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\S 1. Introduction

It is well known that the alternating group $\mathfrak{A}_{7}$ of degree seven and the
Mathieu simple group $\mathfrak{M}_{11}$ of degree eleven are doubly transitive permutation
groups in which the stabilizers of two points are isomorphic, as a group, to
the alternating groups of degree five (cf. L\"uneburg [9, p. 95]). The purpose
of this paper is to prove the following theorem.

THEOREM. Let $\mathfrak{G}$ be a doubly transitive permutation group on the set $\Omega=$

$\{1,2, \cdots n\}$ containing no regular normal subgroup. $1f$ the stabilizer $\mathfrak{K}$ of the
set of points 1 and 2 is isomorphic, as a group, to the alternating group of
degree five, then one of the following holds.

(1) $n=7$ and $\mathfrak{G}$ is $\mathfrak{A}_{7}$ ,
(2) $n=12$ and $\mathfrak{G}$ is $\mathfrak{M}_{11}$ .
The proof of this theorem is similar to that of our paper [10].

NOTATION. Let ee and $\mathfrak{Y}$ be the subsets of $\mathfrak{G}$ . $\Im(\mathfrak{X})$ will denote the set
of all the fixed points of ee and $\alpha(\mathfrak{X})$ is the number of points in $\Im(\mathfrak{X})$ . $\mathfrak{X}\sim \mathfrak{Y}$

means that ee is conjugate to $\mathfrak{Y}$ in $\mathfrak{G}$ . All other notations are standard.

\S 2. Preliminaries

Firstly we consider the following situation $(*)$ .
$(^{*})$ Let $\mathfrak{G}$ be a doubly transitive permutation group on the set $\Omega=\{1,2$ ,

. , $n$ } and $\mathfrak{K}$ be the stabilizer of the set of points 1 and 2. Moreover $\mathfrak{K}$ con-
tains an involution $\tau$ and every involution of $\mathfrak{K}$ is conjugate to $\tau$ in $\mathfrak{K}$ .

Since $\mathfrak{G}$ is doubly transitive on $\Omega$ , it contains an involution $I$ with the
cycle structure $(1, 2)$ $\cdots$ which normalizes $\mathfrak{K}$ . Let $\mathfrak{H}$ be the stabilizer of the
point 1. Then we have the following decomposition of $\mathfrak{G}$ .

$\mathfrak{G}=\mathfrak{H}\cup \mathfrak{H}I\mathfrak{H}$ (2.1)

Let $g(2),$ $h(2)$ and $d$ denote the number of involutions in $\mathfrak{G},$ $\mathfrak{H}$ and the coset
$\mathfrak{H}1H$ for $H\in \mathfrak{H}$ , respectively. Then $d$ is the number of elements in $\mathfrak{K}$ inverted
by $I$, that is, the number of involutions in $\mathfrak{G}$ with the cycle structure $(1, 2)$ $\ldots$ ,
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and the following equality is obtained from (2.1).

$g(2)=h(2)+d(n-1)$ (2.2)

Let $\tau$ keep $i(i\geqq 2)$ points of $\Omega$ unchanged. So we may put $\Im(\tau)=\{1,2, \cdot.. , i\}$ .
The group $C_{\mathfrak{G}}(\tau)$ is doubly transitive on $\Im(\tau)$ by a theorem of Witt [5; p. 150]

and then we have $|C_{\mathfrak{G}}(\tau)|=i(i-1)|C_{\mathfrak{G}}(\tau)\cap \mathfrak{K}|$ and $|C_{\mathfrak{H}}(\tau)|=(i-1)|C_{\mathfrak{G}}(\tau)\cap \mathfrak{K}|$ .
Hence there exist $(\mathfrak{G}:C_{\mathfrak{G}}(\tau))=n(n-1)|\mathfrak{K}|/i(i-1)|C_{J?}(\tau)|$ involutions in $\mathfrak{G}$ each
of which is conjugate to $\tau$ .

At first, let us assume that $n$ is odd. Let $h^{*}(2)$ be the number of involu-
tions in $\mathfrak{H}$ leaving only the point 1 fixed. Thus from (2.2) the following
equality is obtained.

$h^{*}(2)n\dashv-(\mathfrak{G}:C_{\mathfrak{G}}(\tau))=(\mathfrak{H}:C_{\mathfrak{H}}(\tau))+h^{*}(2)+d(n-1)$ (2.3)

Hence we have

$n=i(\mathfrak{K}:C_{\Re}(\tau))^{-1}\{(d-h^{*}(2))i-(d-h^{*}(2))\dashv-(\mathfrak{K}:C_{l?}(\tau))\}$ . (2.4)

Next, let us assume that $n$ is even. Let $g^{*}(2)$ be the number of involu-
tions in $\mathfrak{G}$ which are semi-regular on $\Omega$ . Then corresponding to (2.3) the
following equality is obtained from (2.2).

$g^{*}(2)+(\mathfrak{G}:C_{\mathfrak{G}}(\tau))=(\mathfrak{H}:C_{\mathfrak{H}}(\tau))+d(n-1)$ (2.5)

Hence we have

$n=i(\mathfrak{K}:C_{\Re}(\tau))^{-1}\{(d-g^{*}(2)/n-1)i-(d-g^{*}(2)/n-1)+(\mathfrak{K}:C_{\Re}(\tau))\}$ . (2.6)

Put $\beta=d-h^{*}(2)$ , if $n$ is odd and put $\beta=d-g^{*}(2)/n-1$ , if $n$ is even.
PROPOSITION 1. Let $\mathfrak{G}$ satisfy $(^{*})$ . Then

$n=i(\mathfrak{K}:C_{R}(\tau))^{-1}\{\beta i-\beta+(\mathfrak{K}:C_{R}(\tau))\}$ .
Moreover $i$ is even if $n$ is even and $i$ is odd if $n$ is odd.

PROOF. The result follows from (2.4) and (2.6).
PROPOSITION 2 (Kimura [7]). In our situation $(^{*}),$ $\beta$ is the number of in-

volutions with the cycle structure $(1, 2)$ $\cdots$ each of which is conjugate to $\tau$ .
Moreover $\beta>0$ .

PROOF. Let $\beta^{\prime}$ be the number of involutions with the cycle structure
$\ovalbox{\tt\small REJECT}\langle 1,2$) $\cdots$ each of which is conjugate to $\tau$ . Then

$\beta^{\gamma}(n-1)+(\mathfrak{H}:C_{\mathfrak{H}}(\tau))=(\mathfrak{G}:C_{\mathfrak{G}}(\tau))$ .
This implies that

$\beta^{\prime}=(\mathfrak{K}:C_{R}(\tau))(n-\iota)/i(i-1)=\beta$ .
Since $\mathfrak{G}$ is doubly transitive on $\Omega,$ $\beta$ must be positive.

PROPOSITION 3 (Galois). Let $\mathfrak{G}$ be a doubly transitive group of degree $n$ .
If $\mathfrak{G}$ contains a solvable normal subgroup, then $\mathfrak{G}$ contains a regular normal
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subgroup and $n$ is a prime power.
PROOF. See Huppert [5; p. 159].

In the following of this paper, let $\mathfrak{G}$ be a group satisfying the condition
of our theorem and we use the same notation as the preceding paragraph.
Clearly $\mathfrak{G}$ satisfies the condition $(*)$ .

Since $\mathfrak{K}$ is $\mathfrak{A}_{5},$
$\mathfrak{K}$ is generated by the elements $K,$ $\tau$ and $\mu$ subject to the

following relations:

$K^{3}=\tau^{2}=\mu^{2}=(K\tau)^{3}=(\tau\mu)^{s}=(K\mu)^{2}=1$ (2.7)

Put $\tau_{1}=K^{-1}\tau K$ and $\mathfrak{V}=\langle\tau, \tau_{1}\rangle$ . Then $\mathfrak{V}$ is a four group and a Sylow 2-sub-
group of $\mathfrak{K}$ . Since the number of Sylow 2-subgroup of $\mathfrak{K}$ is odd, we may

assume that $[1, \mathfrak{V}]\subset \mathfrak{V}$ and $[1, \tau]=1$ . Moreover $|C_{R}(\tau)|=4,$ $|C_{\mathfrak{G}}(\tau)|=4(i-1)i$

and $|C_{\mathfrak{H}}(\tau)|=4(i-1)$ . Proposition 1 implies that $n=i(\beta i-\beta+15)/15$ .
LEMMA 1. One of the following holds:

(1) $I\tau_{1}I=\tau\tau_{J},$ $IKI=K^{-1},$ $[I, \mu]=1,$ $d=10$ ,

$ I\sim IK\sim IK^{2}\sim I\tau K\tau\sim I\tau K^{2}\tau\sim I\mu\tau K\tau\mu$

$\sim I\mu\tau K^{2}\tau\mu\sim I\tau\sim I\mu\tau\mu\sim I\mu$ .
(2) [I, $\mathfrak{V}$] $=1,$ $IKI=\tau K\tau,$ $I\mu I=\tau\mu\tau,$ $d=16$ ,

$I\sim I\mu K\tau\sim I(\mu K\tau)^{2}\sim I(\mu K\tau)^{\mathfrak{g}}\sim I(\mu K\tau)^{4}\sim I(\tau_{1}\mu\tau_{1}K)$

$\sim I(\tau_{1}\mu\tau_{1}K)^{2}\sim I(\tau_{1}\mu\tau_{1}K)^{3}\sim I(\tau_{1}\mu\tau_{1}K)^{4}\sim I\tau_{1}\sim I\tau\tau_{1}$

$\sim I(\tau\mu)\sim I(\tau\mu)^{2}\sim I(\tau_{1}\tau\mu\tau_{1})\sim I\tau_{1}(\tau\mu)^{2}\tau_{1}$ .
(3) [I, $\mathfrak{K}$] $=1,$ $d=16$ ,

$I\tau\sim I\tau_{1}\sim 1_{TT_{1}}\sim 1\rho^{-j}\tau\rho^{f}\sim I\rho^{-k}\tau_{1}\rho^{k}\sim I\rho^{-s}\tau\tau_{1}\rho^{s}$

where $\rho=\mu K\tau$ and $1\leqq j,$ $k,$ $s\leqq 4$ .
PROOF. Since the automorphism group of $\mathfrak{K}$ is the symmetric group of

degree five, we may assume that the action of $I$ on $\mathfrak{K}$ is the case (1), (2) or
(3) by (2.7). The group \langle I, $\mathfrak{K}\rangle$ is the symmetric group of degree five or the
direct product of a cyclic group of order 2 and the alternating group of
degree five. Now the results follow from the structure of \langle I, $\mathfrak{K}\rangle$ . Note that
in the case (1) all involutions are conjugate in $\mathfrak{G}$ . This proves our lemma.

LEMMA 2. $\beta=1,10,15$ or 16.
PROOF. If the case (1) of Lemma 1 holds, then $h^{*}(2)=g^{*}(2)=0$ and $\beta=$

$d=10$ . Assume that the case (2) of Lemma 1 holds. Thus if $ I\sim I\tau$ , then
$h^{*}(2)=g^{*}(2)=0$ and $\beta=d=16$ . If $ I\psi I\tau$ , then $\beta=15$ or $\beta=1$ accordingly
$\alpha(I)\geqq 2$ or $\alpha(I)<2$ . The case (3) of Lemma 1 is the same as the case (2) of
Lemma 1. This proves our lemma.
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LEMMA 3. If $\alpha(\tau)>\alpha(\mathfrak{V})$ , then one of the following holds.
(1) $i=6$ and $ C_{\mathfrak{G}}(\tau)/\langle\tau\rangle$ is $\mathfrak{A}_{5}$ ,

(2) $i=28$ and $ C_{\mathfrak{G}}(\tau)/\langle\tau\rangle$ is $P\Gamma L(2,8)$ ,

(3) $i=p^{2m}$ for some prime $p,$ $\alpha(\mathfrak{V})=\sqrt i^{-}=p^{m}$ and $ C_{\mathfrak{G}}(\tau)/\langle\tau\rangle$ contains a
regular normal subgroup. Moreover if $i$ is odd, $ C_{\mathfrak{H}}(\tau)/\langle\tau\rangle$ contains unique
involution which fixes only one point on $\Im(\tau)$ .

PROOF. Since $ C_{\mathfrak{G}}(\tau)/\langle\tau\rangle$ is doubly transitive on $\Im(\tau)$ of degree $i$ and order
$2(i-1)i$ , the results follow from Ito’s theorem [6] and its proof.

LEMMA 4. If $\alpha(\tau)>\alpha(\mathfrak{V})$ , then $\beta=10,15$ , or 16.
PROOF. There exist two points $j$ and $k$ in $\Im(\tau)-\Im(\mathfrak{V})$ such that $\tau_{1}=(j, k)\cdots$

and so $\tau\tau_{1}=(j, k)\cdots$ . Double transitivity and Lemma 2 imply that $\beta=10,15$,

or 16. This proves our lemma.

\S 3. The case $n$ is odd

In the following if $h^{*}(2)>0$ , then without loss of generality we may
assume that $\alpha(I)=1$ .

LEMMA 5. If $h^{*}(2)=1$ , then there exists no group satisfying the condition

of our theorem.
PROOF. Let $\mathfrak{S}$ be a Sylow 2-subgroup of $\mathfrak{G}$ containing $I$ . Since $n$ is odd,

$I$ is isolated in $\mathfrak{S}$ with respect to $\mathfrak{G}$ . Then it follows from the $z*$-theorem
of Glauberman [5; p. 628] that $I$ is contained in the center of $\mathfrak{G}/0(\mathfrak{G})$ . Pro-
position 3 implies that $\mathfrak{G}$ contains a regular normal subgroup. This proves
our lemma.

LEMMA 6. If $\alpha(\tau)>\alpha(\mathfrak{V})$ , then there exists no group satisfying the condi-
tion of our theorem.

PROOF.1) By Lemmas 4 and 5, $h^{*}(2)=0$ . Note that $N_{\mathfrak{G}}(\mathfrak{V})$ contains no
Sylow 2-subgroup of $\mathfrak{G}$ by Lemma 3. If [I, $\mathfrak{V}$] $=1$ , then $I\mathfrak{K}$ contains no ele-
ment of order 4 by Lemma 1. Now a Sylow 2-subgroup of $\mathfrak{G}$ is elementary

abelian which is impossible. Thus \langle I, $\mathfrak{K}\rangle$ is a symmetric group of degree

five. We can consider $\mathfrak{G}$ as a permutation group on the set $\tilde{\Omega}=\{\{i, j\}|i, j\in\Omega\}$

of unordered pairs of the points in $\Omega$ . Then \langle I, $\mathfrak{K}\rangle$ is the stabilizer of {1, 2}
in $\tilde{\Omega}$ . Let $\mathfrak{U}$ be a four group in \langle I, $\mathfrak{K}\rangle$ with $\mathfrak{U}\psi \mathfrak{V}$ in \langle I, $\mathfrak{K}\rangle$ . If $\alpha(\mathfrak{U})=1$ , then
by a theorem of Witt [5; p. 150] $N_{\mathfrak{G}}(\mathfrak{V})$ is transitive on the set of fixed points
of $\mathfrak{V}$ on $\tilde{\Omega}$ which is a union of the $\mathfrak{V}$ -orbits of length 2 and the pairs of the
fixed points of $\mathfrak{V}$ in $\Omega$ . This contradicts $\alpha(\tau)>\alpha(\mathfrak{V})$ . If $\alpha(\mathfrak{U})=\alpha(\mathfrak{V})$ , then

$h^{*}(2)=0$ implies that every four group fixes $\sqrt{i}$ points in $\Omega$ . Let $\mathfrak{S}$ be a
Sylow 2-subgroup of $\mathfrak{G}$ contained in $C_{\mathfrak{G}}(\tau)$ . If $\mathfrak{S}$ is not a maximal class, $\mathfrak{S}$

1) The idea of this proof is due to R. Noda.
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contains a normal four group. This is impossible. Now $\mathfrak{S}$ is dihedral or
quasi-dihedral (cf. [5; p. 339]). By theorems of Gorenstein-Walter [3] and
L\"uneburg [8], we may assume that $\mathfrak{S}$ is quasi-dihedral. On the other hand
since $\mathfrak{S}/\langle\tau\rangle$ is a dihedral Sylow 2-subgroup of $ C_{\mathfrak{G}}(\tau)/\langle\tau\rangle$ , Lemma 3 implies
that $C_{\mathfrak{G}}(\tau)$ has a normal 2-complement. Applying theorems of Gorenstein [2]

and L\"uneburg [8] we get a contradiction. The proof is complete.
LEMMA 7. If $\alpha(\tau)=\alpha(\mathfrak{V})$ and $h^{*}(2)=0$ , then $n=7$ and $\mathfrak{G}$ is $\mathfrak{A}_{7}$ .
PROOF. The group $C_{\mathfrak{G}}(\tau)/\mathfrak{V}$ is a Frobenius group of odd degree $i$ . Let

$\mathfrak{S}$ be a Sylow 2-subgroup of $\mathfrak{G}$ containing \langle I, $\mathfrak{V}\rangle$ and contained in $C_{\mathfrak{G}}(\tau)$ .
Then $\mathfrak{S}/\mathfrak{V}$ is cyclic or generalized quaternion. If [I, $\mathfrak{V}$] $\neq 1$ , then $\mathfrak{S}=\langle I, \mathfrak{V}\rangle$

is dihedral because $I\mathfrak{V}$ is a unique involution in $\mathfrak{S}/\mathfrak{V}$ and applying theorems
of Gorenstein-Walter [3] and L\"uneburg [8], $n=7$ and $\mathfrak{G}$ is $\mathfrak{A}_{7}$ . Assume that
[I, $\mathfrak{V}$] $=1$ . Then by the same way as in the proof of Lemma 6, $\mathfrak{S}$ is ele-
mentary abelian and hence $\mathfrak{S}=\langle I, \mathfrak{V}\rangle$ . Therefore $C_{\mathfrak{G}}(\tau)$ is solvable and by
theorems of Gorenstein [1] and L\"uneburg [8], we get a contradiction. The
proof is complete.

LEMMA 8. If $\alpha(\tau)=\alpha(\mathfrak{V})$ and $h^{*}(2)>1$ , then there exists no group satisfy-
ing the condition of our theorem.

PROOF. Since $\beta=d-h^{*}(2)<d-1$ , Lemma 2 implies that $\beta=1$ . Therefore
Lemma 1 yields $[I\tau, \mathfrak{K}]=1$ which is impossible because $\mathfrak{K}$ is simple and
$C_{\mathfrak{G}}(I\tau)$ is conjugate to $C_{\mathfrak{G}}(\tau)$ in $\mathfrak{G}$ . The proof is complete.

\S 4. The case $n$ is even

LEMMA 9. If $\alpha(\tau)=\alpha(\mathfrak{V})$ , then there exists no group satisfying the condi-
tion of our theorem.

PROOF. Since $n$ is even, $\mathfrak{V}$ is a Sylow 2-subgroup of $\mathfrak{H}$. Assume that
$\mathfrak{V}\cap H^{-1}\mathfrak{V}H$ contains $\tau$ for some $H\in \mathfrak{H}$ . Then $\Im(\mathfrak{V})$ and $\Im(H^{-1}\mathfrak{V}H)$ are con-
tained in $\Im(\tau)$ . It follows that $\Im(\tau)=\Im(\mathfrak{V})=\Im(H^{-1}\mathfrak{V}H)$ and hence $\mathfrak{K}$ contains
$\mathfrak{V}$ and $H^{-1}\mathfrak{V}H$. Since $\mathfrak{K}$ is $\mathfrak{A}_{6}$ , we have $\mathfrak{V}=H^{-1}\mathfrak{V}H$. This implies that $\mathfrak{H}$ is a
$(TI)$-group in the sense of Suzuki [12] and hence $\mathfrak{H}/O(\mathfrak{H})$ is also $(TI)$-group.
By a theorem of Suzuki [12; p. 69], $\mathfrak{H}/O(\mathfrak{H})$ is $PSL(2,4)$ and $O(\mathfrak{H})$ is contained
in the center of $\mathfrak{H}$ . It follows from $|C_{\mathfrak{H}}(\tau)|=4(i-1)$ that $|O(\mathfrak{H})|=i-1$ and
$(\mathfrak{H}:O(\mathfrak{H}))=4(\beta i+15)=60$ which is impossible because $\beta>0$ by Proposition 2.
The proof is complete.

In the following we may assume that $\alpha(\tau)>\alpha(\mathfrak{V})$ .
LEMMA 10. If $i=6$ or 28, then there exists no group satisfying the condi-

tion of our theorem.
PROOF. Note that by a Brauer-Wielandt’s formula [13] we have

$|O(\mathfrak{H})|=|C(\tau)\cap O(\mathfrak{H})|^{s}/|C(\mathfrak{V})\cap O(\mathfrak{H})|^{2}$
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and since $\mathfrak{K}$ is simple, $0(\mathfrak{H})\cap \mathfrak{K}=\{1\}$ . Assume that $i=6$ . Then $|C_{\mathfrak{H}}(\tau)|=2^{2}\cdot 5$,
$|\mathfrak{H}|=2^{2}\cdot 3\cdot 5^{3},2^{2}\cdot 3\cdot 5^{2}\cdot 7$ or $2^{2}\cdot 3\cdot 5\cdot 37$ and $|O(\mathfrak{H})|=1$ or 5. Assume that $i=28$ .
Then $|C_{\mathfrak{H}}(\tau)|=2^{2}\cdot 3^{3},$ $|\mathfrak{H}|=2^{2}\cdot 3^{3}\cdot 5\cdot 59$ , or $2^{2}\cdot 3^{4}\cdot 5\cdot 29$ and $|O(\mathfrak{H})|$ is a factor of
$3^{8}$ . On the other hand, in both cases, $\mathfrak{H}/0(\mathfrak{H})$ is isomorphic to a subgroup of
$P\Gamma L(2, q)$ containing $PSL(2, q)$ for some $q$ by a theorem of Gorenstein-Walter
[3] which is impossible. This proves our lemma.

LEMMA 11. If the case (3) of Lemma 3 holds, then $n=12$ and $\mathfrak{G}$ is $\mathfrak{M}_{11}$ .
PROOF. The group $\mathfrak{B}$ is a Sylow 2-subgroup of $\mathfrak{H}$ and hence $C_{\mathfrak{H}}(\tau)$ has a

normal 2-complement. Since $ C_{\mathfrak{G}}(\tau)/\langle\tau\rangle$ is a solvable doubly transitive group
on $\Im(\tau)$ of even degree, it follows from a theorem of Huppert [4] that $C_{\mathfrak{H}}(\tau)$

has a cyclic normal 2-complement. Applying a theorem of Gorenstein-Walter
[3], $\mathfrak{H}/0(\mathfrak{H})$ is $PSL(2, q)$ for some $q$ . By Lemma 3, $\alpha(\mathfrak{V})=\sqrt{i}=2^{m}$ and $|N_{\mathfrak{G}}(\mathfrak{V})|$

$=12(\sqrt{i}-1)\sqrt{i},$ $|N_{\mathfrak{H}}(\mathfrak{V})|=12(\sqrt{i}-1),$ $|C_{\mathfrak{H}}(\mathfrak{V})|=4(\sqrt{i}-1)$ . It follows from the
structure of $PSL(2, q)that$ $|O(\mathfrak{H})\cap C(\mathfrak{V})|=\sqrt{i}-1$ . Put $|O(\mathfrak{H})\cap C(\tau)|=x(\sqrt{i}-1)$ .
Then $x$ is a factor of $\sqrt{i}+1$ and $|O(\mathfrak{H})\cap C(\tau_{1})|=|O(\mathfrak{H})\cap C(\tau\tau_{1})|=x(\sqrt{i}-1)$ .
By a formula of Brauer-Wielandt [13] we have

$|O(\mathfrak{H})||O(\mathfrak{H})\cap C(\mathfrak{V})|^{2}=|O(\mathfrak{H})\cap C(\tau)||O(\mathfrak{H})\cap C(\tau_{1})||O(\mathfrak{H})\cap C(\tau\tau_{1})|$

$=x^{3}(\sqrt{i}-1)^{3}$

and therefore $|O(\mathfrak{H})|=x^{s}(\sqrt{i}-1)$ . Now we have

$4(\sqrt{i}+1)(\beta i+15)/x^{8}=q(q-1)(q+1)/2$ . (4.1)

Put $\overline{\mathfrak{H}}=\mathfrak{H}/O(\mathfrak{H})$ and in the natural epimorphism $\mathfrak{H}\rightarrow\overline{\mathfrak{H}}$, let $\overline{\tau},\overline{C_{\mathfrak{H}}(\tau)}$ be the
images of $\tau,$

$C_{\mathfrak{H}}(\tau)$ , respectively. Since $C(\overline{\tau})\cap\overline{\mathfrak{H}}=\overline{C_{\mathfrak{H}}(\tau)}$ , we have

$(q+e)/4=(\sqrt{i}+1)/x$ (4.2)

where $e=1$ or $-1$ . It follows from (4.1) and (4.2) that

$2(\beta i+15)/x^{2}=q(q-e)$ (4.3)

and therefore $x$ is also a factor of $\beta i+15$ . Now $\beta i+15\equiv\beta+15(mod.\sqrt{i}+1)$

implies that $x$ is a factor of $\beta+15$ . It follows from $\beta=10,15$ , or 16 that $x$

must be 1, 3, 5, 15, 25, or 31. On the other hand, (4.2) and (4.3) imply that

$(\beta-8)i-2(8-3ex)\sqrt{i}-(x-7e)(x+e)=0$

and hence

$\sqrt{i}=\{(8-3ex)\pm\sqrt{(\beta+1)x^{2}-6e\beta x+120-7\beta}\}/(\beta-8)$ .

Put $ f(x, \beta)=(\beta+1)x^{2}-6e\beta x+120-7\beta$ . Since $f(x, \beta)$ is a quadratic number,
the possibilities of $f(x, \beta)$ are as follows.
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$f(1,10)=1$ , or 121, $f(5,10)=25$ , or 625,

$f(1,15)=121$ , $f(1,16)=121$ ,

$f(31,16)=19321$ .
Since $\sqrt{i}=2^{m}$, we must have $f(1,10)=1$ and therefore

$i=4$, $q=11$ , $n=12$ .
Thus $\mathfrak{H}$ is $PSL(2,11)$ and $\mathfrak{G}$ contains no regular normal subgroup by Proposi-
tion 3. Now $\mathfrak{G}$ is a simple group of order 7920. By a theorem of Parrott
[11], $\mathfrak{G}$ is $\mathfrak{M}_{11}$ . This proves our lemma.

The proof of our theorem is complete.

Osaka University
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