A characterization of the simple groups \mathscr{A}_{7} and $\mathfrak{M} \mathfrak{R}_{1}$

By Hiroyoshi Yamaki

(Received May 23, 1970)

§ 1. Introduction

It is well known that the alternating group \mathfrak{N}_{7} of degree seven and the Mathieu simple group \mathfrak{M}_{11} of degree eleven are doubly transitive permutation groups in which the stabilizers of two points are isomorphic, as a group, to the alternating groups of degree five (cf. Lüneburg [9; p. 95]). The purpose of this paper is to prove the following theorem.

Theorem. Let (5) be a doubly transitive permutation group on the set $\Omega=$ $\{1,2, \cdots, n\}$ containing no regular normal subgroup. If the stabilizer \mathfrak{R} of the set of points 1 and 2 is isomorphic, as a group, to the alternating group of degree five, then one of the following holds.
(1) $n=7$ and \mathfrak{S} is \mathfrak{N}_{7},
(2) $n=12$ and \mathbb{S} is \mathfrak{M}_{11}.

The proof of this theorem is similar to that of our paper [10].
Notation. Let \mathfrak{X} and \mathfrak{V} be the subsets of \mathbb{C}. $\mathfrak{J}(\mathfrak{X})$ will denote the set of all the fixed points of \mathfrak{X} and $\alpha(\mathfrak{X})$ is the number of points in $\mathfrak{Y}(\mathfrak{X})$. $\mathfrak{X} \sim \mathfrak{Y}$ means that \mathfrak{X} is conjugate to \mathfrak{Y} in \mathfrak{G}. All other notations are standard.

§ 2. Preliminaries

Firstly we consider the following situation (*).
${ }^{*}$) Let \mathbb{B} be a doubly transitive permutation group on the set $\Omega=\{1,2$, $\cdots, n\}$ and Ω be the stabilizer of the set of points 1 and 2 . Moreover Ω contains an involution τ and every involution of Ω is conjugate to τ in Ω.

Since $(\mathbb{S}$ is doubly transitive on Ω, it contains an involution I with the cycle structure (1,2) \cdots which normalizes \mathfrak{R}. Let \mathscr{J} be the stabilizer of the point 1 . Then we have the following decomposition of $\mathbb{C S}$.

$$
\begin{equation*}
\mathfrak{G}=\mathfrak{J} \cup \mathfrak{I} I \mathfrak{F} \tag{2.1}
\end{equation*}
$$

Let $g(2), h(2)$ and d denote the number of involutions in $\mathscr{E}, \mathscr{\delta}$ and the coset § $I H$ for $H \in \oiint$, respectively. Then d is the number of elements in Ω inverted by I, that is, the number of involutions in \mathbb{C} with the cycle structure $(1,2) \cdots$,
and the following equality is obtained from (2.1),

$$
\begin{equation*}
g(2)=h(2)+d(n-1) \tag{2.2}
\end{equation*}
$$

Let τ keep $i(i \geqq 2)$ points of Ω unchanged. So we may put $\mathfrak{J}(\tau)=\{1,2, \cdots, i\}$. The group $C_{\mathbb{G}}(\tau)$ is doubly transitive on $\mathfrak{J}(\tau)$ by a theorem of Witt [5; p. 150] and then we have $\left|C_{\mathbb{Q}}(\tau)\right|=i(i-1)\left|C_{\mathbb{Q}}(\tau) \cap \mathscr{R}\right|$ and $\left|C_{\S}(\tau)\right|=(i-1)\left|C_{\circlearrowleft}(\tau) \cap \mathscr{R}\right|$. Hence there exist ($\left(\mathscr{S}: C_{\mathscr{B}}(\tau)\right)=n(n-1)|\mathscr{\Re}| / i(i-1)\left|C_{\mathscr{R}}(\tau)\right|$ involutions in \mathfrak{F} each of which is conjugate to τ.

At first, let us assume that n is odd. Let $h^{*}(2)$ be the number of involu-
 equality is obtained.

$$
\begin{equation*}
h^{*}(2) n+\left(\mathscr{S}: C_{\mathbb{B}}(\tau)\right)=\left(\mathfrak{F}: C_{\S}(\tau)\right)+h^{*}(2)+d(n-1) \tag{2.3}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
n=i\left(\mathbb{R}: C_{\Re}(\tau)\right)^{-1}\left\{\left(d-h^{*}(2)\right) i-\left(d-h^{*}(2)\right)+\left(\mathscr{\Re}: C_{\Omega}(\tau)\right)\right\} . \tag{2.4}
\end{equation*}
$$

Next, let us assume that n is even. Let $g *(2)$ be the number of involutions in \mathscr{A} which are semi-regular on Ω. Then corresponding to (2.3) the following equality is obtained from (2.2).

$$
\begin{equation*}
g^{*}(2)+\left(\mathbb{S}: C_{\mathbb{G}}(\tau)\right)=\left(\mathfrak{g}: C_{\mathfrak{\S}}(\tau)\right)+d(n-1) \tag{2.5}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
n=i\left(\Omega: C_{\Omega}(\tau)\right)^{-1}\left\{(d-g *(2) / n-1) i-(d-g *(2) / n-1)+\left(\Omega: C_{\Omega}(\tau)\right)\right\} . \tag{2.6}
\end{equation*}
$$

Put $\beta=d-h^{*}(2)$, if n is odd and put $\beta=d-g^{*}(2) / n-1$, if n is even.
Proposition 1. Let \mathscr{G} satisfy (*). Then

$$
n=i\left(\Omega: C_{\Omega}(\tau)\right)^{-1}\left\{\beta i-\beta+\left(\Omega: C_{\Omega}(\tau)\right)\right\} .
$$

Moreover i is even if n is even and i is odd if n is odd.
Proof. The result follows from (2.4) and (2.6).
Proposition 2 (Kimura [7]). In our situation (*), β is the number of involutions with the cycle structure $(1,2) \cdots$ each of which is conjugate to τ. Moreover $\beta>0$.

Proof. Let β^{\prime} be the number of involutions with the cycle structure $(1,2) \cdots$ each of which is conjugate to τ. Then

$$
\beta^{\prime}(n-1)+\left(\mathfrak{F}: C_{\S}(\tau)\right)=\left(\mathbb{F}: C_{\mathbb{G}}(\tau)\right) .
$$

This implies that

$$
\beta^{\prime}=\left(\Omega: C_{\Omega}(\tau)\right)(n-i) / i(i-1)=\beta .
$$

Since \mathscr{G}^{5} is doubly transitive on Ω, β must be positive.
Proposition 3 (Galois). Let \mathfrak{C} be a doubly transitive group of degree n. If \mathbb{F} contains a solvable normal subgroup, then \mathbb{F} contains a regular normal
subgroup and n is a prime power.
Proof. See Huppert [5; p. 159].
In the following of this paper, let \mathscr{G} be a group satisfying the condition of our theorem and we use the same notation as the preceding paragraph. Clearly (B) satisfies the condition (*).

Since Ω is \Re_{5}, Ω is generated by the elements K, τ and μ subject to the following relations:

$$
\begin{equation*}
K^{3}=\tau^{2}=\mu^{2}=(K \tau)^{3}=(\tau \mu)^{3}=(K \mu)^{2}=1 \tag{2.7}
\end{equation*}
$$

Put $\tau_{1}=K^{-1} \tau K$ and $\mathfrak{F}=\left\langle\tau, \tau_{1}\right\rangle$. Then \mathfrak{F} is a four group and a Sylow 2 -subgroup of Ω. Since the number of Sylow 2 -subgroup of Ω is odd, we may assume that $[I, \mathfrak{B}] \subset \mathfrak{B}$ and $[I, \tau]=1$. Moreover $\left|C_{\mathfrak{\Re}}(\tau)\right|=4,\left|C_{\mathbb{G}}(\tau)\right|=4(i-1) \boldsymbol{i}$ and $\left|C_{\S}(\tau)\right|=4(i-1)$. Proposition 1 implies that $n=i(\beta i-\beta+15) / 15$.

Lemma 1. One of the following holds:
(1)

$$
\begin{aligned}
& I \tau_{1} I=\tau \tau_{1}, I K I=K^{-1},[I, \mu]=1, d=10 \\
& I \sim I K \sim I K^{2} \sim I \tau K \tau \sim I \tau K^{2} \tau \sim I \mu \tau K \tau \mu \\
& \\
& \quad \sim I \mu \tau K^{2} \tau \mu \sim I \tau \sim I \mu \tau \mu \sim I \mu .
\end{aligned}
$$

(2)

$$
[I, \mathfrak{F}]=1, I K I=\tau K \tau, I \mu I=\tau \mu \tau, d=16,
$$

$$
I \sim I \mu K \tau \sim I(\mu K \tau)^{2} \sim I(\mu K \tau)^{3} \sim I(\mu K \tau)^{4} \sim I\left(\tau_{1} \mu \tau_{1} K\right)
$$

$$
\sim I\left(\tau_{1} \mu \tau_{1} K\right)^{2} \sim I\left(\tau_{1} \mu \tau_{1} K\right)^{3} \sim I\left(\tau_{1} \mu \tau_{1} K\right)^{4} \sim I \tau_{1} \sim I \tau \tau_{1}
$$

$$
\sim I(\tau \mu) \sim I(\tau \mu)^{2} \sim I\left(\tau_{1} \tau \mu \tau_{1}\right) \sim I \tau_{1}(\tau \mu)^{2} \tau_{1} .
$$

$$
\begin{equation*}
[I, \Omega]=1, d=16, \tag{3}
\end{equation*}
$$

$$
I \tau \sim I \tau_{1} \sim I \tau \tau_{1} \sim I \rho^{-j} \tau \rho^{j} \sim I \rho^{-k} \tau_{1} \rho^{k} \sim I \rho^{-s} \tau \tau_{1} \rho^{s}
$$

where $\rho=\mu K \tau$ and $1 \leqq j, k, s \leqq 4$.
Proof. Since the automorphism group of \mathbb{R} is the symmetric group of degree five, we may assume that the action of I on Ω is the case (1), (2) or (3) by (2.7). The group $\langle I, \Omega\rangle$ is the symmetric group of degree five or the direct product of a cyclic group of order 2 and the alternating group of degree five. Now the results follow from the structure of $\langle I, \mathscr{R}\rangle$. Note that in the case (1) all involutions are conjugate in © . This proves our lemma.

Lemma 2. $\beta=1,10,15$ or 16 .
Proof. If the case (1) of Lemma 1 holds, then $h^{*}(2)=g^{*}(2)=0$ and $\beta=$ $d=10$. Assume that the case (2) of Lemma 1 holds. Thus if $I \sim I \tau$, then $h^{*}(2)=g^{*}(2)=0$ and $\beta=d=16$. If $I \nsim I \tau$, then $\beta=15$ or $\beta=1$ accordingly $\alpha(I) \geqq 2$ or $\alpha(I)<2$. The case (3) of Lemma 1 is the same as the case (2) of Lemma 1. This proves our lemma.

Lemma 3. If $\alpha(\tau)>\alpha(\mathfrak{B})$, then one of the following holds.
(1) $i=6$ and $C_{\mathbb{G}}(\tau) /\langle\tau\rangle$ is \mathfrak{U}_{5},
(2) $i=28$ and $C_{\S}(\tau) /\langle\tau\rangle$ is $P \Gamma L(2,8)$,
(3) $i=p^{2 m}$ for some prime $p, \alpha(\mathfrak{B})=\sqrt{ } i=p^{m}$ and $C_{\mathbb{Q}}(\tau) /\langle\tau\rangle$ contains a regular normal subgroup. Moreover if i is odd, $C_{\S}(\tau) /\langle\tau\rangle$ contains unique involution which fixes only one point on $\mathfrak{J}(\tau)$.

Proof. Since $C_{\mathbb{G}}(\tau) /\langle\tau\rangle$ is doubly transitive on $\mathfrak{S}(\tau)$ of degree i and order $2(i-1) i$, the results follow from Ito's theorem [6] and its proof.

Lemma 4. If $\alpha(\tau)>\alpha(\mathfrak{F})$, then $\beta=10,15$, or 16 .
Proof. There exist two points j and k in $\mathfrak{J}(\tau)-\Im(\mathfrak{S})$ such that $\tau_{1}=(j, k) \cdots$ and so $\tau \tau_{1}=(j, k) \cdots$. Double transitivity and Lemma 2 imply that $\beta=10,15$, or 16. This proves our lemma.

§ 3. The case n is odd

In the following if $h^{*}(2)>0$, then without loss of generality we may assume that $\alpha(I)=1$.

Lemma 5. If $h^{*}(2)=1$, then there exists no group satisfying the condition of our theorem.

Proof. Let \mathbb{S} be a Sylow 2 -subgroup of \mathbb{E} containing I. Since n is odd, I is isolated in \mathbb{S} with respect to \mathbb{E}. Then it follows from the Z^{*}-theorem of Glauberman [$5 ;$ p. 628] that I is contained in the center of $\mathbb{G} / O(\mathbb{C})$. Proposition 3 implies that \mathbb{E} contains a regular normal subgroup. This proves our lemma.

Lemma 6. If $\alpha(\tau)>\alpha(\mathfrak{B})$, then there exists no group satisfying the condition of our theorem.

Proof. ${ }^{1)}$ By Lemmas 4 and $5, h^{*}(2)=0$. Note that $N_{\Theta}(\mathfrak{B})$ contains no Sylow 2 -subgroup of $\mathscr{C S}$ by Lemma 3. If $[I, \mathfrak{B}]=1$, then $I \Omega$ contains no element of order 4 by Lemma 1. Now a Sylow 2 -subgroup of \mathbb{C} is elementary abelian which is impossible. Thus $\langle I, \mathfrak{R}\rangle$ is a symmetric group of degree five. We can consider \mathbb{E} as a permutation group on the set $\widetilde{\Omega}=\{\{i, j\} \mid i, j \in \Omega\}$ of unordered pairs of the points in Ω. Then $\langle I, \mathbb{R}\rangle$ is the stabilizer of $\{1,2\}$ in $\tilde{\Omega}$. Let \mathfrak{U} be a four group in $\langle I, \mathscr{R}\rangle$ with $\mathfrak{H} \nsim \mathfrak{F}$ in $\langle I, \mathscr{R}\rangle$. If $\alpha(\mathfrak{l})=1$, then by a theorem of Witt $[\mathbf{5} ; \mathrm{p} .150] N_{\mathbb{G}}(\mathfrak{F})$ is transitive on the set of fixed points of \mathfrak{B} on $\tilde{\Omega}$ which is a union of the \mathfrak{B}-orbits of length 2 and the pairs of the fixed points of \mathfrak{F} in Ω. This contradicts $\alpha(\tau)>\alpha(\mathfrak{V})$. If $\alpha(\mathfrak{l})=\alpha(\mathfrak{F})$, then $h^{*}(2)=0$ implies that every four group fixes \sqrt{i} points in Ω. Let \mathbb{S} be a Sylow 2 -subgroup of \mathscr{E} contained in $C_{\mathbb{E}}(\tau)$. If \mathfrak{S} is not a maximal class, \mathfrak{S}

[^0]contains a normal four group. This is impossible. Now \mathbb{S} is dihedral or quasi-dihedral (cf. [5; p. 339]). By theorems of Gorenstein-Walter [3] and Lüneburg [8], we may assume that \mathbb{S} is quasi-dihedral. On the other hand since $\mathbb{S} /\langle\tau\rangle$ is a dihedral Sylow 2-subgroup of $C_{\Phi}(\tau) /\langle\tau\rangle$, Lemma 3 implies that $C_{\Theta}(\tau)$ has a normal 2 -complement. Applying theorems of Gorenstein [2] and Lüneburg [8] we get a contradiction. The proof is complete.

Lemma 7. If $\alpha(\tau)=\alpha(\mathfrak{F})$ and $h^{*}(2)=0$, then $n=7$ and \mathfrak{B} is \mathfrak{U}_{7}.
Proof. The group $C_{\Theta}(\tau) / \mathfrak{F}$ is a Frobenius group of odd degree i. Let \mathfrak{S} be a Sylow 2 -subgroup of \mathfrak{G} containing $\langle I, \mathfrak{B}\rangle$ and contained in $C_{\mathscr{C}}(\tau)$. Then $\mathbb{S} / \mathfrak{B}$ is cyclic or generalized quaternion. If $[I, \mathfrak{B}] \neq 1$, then $\mathbb{S}=\langle I, \mathfrak{B}\rangle$ is dihedral because $I \mathfrak{F}$ is a unique involution in $\mathbb{S} / \mathfrak{B}$ and applying theorems of Gorenstein-Walter [3] and Lüneburg [8], $n=7$ and \mathfrak{G} is \mathfrak{N}_{7}. Assume that $[I, \mathfrak{B}]=1$. Then by the same way as in the proof of Lemma $6, \mathfrak{S}$ is elementary abelian and hence $\mathfrak{S}=\langle I, \mathfrak{B}\rangle$. Therefore $C_{\mathbb{Q}}(\tau)$ is solvable and by theorems of Gorenstein [1] and Lüneburg [8], we get a contradiction. The proof is complete.

Lemma 8. If $\alpha(\tau)=\alpha(\mathfrak{O})$ and $h^{*}(2)>1$, then there exists no group satisfying the condition of our theorem.

Proof. Since $\beta=d-h^{*}(2)<d-1$, Lemma 2 implies that $\beta=1$. Therefore Lemma 1 yields $[I \tau, \Re]=1$ which is impossible because Ω is simple and $C_{\circlearrowleft}(I \tau)$ is conjugate to $C_{\mathbb{Q}}(\tau)$ in \mathbb{G}. The proof is complete.

§ 4. The case \boldsymbol{n} is even

Lemma 9. If $\alpha(\tau)=\alpha(\mathfrak{B})$, then there exists no group satisfying the condition of our theorem.

Proof. Since n is even, \mathfrak{F} is a Sylow 2-subgroup of \mathfrak{g}. Assume that $\mathfrak{B} \cap H^{-1} \mathfrak{O} H$ contains τ for some $H \in \mathfrak{S}$. Then $\mathfrak{Y}(\mathfrak{V})$ and $\mathfrak{S}\left(H^{-1} \mathfrak{O} H\right)$ are contained in $\mathfrak{F}(\tau)$. It follows that $\mathfrak{J}(\tau)=\mathfrak{J}(\mathfrak{F})=\mathfrak{J}\left(H^{-1} \mathfrak{B} H\right)$ and hence Ω contains \mathfrak{V} and $H^{-1} \mathfrak{B} H$. Since \mathfrak{R} is $\mathfrak{\Re}_{5}$, we have $\mathfrak{F}=H^{-1} \mathfrak{O} H$. This implies that \mathfrak{g} is a (TI)-group in the sense of Suzuki [12] and hence $\mathscr{S} / O(\mathscr{g})$ is also (TI)-group. By a theorem of Suzuki [12; p. 69], \{ু/O(ફ) is $\operatorname{PSL}(2,4)$ and $O(\mathfrak{g})$ is contained in the center of $\mathfrak{~}$. It follows from $\left|C_{\S}(\tau)\right|=4(i-1)$ that $|O(\mathfrak{\xi})|=i-1$ and $(\mathfrak{F}: O(\mathfrak{g}))=4(\beta i+15)=60$ which is impossible because $\beta>0$ by Proposition 2 . The proof is complete.

In the following we may assume that $\alpha(\tau)>\alpha(\mathfrak{F})$.
Lemma 10. If $i=6$ or 28 , then there exists no group satisfying the condition of our theorem.

Proof. Note that by a Brauer-Wielandt's formula [13] we have

$$
|O(\mathfrak{g})|=|C(\tau) \cap O(\mathfrak{g})|^{3} /|C(\mathfrak{F}) \cap O(\mathfrak{g})|^{2}
$$

and since $\mathscr{\Re}$ is simple, $O(\mathscr{g}) \cap \Re=\{1\}$. Assume that $i=6$. Then $\left|C_{\S}(\tau)\right|=2^{2} \cdot 5$, $|\mathfrak{g}|=2^{2} \cdot 3 \cdot 5^{3}, 2^{2} \cdot 3 \cdot 5^{2} \cdot 7$ or $2^{2} \cdot 3 \cdot 5 \cdot 37$ and $|O(\mathfrak{J})|=1$ or 5 . Assume that $i=28$. Then $\left|C_{\S}(\tau)\right|=2^{2} \cdot 3^{3},|\mathfrak{g}|=2^{2} \cdot 3^{3} \cdot 5 \cdot 59$, or $2^{2} \cdot 3^{4} \cdot 5 \cdot 29$ and $|O(\mathfrak{\xi})|$ is a factor of 3^{3}. On the other hand, in both cases, $\mathscr{S} / O(\mathscr{F})$ is isomorphic to a subgroup of $P \Gamma L(2, q)$ containing $\operatorname{PSL}(2, q)$ for some q by a theorem of Gorenstein-Walter [3] which is impossible. This proves our lemma.

Lemma 11. If the case (3) of Lemma 3 holds, then $n=12$ and © is \mathfrak{M}_{11}.
Proof. The group \mathfrak{V} is a Sylow 2 -subgroup of \mathfrak{J} and hence $C_{\S}(\tau)$ has a normal 2 -complement. Since $C_{\circlearrowleft}(\tau) /\langle\tau\rangle$ is a solvable doubly transitive group on $\mathfrak{S}(\tau)$ of even degree, it follows from a theorem of Huppert [4] that $C_{\S}(\tau)$ has a cyclic normal 2 -complement. Applying a theorem of Gorenstein-Walter [3], $\mathscr{F} / O(\mathfrak{F})$ is $P S L(2, q)$ for some q. By Lemma 3, $\alpha(\mathfrak{F})=\sqrt{i}=2^{m}$ and $\left|N_{\mathbb{E}}(\mathfrak{F})\right|$ $=12(\sqrt{ } \bar{i}-1) \sqrt{ } \bar{i},\left|N_{\S}(\mathfrak{V})\right|=12(\sqrt{ } \bar{i}-1),\left|C_{\S}(\mathfrak{F})\right|=4(\sqrt{i}-1)$. It follows from the structure of $\operatorname{PSL}(2, q)$ that $|O(\mathfrak{S}) \cap C(\mathfrak{F})|=\sqrt{\bar{i}}-1$. Put $|O(\mathfrak{g}) \cap C(\tau)|=x(\sqrt{\bar{i}}-1)$. Then x is a factor of $\sqrt{i}+1$ and $\left|O(\mathfrak{g}) \cap C\left(\tau_{1}\right)\right|=\left|O(\mathfrak{g}) \cap C\left(\tau \tau_{1}\right)\right|=x(\sqrt{i}-1)$. By a formula of Brauer-Wielandt [13] we have

$$
\begin{aligned}
|O(\mathfrak{F})||O(\mathfrak{F}) \cap C(\mathfrak{F})|^{2} & =|O(\mathfrak{K}) \cap C(\tau)|\left|O(\mathfrak{J}) \cap C\left(\tau_{1}\right)\right|\left|O(\mathfrak{夕}) \cap C\left(\tau \tau_{1}\right)\right| \\
& =x^{3}(\sqrt{ } \bar{i}-1)^{3}
\end{aligned}
$$

and therefore $|O(\mathfrak{g})|=x^{3}(\sqrt{i}-1)$. Now we have

$$
\begin{equation*}
4(\sqrt{\hat{i}}+1)(\beta i+15) / x^{3}=q(q-1)(q+1) / 2 \tag{4.1}
\end{equation*}
$$

Put $\overline{\mathfrak{g}}=\mathfrak{g} / O(\mathfrak{K})$ and in the natural epimorphism $\mathfrak{K} \rightarrow \overline{\mathscr{E}}$, let $\bar{\tau}, \overline{C_{\mathfrak{g}}(\tau)}$ be the images of $\tau, C_{\mathfrak{叉}}(\tau)$, respectively. Since $C(\bar{\tau}) \cap \overline{\mathscr{g}}=\overline{C_{\mathfrak{p}}(\tau)}$, we have

$$
\begin{equation*}
(q+e) / 4=(\sqrt{i}+1) / x \tag{4.2}
\end{equation*}
$$

where $e=1$ or -1 . It follows from (4.1) and (4.2) that

$$
\begin{equation*}
2(\beta i+15) / x^{2}=q(q-e) \tag{4.3}
\end{equation*}
$$

and therefore x is also a factor of $\beta i+15$. Now $\beta i+15 \equiv \beta+15(\bmod \cdot \sqrt{i}+1)$ implies that x is a factor of $\beta+15$. It follows from $\beta=10,15$, or 16 that x must be $1,3,5,15,25$, or 31 . On the other hand, (4.2) and (4.3) imply that

$$
(\beta-8) i-2(8-3 e x) \sqrt{ } \bar{i}-(x-7 e)(x+e)=0
$$

and hence

$$
\sqrt{\bar{i}}=\left\{(8-3 e x) \pm \sqrt{(\beta+1) x^{2}-6 e \beta x+120-7 \beta}\right\} /(\beta-8) .
$$

Put $f(x, \beta)=(\beta+1) x^{2}-6 e \beta x+120-7 \beta$. Since $f(x, \beta)$ is a quadratic number, the possibilities of $f(x, \beta)$ are as follows.

$$
\begin{array}{ll}
f(1,10)=1, \text { or } 121, & f(5,10)=25, \text { or } 625, \\
f(1,15)=121, & f(1,16)=121, \\
f(31,16)=19321 . &
\end{array}
$$

Since $\sqrt{i}=2^{m}$, we must have $f(1,10)=1$ and therefore

$$
i=4, \quad q=11, \quad n=12
$$

Thus \mathscr{K} is $P S L(2,11)$ and \mathfrak{E} contains no regular normal subgroup by Proposition 3. Now © $\mathbb{S}^{\text {is }}$ a simple group of order 7920. By a theorem of Parrott [11], © is \mathfrak{M}_{11}. This proves our lemma.

The proof of our theorem is complete.

Osaka University

References

[1] D. Gorenstein, Finite groups in which Sylow 2-subgroups are abelian and centralizers of involutions are solvable, Canad. J. Math., 17 (1965), 860-896.
[2] D. Gorenstein, Finite groups the centralizers of whose involutions have normal 2-complements, Canad. J. Math., 21 (1969), 335-357.
[3] D. Gorenstein and J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra, 2 (1965), 85-151, 218-270, 334393.
[4] B. Huppert, Zweifach transitive aufösbare Permutationsgruppen, Math. Z., 68 (1957), 126-150.
[5] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
[6] N. Ito, On doubly transitive groups of degree n and order $2(n-1) n$, Nagoya Math. J., 27 (1966), 409-417.
[7] H. Kimura, On doubly transitive permutation groups of degree n and order $2 p(n-1) n$, I, II, Osaka J. Math., 7 (1970), (to appear).
[8] H. Lüneburg, Charakterisierungen der endlichen desarguesschen projectiven Ebenen, Math. Z., 85 (1964), 419-450.
[9] H. Lüneburg, Transitive Erweiterungen endlicher Permutationsgruppen, Springer, Berlin, 1969.
[10] R. Noda and H. Yamaki, A characterization of the alternating groups of degrees six and seven, Osaka J. Math., 7 (1970), (to appear).
[11] D. Parrott, On the Mathieu groups M_{22} and M_{11}, J. Austral. Math. Soc., 11 (1970), 69-81.
[12] M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. Math., 80 (1964), 58-77.
[13] H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z., 73 (1960), 146-158.

[^0]: 1) The idea of this proof is due to R. Noda.
