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\S 0. Introduction.

This paper is a continuation of my previous papers [9] and [10]. Using
the duality theorems of Tate [1], we simplify the results in [9] and [10].

Our main tools are the auxiliary g-modules defined in [11]. Then our main
results become mere applications of the duality theorems of Tate to the
fundamental groups of simple algebraic groups. The $\mathfrak{g}(\overline{k}/k)$ -module structures
of the fundamental groups and their Galois cohomology over an algebraic

number field $k$ are already treated in Ono’s [6] which is mainly concerned
with the relative Tamagawa number of algebraic groups.

Let $F$ be a quasi-split simple algebraic group defined over an algebraic
number field $k$ , and $Z$ be the fundamental group of $F$ (in the sense of algebraic
groups) which is a finite $\mathfrak{g}$-module. Note that we denote by $\mathfrak{g}$ the Galois
group of an algebraic closure $\overline{k}$ of $k$ over $k$ . We denote by $F_{A}$ the adele
group of $F$ over $k$ . It is shown in [9] and [10] that $F_{k}\cdot[F_{A}, F_{A}]$ is closed
in $F_{A}$ , where $[F_{A}, F_{A}]$ is the commutator subgroup of $F_{A}$ , and that the quotient
group $A_{k}(F)=F_{A}/F_{k}\cdot[F_{A}, F_{A}]$ is a totally disconnected compact group. In
this paper, we consider the dual group $\Phi_{k}(F)$ of $A_{k}(F)$ in the sense of Pontr-
jagin, and show that

$\Phi_{k}(F)\simeq H^{1}(\mathfrak{g}, Z^{\prime})$ ,

where $Z^{\gamma}=Hom(Z, G_{m})$ (See Theorem 4). This is our main theorem.
In \S 2, we investigate the $\mathfrak{g}$ -module structure of the fundamental group

$Z$, using the auxiliary $\mathfrak{g}$ -modules defined in (4) and (5). In \S 3, we consider
their cohomology groups. In \S 4, we give an alternative proof of the Hasse
principle to the fundamental group $Z$ (Theorem 2) (cf. [6], p. 106-107). In \S 5.
we prove our main theorems (Theorem 3 and Theorem 4). In \S 6, we inves-
tigate more explicit structure of $H^{1}(\mathfrak{g}, Z^{\prime})$ for some cases. In \S 7, we apply

our main theorems to calculate the class number of a lattice in its genus.
Some special notations.
We denote by $\mu_{e}$ the group of e-th roots of unity in $\overline{k}$ which has a natural

g-module structure, and by $Z_{e}$ the cyclic group of order $e$ on which $\mathfrak{g}$ operates
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trivially. For a locally compact abelian group $G$ , we denote by $c*$ the dual
group of $G$ in the sense of Pontrjagin. For a field $k$ , we denote by $k^{x}$ the
multiplicative group $k-\{0\}$ of $k$ , and by $(k^{x})^{e}$ the subgroup of $k$ generated
by $x^{e}$ , where $x$ is contained in $k^{x}$ .

\S 1. Preliminaries.

Let $F$ be a linear algebraic group defined over an algebraic number field
$k$ . The adele group $F_{A}$ of $F$ over $k$ is, by definition, a restricted direct
product of $F_{v}$ , where $v$ runs the set of all places of $k$ and $F_{v}$ denotes $F_{k_{v}}$ .
We call a class character of $F$ over $k$ a continuous representation of $F_{A}$ into
$R/Z$ which is trivial on $F_{k}$ . We denote by $\Phi_{k}(F)$ the group of all class char-
acters of Fover $k$ . Thus, if we put $B_{k}(F)=F_{A}/\overline{F_{k}\cdot[F_{A},F_{A}]}$, where $[F_{A}, F_{A}]$

is the commutator subgroup of $F_{A}$ , then $\Phi_{k}(F)$ is the dual group of $B_{k}(F)$ in
the sense of Pontrjagin.

We assume that $F$ is contained in $GL(V)$ , where $V$ is a finite dimensional
vector space defined over $k$ . We assume also that the canonical injection of
$F$ into $GL(V)$ is defined over $k$ . A lattice $L$ in $V$ is a finitely generated
o-module which spans $V_{k}$ over $k$ , where $0$ is the ring of integers of $k$ . For
a finite place $v=\mathfrak{p}$ , we put $L_{\mathfrak{p}}=0_{\mathfrak{p}}\cdot L$ , where Op is the ring of $\mathfrak{p}$-adic integers
in $k_{\mathfrak{p}}$ . Then $L_{\mathfrak{p}}$ is an $0\mathfrak{p}$ -lattice in $V_{k\mathfrak{p}}$ . Put $F_{\mathfrak{p}}(L)=\{g\in F_{\phi} : gL_{\mathfrak{p}}=L_{\mathfrak{p}}\}$ . Then
$F_{\mathfrak{p}}(L)$ is an open compact subgroup of $F_{\mathfrak{p}}$ . We fix a finite set $S$ of places of
$k$ containing the set $S_{\infty}$ of all infinite places of $k$ . We put

(1) $F_{A(S,L)}=\prod_{v\in S}F_{v}\times\prod_{v\not\in S}F_{v}(L)$ .

DEFINITION 1. For a class character $\chi\in\Phi_{k}(F)$ , we define a symbol $\mathfrak{f}(\chi)$

which will be called the conductor of $\chi$ . For a lattice $L$ in $V$, and a finite
set $S$ of places of $k$ , we define a symbol $\mathfrak{f}(S, L)$ . We define that

(2) $\mathfrak{f}(x)\supset \mathfrak{f}(S, L)$

means that $\chi$ is trivial on $F_{A(S,L)}$ , and we say that the conductor $\mathfrak{f}(\chi)$ of $\chi$

contains $\mathfrak{f}(S, L)$ .
We put

(3) $Cl_{F}(S, L)=\{\chi\in\Phi_{k}(F):\mathfrak{f}(\chi)\supset \mathfrak{f}(S, L)\}$ .
We call the class number of the lattice $L$ relative to $S$ the order $h_{F}(S, L)$ of
$Cl_{F}(S, L)$ which may be infinite. M. Kneser has shown that, if $F$ is semi-
simple (and has no simple factors of certain type of $E_{8}$) and $F_{s}=\prod_{v\in S}F_{v}$ is not

compact, then $h_{F}(S, L)$ is finite and equal to the number of double cosets in
$F_{k}\backslash F_{A}/F_{A(S,L)}$ , and that this number is also equal to the class number of the
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genus of the lattice $L$ if $S=S_{\infty}$ ([3]). If $F$ is the multiplicative group $G_{m}$ of
the universal domain of $k$ , then $h_{F}(S_{\infty}, L)$ is equal to the class number of the
field $k$ , where $L$ is a canonical lattice. If $F$ is the additive group $G_{a}$ of the
universal domain, then $B_{k}(G_{a})=(G_{a})_{A}/(G_{a})_{k}=k_{A}/k$ is a compact group. It is
easy to see that $\Phi_{k}(G_{a})\simeq k$ . By the strong approximation theorem, we have
$h(S, L)=1$ for any non-empty set $S$ and any lattice $L$ .

In this paper, we concern ourselves mainly with the quasi-split simple
algebraic groups. In this paper, simple group means the algebraic group
defined over $k$ which is simple over the algebraic closure $\overline{k}$ of $k$ , and which
may have non-trivial center (of course, whose order is finite).

\S 2. $\mathfrak{g}$-module structures of the fundamental groups of simple algebraic
groups.

Let $k$ be a field of characteristic zero, and $K$ be a finite extension of $k$

of degree $d$, and $\overline{k}$ be an algebraic closure of $k$ . We denote by $\mathfrak{g}$ the Galois
group of $\overline{k}$ over $k$ , and $by\mathfrak{h}$ that of $\overline{k}$ over $K$ . Clearly $\mathfrak{g}$ has the Krull topo-
logy, and $\mathfrak{h}$ is an open subgroup of $\mathfrak{g}$ in this topology.

We consider three auxiliary $\mathfrak{g}$ -modules defined in the following way (cf.

[11] $n^{o}1$);

(4) $\Lambda=Z[\mathfrak{g}/\mathfrak{h}]=\sum_{\ell=1}^{a}Za_{i}$ ,

$c$

(5) $0\rightarrow C\rightarrow\Lambda\rightarrow Z\rightarrow 0$

$0\rightarrow Zu\rightarrow^{r}\Lambda\rightarrow R\rightarrow 0$

(6)

where $a_{i}=g_{i}\mathfrak{h}$ is the coset of $g_{i}$ modulo $\mathfrak{h}$ , and the map $c$ is such that
$c(\sum p_{i}a_{i})=\sum p_{i}$ , and $u=\sum a_{i}$ , and $r$ is the canonical injection and $R=\Lambda/r(Z\cdot u)$ .
Thus $Z\cdot u\simeq Z$ as $\mathfrak{g}$ -modules. These modules $\Lambda,$ $C$ and $R$ are Z-free $\mathfrak{g}$ -modules
whose ranks over $Z$ are $d,$ $d-1$ and $d-l$ , respectively. It is known that, for
any $\mathfrak{g}$ -module $M$, Wc have

(7) $H^{i}(\mathfrak{g}, \Lambda\otimes M)\simeq H^{i}(\mathfrak{h}, M)$ , $(i\geqq 1)$ .
Tensoring (5) and (6) by $M$, we have the following exact sequences:

(8)
$0\rightarrow C\otimes M\rightarrow\Lambda\otimes M\rightarrow Mc\otimes 1\rightarrow 0$

,

$r\otimes 1$

(9) $0\rightarrow M\rightarrow\Lambda\otimes M\rightarrow R\otimes M\rightarrow 0$ .
In the derived cohomology sequences, through the identifications (7), $c\otimes 1$

induces the corestriction map of $H^{t}(\mathfrak{h}, M)$ into $H^{i}(\mathfrak{g}, M)$ , and $r\otimes 1$ induces the
restriction map of $H^{i}(\mathfrak{g}, M)$ into $H^{i}(\mathfrak{h}, M)$ (See [11] $n^{o}1$).
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Sometimes, we denote $C$ and $R$ by $dC$ and $dR$ , respectively, to emphasize the $B$

degree $d$ of the extension $K$ of $k$ . It is easy to see that $C\simeq R$ as g-modules
if $K$ is a cyclic extension of $k$ .

Let $F_{1}$ be an algebraic group defined over $k$ which is simple over $\overline{k}$ . Let
$E_{1}$ be a universal covering group of $F_{1}$ , and $\pi_{1}$ be the covering isogeny of $E_{1}$

onto $F_{1}$ . We may suppose that these are both defined over $k$ . We call the
fundamental group of $F_{1}$ the kernel $Z_{1}$ of $\pi_{1}$ which is contained in the center
of $E_{1}$ . When the fundamental group of $F_{1}$ coincides the center of $E_{1}$ , we call
$F_{1}$ the adjoint group. It is known that $F_{1}$ is an inner twist of certain quasi-
split group $F$ defined over $k$ . So the fundamental group $Z_{1}$ of $F_{1}$ is g-iso-
morphic to that of $F$ . Thus the problem is reduced to the problem to
determine the g-module structure of the center of simply connected quasi-split
group and to determine the $\mathfrak{g}$ -submodules of this center. We express the
g-module structures of these centers using the auxiliary g-modules defined
above. Then it becomes easy to describe their cohomology groups.

Let $F$ be a quasi-split simple group defined over $k$ which is of adjoint
type. Then there exists a unique finite Galois extension $K$ of $k$ such that $F$

is quasi-split over $k$ with respect to $K$ (See [10] n’l). We denote the type
of $F$ by $dX_{n}$ , where $d=[K:k]$ and $X_{n}$ is the type of $F$ over the universal
domain of $k$ . Let $E$ be a universal covering of $F$, and $\pi$ be the covering
isogeny of $E$ onto $F$ . We assume that these are defined over $k$ . Then the
kernel of $\pi$ is the center $Z$ of $E$ which is a finite $\mathfrak{g}$ -module.

According to Tate [1], we put $A^{\prime}=Hom(A, G_{m})$ , for a finite g-module $A$ .
Clearly $(A^{\prime})^{\prime}=A$ as g-modules. For example, if we put $A=\mu_{e}$ (the group of
e-th root of the unity in $G_{m}$), then $A^{\prime}\cong Z_{e}$ (the cyclic group of order $e$ on
which $\mathfrak{g}$ operates trivially).

LEMMA 1. Let $k$ be a field of characteristic zero, and $K$ be its finite ex-
tension. Let $\mathfrak{g}$ be the Galois group of $\overline{k}$ over $k$ , and $\mathfrak{h}$ be that of $\overline{k}$ over $K$.
We define $\mathfrak{g}$ -modules $\Lambda,$ $C$ and $R$ as in (4), (5) and (6). For a finite $\mathfrak{g}$ -module
$A$ , we have

(10) $(\Lambda\otimes A)^{\gamma}\simeq\Lambda\otimes A^{\prime}$ ,

(11) $(C\otimes A)^{\gamma}\simeq R\otimes A^{J}$

where tensor products are taken over $Z$.
PROOF. For a Z-free $\mathfrak{g}$ -module $Y$ whose rank over $Z$ is finite, we put

$Y^{0}=Hom(Y, Z)$ . It $suffi’$ . show that

(12) $(Y\otimes A)^{\prime\simeq}Y^{0}\otimes A^{\prime}$ ,

because, in our case, we have $\Lambda^{0}\simeq\Lambda$ and $C^{0}\simeq R$ ([11]). The proof of (12)
can be done by straightforward computations. (q. e. $d.$)
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THEOREM 1. Let $Z$ be the fundamental group of an adjoint group $F$ definea
over a field $k$ which is simple over $\overline{k}$. For the $\mathfrak{g}$ -module structures of $Z$ and $Z^{\prime}$ ,
we have the following table:

$a_{X_{n}:}$ $Z$ $Z^{\prime}$

$1A_{n}$ : $\mu_{n+1}$ $Z_{n+1}$

$2A_{n}$ $2C\otimes\mu_{n+1}$ $2C\otimes Z_{n+1}$

$B_{n},$ $C_{n}$ : $\mu_{2}$
$Z_{2}$

$1D_{2m}$ : $\mu_{2}\times\mu_{2}$ $Z_{2}\times Z_{2}$

$2D_{2m}$ $2\Lambda\otimes\mu_{2}$ $2\Lambda\otimes Z_{2}$

$1D_{2m+1}$ : $\mu_{4}$
$Z_{4}$

$2D_{2m+1}$ : $2C\otimes\mu_{4}$ $2C\otimes Z_{4}$

1
$E_{6}$ : $\mu_{s}$

$Z_{3}$

$2E_{6}$ : $2C\otimes\mu_{3}$ $2C\otimes Z_{\theta}$

$E_{7}$ : $\mu_{2}$
$Z_{2}$

$E_{8},$ $F_{4},$ $G_{2}$ : trivial
$3D_{4}$ : $s_{C\otimes\mu_{2}}$ $s_{C\otimes Z_{2}}$

$6D_{4}$ : $C_{1}\otimes\mu_{2}$ $C_{1}\otimes Z_{2}$

where $C_{1}$ and $R_{1}$ are the $\mathfrak{g}$ -modules defined in (5) and (6) relative to a cubic
extension $L$ of $k$ which is contained in the Galois extension $K$ of $k$ whose Galois
group is the symmetric group on three letters.

Of course, we have $\mu_{2}\simeq Z_{2}$ as $\mathfrak{g}$ -modules. Note also that, in the case $6D_{4}$ ,
we have

$R_{1}\otimes\mu_{2}\simeq C_{1}\otimes\mu_{2}$ .
PROOF. Let $A$ be a maximal k-trivial torus of $F$. Then $T=Z(A)$ is a

maximal torus of $F$ defined over $k$ ([10]). Let $\tilde{A}$ and fi be the corresponding
tori of $E$ . Then fi contains the center $Z$ of $E$, and the kernel of the restric-
tion of $\pi$ to fi is equal to $Z$. If $[K:k]=1$ , that is, $F$ is a split group defined
over $k$ , the results are clear. We restrict ourselves to the case $s_{D_{4}}$ . The
others can be proved also in the similar way. For example, in the case $2A_{n}$

(see [7], p. 245).
In the case $3D_{4}$ , we have $\tau\simeq T\simeq R_{K/k}(G_{m})\times G_{m}$ , where $K$ is a cyclic ex-

tension of degree 3 ([10]). The covering isogeny $\pi$ is given by

$\pi(t_{1}, t_{2},\overline{t}_{2}, t_{2})=(t_{1}^{2}\cdot(t2\overline{t}2^{\leftarrow}t_{2})^{-1}, t_{2}^{2}\cdot t_{1^{-1}},\overline{t}_{2}^{2}\cdot t_{1}^{-1},t^{2}t_{1}^{-1})\Leftrightarrow=_{2}\cdot$ ,

where $t_{1}\in G_{m}$ and $(t_{2},\overline{t}_{2},\overline{t_{2}})\in R_{K/k}(G_{m})$ . So the kernel of $\pi$ consists of the
elements $(t_{1}, t_{2},\overline{t}_{2}, t_{2})\Rightarrow$ , where $t_{1}=1,$ $t_{2}=\pm 1,\overline{t}_{2}=\pm 1,$ $\Leftrightarrow t_{2}=\pm 1$ , and $t_{2}\cdot\overline{t}_{2}\cdot t\approx_{2}=1$ .
Then it is easy to see that the kernel of $\pi$ and $s_{C\otimes\mu_{2}}$ are isomorphic $\mathfrak{g}-$

modules. (q. e. $d.$)
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Now it is easy to determine the $\mathfrak{g}$ -submodules of $Z$. Except the case
$1A_{n},$ $2A_{n},$ $1D_{n}$ and $2D_{n}$ , there are no proper $\mathfrak{g}$ -submodules of $Z$.

In the case $1A_{n}$ , the g-submodules of $Z$ are $\mu_{e}$ , where $e$ divides $n+1$ . In
the case $2A_{n}$ , the $\mathfrak{g}$ -submodules of $Z$ are $2C\otimes\mu_{e}$ , where $e$ divides $n+1$ . In the
case $1D_{2m+1}$ , there are three proper $\mathfrak{g}$ -submodules which are isomorphic to $\mu_{2}$ ,

and the special orthogonal group corresponds to one of them. In the case
$2D_{2m+1},1D_{2m}$ and $2D_{2m}$ , there is only one proper $\mathfrak{g}$ -submodule which is iso-
morphic to $\mu_{2}$ .

\S 3. Determination of $H^{1}(k, Z)$ and $H^{2}(k, Z)$ .
Let $Z=\mu_{e}$ be the group of e-th roots of the unity in $G_{m}$ . Putting

$M=\overline{k}^{\times}=(G_{m})_{\overline{k}}$ , we have the following exact sequence

(13) $0\rightarrow\mu_{e}\rightarrow M\rightarrow^{e}M\rightarrow 0$

where $e(x)=x^{e}$ . Considering the derived cohomology sequence, we have, by
the theorem 90 of Hilbert,

(14) $H^{1}(k, \mu_{e})=k^{\times}/(k^{\times})^{e}$ ,

(15) $H^{2}(k, \mu_{e})=\{\alpha\in B(k):e\alpha=0\}$

where $B(k)$ is the Brauer group of $k$ . Note that we use the notations $H^{i}(k,$ $ Z\rangle$

$=H^{i}(\mathfrak{g}, Z)$ , etc.
Let $K$ be a quadratic extension of $k$ . Tensoring (13) by $C=^{2}C$, we have

$0\rightarrow C\otimes\mu_{e}\rightarrow C\otimes M\rightarrow^{e}C\otimes M\rightarrow 0$ .
We know that

(16) $H^{0}(\mathfrak{g}, C\otimes M)\cong D(K^{x})=\{x\in K^{x} : Nx=1\}$

(17) $H^{1}(\mathfrak{g}, C\otimes M)\cong k^{x}/NK^{x}$

(18) $H^{2}(\mathfrak{g}, C\otimes M)\simeq\{\beta\in B(K):c(\beta)=0\}$

where $N$ is the norm map of $K^{x}$ into $k^{x}$ , and $c$ is the corestriction map of
$B(K)$ into $B(k)$ (See [11] $n^{o}2$). So the derived cohomology sequence becomes

$0\rightarrow H^{0}(C\otimes\mu_{e})\rightarrow D(K^{\times})\rightarrow^{e}D(K^{x})$

$e^{*}$

$\rightarrow H^{1}(C\otimes\mu_{e})\rightarrow k^{x}/NK^{x}\rightarrow k^{\times}/NK^{x}$

$\rightarrow H^{2}(C\otimes\mu_{e})\rightarrow H^{2}(C\otimes M)\rightarrow^{e}H^{2}(C\otimes M)$ .
It is easy to see that $e^{*}$ is the identity map if $e$ is odd, and that $e^{*}$ is zero-
map if $e$ is even. We denote by $D_{K/k}(e)$ the quotient group $D(K^{x})/D(K^{x})^{e}$.
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Sometimes we denote this group by $D_{k}(e)$ or $D(e)$ . Thus we have
PROPOSITION 1. Let $K$ be a quadratic extension of $k$ , and $C$ be the g-modules

defined in (5). Let $\mu_{e}$ be the group of e-th roots of unity.
(i) If $e$ is odd, we have

(19) $H^{1}(k, C\otimes\mu_{e})\simeq D(e)$

(20) $H^{2}(k, C\otimes\mu_{e})\simeq\{\beta\in B(K):e\beta=0, c(\beta)=0\}$ .
(ii) If $e$ is even, we have

(21) $0\rightarrow D(e)\rightarrow H^{1}(k, C\otimes\mu_{e})\rightarrow k^{x}/NK^{x}\rightarrow 0$

(22) $0\rightarrow k^{x}/NK^{x}\rightarrow H^{2}(k, C\otimes\mu_{e})\rightarrow Q\rightarrow 0$ ,

where $Q=\{\beta\in B(K):e\beta=0, c(\beta)=0\}$ .
In my previous paper [11] $n^{o}3$ , we have given more exact structure of

$H^{2}(k, C\otimes\mu_{e})$ which is characterized as that of the center of the group of type
$2A_{e-1}$ . That is, when $e$ is even, we have

(22) $H^{2}(k, C\otimes\mu_{e})=\{(\alpha, \beta)\in B(k)\times B(K):2\alpha=0,$ $r(\alpha)=_{2}^{e}--\beta,$ $c(\beta)=0\}$ ,

where $r$ is the restriction map of $B(k)$ into $B(K)$ .
Now we determine $H^{1}(k, Z^{\prime})$ in the foregoing two cases. When $Z^{J}\simeq Z_{e}$ ,

we know that

(23) $H^{1}(\mathfrak{g}, Z_{e})\simeq Hom(\mathfrak{g}, Z_{e})$ ,

where $Hom(\mathfrak{g}, Z_{e})$ is the group of all continuous homomorphisms of $\mathfrak{g}$ into $Z_{e}$ .
Tensoring (5) by $Z_{e}$ , we have

$0\rightarrow C\otimes Z_{e}\rightarrow\Lambda\otimes Z_{e}\rightarrow Z_{e}\rightarrow 0$ .
The derived cohomology sequence becomes

$c_{0}$

$0\rightarrow H^{0}(\mathfrak{g}, C\otimes Z_{e})\rightarrow H^{0}(\mathfrak{h}, Z_{e})\rightarrow H^{0}(\mathfrak{g}, Z_{e})$

$\rightarrow H^{1}(\mathfrak{g}, C\otimes Z_{e})\rightarrow Hom(\mathfrak{h}, Z_{e})\rightarrow Hom(g, Z_{e})c_{1}$ .
Clearly $H^{0}(\mathfrak{h}, Z_{e})$ and $H^{0}(g, Z_{e})$ are equal to $Z_{\iota}$ , and the map $c_{0}$ : $Z_{e}\rightarrow Z_{e}$ is given
by $c_{0}(x)=2x$ , where $x\in Z_{e}$ . We denote by $\Delta_{K/k}(e)$ the kernel of $c_{1}$ which we
will investigate in the later section. Sometimes we denote this group simply
by $\Delta_{k}(e)$ or $\Delta(e)$ . Thus we have

PROPOSITION 2. The notations being as above.
(i) If $e$ is odd, we have

(24) $H^{1}(g, C\otimes Z_{e})\simeq\Delta(e)$ .
(ii) $1fe$ is even, we have
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(25) $0\rightarrow Z_{2}\rightarrow H^{1}(k, C\otimes Z_{e})\rightarrow\Delta(e)\rightarrow 0$ .
In \S 6, we will show that

(25) $H^{1}(k, C\otimes Z_{e})\simeq Z_{2}\times\Delta(e)$ (direct product).

But this decomposition in direct product is not a canonical one (cf. Proposi-
tion 5).

If $Z=\Lambda\otimes A$ , with a finite g-module $A$ , we can utilize the formula $(7\rangle_{-}$

That is,

(26) $H^{i}(k, \Lambda\otimes A)\simeq H^{i}(K, A)$ .

The same holds for $Z^{\prime}=\Lambda\otimes A^{\prime}$ (cf. Lemma 1).

Now let $K$ be a cubic extension of $k$ (cyclic or non-cyclic). We consider
the exact sequence

2
(27) $0\rightarrow C\otimes\mu_{2}\rightarrow C\otimes M\rightarrow C\otimes M\rightarrow 0$ .

The derived cohomology sequence becomes

$0\rightarrow H^{0}(C\otimes\mu_{2})\rightarrow D(K^{x})\rightarrow D(K^{x})$

2*
$\rightarrow H^{1}(C\otimes\mu_{2})\rightarrow k^{\times}/NK^{\times}\rightarrow k^{x}/NK^{\times}$

$\rightarrow H^{2}(C\otimes\mu_{2})\rightarrow H^{2}(C\otimes M)\rightarrow H^{2}(C\otimes M)$ .
It is clear that $2^{*}$ is the inverse map, that is, $2^{*}(y)=y^{-1}$ for any element
$y\in k^{x}/NK^{x}$ . Thus

PROPOSITION 3. Let $K$ be a cubic extension of $k$ , and $C=’$C. Then we have

(28) $H^{1}(k, C\otimes\mu_{2})\simeq D(K^{x})/D(K^{\times})^{2}$

(29) $H^{2}(k, C\otimes\mu_{2})\simeq\{\beta\in B(K):2\beta=0, c(\beta)=0\}$ .
In this case, $Z^{\prime}\simeq Z$, because $Z_{2}\simeq\mu_{2}$ .

\S 4. Localizations and Hasse principle.

Let $k$ be an algebraic number field of finite degree over $Q$ . We denote
by $v$ a place of $k$ , and by $k_{v}$ the completion of $k$ with respect to $v$ . We
denote by $\mathfrak{g}$ the Galois group of $\overline{k}$ over $k$ , and by $\mathfrak{g}_{v}$ the Galois group of
$\overline{k}_{v}=\overline{k}\cdot k_{v}$ over $k_{v}$ . The group $\mathfrak{g}_{v}$ can be identified with the decomposition
group of an extension $w$ of $v$ in $\overline{k}$ . For a finite $\mathfrak{g}$-module $A$ , by restriction
of the group of operators to $\mathfrak{g}_{v}$ , we have a finite $\mathfrak{g}_{v}$ -module which we will
denote by $A_{v}$ . We denote $H^{i}(\mathfrak{g}_{v}, A_{v})$ by $H^{i}(k_{v}, A_{v})$ . For an infinite place $v$

of $k$ , we use the Tate cohomology groups, that is, $H^{i}(k_{v}, A_{v})=\hat{H}^{i}(k_{v}, A_{v})$ . In
particular, if $v$ is a complex place, we have $H^{i}(k_{v}, A_{v})=0$ . When $v$ is a finite
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place of $k$ , we denote by $k_{v}(nr)$ the maximal unramified extension of $k_{v}$ , whose
Galois group over $k_{v}$ will be denoted by $\mathfrak{a}_{v}$ . Thus we have $\mathfrak{a}_{v}\simeq \mathfrak{g}_{v}/\mathfrak{b}_{v}$ , where
$\mathfrak{y}_{v}$ denotes the Galois group of $\overline{k}_{v}$ over $k_{v}(nr)$ . A finite $\mathfrak{g}$ -module $A$ is called
to be unramified over $v$ if $\mathfrak{b}_{v}$ operates trivially on $A_{v}$ . In this case, $A_{v}$

becomes $\mathfrak{a}_{v}$ -module in natural way, whose cohomology group $H^{i}(\mathfrak{a}_{v}, A_{v})$ will
be denoted by $H^{i}(0_{v}, A_{v})$ or by $Hi,(k., A_{v})$ (See [1] and [8]).

It is easy to see that a finite g-module $A$ is unramified over almost all $v$

(that is, except finite number of places). According to Serre [8], we denote
by $P^{i}(k, A)$ the restricted direct product of $H^{i}(k_{v}, A_{v})$ with respect to $H^{i}(0_{v}, A_{v})$

(30) $P^{i}(k, A)=\prod_{v}(H^{i}(k_{v}, A_{v}),$ $H^{i}(0_{v}, A_{v}))$ ,

where $H^{i}(0_{v}, A_{v})=H^{i}(k_{v}, A_{v})$ if $A$ is ramified over $v$ . It is known that $P^{0}(k, A)$

is the direct product of $H^{0}(k_{v}, A_{v})$ , and $P^{2}(k, A)$ is the direct sum of $H^{2}(k_{v}, A_{v})$ .
Because $H^{i}(k_{v}, A_{v})$ are finite groups, $P^{0}(k, A)$ has a compact topology, and
$P^{2}(k, A)$ has a discrete topology. But, in general, $P^{1}(k, A)$ is locally compact.

For the finite $\mathfrak{g}$ -module $A^{\prime}=Hom(A, G_{m})$ , we have $(A_{v})^{\prime}=(A^{\prime})_{v}$ . So we
denote this $\mathfrak{g}_{v}$ -module by $A_{v}^{\prime}$ .

THEOREM (Tate [1]). $H^{i}(k_{v}, A_{v})$ and $H^{2-i}(k_{v}, A_{v}^{\prime})$ are in exact duality with
respect to the pairing “ cup product”.

If $A$ and $A^{\prime}$ are unramified over $v$ , the annihilator of the subgroup $H^{1}(0_{v}, A_{v})$

is exactly $H^{1}(0_{v}, A_{v}^{\prime})$ .
Thus $P^{i}(k, A)$ and $P^{2-i}(k, A^{J})$ are in exact duality (in the sense of Pontr-

jagin) for $i=0,1,2$ .
From the restriction map $H^{i}(k, A)\rightarrow H^{i}(k_{v}, A_{v})$ , we have the natural map

\langle 31) $\rho_{i}$ : $H^{i}(k, A)\rightarrow P^{i}(k, A)$ .
Then the fundamental exact sequence of Tate is described in the following
way;

$\rho_{0}$

$0\rightarrow H^{0}(k, A)$ $\rightarrow P^{0}(k, A)\rightarrow H^{2}(k, A^{\prime})^{*}\rightarrow H^{1}(k, A)$
$\rho_{1}$

\langle 32) $\approx_{P^{1}(k,A)}$ .
$0-H^{0}(k, A^{\prime})^{*}\leftarrow P^{2}(k, A)H^{2}(k, A)\underline{\rho_{2}}$ $\leftarrow H^{1}(k, A^{\prime})^{*}’$

For the meaning of unlabelled arrows, see [1].

THEOREM 2 (Hasse principle).*) Let $Z$ be the fundamental group of an
algebraic group $F$ defined over an algebraic number field $k$ which is simple over $\overline{k}$.
Then the map $\rho_{2}$ relative to $Z$ is injective. It follows that

$0\rightarrow\rho_{1}(H^{1}(k, Z))\rightarrow P^{1}(k, Z)\rightarrow H^{1}(k, Z^{\prime})^{*}\rightarrow 0$

$*)$ In T. Ono [6], 3.2, an equivalent assertion that $i^{1}(\hat{M})=1$ in the notation of
[6] was proved. So the proof of Theorem 2 is an alternative one.
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is an exact sequence. This means that $H^{1}(k, Z^{\prime})$ is the exact annihilator $oJ$

$\rho_{1}(H^{1}(k, Z))$ in $P^{i}(k, Z^{J})=P^{1}(k, Z)^{*}$ .
PROOF. It suffices to show the Hasse principle for the $\mathfrak{g}$ -modules given

in the Theorem 1.
If $Z=\mu_{e}$ , then $Z_{v}$ is also $\mu_{e}$ considered in $\overline{k}_{v}$ , and the Hasse principle is

clear from the class field theory.
Let $K$ be a quadratic extension of $k$ , and $C$ is the g-module relative to $K$

defined in (5). We consider the $\mathfrak{g}$ -module $C\otimes\mu_{e}$ . If a place $v$ of $k$ decomposes
in $K$, then $(C\otimes\mu_{e})_{v}\simeq\mu_{e}$ . If $v$ does not decompose in $K$, we denote by $V$ the
unique extension of $v$ in $K$. Then $(C\otimes\mu_{e})\simeq C_{v}\otimes\mu_{e}$ , where $C_{v}$ is the $\mathfrak{g}_{v}$ -module
relative to $K_{v}$ defined in (5). It is well-known that, in the local fields, the
corestriction map $c$ of $B(L)$ into $B(k_{v})$ is injective, where $L$ is a finite ex-
tension of $k_{v}$ . If $e$ is odd, it follows from Proposition 1 that

$P^{2}(k, C\otimes\mu_{e})=\sum_{v}/H^{2}(k_{v}, \mu_{e})$ ,

where $v$ runs the set of all places of $k$ decomposing in $K$. So the Hasse
principle is clear, because the algebra class $\beta$ of $B(K)$ such that $c(\beta)=0$ has
the local invariant $0$ at $v$ if $v$ does not decompose, and the local invariants
$y$ and $-y$ at $V_{1}$ and at $V_{2}$ , respectively, if $v$ decomposes, where $V_{1}$ and $V_{2}$

are the two extensions of $v$ in $K$. Note that $y\in Q/Z$, and that, if $e\beta=0$ , then
$ey=0$ .

Now suppose that $e$ is even. From Proposition 1, it follows that $H^{2}(k_{v}$ ,
$(C\otimes\mu_{e})_{v})\simeq Z_{2}$ if $v$ does not decompose, and that $H^{2}(k_{v}, (C\otimes\mu_{e})_{v})\simeq Z_{e}$ if $v$

decomposes. Thus we have

$P^{2}(k, C\otimes\mu_{e})=\sum_{v}\prime Z_{e}\oplus\Sigma^{\prime\prime}Z_{2}$ ,

where $\sum^{\prime}$ means the direct sum over the places decomposing in $K$, and $\sum^{\prime\prime}$

means the direct sum over the places which do not decompose in $K$. Con-
sidering the local invariants of a pair $(\alpha, \beta)\in B(k)\times B(K)$ such that $2\alpha=0$ ,

$\gamma(\alpha)=\frac{e}{2}\beta$ and $c(\beta)=0$ , which is a general element of $H^{2}(k, C\otimes\mu_{e})$ according

to (22), we can see that the Hasse principle holds. Note that $r$ is the re-
striction map of $B(k)$ into $B(K)$ .

Now consider the case where $Z\simeq\Lambda\otimes\mu_{e}$ . Note that $\Lambda$ is the g-module
relative to a quadratic extension $K$ defined in (4). If $v$ decomposes, then
$Z_{v}\simeq\mu_{e}\times\mu_{e}$ (direct product). If $v$ does not decompose, then $Z_{v}=\Lambda_{v}\otimes\mu_{e}$ , where
$\Lambda_{v}$ is the $\mathfrak{g}_{v}$ -module relative to $K_{v}$ defined in (4). Thus we have $P^{2}(k, \Lambda\otimes\mu_{e})$

$\simeq P^{2}(K, \mu_{e})$ , and the Hasse principle holds clearly, because of the formula (7).

Let $K$ be a cubic extension of $k$ (cyclic or non-cyclic), and $C=3C$ be the
g-module relative to $K$ defined in (5). We put $Z=C\otimes\mu_{e}$ .

If $v$ decomposes completely, that is, $v$ has three extensions $V_{1},$ $V_{2}$ and $V_{3}$
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in $K$, then $K_{V_{t}}\simeq k_{v}$ , and $\mathfrak{g}_{v}$ is contained in the maximal normal subgroup of
$\mathfrak{g}$ contained in $\mathfrak{h}$ . Thus we have $(C\otimes\mu_{e})_{v}\simeq\mu_{e}\times\mu_{e}$ (direct product).

If $v$ does not decompose in $K$, denoting by $V$ the unique extension of $\nu$

in $K$, the completion $K_{V}$ is a cubic extension of $k_{v}$ . It is easy to see that
$(C\otimes\mu_{e})_{v}\simeq C_{v}\otimes\mu_{e}$ , where $C_{v}$ is the $\mathfrak{g}_{v}$ -module relative to $K_{V}$ defined in (5).

If $v$ decomposes partially, that is, $v$ has two extensions $V_{1}$ and $V_{2}$ in $K$

such that one of $K_{r_{i}}$ is equal to $k_{v}$ , and the other is a quadratic extension
of $k_{v}$ . We assume that $K_{V_{2}}$ is a quadratic extension of $k_{v}$ . So $K_{V_{1}}=k_{v}$ .
Note that this case occurs only if $K$ is not cyclic over $k$ . We consider the
Galois group $\mathfrak{g}_{v}$ as the decomposition group of an extension $w$ of $v$ in $\overline{k}$ which
is also an extension of $V_{1}$ . Let $N$ be the minimal Galois extension of $k$

containing $K$, and $\mathfrak{n}$ be the Galois group of $\overline{k}$ over $N$. Then the Galois group
$G=\mathfrak{g}/\mathfrak{n}$ of $N$ over $k$ is isomorphic to the symmetric group on 3 letters. The
group $G$ is generated by $s$ and $t$ such that $s^{2}=1,$ $t^{3}=1$ and $sts=t^{-1}$ . We
suppose that the Galois group $H=\mathfrak{h}/\mathfrak{n}$ of $N$ over $K$ is equal to the subgroup
generated by $s$ . Then the decomposition group of $V_{1}$ is equal to $H$. Thus
$\mathfrak{g}_{v}$ is contained in $\mathfrak{h}$ . The Galois group of $\overline{k}_{v}$ over $K_{V_{2}}$ is $\mathfrak{n}_{v}=\mathfrak{n}\cap \mathfrak{g}_{v}$ . In this
case, we have

(33) $(C\otimes\mu_{e})_{v}\simeq\Lambda_{v}\otimes\mu_{e}$

where $\Lambda_{v}$ is the $\mathfrak{g}_{v}$ -module relative to $K_{r_{2}}defined_{1}^{-}in-(4)$ .
We prove (33). The $\mathfrak{g}$ -module $C$ is $\mathfrak{g}$ -isomorphic to a Z-free module

generated by $c_{1}=a_{1}-a_{0}$ and $c_{2}=a_{2}-a_{0}$ , where $a_{0}=H,$ $a_{1}=tH$ and $a_{2}=t^{2}H$.
Obviously $\mathfrak{n}_{v}$ operates trivially on $C$ . Fix an element:of $\mathfrak{g}_{v}-\mathfrak{n}_{v}$ . This element
induces the element $s$ of $H$. It is easy to see that $sc_{1}=c_{2}$ and $sc_{2}=c_{1}$ . This
proves the formula (33).

Now we consider $H^{2}(k_{v}, (C\otimes\mu_{2})_{v})$ . From the arguments above, it follows
that $H^{2}(k_{v}, (C\otimes\mu_{2})_{v})\simeq Z_{2}\times Z_{2}$ if $v$ decomposes completely, and $H^{2}(k_{v}, (C\otimes\mu_{2})_{v^{\backslash }}$

$=0$ if $v$ does not decompose, and $H^{2}(k_{v}, (C\otimes\mu_{2})_{v})=Z_{2}$ if $v$ decomposes partially.
An algebra class $\beta\in B(K)$ such that $c(\beta)=0$ has the local invariants $y_{1},$ $y_{2}$

and $y_{3}$ at $V_{1},$ $V_{2}$ and $V_{3}$ , respectively, where $\sum y_{i}=0$ , if $v$ decomposes com-
pletely, and the local invariant $0$ at $V$ if $v$ does not decompose, and the local
invariants $y$ and $-y$ at $V_{1}$ and $V_{2}$ , respectively, if $v$ decomposes partially.
If $2\beta=0$ , then each local invariant $y$ is such that $2y=0$ . This shows that
the Hasse principle holds for $Z=3C\otimes\mu_{2}$ . For the behaviour of the local
invariants under the restriction map and the corestriction map, see Artin-
Tate [2] Chapter 7, 3.

The rest of the theorem is clear from the duality theorem of Pontrjagin.
This completes the proof.
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\S 5. The character group $\Phi_{k}(F)$ .
Let $F$ be a quasi-split simple algebraic group over a field $k$ of character-

istic zero with respect to a finite Galois extension $K$ of $k$ , and $Z$ be its
fundamental group. Let $A$ be a maximal k-trivial torus of $F$, and $T=Z(A)$

be the centralizer of $A$ in $F$. It is known that $T$ is a maximal torus of $F$

defined over $k$ . We denote by fi the maximal torus of the universal covering
group $E$ of $F$ corresponding to $T$ by the covering isogeny $\pi$ . It is known
that $H^{1}(k, ff)=0$ $([11] n^{o}3)$ , and that the following two formulae hold ([10]

Theorem 1):

(34) $[E_{k}, E_{k}]=E_{k}$ ,

(35) $F_{k}/\pi(E_{k})\simeq T_{k}/\pi(T_{k})\simeq H^{1}(k, Z)$

where $[E_{k}, E_{k}]$ is the commutator subgroup of $E_{k}$ . It follows that the sequence

(36) $1\rightarrow Z_{k}\rightarrow E_{k}F_{k}\underline{\pi}\rightarrow H^{1}(k, Z)\rightarrow 1$

is exact.
Now suppose that $k$ is an algebraic number field. It is easy to see that,

for a place $v$ of $k$ , the group $F$ is quasi-split over $k_{v}$ with respect to $K_{\gamma}$ ,
where $V$ is an extension of $v$ in $K$, except the case where $F$ is of type $6D_{4}$

and $v$ decomposes partially in $K$, and that, in the exceptional case, the group
$F$ is quasi-split over $k_{v}$ with respect to $K_{r_{2}}$ , where $V_{2}$ is an extension of $v$

in $K$ such that $K_{V_{2}}$ is a quadratic extension of $k_{v}$ . For these, it suffices to
examine the structure of $T$ over $k_{v}$ , because $T$ is characterized as $T=Z(A)$ .
It follows from these that $\mathfrak{g}_{v}$-module $Z_{v}$ is isomorphic to the fundamental
group of $F$ considered as an algebraic group defined over $k_{v}$ , where $Z$ is the
fundamental group of $F$ over $k$ which is a finite $\mathfrak{g}$ -module (cf. Theorem 1
and the proof of Theorem 2). By abuse of notation, we use the notations
$F_{v}=F_{kv}$ , etc.

THEOREM 3. Let $F$ be a quasi-split simple group defined over an algebraic
number field $k$ , and $Z$ be its fundamental group. Then the commutator subgroup
$[F_{A}, F_{A}]$ of the adele group $F_{A}$ of $F$ over $k$ is closed in $F_{A}$ . For the quotient
group, we have a topological isomorphism

(37) $F_{A}/[F_{A}, F_{A}]\cong P^{1}(k, Z)$ ,

where $P^{1}(k, Z)$ is the group defined in (30).
PROOF. The first statement is already shown in [10], p. 163. It is easy

to see that
(38) $F_{A}/[F_{A}, F_{A}]\simeq\prod_{v}(F_{v}/\pi(E_{v}), F_{0_{v}}\cdot\pi(E_{v})/\pi(E_{v}))$

where the second term means the $r$estricted direct product of $F_{v}/\pi(E_{v})$ with
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respect to F.$v\pi(E_{v})/\pi(E_{v})$ ([10] the formula (53)). Note that $\pi(E_{v})$ coincides
with $[F_{v}, F_{v}]$ ([10], Theorem 1). From the exact sequence (36), it follows that
$F_{v}/\pi(E_{v})\simeq H^{1}(k_{v}, Z_{v})$ for all places $v$ of $k$ . Thus it suffices to show that
$F_{0_{v}}\cdot\pi(E_{v})/\pi(E_{v})$ is isomorphic to $H^{1}(0_{v}, Z_{v})$ for almost all $v$ .

Consider the set of finite places $v$ of $k$ which are unramified in the finite
Galois extension $K$, and which do not divide the order of $Z$. Then it is easily
seen that $Z$ is unramified over places of this set, and that almost all places
of $k$ are contained in this set. For a place $v$ of this set, we have

(39) $F_{0_{v}}\cdot\pi(E_{v})/\pi(E_{v})\simeq F_{0_{v}}/F_{0_{v}}\cap\pi(E_{v})\simeq F_{0_{v}}/\pi(E_{0_{v}})\simeq T_{0_{v}}/\pi(ff_{0_{v}})$ .
(See [10], Theorem 3 and its proof). Let $k_{v}(nr)$ be the maximal unramified
extension of $k_{v}$ , and $\mathfrak{a}_{v}$ be its Galois group over $k_{v}$ . We denote by $U$ the unit
group of $k_{v}(nr)$ , and by $T_{v}(U)$ the group of all $k_{v}(nr)$ -rational points of $T$

whose coordinates are contained in $U$. Then we have the following exact
sequence of $\mathfrak{a}_{v}$ -modules:

(40) $0\rightarrow Z_{v}\rightarrow T_{v}(U)\rightarrow^{\pi}T_{v}(U)\rightarrow 0$ .
The surjectivity of $\pi$ comes from the following fact: If $v$ does not divide a
natural number $e$ , then the sequence

(41) $0\rightarrow\mu_{e}\rightarrow U\rightarrow^{e}U\rightarrow 0$

is exact, where $e(x)=x^{e}$ for $x\in U$. From the theorem of Nakayama [4],

Theorem 2, considering the derived cohomology sequence of (40), it follows
that

$\pi$

(42) $0\rightarrow Z_{v^{\emptyset}}^{a}\rightarrow \mathcal{T}_{0_{v}}\rightarrow T_{0_{v}}\rightarrow H^{1}(\mathfrak{a}_{v}, Z_{v})\rightarrow 0$ .
(See also [5], footnotes 10 and 11 in p. 118). From the definition, $H^{1}(\mathfrak{a}_{v}, Z_{v})$

is equal to $H^{1}(0_{v}, Z_{v})$ (cf. \S 4). Thus our theorem is proved.
REMARK. The references are made only for non-split quasi-split groups.

The corresponding results for split groups have been proved in [9].

COROLLARY. Under the isomorphism (37), the subgroup $F_{k}\cdot[F_{A}, F_{A}]/[F_{A}, F_{A}]$

is mapped onto the subgroup $\rho_{1}(H^{1}(k, Z))$ , where $\rho_{1}$ is the mapping defined in (31).

PROOF. Because of the sequence (36), this corollary is clear.
THEOREM 4. Let $F$ be a quasi-split simple algebraic group over an algebraic

number field $k$ , and $Z$ be its fundamental group. We denote by $\Phi_{k}(F)$ the group
of all class characters of F. Then we have

(43) $\Phi_{k}(F)\simeq H^{1}(k, Z^{\prime})$

where $Z^{\prime}=Hom(Z, G_{m})$ .
PROOF. We denote by $X(F_{A})$ the group of all continuous representations

$ofF_{A}intoR/Z$. Then X$(F_{A})isthedualgroupofF_{A}/[F_{A}, F_{A}]$ . From Theorem
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3, this dual group is isomorphic to $P^{1}(k, Z)^{*}\simeq P^{1}(k, Z‘)$ . A class character of
$F$ is a character of $F_{A}$ which annihilates $F_{k}\cdot[F_{A}, F_{A}]$ . From the Corollary
to Theorem 3, it follows that $\Phi_{k}(F)$ is isomorphic to the annihilator of
$p_{1}(H^{1}(k, Z))$ . Thus the theorem follows from the theorem 2 in \S 4. $(q. e. d.)$

\S 6. Dihedral extensions.

Let $k$ be a field of characteristic zero, and $K$ be its quadratic extension.
We denote by $\mathfrak{g}$ the Galois group of $\overline{k}$ over $k$ , and by $\mathfrak{h}$ the Galois group of
$\overline{k}$ over $K$. We investigate the group $\Delta(e)=\Delta_{K/k}(e)$ which is the kernel of the
corestriction map $c$ of $Hom(\mathfrak{h}, Z_{e})$ into $Hom(\mathfrak{g}, Z_{e})$ . At first, we know that
$H^{1}(\mathfrak{h}, Z_{e})\simeq H^{1}(\mathfrak{g}, \Lambda\otimes Z_{e})$ , where $\Lambda$ is the $\mathfrak{g}$ -module relative to $K$ defined in (4).
We make the explicit correspondence between these groups. For an element
$\varphi$ of $H^{1}(\mathfrak{h}, Z_{e})=Hom(\mathfrak{h}, Z_{e})$ , we put

(44) $\{\varphi_{1}(S)=\varphi(S)$

$\varphi_{1}(\sigma S)=\varphi(\sigma S\sigma)$ ,
$\left\{\begin{array}{llll} & & & \varphi_{2}(S)=\sigma\varphi(\sigma^{-1}S\sigma)\\ & & & \varphi_{2}(\sigma S)=\sigma\varphi(S)\end{array}\right.$

where $S\in \mathfrak{h}$ , and $\sigma$ is a fixed element of $\mathfrak{g}-\mathfrak{h}$ , and $\sigma\varphi(S)=\sigma(\varphi(S))$ , for example.
So we have $\varphi_{2}(S)=\varphi(\sigma^{-1}S\sigma)$ and $\varphi_{2}(\sigma S)=\varphi(S)$ in our case. Then $a_{1}\otimes\varphi_{1}(X)$

$+a_{2}\otimes\varphi_{2}(X)$ with $X\in \mathfrak{g}$ is l-cocycle of $\mathfrak{g}$ into $\Lambda\otimes Z_{e}$ , where $a_{1}$ and $a_{2}$ are the
canonical base of $\Lambda$ . The inverse correspondence is given by the restriction
of $\varphi_{1}$ to $\mathfrak{h}$ . The corestriction map $c$ of $Hom(\mathfrak{h}, Z_{e})$ into $Hom(\mathfrak{g}, Z_{e})$ is given
by $c(\varphi)(X)=\varphi_{1}(X)+\varphi_{2}(X)$ . Thus $c(\varphi)=0$ means that

\langle 45) $\left\{\begin{array}{llll} & & & \varphi(S)+\varphi(\sigma^{-1}S\sigma)=0\\ & & & \varphi(\sigma S\sigma)+\varphi(S)=0.\end{array}\right.$

This condition is equivalent to

(46) $\left\{\begin{array}{llll} & & & \varphi(\sigma^{-1}S\sigma)=-\varphi(S)\\ & & & \varphi(\sigma^{2})=0.\end{array}\right.$

We denote by $\mathfrak{d}$ the closed subgroup of $\mathfrak{h}$ generated by $[\mathfrak{h}, \mathfrak{h}]$ and $\tau^{2}$

$(\tau\in \mathfrak{g}-\mathfrak{h})$ . Clearly $\mathfrak{d}$ is a normal subgroup of $\mathfrak{g}$ . It is easy to see that, for
an element $\varphi$ of $Hom(\mathfrak{h}, Z_{e})$ , the condition $c(\varphi)=0$ is equivalent to the condition
$ker\varphi\supset \mathfrak{d}$ .

For an element $\varphi\in\Delta(e)$ , we denote by $\mathfrak{n}$ the kernel of $\varphi$ , and by $N$ the
extension of $K$ corresponding to $\mathfrak{n}$ . Clearly $\mathfrak{n}$ is a normal subgroup of $\mathfrak{g}$ .

PROPOSITION 4. We put $G=\mathfrak{g}/\mathfrak{n}$ and $H=\mathfrak{h}/\mathfrak{n}$ . Then $G$ is a dihedral group
of degree $f$ with the canonical cyclic subgroup $H$, where $f=[N:K]$ is the order
of $H$ which is equal to that of the image of $\varphi$

PROOF. From the first equation of (46), the operation of $G$ on $H$ is clearly
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that of the dihedral groups. As $\tau^{g}$ is contained in $\mathfrak{d}\subset \mathfrak{n}$ for $\tau\in g-\mathfrak{h}$ , the
elements of $G-H$ are of order two. This shows that $G$ is a dihedral group.

$(q.e.d.)$

DEFINITION 2. We call an element $\varphi$ of $\Delta(e)$ a dihedral character of $\mathfrak{h}$ .
Let $N$ be the extension of $K$ corresponding to $\mathfrak{n}=ker\varphi$ . We call $N$ a dihedral
extension of $k$ of degree $f$ relative to $K$, where $f=[N:K]$ .

Now we will prove (25). That is
PROPOSITION 5. Let $C$ be the $\mathfrak{g}$ -module relative to $K$ defined in (5). If $e$ is

an even number, we have

(25) $H^{1}(g, C\otimes Z_{e})\simeq Z_{2}\times\Delta(e)$ (direct product).

But this decomposition is not a canonical one.
PROOF. We put $b=a_{2}-a_{1}$ which is the canonical base of $C$, where $a_{1}$ and

$a_{2}$ are the canonical base of $\Lambda$ . Thus $C\otimes Z_{e}=\{b\otimes a:a\in Z_{e}\}$ . We denote
by $\lambda$ the canonical generator of $Z_{e}$ . Note that we use the additive notation
in $Z_{e}$ . Let $g_{\epsilon}=b\otimes\alpha_{\epsilon}$ be a l-cocycle of $\mathfrak{g}$ into $C\otimes Z_{e}$ . From the cocycle
condition $g_{st}=sg_{t}+g_{s}$ , it follows that

(47)

Denoting by $\varphi$ the restriction of $\alpha$ to $\mathfrak{h}$ , we can see that $\varphi$ is a dihedraS
character. Conversely for a dihedral character $\varphi$ in $\Delta(e)$ , we put $as=\varphi(S)$

and $a_{S\sigma}=\varphi(S)$ for $S\in \mathfrak{h}$ , where $\sigma$ is a fixed element of $\mathfrak{g}-\mathfrak{h}$ . It is easy to
see that $g_{s}=b\otimes\alpha_{s}$ is a l-cocycle of $g$ into $C\otimes Z_{e}$ . This map gives a cross-
section of $\Delta(e)$ into $H^{1}(g, C\otimes Z_{e})$ in the sequence (25). Note that this cross-
section depends on the choice of $\sigma$ .

Now we put

(48)

for $S\in \mathfrak{h}$ . Then $g_{l}=b\otimes a_{\epsilon}$ is a l-cocycle of $\mathfrak{g}$ into $C\otimes Z_{e}$ which is non-triviaI
because of the assumption that $e$ is even. We denote by $\omega$ the element of
$H^{1}(\mathfrak{g}, C\otimes Z_{e})$ corresponding to this cocycle. Clearly the order of $\omega$ is two.
The subgroup $\langle 0, \omega\rangle$ of $H^{1}(g, C\otimes Z_{e})$ is the canonical image of $Z_{\epsilon}$ in the
sequence (25). This proves the proposition.

REMARK. Two elements $\sigma$ and $\tau$ in $g-\mathfrak{h}$ give the same direct decom-
position if and only if $\sigma\tau^{-1}\in \mathfrak{h}_{2}$ , where $\mathfrak{h}_{2}$ is the subgroup of $\mathfrak{h}$ generated by
$S^{2}$ with $S\in \mathfrak{h}$ . Clearly $\mathfrak{h}_{2}$ is a normal subgroup of $g$ .

Now we suppose that the base field $k$ is a p-adic field, and that $K$ is a
quadratic extension of $k$ . From the local class field theory, it follows that
$k^{x}/NK^{x}\simeq Z_{g}$ . Thus the sequence (21) becomes
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(49) $0\rightarrow D(e)\rightarrow H^{1}(k, C\otimes\mu_{e})\rightarrow Z_{2}\rightarrow 0$ .
From the local duality theorem of Tate, we know that $ H^{1}(k, C\otimes\mu_{e})\simeq$

$B^{1}(k, C\otimes Z_{e})^{*}$ . Moreover, we have
THEOREM 5. Let $k$ be a p-adic field, and $K$ be its quadratic extension. We $A$

suppose that $e$ is an even number. The annihilator of $D(e)$ in $H^{1}(k, C\otimes\mu_{e})$ is
exactly the subgroup $\langle 0, \omega\rangle$ of $H^{1}(k, C\otimes Z_{e})$ , where $\omega$ is the element defined in
(48). It follows that

150) $\Delta(e)^{*}\simeq D(e)$ ,

and this isomorphism is defined in a canonical way.
PROOF. It is known from the duality theorems of Pontrjagin that the

order of the annihilator of $D(e)$ is two. Thus it suffices to show that $\omega$ is
contained in this annihilator. The pairing between $H^{1}(k, C\otimes\mu_{e})$ and $H^{1}(k$ ,
$C\otimes Z_{e})$ is given by ” cup-product ”. An element $x$ of $D(K^{x})$ gives l-cocycle
$\xi_{s}=b\otimes y-s(b\otimes y)$ of $\mathfrak{g}$ into $C\otimes\mu_{e}$ , where $y$ is an element of $M=\overline{k}^{x}$ such that
$x=y^{e}$ . These l-cocycles generate the subgroup $D(e)$ . Clearly $\xi_{s}=b\otimes(y\cdot s(y^{-1}))$

if $s\in \mathfrak{h}$ , and $\xi_{s}=b\otimes(y\cdot s(y))$ if $s\not\in \mathfrak{h}$ . Note that we use the multiplicative
notation in $\mu_{e}$ . Cup-product $\omega\cup\xi$ of $\xi$ and $\omega$ is given by

$t(51)$ $(\omega\cup\xi)_{S,i}=\omega_{S}(s\xi_{t})=\left\{\begin{array}{l}1 .\\s(y^{-1})\cdot st(y) .\\(s(y)\cdot sl(y))^{-1}.\end{array}\right.$ $s\in \mathfrak{h}s\not\in \mathfrak{h},t\in \mathfrak{h}s,t\not\in \mathfrak{h}$

.
Note that $\lambda$ is the canonical generator of $Z_{e}=\mu_{e}^{\prime}$ . This is a 2-cocycle of $\mathfrak{g}$ into
$f^{\ell_{e}}$ . It suffices to show that this 2-cocycle is split in $H^{2}(\mathfrak{g}, M)$ , because $H^{2}(\mathfrak{g}, \mu_{e})$

is mapped into $H^{2}(\mathfrak{g}, M)$ injectively. We put

$z_{s}=\left\{\begin{array}{l}y_{1}\cdot s(y_{1}^{-1}).\\y_{1}\cdot s(y_{1}).\end{array}\right.$ $s\not\in \mathfrak{h}s\in \mathfrak{h}$

,

where $y_{1}$ is an element of $M$ such that $y_{1}^{2}=y$ . Then it is easy to show that
$\langle\omega\cup\xi)_{s,t}\cdot(\delta z)_{s,t}=1$ , where $\delta z$ means the coboundary of l-cochain $z$ . This
proves the first statement of the theorem. The rest is clear because of the
Pontrjagin duality. $(q. e. d.)$

REMARK 1. The formula (50) holds also if $e$ is an odd number.
REMARK 2. The formula (50) holds trivially for the real number field

with respect to the complex number field, because $\Delta(e)=0$ and $D(e)=0$ , in
our case.
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\S 7. Class number.

Let $k$ be an algebraic number field, and $K$ be its finite extension. We
denote by $\mathfrak{g}$ the Galois group of $\overline{k}$ over $k$ , and by $\mathfrak{h}$ the Galois group of $\overline{k}$

over $K$. We want to calculate the class number for a quasi-split simple group
$F$ defined over $k$ (cf. \S 1).

In view of Theorem 3 and Theorem 4, we define a class number for
$P^{1}(k, Z)$ (with respect to some finite set $S$ of places of $k$), where $Z$ is a finite
$\mathfrak{g}- module$ . We assume that the Hasse principle holds for $Z$. That is, the map
$\rho_{2}$ relative to $Z$ in (31) is injective. From Tate’s exact sequence, it follows
that the map $\rho_{1}^{\prime}$ of $H^{1}(k, Z^{\prime})$ into $P^{1}(k, Z^{\prime})$ is injective, and that the annihilator
of $\rho_{1}(H^{1}(k, Z))$ is exactly $H^{1}(k, Z^{\prime})$ (cf. Theorem 2).

DEFINITION 3. Let $S$ be a finite set of places of $k$ containing all infinite
places and all places over which $Z$ or $Z^{\prime}$ is ramified (cf. \S 4). Putting

(52) $Cl_{Z}(S)=\{\chi\in H^{1}(k, Z^{\prime}):\chi_{v}=0$ for all $v\in S$

and $\chi_{v}\in H^{1}(0_{v}, Z_{v}^{\prime})$ for other $v$ },

where $\chi_{v}$ denotes the canonical image of $\chi$ in $H^{1}(k_{v}, Z_{v^{\prime}})$ , we denote by $ h_{Z}(S\rangle$

the cardinality of $Cl_{Z}(S)$ , and we call $h_{Z}(S)$ the class number of $Z$ relative
to $S$.

We can apply this class number to calculate the class number of a lattice
in its genus for a quasi-split simple group defined over $k$ with some modi-
fications.

We calculate the class numbers for the finite $\mathfrak{g}$ -modules $Z=\mu_{e},$ $2C\otimes\mu_{e}$ and
$3C\otimes\mu_{2}$ , and we denote these class numbers by $h_{1}(e, S),$ $h_{2}(e, S)$ and $h_{S}(2, S)$ ,
respectively. Note that, if $Z=\Lambda\otimes\mu_{e}$ , where $\Lambda$ is the g-module relative to $K$

defined in (4), the problem is reduced to the case where the base field is $K$.
CASE $h_{1}(e, S)$ : We denote by $k(e)$ the composite of all cyclic extensions

of $k$ of degree $f$, where $f$ is a divisor of $e$ . We also denote by $L(S)$ the
maximal unramified abelian extension of $k$ in which the places in $S$ decompose
completely. Putting $L(e, S)=k(e)\cap L(S)$ , we have the following proposition
(cf. [9] Theorem 2):

PROPOSITION 6. The notations being as above, we have

(53) $h_{1}(e, S)=[L(e, S):k]$ .
PROOF. In our case, we have $H^{1}(k, Z^{\prime})=Hom(\mathfrak{g}, Z_{e})$ . For an element $\chi$

of $Cl_{1}(e, S)$ (the class group for $Z=\mu_{e}$), we denote by $N_{\chi}$ the cyclic extension
of $k$ corresponding to the kernel of $\chi$ . From the class field theory, it follows
that the composite of all $N_{\chi}$ with $\chi\in Cl_{1}(e, S)$ is equal to $L(e, S)$ , and that
the Galois group of $L(e, S)$ over $k$ is isomorphic to $Cl_{1}(e, S)$ . Thus (53) is
proved. (q. e. $d.$)
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CASE $h_{2}(e, S)$ : We denote by $\overline{S}$ the set of all places above $S$ in $K$. We
denote by $f(e)$ the composite of all dihedral extensions of $k$ of degree $f$, where
$f$ is a divisor of $e$ . We also denote by $M(S)$ the maximal unramified abelian
extension of $K$ in which all places of $K$ in $\overline{S}$ decompose completely. We put
$M(e, S)=f(e)\cap M(S)$ . Then $M(e, S)$ is a generalized dihedral extension of $k$ ,
that is, a composite of dihedral extensions of $k$ relative to $K$.

PROPOSITION 7. The notations being as above:
(i) If $e$ is odd, we have

(54) $h_{2}(e, S)=[M(e, S):K]$ .
(ii) If $e$ is even, we have

(55) $h_{2}(e, S)\leqq[M(e, S):K]$ .
PROOF. If $e$ is odd, we have $H^{1}(k, Z^{\prime})\simeq\Delta(e)$ (See Proposition 2). For an

element of $\Delta(e)$ , there corresponds a dihedral extension of $k$ (See Proposition 4).
Thus the proof of (54) is similar to that of (53). If $e$ is even, then we have
the following exact sequence:

$i$

$0\rightarrow Z_{2}\rightarrow H^{1}(k, Z^{\prime})\rightarrow\Delta(e)\rightarrow 0$

(See (25)). Thus, for an element $\varphi\in\Delta(e)$ , there exist exactly two elements $\chi$

and $\chi_{1}$ of $H^{1}(k, Z^{\prime})$ such that $ i(\chi)=i(\chi_{1})=\varphi$ . Their difference $x-x_{1}$ is the
element $\omega$ defined in (48). For a place $v$ of $k,$ $\omega_{v}=0$ if $v$ decomposes in $K$,
and $\omega_{v}$ is the corresponding element in $H^{1}(k_{v}, C_{v}\otimes Z_{e})$ if $v$ does not decompose.
We fix a place $v$ of $k$ which is not contained in $S$. It is easy to see that $\omega_{v}$

is contained in $H^{1}(\mathfrak{o}_{v}, Z_{v}^{\prime})$ , and that $\chi_{v}\in H^{1}(0_{v}, Z_{v}^{\prime})if\xi and$ only if $(\chi_{1})_{v}\in H^{1}(0_{v}, Z_{v}^{\prime})$ .
For example, use the Inflation-Restriction sequence. When $v$ does not de-
compose we denote by $\Delta_{0_{v}}(e)$ the image $i_{v}(H^{1}(0_{v}, Z_{v}^{\prime}))$ which is the kernel of
the corestriction map of $H^{1}(\mathfrak{Q}_{V}, Z_{e})$ into $H^{1}(\mathfrak{o}_{v}, Z_{e})$ , where $\mathfrak{Q}_{V}$ is the integer
ring of $K_{V}$ . When $v$ decomposes, we denote also by $\Delta_{o_{v}}(e)$ the group $H^{1}(0_{v}, Z_{v}^{\prime})$ .

For $\Delta(e)$ , we put

$Cl_{2}^{0}(e, S)=$ { $\varphi\in\Delta(e):\varphi_{v}=0$ for all $v\in S$ and $\varphi_{v}\in\Delta_{0_{v}}(e)$ for other $v$ }.

Then the cardinality $h_{2}^{0}(e, S)$ of $Cl_{2}^{0}(e, S)$ is equal to $[M(e, S):K]$ as in the
case (54). If $\varphi_{v}=0$ , then one of $\chi_{v}$ and $(\chi_{1})_{v}$ is zero, and the other is equal
to $\omega_{v}$ . Thus we have $h_{2}(e, S)\leqq h_{2}^{0}(e, S)$ . This proves (55). $(q. e. d.)$

REMARK. In general, we can not expect the equality in the inequality (55).
For example, put $e=2$ . Then $\mu_{2}\simeq C\otimes\mu_{2}$ , and we have $h_{1}(e, S)=h_{2}(2, S)$ .
But, in general, $h_{2}^{0}(2, S)$ is not equal to $h_{1}(2, S)$ .

CASE $h_{3}(2, e)$ : Let $K$ be a cubic extension of $k$ , and $3C$ be the $\mathfrak{g}$ -module
relative to $K$ defined in (5). We denote by $\overline{S}$ the set of all places above $S$

in $K$. As in Proposition 2, we can see that $H^{1}(k, 3C\otimes Z_{2})$ is equal to the
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kernel of the corestriction map of $H^{1}(\mathfrak{h}, Z_{8})$ into $H^{1}(g, Z_{2})$ . We denote this
kernel by $8\Delta(2)$ . We put $Cl_{\theta}(2, S)=\{\chi\in\$\Delta(2):x_{v}=0$ for all $v\in S$ and $\chi_{v}\in$

$H^{1}(0_{v}, Z^{\prime})$ for other $v$ }. For an element $\chi\in Cl_{8}(2, S)$ , we denote by $N_{X}$ the
extension of $K$ corresponding to the kernel of $\chi$ . It is clear that, if $\chi$ is not
zero, $N_{\chi}$ is an unramified quadratic extension in which the place of $\overline{S}$ de-
composes (completely). Denoting by $N(S)$ the composite of all $N_{\chi}$ with
$X\in Cl_{\$}(2, S)$ , we have

(56) $h_{f}(2, S)=[N(S):K]$ .
Clearly, $h_{\theta}(2, S)$ is a power of 2.

I have no idea to characterize the quadratic extension $N_{\chi}$ of $K$, or the
extension $N(S)$ of $K$.

College of General Education
University of Tokyo
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