Orbits of one-parameter groups III (Lie group case)

By Morikuni GOTO¹⁾

(Received April 21, 1970)

§ 1. Introduction

This paper is a continuation of the previous paper, [5] M. Goto, *Orbits of one-parameter groups* II, which will be quoted as *Orbits* II, and the main purpose of this paper is to prove the following theorem.

THEOREM. Let \mathcal{G} be a Lie group. Let \mathcal{L} be an analytic subgroup, and let \mathcal{X} be a one-parameter subgroup, of \mathcal{G} . Then either

- (a) \mathscr{X} is a closed straight line and $\mathscr{X}\overline{\mathcal{L}}$ is topologically the same as the direct product $\mathscr{X}\times\overline{\mathcal{L}}$, or
- (b) We can give a toral group structure to the set $\overline{\mathcal{XL}}/\overline{\mathcal{L}}$ such that $\mathcal{X}\overline{\mathcal{L}}/\overline{\mathcal{L}}$ becomes an everywhere dense one-parameter subgroup in it.

The theorem was proved for the general linear group $\mathcal{GL}(n,R)$, in a slightly weaker form (Theorem 1 in *Orbits* II), and it can be applied for all analytic subgroups of $\mathcal{GL}(n,R)^2$. However, in order to prove the theorem for a closed analytic subgroup \mathcal{G} of $\mathcal{GL}(n,R)$, we need some groups which are not in \mathcal{G} , but in the algebraic hull of \mathcal{G} .

Hence in order to extend the method in *Orbits* II to general analytic groups, it was necessary to find a suitable analytic group \mathcal{S} which contains the given \mathcal{G} and all the groups which appear in the process of the proof. For the purpose, we introduce the notion of semi-algebraic subgroups of $\mathcal{GL}(n,R)$ and adjoint semi-algebraic analytic groups in § 2. For a given analytic group \mathcal{G} , we can find an adjoint semi-algebraic group \mathcal{S} which contains \mathcal{G} as a closed normal subgroup by (3.4). Thus, roughly speaking, by considering the adjoint representation of \mathcal{S} , we can reduce the problem into the case of linear groups. The proof of the Theorem is given in § 5 and § 6.

In § 4 we shall give some lemmas, which are based on "category argument" of locally compact groups, and which make the brute force part of

¹⁾ Research supported in part by NSF GP4503.

²⁾ By a theorem in Goto [4], every analytic subgroup of $\mathcal{GL}(n, R)$ is isomorphic with a closed subgroup of $\mathcal{GL}(m, R)$ for a sufficiently large m.

the proof of Theorem 1 in *Orbits* II much more unified and shortened. Thus, assuming the preliminary parts in *Orbits* II, this paper is self-contained.

Unless specified otherwise, an analytic group and its corresponding Lie algebra will be denoted by the same capital script and capital Roman letter, respectively. For example, if \mathcal{L} is an analytic subgroup of an analytic group \mathcal{L} , then G will denote the Lie algebra of \mathcal{L} and \mathcal{L} will denote the subalgebra of \mathcal{L} corresponding to \mathcal{L} . If φ is a continuous homomorphism from an analytic group \mathcal{L} , then we denote the corresponding Lie algebra homomorphism from G into H also by φ . All Lie algebras in this paper are finite-dimensional over the field R of real numbers. For a finite-dimensional vector space V over R, we let M(V) denote the Lie algebra of all endomorphisms, and $\mathcal{L}(V)$ the group of all automorphisms, of V.

§ 2. Semi-algebraic groups

Let V be a finite-dimensional vector space over R, and let \mathcal{H} be an analytic subgroup of $\mathcal{GL}(V)$. We let $[\mathcal{H}]$ denote the *identity component group* of the algebraic hull of \mathcal{H} , in this paper. The Lie algebra [H] of $[\mathcal{H}]$ is the smallest algebraic Lie algebra containing H.

DEFINITION. An analytic subgroup S of $\mathcal{GL}(V)$ is called semi-algebraic if S contains a maximal compact subgroup of [S]. A subalgebra of M(V) is said to be semi-algebraic if the corresponding analytic group is semi-algebraic.

Let S be a semi-algebraic group. Since S contains the commutator subgroup of [S] and since all maximal compact subgroups are conjugate to each other, all compact subgroups of [S] are contained in S. Obviously, a semi-algebraic group is closed.

Let \mathcal{G} be an analytic subgroup of $\mathcal{GL}(V)$. Let us pick up a maximal compact subgroup \mathcal{K} of $[\mathcal{G}]$. Then \mathcal{KG} is the smallest semi-algebraic group containing \mathcal{G} . We denote \mathcal{KG} by $\{\mathcal{G}\}$ and call it the semi-algebraic hull of \mathcal{G} . Since the semi-simple part of \mathcal{K} is contained in \mathcal{G} , we can find a toral subgroup \mathcal{G} with $\{\mathcal{G}\}=\mathcal{G}\mathcal{G}$ and $T\cap G=0$. The Lie algebra T+G of $\{\mathcal{G}\}$ will be denoted by $\{G\}$, and will be called the semi-algebraic hull of G.

DEFINITION. Let G be a Lie algebra, and let ξ be a representation of G (into a suitable M(n, R)). ξ is said to be *minimal* if the center of $[\xi(G)]$ is contained in $\xi(G)$.

We note that for a minimal representation ξ of G, the center of $\xi(G)$, the center of $[\xi(G)]$, and the centralizer of $\xi(G)$ in $[\xi(G)]$ all coincide.

Let H be a Lie algebra. We let I(H) denote the Lie algebra of all inner

³⁾ In Orbits II, $[\mathcal{H}]$ denotes the algebraic hull of \mathcal{H} .

derivations of H. I(H) is a subalgebra of M(H) and the corresponding analytic group $\mathcal{J}(H)$ is the adjoint group of H. The adjoint group $\mathcal{J}(\mathcal{H})$, composed of all inner automorphisms of an analytic group \mathcal{H} with the Lie algebra H, can be identified with $\mathcal{J}(H)$. If H is an algebraic subalgebra of M(V), then I(H) is also algebraic because the adjoint representation is rational. Conversely if I(H) is algebraic, then it is known that there exists a faithful representation ξ of H such that $\xi(H)$ is algebraic.

(2.1) Every Lie algebra has a faithful minimal representation.

PROOF. Let ξ be a faithful representation of G, and let C_1 be the center of $[\xi(G)]$. If $C = C_1 \cap \xi(G) \neq C_1$, then we can find an abelian subalgebra C_2 with $C_1 = C_2 + C$ and $C_2 \cap C = 0$. Because $\xi(G)$ contains the commutator subalgebra of $[\xi(G)]$, we can find an ideal G_2 of $[\xi(G)]$ such that $[\xi(G)] = C_2 + G_2$, $G_2 \supset \xi(G)$ and $C_2 \cap G_2 = 0$. Since $I([\xi(G)])$ is algebraic and $I(G_2)$ is essentially the same as $I([\xi(G)])$, we see that $I(G_2)$ is algebraic. Hence G_2 has a faithful representation η such that $\eta(G_2)$ is algebraic. This implies that if ξ is not minimal, then we can find a faithful representation ζ of G with dim $[\zeta(G)] < \dim [\xi(G)]$. Because G has a faithful representation, G has a faithful minimal representation.

DEFINITION. A Lie algebra G is said to be adjoint semi-algebraic if I(G) is semi-algebraic. An analytic group \mathcal{G} is adjoint semi-algebraic if the Lie algebra G is adjoint semi-algebraic.

(2.2) Let G be an adjoint semi-algebraic Lie algebra, and let ξ be a faithful minimal representation of G. Then $\xi(G)$ is semi-algebraic.

PROOF. For x in $[\xi(G)]$ we let $\varphi(x)$ denote the restriction of ad x in $\xi(G)$: $\varphi(x) \in M(\xi(G))$. Since ξ is faithful we identify $\xi(G)$ with G. Then φ induces a rational homomorphism from the analytic subgroup corresponding to $[\xi(G)]$ onto $[\mathcal{G}(G)]$. If $\exp Rx$ is a circle, then so is $\exp R\varphi(x)$. Since I(G) is semi-algebraic, we have that $\varphi(x) \in I(G)$. Because $\varphi(\xi(G)) = I(G)$, we can find y in $\xi(G)$ with $\varphi(x) = \varphi(y)$. On the other hand, since ξ is minimal, the kernel of φ is the center of $\xi(G)$. Hence $x-y \in \xi(G)$, and so $x \in \xi(G)$. Q. E. D.

§ 3. Semi-algebraic hull of an adjoint group

(3.1) Let $\widetilde{\mathcal{G}}$ be a simply connected analytic group, and let \mathcal{C} be the center of $\widetilde{\mathcal{G}}$. Let $\mathcal{G} = \mathcal{G}(\widetilde{\mathcal{G}})$ be the adjoint group of $\widetilde{\mathcal{G}}$. Then for σ in $\{\mathcal{G}\}$ and c in \mathcal{C} we have that $c^{\sigma} = c$.

PROOF. Let \mathcal{C}^0 denote the identity component group of \mathcal{C} . Then \mathcal{C}^0 is simply connected, and is elementwise fixed by $[\mathcal{S}]$. Let \mathcal{K} be a maximal

⁴⁾ See Goto [2], Matsushima [8], and Chevalley [1].

⁵⁾ See e.g. Jacobson [7].

compact subgroup of $[\mathcal{J}]$. Since every element of the discrete factor group $\mathcal{C}/\mathcal{C}^0$ is fixed by \mathcal{K} , for a fixed element d in \mathcal{C} and σ in \mathcal{K} , we have that $d^{\sigma}d^{-1}=c(\sigma)\in\mathcal{C}^0$. For τ also in \mathcal{K} , we have that

$$c(\sigma \tau) = d^{\sigma \tau} d^{-1} = (d^{\sigma} d^{-1})^{\tau} d^{\tau} d^{-1} = c(\sigma)^{\tau} c(\tau) = c(\sigma) c(\tau)$$
.

Hence $\mathcal{K} \ni \sigma \mapsto c(\sigma) \in \mathcal{C}^0$ is a continuous homomorphism. Since \mathcal{C}^0 contains no compact proper subgroup, $c(\sigma)$ must be the identity. Q. E. D.

Let \mathcal{G} be an analytic group, locally isomorphic with $\widetilde{\mathcal{G}}$. Then there exists a discrete subgroup \mathcal{D} of \mathcal{C} such that the factor group $\widetilde{\mathcal{G}}/\mathcal{D}$ is isomorphic with \mathcal{G} . By (3.1), \mathcal{D} is fixed by $\{\mathcal{G}\}$. Therefore, we have the following (3.2).

(3.2) Let \mathcal{G} be an analytic group, and \mathcal{G} the adjoint group of \mathcal{G} . Then $\{\mathcal{G}\}$ is an automorphism group of \mathcal{G} .

For elements g and h of a group we adopt the notation $h^{Ad(g)} = g^{-1}hg$.

(3.3) Let $\widetilde{\mathcal{G}}$ be a simply connected analytic group, and let \mathcal{M} be a compact connected subgroup of $\{\mathcal{G}(\widetilde{\mathcal{G}})\}$. If g is an element of $\widetilde{\mathcal{G}}$ such that $\mathrm{Ad}(g)$ commutes with every element of \mathcal{M} , then $g^{\sigma} = g$ for all σ in \mathcal{M} .

PROOF. Let σ be an element of \mathcal{M} . The equalities $\sigma \circ \operatorname{Ad}(g) = \operatorname{Ad}(g) \circ \sigma$ and $\operatorname{Ad}(g^{\sigma}) = \sigma^{-1} \circ \operatorname{Ad}(g) \circ \sigma$ imply that $g^{\sigma}g^{-1} = c(\sigma)$ is in the center C of $\widetilde{\mathcal{G}}$. By (3.1), $\mathcal{K} \ni \sigma \mapsto c(\sigma) \in \mathcal{C}$ is a homomorphism. On the other hand \mathcal{C} contains no compact connected subgroup except the identity group. Q. E. D.

(3.4) Let \mathcal{G} be an analytic group. We can find an adjoint semi-algebraic group \mathcal{S} which contains \mathcal{G} as a closed normal subgroup such that $\mathcal{G}(\mathcal{S})|_{\mathcal{G}} = \{\mathcal{G}(\mathcal{G})\}$, where $\mathcal{G}(\mathcal{S})|_{\mathcal{G}}$ denotes the restriction of $\mathcal{G}(\mathcal{S})$ to the invariant subspace \mathcal{G} .

PROOF. We denote $\mathcal{J}(\mathcal{G})$ simply by \mathcal{J} , and take a toral subgroup \mathcal{G} of $[\mathcal{J}]$ with $\{\mathcal{J}\} = \mathcal{G}\mathcal{J}$ and $T \cap I = 0$. Since \mathcal{G} is an automorphism group of \mathcal{G} , we can construct a semi-direct product $\mathcal{S} = \mathcal{I} \times \mathcal{G}$ by defining the multiplication

$$(\sigma, a)(\tau, b) = (\sigma \tau, a^{\tau} b)$$
 $\sigma, \tau \in \mathcal{I}, a, b \in \mathcal{G}.$

Let us prove that this S satisfies the conditions.

Let $\widetilde{\mathcal{G}}$ be the universal covering group of \mathcal{G} . Then we can construct the semi-direct product $\widetilde{\mathcal{S}} = \mathcal{I} \times \widetilde{\mathcal{G}}$ in a similar manner. Since \mathcal{S} and $\widetilde{\mathcal{S}}$ are locally isomorphic to each other, $\mathcal{J}(\widetilde{\mathcal{S}})$ can be identified with $\mathcal{J}(\mathcal{S})$. Hence after this without changing the notations, let us assume that \mathcal{G} is simply connected.

We let φ denote the adjoint representation of \mathcal{S} , and ψ the restriction of φ into the subspace G. We denote the identity and the identity automorphism of \mathcal{G} by e and ε , respectively. Then for g and h in \mathcal{G} , and σ and τ in \mathcal{G} , we have

(1)
$$(\sigma, g)^{-1}(\varepsilon, h)(\sigma, g) = (\varepsilon, h^{\sigma \operatorname{Ad}(g)}),$$

(2)
$$(\sigma, g)^{-1}(\tau, e)(\sigma, g) = (\tau, (g^{-1})^{\tau}g).$$

From (1) we see that the kernel of ϕ is given by $\{(\operatorname{Ad}(g^{-1}), g); \operatorname{Ad}(g) \in \mathcal{I}\}$. On the other hand, $\operatorname{Ad}(g) \in \mathcal{I}$ implies that $g^{\tau} = g$ for all τ in \mathcal{I} , by (3.3). Hence from (2) we can see that the kernel of ϕ coincides with the center of \mathcal{S} , that is ϕ is a faithful representation of $\mathcal{S}(\mathcal{S})$. Also (1) indicates that $\phi(\mathcal{S}) = \mathcal{I} \mathcal{I} = \{\mathcal{I}\}$.

Since $\varphi(s) \mapsto \psi(s)$ gives a one-one continuous homomorphism from $\varphi(\mathcal{S})$ onto $\psi(\mathcal{S})$ and $\psi(\mathcal{S})$ is a closed subgroup of $\mathcal{GL}(G)$, the homomorphism $\varphi(s) \mapsto \psi(s)$ must be a homeomorphism, and $\varphi(\mathcal{S})$ is a closed subgroup of $\mathcal{GL}(S)$.

Let N be the set of all elements of [I(S)] which vanish on G. Then N is an ideal composed of nilpotent endomorphisms, and $N \cap I(S) = 0$. Hence [N, I(S)] = 0.

Let x be an element of [I(S)] such that $\exp Rx$ is a circle. Let x_1 denote the restriction of x to G. Then $x_1 \in [I]$ and $\exp Rx_1$ is a circle. Hence $x_1 \in \{I\} = \psi(S)$. Hence we can find an element y of S with $x_1 = \psi(y)$. Since $\varphi(s) \mapsto \psi(s)$ is a topological isomorphism, $\exp R\varphi(y)$ is also a circle group, and in particular, $\varphi(y)$ is a semi-simple endomorphism. On the other hand, $n = x - \varphi(y) = 0$ on G, and so $n \in N$. Thus we have that $x = \varphi(y) + n$, $[\varphi(y), n] = 0$, x and $\varphi(y)$ are semi-simple, and n is nilpotent. Hence n = 0, and this proves that I(S) is semi-algebraic.

§ 4. Locally compact groups

First we shall generalize (2.2) of Orbits II into the following form.

(4.1) Let $\mathcal G$ be a topological group, and let $\mathcal A$ and $\mathfrak B$ be locally compact groups with countable bases. Let α and β be continuous homomorphisms from $\mathcal A$ and $\mathfrak B$ into $\mathcal G$, respectively. Let $\mathcal L$ be a normal subgroup of $\mathfrak B$ such that $\beta(\mathcal L)$ is closed. If $\alpha(\mathcal A)\beta(\mathfrak B)$ is a locally compact set, then the map ρ

$$\mathcal{A} \times \mathfrak{B} \ni (a, b) \mapsto \rho(a, b) = \alpha(a)^{-1} \beta(b) \beta(\mathcal{L}) \in \mathcal{G}/\beta(\mathcal{L})$$

is (continuous and) open. More precisely, setting

$$\mathcal{D} = \{(a, b) \in \mathcal{A} \times \mathfrak{B}; \alpha(a)^{-1}\beta(b) \in \beta(\mathcal{L})\}$$
,

 \mathcal{D} is a closed subgroup of $\mathcal{A} \times \mathfrak{B}$, and the map ρ induces a homeomorphism $\tilde{\rho}$ from the right coset space $\mathcal{D} \setminus \mathcal{A} \times \mathfrak{B}$ onto the locally compact set $\alpha(\mathcal{A})\beta(\mathfrak{B})/\beta(\mathcal{L})$.

PROOF. Let a_1 and a_2 be elements of \mathcal{A} , and let b_1 and b_2 be elements of \mathfrak{B} . If $\rho(a_1,b_1)=\rho(a_2,b_2)$, then $(a_1,b_1)\in \mathcal{D}(a_2,b_2)$, and conversely. Hence \mathcal{D} is a closed subgroup of $\mathcal{A}\times\mathfrak{B}$ and ρ induces a continuous one-one map $\tilde{\rho}$ from the coset space $\mathcal{D}\setminus\mathcal{A}\times\mathfrak{B}$ onto $\alpha(\mathcal{A})\beta(\mathfrak{B})/\beta(\mathcal{L})=\mathcal{M}$. Thus $\mathcal{A}\times\mathfrak{B}$ is acting as a transitive transformation group on \mathcal{M} . On the other hand, $\mathcal{A}\times\mathfrak{B}$ is a locally compact group with a countable base, and \mathcal{M} is locally compact.

Hence the map ρ is open.⁶⁾

Q.E.D.

- (4.2) In (4.1) we assume moreover that \mathcal{A} is an abelian group and \mathcal{L} contains the commutator subgroup of \mathfrak{B} . Let $g(\lambda)$, $a(\lambda)$, and $b(\lambda)$, $\lambda \in R$, be one-parameter subgroups of \mathcal{G} , \mathcal{A} , and \mathfrak{B} , respectively. Suppose that the one-parameter subgroups $\alpha(a(\lambda))$ and $\beta(b(\lambda))$ are commutative to each other and $g(\lambda) = \alpha(a(\lambda))\beta(b(\lambda))$. We set $\mathcal{X} = \{g(\lambda); \lambda \in R\}$. Then we have either
 - (a) $\mathfrak{X}\beta(\mathcal{L})$ is a closed subset of $\alpha(\mathcal{A})\beta(\mathfrak{B})$, or
- (b) $\tilde{\rho}^{-1}(\overline{\mathcal{X}\beta(\mathcal{L})}/\beta(\mathcal{L})) = \mathcal{K}$ is a compact connected abelian group and $\tilde{\rho}^{-1}(g(\lambda)\beta(\mathcal{L}))$ is an everywhere dense one-parameter subgroup in \mathcal{K} .

PROOF. Since \mathcal{D} contains \mathcal{L} , \mathcal{D} is a normal subgroup and $\mathcal{A} \times \mathfrak{B}/\mathcal{D}$ is an abelian group. $h(\lambda) = (a(-\lambda), b(\lambda))\mathcal{D}$ is a one-parameter subgroup of $\mathcal{A} \times \mathfrak{B}/\mathcal{D}$. We set $\mathcal{A} = \{(a(-\lambda), b(\lambda)); \lambda \in R\}$. If $h(\lambda)$ is a closed one-parameter subgroup, then $\mathcal{A} = \{(a(-\lambda), b(\lambda)); \lambda \in R\}$. If $h(\lambda) = \mathcal{B}(\mathcal{L})$ in \mathcal{M} , whence $\mathcal{L} = \mathcal{A}(\mathcal{L})$ is locally compact. If $h(\lambda)$ is not a closed one-parameter subgroup, then its closure $\mathcal{L} = \overline{\mathcal{A}(\mathcal{D})}/\mathcal{D}$ is a compact connected subgroup of $\mathcal{A} \times \mathfrak{B}/\mathcal{D}$. Q. E. D.

§ 5. Linear group case

Let \mathcal{G} be a closed analytic subgroup of $\mathcal{GL}(n,R)$. Let L be a subalgebra of G and let x be an element of G. We set $[x] \cap [L] = D$ and decompose [x] into a direct sum: [x] = A' + D, $A' \cap D = 0$, such that A' is an algebraic subalgebra of [x]. Then, we can find $y \in A'$ and $z \in D$ with y+z=x. It is obvious that A' = [y] and D = [z]. We denote the one-parameter groups $\exp Rx$, $\exp Ry$ and $\exp Rz$ by \mathcal{X} , \mathcal{Y} and \mathcal{Z} , respectively. Since z normalizes L, $\mathcal{Z}\mathcal{L}$ is an analytic subgroup of \mathcal{G} . We set $\overline{\mathcal{Y}} = \mathcal{A}$ and $\overline{\mathcal{Z}\mathcal{L}} = \mathfrak{B}$.

The product $[\mathcal{Y}][\mathcal{L}]$ is a locally compact set, and $[\mathcal{Y}] \cap [\mathcal{L}]$ is finite. Hence for the closed set \mathcal{A} in $[\mathcal{Y}]$ and \mathfrak{B} in $[\mathcal{L}]$, we have that $\mathcal{A}\mathfrak{B}$ is closed in $[\mathcal{Y}][\mathcal{L}]$ and is locally compact itself. (See *Orbits* II)

- (5.1) Under the above assumptions, either
- (a) \mathscr{X} is a closed straight line, $\mathscr{X}\overline{\mathcal{I}}$ is locally compact and the map $\mathscr{X}\times\bar{\mathcal{I}}$ $\ni (\exp \lambda x, l) \mapsto \exp \lambda x \cdot l \in \mathscr{X}\overline{\mathcal{I}}$ is a homeomorphism, or
 - (b) y and z are contained in $\{G\}$.

PROOF. We note that for a non-closed analytic subgroup \mathcal{Q} of an analytic group \mathcal{Q} , we can find a non-closed one-parameter subgroup \mathcal{Q} in \mathcal{Q} with $\overline{\mathcal{Q}} = \overline{\mathcal{Q}} \mathcal{Q}^{\tau}$. Because every compact subgroup of $[\mathcal{Q}]$ is contained in $\{\mathcal{Q}\}$, if $\overline{\mathcal{Q}}$ or $\overline{\mathcal{Z}}$ is a toral group then we have the case (b). Also if $\overline{\mathcal{L}} \supset \mathcal{Z}$, then we have the case (b). If $\mathcal{Z}\overline{\mathcal{L}}$ is not closed, then we can find a non-closed one-

⁶⁾ See e.g. Helgason [6].

⁷⁾ See Goto [3].

parameter subgroup \mathcal{U} in $\mathcal{Z}\overline{\mathcal{L}}$ but not in $\overline{\mathcal{L}}$ such that $\overline{\mathcal{Z}\overline{\mathcal{L}}} = \overline{\mathcal{U}}\mathcal{Z}\overline{\mathcal{L}} = \overline{\mathcal{U}}\mathcal{L}$, and so $z \in \{G\}$. Now, let us assume that \mathcal{Z} is a closed straight line, $\mathcal{Z}\overline{\mathcal{L}}$ is closed and \mathcal{Z} is not contained in $\overline{\mathcal{L}}$. If $\mathcal{Z} \cap \overline{\mathcal{L}}$ is not the identity only, then the factor group $\mathcal{Z}\overline{\mathcal{L}}/\overline{\mathcal{L}}$ is a circle, and $\mathcal{Z}\overline{\mathcal{L}}$ can be written as a product of a circle and $\overline{\mathcal{L}}$. Hence we have the case (b).

Now it remains only the case when \mathcal{Y} and \mathcal{Z} are closed straight lines, $\mathcal{Z}\bar{\mathcal{L}}$ is closed, and $\mathcal{Z}\cap\bar{\mathcal{L}}=e$ (the identity). Since $\mathcal{Y}\cap\mathcal{Z}\bar{\mathcal{L}}$ is finite and \mathcal{Y} contains no finite subgroup except e, we have $\mathcal{Y}\cap\mathcal{Z}\bar{\mathcal{L}}=e$. It is easy to see that the locally compact set $\mathcal{Y}\mathcal{Z}\bar{\mathcal{L}}$ is topologically the direct product $\mathcal{Y}\times\mathcal{Z}\times\bar{\mathcal{L}}$. On the other hand, \mathcal{X} is a one-parameter subgroup of the two-dimensional vector group $\mathcal{Y}\mathcal{Z}$. Hence we have the case (a). Q. E. D.

§ 6. Proof of the theorem

In virtue of (3.4), in order to prove the theorem we may assume that \mathcal{Q} is adjoint semi-algebraic, without loss of generality. We choose a fixed minimal faithful representation ξ of the adjoint semi-algebraic Lie algebra G, and for the sake of convenience, we identify G with $\xi(G)$.

Let us denote the adjoint representation of \mathcal{G} (onto the adjoint group $\mathcal{J} = \mathcal{J}(G)$) by φ . As a Lie algebra homomorphism, φ can be extended to a homomorphism, which will be denoted also by φ , from [G] onto [I], although we consider the group homomorphism φ only on \mathcal{G} .

For the given one-parameter subgroup $\exp Rx = \mathcal{X}$ and the analytic subgroup \mathcal{L} of \mathcal{G} , we set $\varphi(x) = x_1$, $\varphi(\mathcal{X}) = \mathcal{X}_1$ and $\varphi(\mathcal{L}) = \mathcal{L}_1$. By (5.1) we have the following two cases (a) and (b).

(a) \mathcal{X}_1 is a closed straight line, $\mathcal{X}_1\overline{\mathcal{L}}_1$ is locally compact, and $\mathcal{X}_1\overline{\mathcal{L}}_1$ is homeomorphic with $\mathcal{X}_1\times\overline{\mathcal{L}}_1$.

Let $\mathcal C$ denote the center of $\mathcal G$. $\mathcal X$ is a closed straight line and $\varphi^{-1}(\mathcal X_1) = \mathcal X \mathcal C$. We set $\varphi^{-1}(\bar{\mathcal I}_1) = \mathcal M$. Then $\varphi^{-1}(\mathcal X_1\bar{\mathcal I}_1) = \mathcal X \mathcal C \mathcal M = \mathcal X \mathcal M$ is a locally compact set, and the commutator subgroup of $\mathcal M = \bar{\mathcal I} \mathcal C$ is contained in $\bar{\mathcal I}$. Hence by (4.2), either $\mathcal X \bar{\mathcal I}$ is locally compact, or $\overline{\mathcal X \bar{\mathcal I}} = \overline{\mathcal X \mathcal I}$ is a torus in $\mathcal G/\bar{\mathcal I}$. In the first case, if $\mathcal X \cap \bar{\mathcal I}$ is not the identity, then $\mathcal X \bar{\mathcal I}/\bar{\mathcal I}$ is a circle, and it reduces to the second case.

(b)
$$x_1 = y_1 + z_1$$
, $(y_1, z_1 \in G)$
$$[x_1] \cap [L_1] = [z_1], [x_1] = [y_1] + [z_1], [y_1] \cap [z_1] = 0.$$

Because the representation ξ is minimal, we have $\varphi^{-1}(I) = G$. Since $\varphi([x]) = [x_1] \ni z_1$, we can find z in $[x] \cap G$ with $\varphi(z) = z_1$. On the other hand,

since $z_1 \in [L_1] = [\varphi(L)]$ there exists $z' \in [L] \cap G$ with $\varphi(z') = z_1$. That $z-z' \in C$ and $[z', L] \subset L$ implies $[z, L] \subset L$. We put y = x-z, and we get that [y, z] = 0, $\varphi(y) = y_1$ and x = y+z.

Next, we set

$$\varphi^{-1}(\overline{\mathcal{Y}}_1) = \mathcal{A}, \ \varphi^{-1}(\overline{\mathcal{Z}}_1 \mathcal{I}_1) = \mathfrak{B}, \ \exp Ry = \mathcal{Y} \ \text{and} \ \exp Rz = \mathfrak{Z}.$$

 $\mathcal{A}=\overline{\mathcal{Y}\mathcal{C}}$ is an abelian group, and the commutator subgroup of $\mathfrak{B}=\overline{\mathcal{Z}\mathcal{L}\mathcal{C}}$ is contained in $\overline{\mathcal{L}}$. Applying (4.2) to the locally compact set $\mathcal{A}\mathfrak{B}=\varphi^{-1}(\overline{\mathcal{Y}}_1,\overline{\mathcal{Z}}_1\mathcal{L}_1)$, we have that either $\mathcal{X}\overline{\mathcal{L}}$ is locally compact, or $\overline{\mathcal{X}\mathcal{L}}/\overline{\mathcal{L}}$ has a toral group structure with $\exp \lambda x \overline{\mathcal{L}}$ as an everywhere dense one-parameter subgroup. When $\mathcal{X}\overline{\mathcal{L}}$ is locally compact, if \mathcal{X} is not a closed straight line or if \mathcal{X} is a closed straight line and $\mathcal{X}\cap \overline{\mathcal{L}}$ is not the identity, it reduces to the second case.

University of Pennsylvania

Bibliography

- [1] C. Chevalley, Théorie des groupes de Lie, Vol. III, Paris, Hermann, 1955.
- [2] M. Goto, On algebraic Lie algebras, J. Math. Soc. Japan, 1 (1948), 29-45.
- [3] M. Goto, Faithful representations of Lie groups I, Math. Japon., 1 (1948), 107-119.
- [4] M. Goto, Faithful representations of Lie groups II, Nagoya Math. J., 1 (1950), 91-107.
- [5] M. Goto, Orbits of one-parameter groups II (Linear group case), J. Math. Soc. Japan, 22 (1970), 123-133.
- [6] S. Helgason, Differential geometry and symmetric spaces, Columbia University, 1962.
- [7] N. Jacobson, Lie algebras, Tracts in Math. 10, Interscience, 1962.
- [8] Y. Matsushima, On algebraic Lie groups and algebras, J. Math. Soc. Japan, 1 (1948), 46-57.