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§1. Introduction

This paper is a continuation of the previous paper, [5]1 M. Goto, Orbits
of one-parameter groups II, which will be quoted as Orbits 1I, and the main
purpose of this paper is to prove the following theorem:.

THEOREM. Let G be a Lie group. Let £ be an analytic subgroup, and let
X be a one-parameter subgroup, of G. Then either

(@) X is a closed straight line and %L is topologically the same as the
direct product ¢ X L, or

(b) We can give a toral group structure to the set L)L such that XL/ L
becomes an everywhere dense one-parameter subgroup in it.

The theorem was proved for the general linear group ¢.£(n, R), in a
slightly weaker form (Theorem 1 in Orbits II), and it can be applied for all
analytic subgroups of ¢.£(n, R)®. However, in order to prove the theorem
for a closed analytic subgroup ¢ of ¢.r(n, R), we need some groups which
are not in ¢, but in the algebraic hull of &.

Hence in order to extend the method in Orbits II to general analytic
groups, it was necessary to find a suitable analytic group S which contains
the given ¢ and all the groups which appear in the process of the proof.
For the purpose, we introduce the notion of semi-algebraic subgroups of
GL(n, R) and adjoint semi-algebraic analytic groups in §2. For a given an-
alytic group ¢, we can find an adjoint semi-algebraic group & which contains
G as a closed normal subgroup by (3.4). Thus, roughly speaking, by con-
sidering the adjoint representation of S, we can reduce the problem into the
case of linear groups. The proof of the Theorem is given in §5 and §6.

In §4 we shall give some lemmas, which are based on “category argu-
ment” of locally compact groups, and which make the brute force part of

1) Research supported in part by NSF GP4503.
2) By a theorem in Goto [4], every analytic subgroup of G.L(n, R) is isomorphic
with a closed subgroup of G.L(m, R) for a sufficiently large m.
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the proof of Theorem 1 in Orbits II much more unified and shortened. Thus,
assuming the preliminary parts in Orbits II, this paper is self-contained.
Unless specified otherwise, an analytic group and its corresponding Lie
algebra will be denoted by the same capital script and capital Roman letter,
respectively. For example, if £ is an analytic subgroup of an analytic group
g, then G will denote the Lie algebra of ¢ and L will denote the subalgebra
of G corresponding to .£. If ¢ is a continuous homomorphism from an an-
alytic group & into an analytic group .%, then we denote the corresponding
Lie algebra homomorphism from G into H also by ¢. All Lie algebras in
this paper are finite-dimensional over the field R of real numbers. For a
finite-dimensional vector space V over R, we let M(V) denote the Lie alge-
bra of all endomorphisms, and ¢.£(V) the group of all automorphisms, of V.

§2. Semi-algebraic groups

Let V be a finite-dimensional vector space over R, and let .4 be an
analytic subgroup of ¢.£(V). We let [ 4] denote the identity component group
of the algebraic hull of .9, in this paper.® The Lie algebra [H] of [4] is
the smallest algebraic Lie algebra containing H.

DEFINITION. An analytic subgroup S of ¢.£(V) is called semi-algebraic
if S contains a maximal compact subgroup of [S]. A subalgebra of M(V)
is said to be semi-algebraic if the corresponding analytic group is semi-
algebraic.

Let S be a semi-algebraic group. Since S contains the commutator sub-
group of [S] and since all maximal compact subgroups are conjugate to
each other, all compact subgroups of [S] are contained in S. Obviously, a
semi-algebraic group is closed.

Let ¢ be an analytic subgroup of ¢£(V). Let us pick up a maximal
compact subgroup X of [¢]. Then A& is the smallest semi-algebraic group
containing ¢. We denote ¢ by {&} and call it the semi-algebraic hull of &.
Since the semi-simple part of X is contained in &, we can find a toral sub-
group 9 with {€}=9¢ and TG=0. The Lie algebra T+ G of {¢} will be
denoted by {G}, and will be called the semi-algebraic hull of G.

DEFINITION. Let G be a Lie algebra, and let £ be a representation of G
(into a suitable M(n, R)). & is said to be minimal if the center of [&(G)] is
contained in &(G).

We note that for a minimal representation & of G, the center of &(G),
the center of [£(G)], and the centralizer of £(G) in [&£(G)] all coincide.

Let H be a Lie algebra. We let I(H) denote the Lie algebra of all inner

3) In Orbits 11, [ 4] denotes the algebraic hull of 4
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derivations of H. I(H) is a subalgebra of M(H) and the corresponding an-
alytic group 4(H) is the adjoint group of H. The adjoint group J(%), com-
posed of all inner automorphisms of an analytic group 4 with the Lie alge-
bra H, can be identified with 4(H). If H is an algebraic subalgebra of M(V),
then I(H) is also algebraic because the adjoint representation is rational.
Conversely if I(H) is algebraic, then it is known that there exists a faithful
representation & of H such that &) is algebraic.”

(2.1) Every Lie algebra has a faithful minimal representation.

PrROOF. Let & be a faithful representation of G, and let C, be the center
of [&(G)]. If C=C,N\&G)+C,, then we can find an abelian subalgebra C,
with C;,=C,+C and C,\C=0. Because &G) contains the commutator sub-
algebra of [£(G)], we can find an ideal G, of [&(G)] such that [&(G)]= C,+G,,
G,D&(G) and C,N\G,=0. Since I([&(G))]) is algebraic and I(G,) is essentially
the same as I([£(G)]), we see that I(G,) is algebraic. Hence G, has a faithful
representation » such that 7(G,) is algebraic. This implies that if & is not
minimal, then we can find a faithful representation { of G with dim [{(G)]
<dim [&£(G)]. Because G has a faithful representation,® G has a faithful
minimal representation. Q.E.D.

DEFINITION. A Lie algebra G is said to be adjoint semi-algebraic if I(G)
is semi-algebraic. An analytic group ¢ is adjoint semi-algebraic if the Lie
algebra G is adjoint semi-algebraic.

(2.2) Let G be an adjoint semi-algebraic Lie algebra, and let & be a faith-
Jul minimal representation of G. Then &(G) is semi-algebraic.

PROOF. For x in [£(G)] we let ¢(x) denote the restriction of ad x in £&(G):
o(x) € M(&(G)). Since ¢ is faithful we identify &(G) with G. Then ¢ induces
a rational homomorphism from the analytic subgroup corresponding to [&(G)]
onto [J(G)]. If exp Rx is a circle, then so is exp Ry(x). Since I(G) is semi-
algebraic, we have that ¢(x) € I{(G). Because ¢(&(G))=I(G), we can find y in
&(G) with ¢(x) =¢@(»). On the other hand, since & is minimal, the kernel of
¢ is the center of &(G). Hence x—y < &G), and so x < &(G). Q.E.D.

§ 3. Semi-algebraic hull of an adjoint group

@B.1) Let G be a simply connected analytic group, and let C be the center
ofg”v. Let J:J(é be the adjoint group of G. Then for o in {I} and ¢ in C
we have that c¢°=c.

PROOF. Let C° denote the identity component group of €. Then C° is
simply connected, and is elementwise fixed by [J]. Let £ be a maximal

4) See Goto [2Z], Matsushima [8], and Chevalley [1].
5) See e.g. Jacobson [7].
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compact subgroup of [J]. Since every element of the discrete factor group
c/C" is fixed by X, for a fixed element d in ¢ and ¢ in X, we have that
d’d"*=c(e)e C’. For r also in X, we have that

c(ot)y=d’"d ' =(d°d~)"d*d ' = c(o) c(t) = c(o)c(T) .

Hence KA 30— c(o) = C° is a continuous homomorphism. Since C° contains no
compact proper subgroup, ¢(¢) must be the identity. Q.E.D.

Let ¢ be an analytic group, locally isomorphic with &. Then there exists

a discrete subgroup 9 of C such that the factor group 5/&7) is isomorphic
with 2. By (3.1), 9 is fixed by {4}. Therefore, we have the following (3.2).

(3.2) Let @ be an analytic group, and 9 the adjoint group of G@. Then {J}
1s an automorphism group of Q.

For elements g and 4 of a group we adopt the notation h4d% =g 'hg.

(3.3) Let G be a simply connected analytic group, and let M be a compact
connected subgroup of {9(@)}. If g is an element of G such that Ad(g) com-
mutes with every element of M, then g°=g for all o in M.

PROOF. Let ¢ be an element of #. The equalities ¢ o Ad(g)=Ad(g)oo
and Ad(g%)=o0"'0Ad(g) oo imply that g9 *=c(o) is in the center C of gq.
By 3.1), X 2 0—c(s)=C is a homomorphism. On the other hand C contains
no compact connected subgroup except the identity group. Q.E.D.

(3.4) Let @ be an analytic group. We can find an adjoint semi-algebraic
group S which contains @ as a closed normal subgroup such that I(S)|¢
={Y9(Q)}, where I(S)|s denotes the restriction of JI(S) to the invariant sub-
space G.

PROOF. We denote 4(¢) simply by J, and take a toral subgroup I of
[4] with {9} =99 and T~I=0. Since I is an automorphism group of &,
we can construct a semi-direct product S=9 X ¢ by defining the multiplica-
tion

(g, a)(z, b)= (o7, a"b) o,te 9, a,beg.

Let us prove that this &S satisfies the conditions.

Let ¢ be the universal covering group of €. Then we can construct the
semi-direct product S=9 X ¢ in a similar manner. Since S and S are locally
isomorphic to each other, 9(S) can be identified with 4(S). Hence after this
without changing the notations, let us assume that ¢ is simply connected.

We let ¢ denote the adjoint representation of S, and ¢ the restriction of
¢ into the subspace G. We denote the identity and the identity automor-
phism of & by e and ¢, respectively. Then for g and % in &, and ¢ and =
in 4, we have

@ (0, 87!, h)o, g)= (¢, h7A4®),
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2 (0, &)Xz, e)o, &) =(z, (&7)8) .

From (1) we see that the kernel of ¢ is given by {(Ad(g™), g); Ad(g) e I}.
On the other hand, Ad(g) =< implies that g'=g for all = in g, by (3.3).
Hence from (2) we can see that the kernel of ¢ coincides with the center of
S, that is ¢ is a faithful representation of J(S). Also (1) indicates that ¢(S)
=g9={J}.

Since ¢(s)—¢(s) gives a one-one continuous homomorphism from ¢(S)
onto ¢(S) and ¢(S) is a closed subgroup of ¢.£(G), the homomorphism ¢(s)
+—¢)(s) must be a homeomorphism, and ¢(S) is a closed subgroup of g_£(S).

Let N be the set of all elements of [I(S)] which vanish on G. Then N
is an ideal composed of nilpotent endomorphisms, and N\ I(S)=0. Hence
N, I(S)]=0.

Let x be an element of [[(S)] such that exp Rx is a circle. Let x, denote
the restriction of x to G. Then x;€[/] and exp Rx, is a circle. Hence
x, € {1} =¢(S). Hence we can find an element y of S with x,=¢(3). Since
@(s)—¢(s) is a topological isomorphism, exp Re(y) is also a circle group, and
in particular, ¢(») is a semi-simple endomorphism. On the other hand,
n=x—¢@(¥)=0 on G, and so n& N. Thus we have that x=(3)+n, [¢(¥), n]
=0, x and ¢(3) are semi-simple, and n is nilpotent. Hence n=0, and this
proves that I(S) is semi-algebraic. Q.E.D.

§4. Locally compact groups

First we shall generalize (2.2) of Orbits II into the following form.

(4.1) Let @ be a topological group, and let A and B be locally compact
groups with countable bases. Let o and B8 be continuous homomorphisms from
A and B into @, respectively. Let L be a normal subgroup of B such that
B(L) ts closed. If a(A)BEB) is a locally compact set, then the map p

AXB S (a, b pla, b= al@)BBLIBL) € 2/B(L)
is (continuous and) open. More precisely, setting
D={(a,b)e AXB; ala) b)) e (L)},

D 1s a closed subgroup of AXB, and the map p induces a homeomorphism p

Jrom the right coset space D\ A X B onto the locally compact set a(A)BEB)/BL).

PrROOF. Let a;, and a, be elements of 4, and let b; and b, be elements

of B. If pla, b)) = pla,, b,), then (a,, b)) € D(a,, b,), and conversely. Hence 9

is a closed subgroup of A4 X®B and p induces a continuous one-one map @

from the coset space D\ A XB onto al A)BEB)/B(L)Y=M. Thus AXDB is

acting as a transitive transformation group on #. On the other hand, AXB

is a lozally compact group with a countable base, and # is locally compact.
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Hence the map p is open.”’ Q.E.D.

4.2) In (4.1) we assume moreover that A is an abelian group and L con-
tains the commutator subgroup of B. Let g(A), a(d), and b(A), A€ R, be one-
parameter subgroups of @, A, and B, respectively. Suppose that the one-para-
meter subgroups a(a(R)) and B(b(A)) are commutative to each other and g(A)
= a(a(A)BQ). We set x={g(2); A€ R}. Then we have either

@) ZXB(L) is a closed subset of al(A)BEB), or

(b) o7 UXB(L)/B(L)Y=K 1is a compact connected abelian group and
O~ (gQP(L)) is an everywhere dense one-parameter subgroup in X.

PRrROOF. Since 9 contains £, 9 is a normal subgroup and A XB/D is
an abelian group. h(Q)=(a(—A), b(A))D is a one-parameter subgroup of
AXB/D. We set Y= {(a(—2A), b(A); A€ R}. If h(A) is a closed one-parameter
subgroup, then Y9 is closed, and so is p(Y9D)= X p(L) in M, whence X (L)
is locally compact. If A(A) is not a closed one-parameter subgroup, then its
closure X =%YJ9/9 is a compact connected subgroup of A XB/9D. Q.E.D.

§5. Linear group case

Let & be a closed analytic subgroup of ¢.£(n, R). Let L be a subalgebra
of G and let x be an element of G. We set [x]\[L]=D and decompose
[x] into a direct sum: [x]=A’+D, A’ D=0, such that A’ is an algebraic
subalgebra of [x]. Then, we can find ye A’ and ze D with y+z==x. It is
obvious that A’=[y] and D=[z]. We denote the one-parameter groups
exp Rx, exp Ry and exp Rz by ¥, 4 and Z, respectively. Since z normalizes
L, £r is an analytic subgroup of ¢. We set Y= 4 and ZL="1.

The product [¢][-£] is a locally compact set, and [YI1N[-L] is finite.
Hence for the closed set A4 in [4] and B in [ L], we have that AB is closed
in [Y][L] and is locally compact itself. (See Orbits II)

(5.1) Under the above assumptions, either

(@) 2% is a closed straight line, €L is locally compact and the map X X I
= (exp Ax, )—exp Ax-le XL is a homeomorphism, or

(b) v and z are contained in {G}.

PrROOF. We note that for a non-closed analytic subgroup Q of an analytic
group 2L, we can find a non-closed one-parameter subgroup ¢ in Q@ with
O =<Q.” Because every compact subgroup of [¢] is contained in {g}, if U
or Z is a toral group then we have the case (b). Also if £ D%, then we
have the case (b). If £.r is not closed, then we can find a non-closed one-

6) See e.g. Helgason [6].
7) See Goto [3].
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parameter subgroup €U in Z.£ but not in .£ such that 2L =UZL =UL, and
so z= {G}. Now, let us assume that Z is a closed straight line, %L is closed
and % is not contained in L. If %\ L is not the identity only, then the
factor group $.L/L is a circle, and %L can be written as a product of a
circle and . Hence we have the case (b).

Now it remains only the case when ¢ and % are closed straight lines,
%L is closed, and &\ .L=-¢e (the identity). Since Gy %L is finite and
contains no finite subgroup except ¢, we have YNSL=e. It is easy to see
that the locally compact set 42.L is topologically the direct product YXSZXL.

On the other hand, & is a one-parameter subgroup of the two-dimensional
vector group Y4%. Hence we have the case (a). Q.E.D.

§6. Proof of the theorem

In virtue of (3.4), in order to prove the theorem we may assume that &
is adjoint semi-algebraic, without loss of generality. We choose a fixed
minimal faithful representation & of the adjoint semi-algebraic Lie algebra
G, and for the sake of convenience, we identify G with &§(G).

Let us denote the adjoint representation of & (onto the adjoint group
J=9(G)) by ¢. As a Lie algebra homomorphism, ¢ can be extended to a
homomorphism, which will be denoted also by ¢, from [G] onto [/], although
we consider the group homomorphism ¢ only on &.

For the given one-parameter subgroup exp Rx=3% and the analytic sub-
group L of &, we set o(x)=1x,;, (X)=2X, and ¢(.L)=L,. By (5.1) we have
the following two cases (a) and (b).

(@) %, is a closed straight line, %,.L, is locally compact, and ¥,C, is
homeomorphic with €, X L,.

Let C denote the center of ¢. %X is a closed straight line and ¢ (X))
=xC. Weset 0" (L)=M. Then ¢ (X, L)=XCH=2M is a locally com-
pact set, and the commutator subgroup of M= _LC is contained in L. Hence
by (4.2), either %L is locally compact, or ¥L =% is a torus in g/L. In
the first case, if X L is not the identity, then X_£/.L is a circle, and it
reduces to the second case.

(b) X, =y,+2, (yI! 2166)
[xdNCL]=[z] [x,1=[y]+[zd [1N[z]=0.

Because the representation & is minimal, we have ¢ '(I)=¢G. Since
o[x)="[x,]1>2, we can find z in [x] "G with ¢(2)=2,. On the other hand,
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since z; € [L,]=[¢(L)] there exists 22 [L]NG with ¢(z)=2,. That z—z*
eC and [z, L]Jc L implies [z, LJC L. We put y=x—z, and we get that
[y, 2]1=0, ¢(») =y, and x=y+z

Next, we set

90—1(21—}1) =, ¢N(Z,-L1)=2, expRy=9Y and exp Rz=%.

JA=9YC is an abelian group, and the commutator subgroup of B=Z_IC is
contained in L. Applying (4.2) to the locally compact set AB = o~ Xq,, &, T,),
we have that either X.C is locally compact, or ¥Z/Z has a toral group
structure with exp Ax.L as an everywhere dense one-parameter subgroup.
When ¥ is locally compact, if & is not a closed straight line or if = is a
closed straight line and ¢ N L is not the identity, it reduces to the second

case.
University of Pennsylvania
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