A characterization of the simple groups \mathfrak{A}_{τ} and \mathfrak{M}_{ι}

By Hiroyoshi YAMAKI

(Received May 23, 1970)

§1. Introduction

It is well known that the alternating group \mathfrak{A}_7 of degree seven and the Mathieu simple group \mathfrak{M}_{11} of degree eleven are doubly transitive permutation groups in which the stabilizers of two points are isomorphic, as a group, to the alternating groups of degree five (cf. Lüneburg [9; p. 95]). The purpose of this paper is to prove the following theorem.

THEOREM. Let \mathfrak{G} be a doubly transitive permutation group on the set $\mathfrak{Q} = \{1, 2, \dots, n\}$ containing no regular normal subgroup. If the stabilizer \mathfrak{R} of the set of points 1 and 2 is isomorphic, as a group, to the alternating group of degree five, then one of the following holds.

(1) n=7 and \mathfrak{G} is \mathfrak{A}_{7} ,

(2) n = 12 and \otimes is \mathfrak{M}_{11} .

The proof of this theorem is similar to that of our paper [10].

NOTATION. Let \mathfrak{X} and \mathfrak{Y} be the subsets of \mathfrak{G} . $\mathfrak{J}(\mathfrak{X})$ will denote the set of all the fixed points of \mathfrak{X} and $\alpha(\mathfrak{X})$ is the number of points in $\mathfrak{J}(\mathfrak{X})$. $\mathfrak{X} \sim \mathfrak{Y}$ means that \mathfrak{X} is conjugate to \mathfrak{Y} in \mathfrak{G} . All other notations are standard.

§2. Preliminaries

Firstly we consider the following situation (*).

(*) Let \mathfrak{G} be a doubly transitive permutation group on the set $\Omega = \{1, 2, \dots, n\}$ and \mathfrak{R} be the stabilizer of the set of points 1 and 2. Moreover \mathfrak{R} contains an involution τ and every involution of \mathfrak{R} is conjugate to τ in \mathfrak{R} .

Since \mathfrak{G} is doubly transitive on Ω , it contains an involution I with the cycle structure $(1, 2) \cdots$ which normalizes \mathfrak{R} . Let \mathfrak{H} be the stabilizer of the point 1. Then we have the following decomposition of \mathfrak{G} .

$$\mathfrak{G} = \mathfrak{H} \cup \mathfrak{H} \mathfrak{I} \mathfrak{H} \tag{2.1}$$

Let g(2), h(2) and d denote the number of involutions in \mathfrak{G} , \mathfrak{F} and the coset $\mathfrak{F}IH$ for $H \in \mathfrak{F}$, respectively. Then d is the number of elements in \mathfrak{R} inverted by I, that is, the number of involutions in \mathfrak{G} with the cycle structure $(1, 2) \cdots$,

and the following equality is obtained from (2.1).

$$g(2) = h(2) + d(n-1) \tag{2.2}$$

Let τ keep i $(i \ge 2)$ points of Ω unchanged. So we may put $\Im(\tau) = \{1, 2, \dots, i\}$. The group $C_{\mathfrak{G}}(\tau)$ is doubly transitive on $\Im(\tau)$ by a theorem of Witt [5; p. 150] and then we have $|C_{\mathfrak{G}}(\tau)| = i(i-1)|C_{\mathfrak{G}}(\tau) \cap \Re|$ and $|C_{\mathfrak{G}}(\tau)| = (i-1)|C_{\mathfrak{G}}(\tau) \cap \Re|$. Hence there exist $(\mathfrak{G}: C_{\mathfrak{G}}(\tau)) = n(n-1)|\Re|/i(i-1)|C_{\mathfrak{K}}(\tau)|$ involutions in \mathfrak{G} each of which is conjugate to τ .

At first, let us assume that n is odd. Let $h^*(2)$ be the number of involutions in \mathfrak{F} leaving only the point 1 fixed. Thus from (2.2) the following equality is obtained.

$$h^{*}(2)n + (\mathfrak{G}: C_{\mathfrak{G}}(\tau)) = (\mathfrak{F}: C_{\mathfrak{G}}(\tau)) + h^{*}(2) + d(n-1)$$
(2.3)

Hence we have

$$n = i(\Re : C_{\Re}(\tau))^{-1} \{ (d - h^*(2))i - (d - h^*(2)) + (\Re : C_{\Re}(\tau)) \}.$$
(2.4)

Next, let us assume that n is even. Let $g^{*}(2)$ be the number of involutions in \mathfrak{G} which are semi-regular on Ω . Then corresponding to (2.3) the following equality is obtained from (2.2).

$$g^{*}(2) + (\mathfrak{G}: C_{\mathfrak{G}}(\tau)) = (\mathfrak{F}: C_{\mathfrak{F}}(\tau)) + d(n-1)$$

$$(2.5)$$

Hence we have

$$n = i(\Re : C_{\Re}(\tau))^{-1} \{ (d - g^{*}(2)/n - 1)i - (d - g^{*}(2)/n - 1) + (\Re : C_{\Re}(\tau)) \}.$$
(2.6)

Put $\beta = d - h^*(2)$, if *n* is odd and put $\beta = d - g^*(2)/n - 1$, if *n* is even. PROPOSITION 1. Let \mathfrak{G} satisfy (*). Then

$$n = i(\mathfrak{R}: C_{\mathfrak{R}}(\tau))^{-1} \{\beta i - \beta + (\mathfrak{R}: C_{\mathfrak{R}}(\tau))\}.$$

Moreover i is even if n is even and i is odd if n is odd.

PROOF. The result follows from (2.4) and (2.6).

PROPOSITION 2 (Kimura [7]). In our situation (*), β is the number of involutions with the cycle structure $(1, 2) \cdots$ each of which is conjugate to τ . Moreover $\beta > 0$.

PROOF. Let β' be the number of involutions with the cycle structure $(1, 2) \cdots$ each of which is conjugate to τ . Then

$$\beta'(n-1) + (\mathfrak{F}: C_{\mathfrak{F}}(\tau)) = (\mathfrak{G}: C_{\mathfrak{G}}(\tau)).$$

This implies that

$$\beta' = (\Re: C_{\Re}(\tau))(n-i)/i(i-1) = \beta.$$

Since \otimes is doubly transitive on Ω , β must be positive.

PROPOSITION 3 (Galois). Let \mathfrak{G} be a doubly transitive group of degree n. If \mathfrak{G} contains a solvable normal subgroup, then \mathfrak{G} contains a regular normal subgroup and n is a prime power.

PROOF. See Huppert [5; p. 159].

In the following of this paper, let \mathfrak{G} be a group satisfying the condition of our theorem and we use the same notation as the preceding paragraph. Clearly \mathfrak{G} satisfies the condition (*).

Since \Re is \mathfrak{A}_5 , \Re is generated by the elements K, τ and μ subject to the following relations:

$$K^{3} = \tau^{2} = \mu^{2} = (K\tau)^{3} = (\tau\mu)^{3} = (K\mu)^{2} = 1$$
(2.7)

Put $\tau_1 = K^{-1}\tau K$ and $\mathfrak{V} = \langle \tau, \tau_1 \rangle$. Then \mathfrak{V} is a four group and a Sylow 2-subgroup of \mathfrak{R} . Since the number of Sylow 2-subgroup of \mathfrak{R} is odd, we may assume that $[I, \mathfrak{V}] \subset \mathfrak{V}$ and $[I, \tau] = 1$. Moreover $|C_{\mathfrak{R}}(\tau)| = 4$, $|C_{\mathfrak{G}}(\tau)| = 4(i-1)\tilde{i}$ and $|C_{\mathfrak{Q}}(\tau)| = 4(i-1)$. Proposition 1 implies that $n = i(\beta i - \beta + 15)/15$.

LEMMA 1. One of the following holds:

(1) $I\tau_1 I = \tau \tau_1, IKI = K^{-1}, [I, \mu] = 1, d = 10,$ $I \sim IK \sim IK^2 \sim I\tau K\tau \sim I\tau K^2 \tau \sim I\mu\tau K\tau \mu$ $\sim I\mu\tau K^2 \tau \mu \sim I\tau \sim I\mu\tau \mu \sim I\mu.$

(2)
$$[I, \mathfrak{V}] = 1, IKI = \tau K\tau, I\mu I = \tau \mu \tau, d = 16,$$
$$I \sim I\mu K\tau \sim I(\mu K\tau)^2 \sim I(\mu K\tau)^3 \sim I(\mu K\tau)^4 \sim I(\tau_1 \mu \tau_1 K)$$
$$\sim I(\tau_1 \mu \tau_1 K)^2 \sim I(\tau_1 \mu \tau_1 K)^3 \sim I(\tau_1 \mu \tau_1 K)^4 \sim I\tau_1 \sim I\tau\tau_1$$
$$\sim I(\tau \mu) \sim I(\tau \mu)^2 \sim I(\tau_1 \tau \mu \tau_1) \sim I\tau_1(\tau \mu)^2 \tau_1.$$

(3)
$$[I, \Re] = 1, d = 16,$$

$$I\tau \sim I\tau_1 \sim I\tau\tau_1 \sim I\rho^{-j}\tau \rho^j \sim I\rho^{-k}\tau_1 \rho^k \sim I\rho^{-s}\tau\tau_1 \rho^s$$

where $\rho = \mu K \tau$ and $1 \leq j$, k, $s \leq 4$.

PROOF. Since the automorphism group of \Re is the symmetric group of degree five, we may assume that the action of I on \Re is the case (1), (2) or (3) by (2.7). The group $\langle I, \Re \rangle$ is the symmetric group of degree five or the direct product of a cyclic group of order 2 and the alternating group of degree five. Now the results follow from the structure of $\langle I, \Re \rangle$. Note that in the case (1) all involutions are conjugate in \mathfrak{G} . This proves our lemma.

LEMMA 2. $\beta = 1$, 10, 15 or 16.

PROOF. If the case (1) of Lemma 1 holds, then $h^*(2) = g^*(2) = 0$ and $\beta = d = 10$. Assume that the case (2) of Lemma 1 holds. Thus if $I \sim I\tau$, then $h^*(2) = g^*(2) = 0$ and $\beta = d = 16$. If $I \not\sim I\tau$, then $\beta = 15$ or $\beta = 1$ accordingly $\alpha(I) \ge 2$ or $\alpha(I) < 2$. The case (3) of Lemma 1 is the same as the case (2) of Lemma 1. This proves our lemma.

132

LEMMA 3. If $\alpha(\tau) > \alpha(\mathfrak{V})$, then one of the following holds.

(1) i=6 and $C_{\mathfrak{S}}(\tau)/\langle \tau \rangle$ is \mathfrak{A}_5 ,

(2) i=28 and $C_{\mathfrak{G}}(\tau)/\langle \tau \rangle$ is $P\Gamma L(2, 8)$,

(3) $i = p^{2m}$ for some prime $p, \alpha(\mathfrak{V}) = \sqrt{i} = p^m$ and $C_{\mathfrak{V}}(\tau)/\langle \tau \rangle$ contains a regular normal subgroup. Moreover if i is odd, $C_{\mathfrak{V}}(\tau)/\langle \tau \rangle$ contains unique involution which fixes only one point on $\mathfrak{I}(\tau)$.

PROOF. Since $C_{\mathfrak{s}}(\tau)/\langle \tau \rangle$ is doubly transitive on $\mathfrak{I}(\tau)$ of degree *i* and order 2(i-1)i, the results follow from Ito's theorem [6] and its proof.

LEMMA 4. If $\alpha(\tau) > \alpha(\mathfrak{V})$, then $\beta = 10$, 15, or 16.

PROOF. There exist two points j and k in $\Im(\tau) - \Im(\mathfrak{V})$ such that $\tau_1 = (j, k) \cdots$ and so $\tau \tau_1 = (j, k) \cdots$. Double transitivity and Lemma 2 imply that $\beta = 10$, 15, or 16. This proves our lemma.

§ 3. The case n is odd

In the following if $h^*(2) > 0$, then without loss of generality we may assume that $\alpha(I) = 1$.

LEMMA 5. If $h^*(2) = 1$, then there exists no group satisfying the condition of our theorem.

PROOF. Let \mathfrak{S} be a Sylow 2-subgroup of \mathfrak{S} containing *I*. Since *n* is odd, *I* is isolated in \mathfrak{S} with respect to \mathfrak{S} . Then it follows from the *Z**-theorem of Glauberman [5; p. 628] that *I* is contained in the center of $\mathfrak{S}/O(\mathfrak{S})$. Proposition 3 implies that \mathfrak{S} contains a regular normal subgroup. This proves our lemma.

LEMMA 6. If $\alpha(\tau) > \alpha(\mathfrak{V})$, then there exists no group satisfying the condition of our theorem.

PROOF.¹⁾ By Lemmas 4 and 5, $h^*(2) = 0$. Note that $N_{\mathfrak{G}}(\mathfrak{B})$ contains no Sylow 2-subgroup of \mathfrak{G} by Lemma 3. If $[I, \mathfrak{B}] = 1$, then $I\mathfrak{R}$ contains no element of order 4 by Lemma 1. Now a Sylow 2-subgroup of \mathfrak{G} is elementary abelian which is impossible. Thus $\langle I, \mathfrak{R} \rangle$ is a symmetric group of degree five. We can consider \mathfrak{G} as a permutation group on the set $\tilde{\mathcal{Q}} = \{\{i, j\} \mid i, j \in \mathcal{Q}\}$ of unordered pairs of the points in \mathcal{Q} . Then $\langle I, \mathfrak{R} \rangle$ is the stabilizer of $\{1, 2\}$ in $\tilde{\mathcal{Q}}$. Let \mathfrak{U} be a four group in $\langle I, \mathfrak{R} \rangle$ with $\mathfrak{U} \not\sim \mathfrak{B}$ in $\langle I, \mathfrak{R} \rangle$. If $\alpha(\mathfrak{U}) = 1$, then by a theorem of Witt $[\mathbf{5}; p, 150] N_{\mathfrak{G}}(\mathfrak{B})$ is transitive on the set of fixed points of \mathfrak{B} on $\tilde{\mathcal{Q}}$ which is a union of the \mathfrak{B} -orbits of length 2 and the pairs of the fixed points of \mathfrak{B} in \mathcal{Q} . This contradicts $\alpha(\tau) > \alpha(\mathfrak{B})$. If $\alpha(\mathfrak{U}) = \alpha(\mathfrak{B})$, then $h^*(2) = 0$ implies that every four group fixes \sqrt{i} points in \mathcal{Q} . Let \mathfrak{S} be a Sylow 2-subgroup of \mathfrak{G} contained in $C_{\mathfrak{G}}(\tau)$. If \mathfrak{S} is not a maximal class, \mathfrak{S}

¹⁾ The idea of this proof is due to R. Noda.

contains a normal four group. This is impossible. Now \mathfrak{S} is dihedral or quasi-dihedral (cf. [5; p. 339]). By theorems of Gorenstein-Walter [3] and Lüneburg [8], we may assume that \mathfrak{S} is quasi-dihedral. On the other hand since $\mathfrak{S}/\langle \tau \rangle$ is a dihedral Sylow 2-subgroup of $C_{\mathfrak{g}}(\tau)/\langle \tau \rangle$, Lemma 3 implies that $C_{\mathfrak{g}}(\tau)$ has a normal 2-complement. Applying theorems of Gorenstein [2] and Lüneburg [8] we get a contradiction. The proof is complete.

LEMMA 7. If $\alpha(\tau) = \alpha(\mathfrak{V})$ and $h^*(2) = 0$, then n = 7 and \mathfrak{V} is \mathfrak{A}_{η} .

PROOF. The group $C_{\mathfrak{G}}(\tau)/\mathfrak{B}$ is a Frobenius group of odd degree *i*. Let \mathfrak{S} be a Sylow 2-subgroup of \mathfrak{S} containing $\langle I, \mathfrak{B} \rangle$ and contained in $C_{\mathfrak{G}}(\tau)$. Then $\mathfrak{S}/\mathfrak{B}$ is cyclic or generalized quaternion. If $[I, \mathfrak{B}] \neq 1$, then $\mathfrak{S} = \langle I, \mathfrak{B} \rangle$ is dihedral because $I\mathfrak{B}$ is a unique involution in $\mathfrak{S}/\mathfrak{B}$ and applying theorems of Gorenstein-Walter [3] and Lüneburg [8], n = 7 and \mathfrak{S} is \mathfrak{A}_{τ} . Assume that $[I, \mathfrak{B}] = 1$. Then by the same way as in the proof of Lemma 6, \mathfrak{S} is elementary abelian and hence $\mathfrak{S} = \langle I, \mathfrak{B} \rangle$. Therefore $C_{\mathfrak{G}}(\tau)$ is solvable and by theorems of Gorenstein [1] and Lüneburg [8], we get a contradiction. The proof is complete.

LEMMA 8. If $\alpha(\tau) = \alpha(\mathfrak{V})$ and $h^*(2) > 1$, then there exists no group satisfying the condition of our theorem.

PROOF. Since $\beta = d - h^*(2) < d - 1$, Lemma 2 implies that $\beta = 1$. Therefore Lemma 1 yields $[I\tau, \Re] = 1$ which is impossible because \Re is simple and $C_{\mathfrak{G}}(I\tau)$ is conjugate to $C_{\mathfrak{G}}(\tau)$ in \mathfrak{G} . The proof is complete.

\S 4. The case *n* is even

LEMMA 9. If $\alpha(\tau) = \alpha(\mathfrak{V})$, then there exists no group satisfying the condition of our theorem.

PROOF. Since *n* is even, \mathfrak{V} is a Sylow 2-subgroup of \mathfrak{H} . Assume that $\mathfrak{V} \cap H^{-1}\mathfrak{B}H$ contains τ for some $H \in \mathfrak{H}$. Then $\mathfrak{Z}(\mathfrak{V})$ and $\mathfrak{Z}(H^{-1}\mathfrak{B}H)$ are contained in $\mathfrak{Z}(\tau)$. It follows that $\mathfrak{Z}(\tau) = \mathfrak{Z}(\mathfrak{V}) = \mathfrak{Z}(H^{-1}\mathfrak{B}H)$ and hence \mathfrak{R} contains \mathfrak{V} and $H^{-1}\mathfrak{B}H$. Since \mathfrak{R} is \mathfrak{A}_5 , we have $\mathfrak{V} = H^{-1}\mathfrak{B}H$. This implies that \mathfrak{H} is a (TI)-group in the sense of Suzuki [12] and hence $\mathfrak{H}/O(\mathfrak{H})$ is also (TI)-group. By a theorem of Suzuki [12; p. 69], $\mathfrak{H}/O(\mathfrak{H})$ is PSL(2, 4) and $O(\mathfrak{H})$ is contained in the center of \mathfrak{H} . It follows from $|C_{\mathfrak{H}}(\tau)| = 4(i-1)$ that $|O(\mathfrak{H})| = i-1$ and $(\mathfrak{H}: O(\mathfrak{H})) = 4(\beta i + 15) = 60$ which is impossible because $\beta > 0$ by Proposition 2. The proof is complete.

In the following we may assume that $\alpha(\tau) > \alpha(\mathfrak{V})$.

LEMMA 10. If i=6 or 28, then there exists no group satisfying the condition of our theorem.

PROOF. Note that by a Brauer-Wielandt's formula [13] we have

$$|O(\mathfrak{H})| = |C(\tau) \cap O(\mathfrak{H})|^3 / |C(\mathfrak{V}) \cap O(\mathfrak{H})|^2$$

and since \Re is simple, $O(\mathfrak{H}) \cap \Re = \{1\}$. Assume that i = 6. Then $|C_{\mathfrak{H}}(\tau)| = 2^2 \cdot 5$, $|\mathfrak{H}| = 2^2 \cdot 3 \cdot 5^3$, $2^2 \cdot 3 \cdot 5^2 \cdot 7$ or $2^2 \cdot 3 \cdot 5 \cdot 37$ and $|O(\mathfrak{H})| = 1$ or 5. Assume that i = 28. Then $|C_{\mathfrak{H}}(\tau)| = 2^2 \cdot 3^3$, $|\mathfrak{H}| = 2^2 \cdot 3^3 \cdot 5 \cdot 59$, or $2^2 \cdot 3^4 \cdot 5 \cdot 29$ and $|O(\mathfrak{H})|$ is a factor of 3³. On the other hand, in both cases, $\mathfrak{H}/O(\mathfrak{H})$ is isomorphic to a subgroup of $P\Gamma L(2, q)$ containing PSL(2, q) for some q by a theorem of Gorenstein-Walter [3] which is impossible. This proves our lemma.

LEMMA 11. If the case (3) of Lemma 3 holds, then n = 12 and \mathfrak{G} is \mathfrak{M}_{11} .

PROOF. The group \mathfrak{V} is a Sylow 2-subgroup of \mathfrak{H} and hence $C_{\mathfrak{H}}(\tau)$ has a normal 2-complement. Since $C_{\mathfrak{H}}(\tau)/\langle \tau \rangle$ is a solvable doubly transitive group on $\mathfrak{J}(\tau)$ of even degree, it follows from a theorem of Huppert [4] that $C_{\mathfrak{H}}(\tau)$ has a cyclic normal 2-complement. Applying a theorem of Gorenstein-Walter [3], $\mathfrak{H}/O(\mathfrak{H})$ is PSL(2, q) for some q. By Lemma 3, $\alpha(\mathfrak{V}) = \sqrt{i} = 2^m$ and $|N_{\mathfrak{H}}(\mathfrak{V})| = 12(\sqrt{i}-1)\sqrt{i}$, $|N_{\mathfrak{H}}(\mathfrak{V})| = 12(\sqrt{i}-1)$, $|C_{\mathfrak{H}}(\mathfrak{V})| = 4(\sqrt{i}-1)$. It follows from the structure of PSL(2, q) that $|O(\mathfrak{H}) \cap C(\mathfrak{V})| = \sqrt{i}-1$. Put $|O(\mathfrak{H}) \cap C(\tau)| = x(\sqrt{i}-1)$. Then x is a factor of $\sqrt{i}+1$ and $|O(\mathfrak{H}) \cap C(\tau_1)| = |O(\mathfrak{H}) \cap C(\tau_1)| = x(\sqrt{i}-1)$. By a formula of Brauer-Wielandt [13] we have

$$|O(\mathfrak{Y})| |O(\mathfrak{Y}) \cap C(\mathfrak{Y})|^{2} = |O(\mathfrak{Y}) \cap C(\tau)| |O(\mathfrak{Y}) \cap C(\tau_{1})| |O(\mathfrak{Y}) \cap C(\tau\tau_{1})|$$
$$= x^{3}(\sqrt{i}-1)^{3}$$

and therefore $|O(\mathfrak{H})| = x^{\mathfrak{s}}(\sqrt{i}-1)$. Now we have

$$4(\sqrt{i}+1)(\beta i+15)/x^{3} = q(q-1)(q+1)/2.$$
(4.1)

Put $\overline{\mathfrak{H}} = \mathfrak{H}/O(\mathfrak{H})$ and in the natural epimorphism $\mathfrak{H} \to \overline{\mathfrak{H}}$, let $\overline{\tau}$, $\overline{C_{\mathfrak{H}}(\tau)}$ be the images of τ , $C_{\mathfrak{H}}(\tau)$, respectively. Since $C(\overline{\tau}) \cap \overline{\mathfrak{H}} = \overline{C_{\mathfrak{H}}(\tau)}$, we have

$$(q+e)/4 = (\sqrt{i}+1)/x$$
 (4.2)

where e=1 or -1. It follows from (4.1) and (4.2) that

$$2(\beta i + 15)/x^2 = q(q - e) \tag{4.3}$$

and therefore x is also a factor of $\beta i+15$. Now $\beta i+15 \equiv \beta+15 \pmod{\sqrt{i}+1}$ implies that x is a factor of $\beta+15$. It follows from $\beta=10$, 15, or 16 that x must be 1, 3, 5, 15, 25, or 31. On the other hand, (4.2) and (4.3) imply that

$$(\beta - 8)i - 2(8 - 3ex)\sqrt{i} - (x - 7e)(x + e) = 0$$

and hence

$$\sqrt{i} = \{(8-3ex) \pm \sqrt{(\beta+1)x^2 - 6e\beta x + 120 - 7\beta}\}/(\beta-8).$$

Put $f(x, \beta) = (\beta+1)x^2 - 6e\beta x + 120 - 7\beta$. Since $f(x, \beta)$ is a quadratic number, the possibilities of $f(x, \beta)$ are as follows.

Η. ΥΑΜΑΚΙ

f(1, 10) = 1, or 121, f(5, 10) = 25, or 625, f(1, 15) = 121, f(1, 16) = 121, f(31, 16) = 19321.

Since $\sqrt{i} = 2^m$, we must have f(1, 10) = 1 and therefore

$$i = 4$$
, $q = 11$, $n = 12$.

Thus \mathfrak{H} is PSL(2, 11) and \mathfrak{G} contains no regular normal subgroup by Proposition 3. Now \mathfrak{G} is a simple group of order 7920. By a theorem of Parrott [11], \mathfrak{G} is \mathfrak{M}_{11} . This proves our lemma.

The proof of our theorem is complete.

Osaka University

References

- [1] D. Gorenstein, Finite groups in which Sylow 2-subgroups are abelian and centralizers of involutions are solvable, Canad. J. Math., 17 (1965), 860-896.
- [2] D. Gorenstein, Finite groups the centralizers of whose involutions have normal 2-complements, Canad. J. Math., 21 (1969), 335-357.
- [3] D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334-393.
- [4] B. Huppert, Zweifach transitive auflösbare Permutationsgruppen, Math. Z., 68 (1957), 126-150.
- [5] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
- [6] N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417.
- [7] H. Kimura, On doubly transitive permutation groups of degree n and order 2p(n-1)n, I, II, Osaka J. Math., 7 (1970), (to appear).
- [8] H. Lüneburg, Charakterisierungen der endlichen desarguesschen projectiven Ebenen, Math. Z., 85 (1964), 419-450.
- [9] H. Lüneburg, Transitive Erweiterungen endlicher Permutationsgruppen, Springer, Berlin, 1969.
- [10] R. Noda and H. Yamaki, A characterization of the alternating groups of degrees six and seven, Osaka J. Math., 7 (1970), (to appear).
- [11] D. Parrott, On the Mathieu groups M_{22} and M_{11} , J. Austral. Math. Soc., 11 (1970), 69-81.
- [12] M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. Math., 80 (1964), 58-77.
- [13] H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z., 73 (1960), 146-158.

136