^2(k_v, (C \otimes \mu_2)_v) = \mathbb{Z}_2$ if v decomposes partially. An algebra class $\beta \in B(K)$ such that $c(\beta) = 0$ has the local invariants y_1, y_2 and y_3 at V_1, V_2 and V_3 , respectively, where $\sum y_i = 0$, if v decomposes completely, and the local invariant 0 at V if v does not decompose, and the local invariants y and -y at V_1 and V_2 , respectively, if v decomposes partially. If $2\beta = 0$, then each local invariant y is such that 2y = 0. This shows that the Hasse principle holds for $\mathbb{Z} = {}^3C \otimes \mu_2$. For the behaviour of the local invariants under the restriction map and the corestriction map, see Artin-Tate [2] Chapter 7, 3.

The rest of the theorem is clear from the duality theorem of Pontrjagin. This completes the proof.

§ 5. The character group $\Phi_k(F)$.

Let F be a quasi-split simple algebraic group over a field k of characteristic zero with respect to a finite Galois extension K of k, and Z be its fundamental group. Let A be a maximal k-trivial torus of F, and T = Z(A)be the centralizer of A in F. It is known that T is a maximal torus of Fdefined over k. We denote by \tilde{T} the maximal torus of the universal covering group E of F corresponding to T by the covering isogeny π . It is known that $H^1(k, \tilde{T}) = 0$ ([11] n°3), and that the following two formulae hold ([10] Theorem 1):

$$[E_k, E_k] = E_k,$$

(35)
$$F_k/\pi(E_k) \simeq T_k/\pi(\tilde{T}_k) \simeq H^1(k, Z)$$

where $[E_k, E_k]$ is the commutator subgroup of E_k . It follows that the sequence

$$(36) 1 \longrightarrow Z_k \longrightarrow E_k \xrightarrow{\pi} F_k \longrightarrow H^1(k, Z) \longrightarrow 1$$

is exact.

Now suppose that k is an algebraic number field. It is easy to see that, for a place v of k, the group F is quasi-split over k_v with respect to K_r , where V is an extension of v in K, except the case where F is of type 6D_4 and v decomposes partially in K, and that, in the exceptional case, the group F is quasi-split over k_v with respect to K_{V_2} , where V_2 is an extension of v in K such that K_{V_2} is a quadratic extension of k_v . For these, it suffices to examine the structure of T over k_v , because T is characterized as T = Z(A). It follows from these that g_v -module Z_v is isomorphic to the fundamental group of F considered as an algebraic group defined over k_v , where Z is the fundamental group of F over k which is a finite g-module (cf. Theorem 1 and the proof of Theorem 2). By abuse of notation, we use the notations $F_v = F_{k_v}$, etc.

THEOREM 3. Let F be a quasi-split simple group defined over an algebraic number field k, and Z be its fundamental group. Then the commutator subgroup $[F_A, F_A]$ of the adele group F_A of F over k is closed in F_A . For the quotient group, we have a topological isomorphism

$$(37) F_A/[F_A, F_A] \cong P^1(k, Z),$$

where $P^{1}(k, Z)$ is the group defined in (30).

PROOF. The first statement is already shown in [10], p. 163. It is easy to see that

(38)
$$F_A / [F_A, F_A] \simeq \prod (F_v / \pi(E_v), F_{\circ_v} \cdot \pi(E_v) / \pi(E_v))$$

where the second term means the restricted direct product of $F_v/\pi(E_v)$ with

T. TASAKA

respect to $F_{\mathfrak{o}_v} \cdot \pi(E_v)/\pi(E_v)$ ([10] the formula (53)). Note that $\pi(E_v)$ coincides with $[F_v, F_v]$ ([10], Theorem 1). From the exact sequence (36), it follows that $F_v/\pi(E_v) \simeq H^1(k_v, Z_v)$ for all places v of k. Thus it suffices to show that $F_{\mathfrak{o}_v} \cdot \pi(E_v)/\pi(E_v)$ is isomorphic to $H^1(\mathfrak{o}_v, Z_v)$ for almost all v.

Consider the set of finite places v of k which are unramified in the finite Galois extension K, and which do not divide the order of Z. Then it is easily seen that Z is unramified over places of this set, and that almost all places of k are contained in this set. For a place v of this set, we have

$$(39) F_{\mathfrak{o}_{v}} \cdot \pi(E_{v})/\pi(E_{v}) \simeq F_{\mathfrak{o}_{v}}/F_{\mathfrak{o}_{v}} \cap \pi(E_{v}) \simeq F_{\mathfrak{o}_{v}}/\pi(E_{\mathfrak{o}_{v}}) \simeq T_{\mathfrak{o}_{v}}/\pi(\widetilde{T}_{\mathfrak{o}_{v}}).$$

(See [10], Theorem 3 and its proof). Let $k_v(nr)$ be the maximal unramified extension of k_v , and a_v be its Galois group over k_v . We denote by U the unit group of $k_v(nr)$, and by $T_v(U)$ the group of all $k_v(nr)$ -rational points of Twhose coordinates are contained in U. Then we have the following exact sequence of a_v -modules:

(40)
$$0 \longrightarrow Z_{v} \longrightarrow \widetilde{T}_{v}(U) \xrightarrow{\pi} T_{v}(U) \longrightarrow 0.$$

The surjectivity of π comes from the following fact: If v does not divide a natural number e, then the sequence

$$(41) 0 \longrightarrow \mu_e \longrightarrow U \xrightarrow{e} U \longrightarrow 0$$

is exact, where $e(x) = x^e$ for $x \in U$. From the theorem of Nakayama [4], Theorem 2, considering the derived cohomology sequence of (40), it follows that

(42)
$$0 \longrightarrow Z_{v}^{av} \longrightarrow \widetilde{T}_{ov} \xrightarrow{\pi} T_{ov} \longrightarrow H^{1}(a_{v}, Z_{v}) \longrightarrow 0 .$$

(See also [5], footnotes 10 and 11 in p. 118). From the definition, $H^1(\mathfrak{a}_v, Z_v)$ is equal to $H^1(\mathfrak{o}_v, Z_v)$ (cf. § 4). Thus our theorem is proved.

REMARK. The references are made only for non-split quasi-split groups. The corresponding results for split groups have been proved in [9].

COROLLARY. Under the isomorphism (37), the subgroup $F_k \cdot [F_A, F_A]/[F_A, F_A]$ is mapped onto the subgroup $\rho_1(H^1(k, Z))$, where ρ_1 is the mapping defined in (31).

PROOF. Because of the sequence (36), this corollary is clear.

THEOREM 4. Let F be a quasi-split simple algebraic group over an algebraic number field k, and Z be its fundamental group. We denote by $\Phi_k(F)$ the group of all class characters of F. Then we have

(43)
$$\Phi_k(F) \simeq H^1(k, Z')$$

where $Z' = \text{Hom}(Z, G_m)$.

PROOF. We denote by $X(F_A)$ the group of all continuous representations of F_A into R/Z. Then $X(F_A)$ is the dual group of $F_A/[F_A, F_A]$. From Theorem

3, this dual group is isomorphic to $P^1(k, Z)^* \simeq P^1(k, Z')$. A class character of F is a character of F_A which annihilates $F_k \cdot [F_A, F_A]$. From the Corollary to Theorem 3, it follows that $\Phi_k(F)$ is isomorphic to the annihilator of $\rho_1(H^1(k, Z))$. Thus the theorem follows from the theorem 2 in §4. (q.e.d.)

§ 6. Dihedral extensions.

Let k be a field of characteristic zero, and K be its quadratic extension. We denote by g the Galois group of \bar{k} over k, and by \mathfrak{h} the Galois group of \bar{k} over K. We investigate the group $\Delta(e) = \Delta_{K/k}(e)$ which is the kernel of the corestriction map c of Hom $(\mathfrak{h}, \mathbb{Z}_e)$ into Hom $(\mathfrak{g}, \mathbb{Z}_e)$. At first, we know that $H^1(\mathfrak{h}, \mathbb{Z}_e) \simeq H^1(\mathfrak{g}, \Lambda \otimes \mathbb{Z}_e)$, where Λ is the g-module relative to K defined in (4). We make the explicit correspondence between these groups. For an element φ of $H^1(\mathfrak{h}, \mathbb{Z}_e) = \text{Hom}(\mathfrak{h}, \mathbb{Z}_e)$, we put

(44)
$$\begin{cases} \varphi_1(S) = \varphi(S) \\ \varphi_1(\sigma S) = \varphi(\sigma S \sigma), \end{cases} \begin{cases} \varphi_2(S) = \sigma \varphi(\sigma^{-1} S \sigma) \\ \varphi_2(\sigma S) = \sigma \varphi(S) \end{cases}$$

where $S \in \mathfrak{h}$, and σ is a fixed element of $\mathfrak{g}-\mathfrak{h}$, and $\sigma\varphi(S) = \sigma(\varphi(S))$, for example. So we have $\varphi_2(S) = \varphi(\sigma^{-1}S\sigma)$ and $\varphi_2(\sigma S) = \varphi(S)$ in our case. Then $a_1 \otimes \varphi_1(X) + a_2 \otimes \varphi_2(X)$ with $X \in \mathfrak{g}$ is 1-cocycle of \mathfrak{g} into $A \otimes Z_e$, where a_1 and a_2 are the canonical base of Λ . The inverse correspondence is given by the restriction of φ_1 to \mathfrak{h} . The corestriction map c of Hom (\mathfrak{h}, Z_e) into Hom (\mathfrak{g}, Z_e) is given by $c(\varphi)(X) = \varphi_1(X) + \varphi_2(X)$. Thus $c(\varphi) = 0$ means that

(45)
$$\begin{cases} \varphi(S) + \varphi(\sigma^{-1}S\sigma) = 0\\ \varphi(\sigma S\sigma) + \varphi(S) = 0. \end{cases}$$

This condition is equivalent to

(46)
$$\begin{cases} \varphi(\sigma^{-1}S\sigma) = -\varphi(S) \\ \varphi(\sigma^{2}) = 0. \end{cases}$$

We denote by b the closed subgroup of h generated by [h, h] and τ^2 $(\tau \in \mathfrak{g}-\mathfrak{h})$. Clearly b is a normal subgroup of g. It is easy to see that, for an element φ of Hom $(\mathfrak{h}, \mathbb{Z}_e)$, the condition $c(\varphi)=0$ is equivalent to the condition $\ker \varphi \supset \mathfrak{h}$.

For an element $\varphi \in \Delta(e)$, we denote by n the kernel of φ , and by N the extension of K corresponding to n. Clearly n is a normal subgroup of g.

PROPOSITION 4. We put G = g/n and H = h/n. Then G is a dihedral group of degree f with the canonical cyclic subgroup H, where f = [N:K] is the order of H which is equal to that of the image of φ .

PROOF. From the first equation of (46), the operation of G on H is clearly

that of the dihedral groups. As τ^2 is contained in $b \subset n$ for $\tau \in g-b$, the elements of G-H are of order two. This shows that G is a dihedral group. (q. e. d.)

DEFINITION 2. We call an element φ of $\Delta(e)$ a dihedral character of \mathfrak{h} . Let N be the extension of K corresponding to $\mathfrak{n} = \ker \varphi$. We call N a dihedral extension of k of degree f relative to K, where f = [N: K].

Now we will prove (25)'. That is

PROPOSITION 5. Let C be the g-module relative to K defined in (5). If e is an even number, we have

(25)'
$$H^1(\mathfrak{g}, \mathbb{C} \otimes \mathbb{Z}_e) \simeq \mathbb{Z}_2 \times \mathcal{A}(e)$$
 (direct product).

But this decomposition is not a canonical one.

PROOF. We put $b = a_2 - a_1$ which is the canonical base of C, where a_1 and a_2 are the canonical base of Λ . Thus $C \otimes \mathbb{Z}_e = \{b \otimes \alpha : \alpha \in \mathbb{Z}_e\}$. We denote by λ the canonical generator of \mathbb{Z}_e . Note that we use the additive notation in \mathbb{Z}_e . Let $g_s = b \otimes \alpha_s$ be a 1-cocycle of g into $C \otimes \mathbb{Z}_e$. From the cocycle condition $g_{st} = sg_t + g_s$, it follows that

(47)
$$\begin{cases} \alpha_{st} = \alpha_s + \alpha_t : \quad s \in \mathfrak{h} \\ \alpha_{st} = \alpha_s - \alpha_t : \quad s \in \mathfrak{h}. \end{cases}$$

Denoting by φ the restriction of α to \mathfrak{h} , we can see that φ is a dihedral character. Conversely for a dihedral character φ in $\Delta(e)$, we put $\alpha_s = \varphi(S)$ and $\alpha_{s\sigma} = \varphi(S)$ for $S \in \mathfrak{h}$, where σ is a fixed element of $\mathfrak{g}-\mathfrak{h}$. It is easy to see that $g_s = b \otimes \alpha_s$ is a 1-cocycle of \mathfrak{g} into $C \otimes \mathbb{Z}_e$. This map gives a cross-section of $\Delta(e)$ into $H^1(\mathfrak{g}, C \otimes \mathbb{Z}_e)$ in the sequence (25). Note that this cross-section depends on the choice of σ .

Now we put

(48)
$$\begin{cases} \alpha_s = 0, \\ \alpha_{s\sigma} = \lambda, \end{cases}$$

for $S \in \mathfrak{h}$. Then $g_s = b \otimes \alpha_s$ is a 1-cocycle of g into $C \otimes \mathbb{Z}_e$ which is non-trivial because of the assumption that e is even. We denote by ω the element of $H^1(\mathfrak{g}, C \otimes \mathbb{Z}_e)$ corresponding to this cocycle. Clearly the order of ω is two. The subgroup $\langle 0, \omega \rangle$ of $H^1(\mathfrak{g}, C \otimes \mathbb{Z}_e)$ is the canonical image of \mathbb{Z}_2 in the sequence (25). This proves the proposition.

REMARK. Two elements σ and τ in $\mathfrak{g}-\mathfrak{h}$ give the same direct decomposition if and only if $\sigma\tau^{-1} \in \mathfrak{h}_2$, where \mathfrak{h}_2 is the subgroup of \mathfrak{h} generated by S^2 with $S \in \mathfrak{h}$. Clearly \mathfrak{h}_2 is a normal subgroup of \mathfrak{g} .

Now we suppose that the base field k is a p-adic field, and that K is a quadratic extension of k. From the local class field theory, it follows that $k^*/NK^* \simeq \mathbb{Z}_2$. Thus the sequence (21) becomes

264

Character groups

(49)
$$0 \longrightarrow D(e) \longrightarrow H^{1}(k, C \otimes \mu_{e}) \longrightarrow \mathbb{Z}_{2} \longrightarrow 0$$

From the local duality theorem of Tate, we know that $H^1(k, C \otimes \mu_e) \simeq H^1(k, C \otimes \mathbb{Z}_e)^*$. Moreover, we have

THEOREM 5. Let k be a p-adic field, and K be its quadratic extension. We suppose that e is an even number. The annihilator of D(e) in $H^1(k, C \otimes \mu_e)$ is exactly the subgroup $\langle 0, \omega \rangle$ of $H^1(k, C \otimes \mathbb{Z}_e)$, where ω is the element defined in (48). It follows that

$$(50) \qquad \qquad \Delta(e)^* \simeq D(e) ,$$

and this isomorphism is defined in a canonical way.

PROOF. It is known from the duality theorems of Pontrjagin that the order of the annihilator of D(e) is two. Thus it suffices to show that ω is contained in this annihilator. The pairing between $H^1(k, C \otimes \mu_e)$ and $H^1(k, C \otimes \mathbb{Z}_e)$ is given by "cup-product". An element x of $D(K^{\times})$ gives l-cocycle $\xi_s = b \otimes y - s(b \otimes y)$ of g into $C \otimes \mu_e$, where y is an element of $M = \overline{k}^{\times}$ such that $x = y^e$. These 1-cocycles generate the subgroup D(e). Clearly $\xi_s = b \otimes (y \cdot s(y^{-1}))$ if $s \in \mathfrak{h}$, and $\xi_s = b \otimes (y \cdot s(y))$ if $s \notin \mathfrak{h}$. Note that we use the multiplicative notation in μ_e . Cup-product $\omega \cup \xi$ of ξ and ω is given by

(51)
$$(\boldsymbol{\omega} \cup \boldsymbol{\xi})_{s,t} = \boldsymbol{\omega}_s(s\boldsymbol{\xi}_t) = \begin{cases} 1 & : \quad s \in \mathfrak{h}, \\ s(y^{-1}) \cdot st(y) & : \quad s \notin \mathfrak{h}, \ t \in \mathfrak{h}, \\ (s(y) \cdot st(y))^{-1} : \quad s, \ t \notin \mathfrak{h}. \end{cases}$$

Note that λ is the canonical generator of $\mathbb{Z}_e = \mu'_e$. This is a 2-cocycle of g into μ_e . It suffices to show that this 2-cocycle is split in $H^2(\mathfrak{g}, M)$, because $H^2(\mathfrak{g}, \mu_e)$ is mapped into $H^2(\mathfrak{g}, M)$ injectively. We put

$$z_s = \begin{cases} y_1 \cdot s(y_1^{-1}) : s \in \mathfrak{h}, \\ y_1 \cdot s(y_1) : s \in \mathfrak{h}, \end{cases}$$

where y_1 is an element of M such that $y_1^2 = y$. Then it is easy to show that $(\omega \cup \xi)_{s,t} \cdot (\delta z)_{s,t} = 1$, where δz means the coboundary of 1-cochain z. This proves the first statement of the theorem. The rest is clear because of the Pontrjagin duality. (q. e. d.)

REMARK 1. The formula (50) holds also if e is an odd number.

REMARK 2. The formula (50) holds trivially for the real number field with respect to the complex number field, because $\Delta(e) = 0$ and D(e) = 0, in our case.

§7. Class number.

Let k be an algebraic number field, and K be its finite extension. We denote by g the Galois group of \overline{k} over k, and by \mathfrak{h} the Galois group of \overline{k} over K. We want to calculate the class number for a quasi-split simple group F defined over k (cf. § 1).

In view of Theorem 3 and Theorem 4, we define a class number for $P^1(k, Z)$ (with respect to some finite set S of places of k), where Z is a finite g-module. We assume that the Hasse principle holds for Z. That is, the map ρ_2 relative to Z in (31) is injective. From Tate's exact sequence, it follows that the map ρ'_1 of $H^1(k, Z')$ into $P^1(k, Z')$ is injective, and that the annihilator of $\rho_1(H^1(k, Z))$ is exactly $H^1(k, Z')$ (cf. Theorem 2).

DEFINITION 3. Let S be a finite set of places of k containing all infinite places and all places over which Z or Z' is ramified (cf. § 4). Putting

(52)
$$Cl_{Z}(S) = \{ \chi \in H^{1}(k, Z') : \chi_{v} = 0 \text{ for all } v \in S \}$$

and
$$\chi_v \in H^1(\mathfrak{o}_v, Z'_v)$$
 for other v ,

where χ_v denotes the canonical image of χ in $H^1(k_v, Z'_v)$, we denote by $h_Z(S)$ the cardinality of $Cl_Z(S)$, and we call $h_Z(S)$ the class number of Z relative to S.

We can apply this class number to calculate the class number of a lattice in its genus for a quasi-split simple group defined over k with some modifications.

We calculate the class numbers for the finite g-modules $Z = \mu_e$, ${}^2C \otimes \mu_e$ and ${}^3C \otimes \mu_2$, and we denote these class numbers by $h_1(e, S)$, $h_2(e, S)$ and $h_3(2, S)$, respectively. Note that, if $Z = \Lambda \otimes \mu_e$, where Λ is the g-module relative to K defined in (4), the problem is reduced to the case where the base field is K.

CASE $h_1(e, S)$: We denote by k(e) the composite of all cyclic extensions of k of degree f, where f is a divisor of e. We also denote by L(S) the maximal unramified abelian extension of k in which the places in S decompose completely. Putting $L(e, S) = k(e) \cap L(S)$, we have the following proposition (cf. [9] Theorem 2):

PROPOSITION 6. The notations being as above, we have

(53)
$$h_1(e, S) = [L(e, S): k].$$

PROOF. In our case, we have $H^1(k, Z') = \text{Hom}(g, Z_e)$. For an element χ of $Cl_1(e, S)$ (the class group for $Z = \mu_e$), we denote by N_{χ} the cyclic extension of k corresponding to the kernel of χ . From the class field theory, it follows that the composite of all N_{χ} with $\chi \in Cl_1(e, S)$ is equal to L(e, S), and that the Galois group of L(e, S) over k is isomorphic to $Cl_1(e, S)$. Thus (53) is proved. (q. e. d.)

CASE $h_2(e, S)$: We denote by \overline{S} the set of all places above S in K. We denote by $\mathfrak{k}(e)$ the composite of all dihedral extensions of k of degree f, where f is a divisor of e. We also denote by M(S) the maximal unramified abelian extension of K in which all places of K in \overline{S} decompose completely. We put $M(e, S) = \mathfrak{k}(e) \cap M(S)$. Then M(e, S) is a generalized dihedral extension of k, that is, a composite of dihedral extensions of k relative to K.

PROPOSITION 7. The notations being as above:

(i) If e is odd, we have

(54)
$$h_2(e, S) = [M(e, S) : K].$$

(55) $h_2(e, S) \leq [M(e, S): K].$

PROOF. If *e* is odd, we have $H^1(k, Z') \simeq \Delta(e)$ (See Proposition 2). For an element of $\Delta(e)$, there corresponds a dihedral extension of *k* (See Proposition 4). Thus the proof of (54) is similar to that of (53). If *e* is even, then we have the following exact sequence:

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow H^1(k, \mathbb{Z}') \stackrel{i}{\longrightarrow} \Delta(e) \longrightarrow 0$$

(See (25)). Thus, for an element $\varphi \in \Delta(e)$, there exist exactly two elements χ and χ_1 of $H^1(k, Z')$ such that $i(\chi) = i(\chi_1) = \varphi$. Their difference $\chi - \chi_1$ is the element ω defined in (48). For a place v of k, $\omega_v = 0$ if v decomposes in K, and ω_v is the corresponding element in $H^1(k_v, C_v \otimes \mathbb{Z}_e)$ if v does not decompose. We fix a place v of k which is not contained in S. It is easy to see that ω_v is contained in $H^1(\mathfrak{o}_v, \mathbb{Z}'_v)$, and that $\chi_v \in H^1(\mathfrak{o}_v, \mathbb{Z}'_v)$ iff and only if $(\chi_1)_v \in H^1(\mathfrak{o}_v, \mathbb{Z}'_v)$. For example, use the Inflation-Restriction sequence. When v does not decompose we denote by $\Delta_{\mathfrak{o}_v}(e)$ the image $i_v(H^1(\mathfrak{o}_v, \mathbb{Z}'_v))$ which is the kernel of the corestriction map of $H^1(\mathfrak{O}_V, \mathbb{Z}_e)$ into $H^1(\mathfrak{o}_v, \mathbb{Z}_e)$, where \mathfrak{O}_V is the integer ring of K_V . When v decomposes, we denote also by $\Delta_{\mathfrak{o}_v}(e)$ the group $H^1(\mathfrak{o}_v, \mathbb{Z}'_v)$.

For $\Delta(e)$, we put

$$Cl_2^0(e, S) = \{ \varphi \in \Delta(e) : \varphi_v = 0 \text{ for all } v \in S \text{ and } \varphi_v \in \Delta_{o_v}(e) \text{ for other } v \}.$$

Then the cardinality $h_2^0(e, S)$ of $Cl_2^0(e, S)$ is equal to [M(e, S): K] as in the case (54). If $\varphi_v = 0$, then one of χ_v and $(\chi_1)_v$ is zero, and the other is equal to ω_v . Thus we have $h_2(e, S) \leq h_2^0(e, S)$. This proves (55). (q. e. d.)

REMARK. In general, we can not expect the equality in the inequality (55). For example, put e=2. Then $\mu_2 \simeq C \otimes \mu_2$, and we have $h_1(e, S) = h_2(2, S)$. But, in general, $h_2^0(2, S)$ is not equal to $h_1(2, S)$.

CASE $h_3(2, e)$: Let K be a cubic extension of k, and ³C be the g-module relative to K defined in (5). We denote by \overline{S} the set of all places above S in K. As in Proposition 2, we can see that $H^1(k, {}^{3}C \otimes \mathbb{Z}_2)$ is equal to the kernel of the corestriction map of $H^1(\mathfrak{h}, \mathbb{Z}_2)$ into $H^1(\mathfrak{g}, \mathbb{Z}_2)$. We denote this kernel by ${}^{s} \Delta(2)$. We put $Cl_{\mathfrak{g}}(2, S) = \{\chi \in {}^{s} \Delta(2) : \chi_v = 0 \text{ for all } v \in S \text{ and } \chi_v \in$ $H^1(\mathfrak{o}_v, \mathbb{Z}')$ for other $v\}$. For an element $\chi \in Cl_{\mathfrak{g}}(2, S)$, we denote by N_{χ} the extension of K corresponding to the kernel of χ . It is clear that, if χ is not zero, N_{χ} is an unramified quadratic extension in which the place of \overline{S} decomposes (completely). Denoting by N(S) the composite of all N_{χ} with $\chi \in Cl_{\mathfrak{g}}(2, S)$, we have

(56)
$$h_{\mathfrak{s}}(2, S) = [N(S): K].$$

Clearly, $h_{\mathfrak{s}}(2, S)$ is a power of 2.

I have no idea to characterize the quadratic extension N_{χ} of K, or the extension N(S) of K.

College of General Education University of Tokyo

References

- J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Congress, Stockholm, 1962, 288-295.
- [2] E. Artin and J. Tate, Class field theory, Harvard, 1961.
- [3] M. Kneser, Strong approximation, Algebraic groups and discontinuous subgroups, Proc. of Symp. in pure Math., Amer. Math. Soc., IX (1966), Part II, 187-196.
- [4] T. Nakayama, Cohomology of class field theory and tensor product modules, I, Ann. of Math., 65 (1957), 255-267.
- [5] T. Ono, Arithmetic of algebraic tori, Ann. of Math., 74 (1961), 101-139.
- [6] T. Ono, On the relative theory of Tamagawa numbers, Ann. of Math., 82 (1965), 88-111.
- [7,] I. Satake, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta Math., 117 (1967), 215-279.
- [8] J.-P. Serre, Cohomologie galoisienne, Lecture notes in Math., 5 (1965), Springer-Verlag.
- [9] T. Tasaka, Sur les groupes algébriques semi-simples déployés, J. Math. Soc. Japan, 20 (1968), 390-399.
- [10] T. Tasaka, On the quasi-split simple algebraic groups defined over an algebraic number field, J. Fac. Sci. Univ. Tokyo Sect. I, 15 (1968), 147-168.
- [11] T. Tasaka, On the second cohomology groups of the fundamental group of simple algebraic groups over perfect field, J. Math. Soc. Japan, 21 (1969), 244-258.

268