On the isometry groups of Sasakian manifolds

By Shûkichi TANNO

(Received Feb. 1.4, 1970)

§ 1. Introduction

The dimension of the isometry group of an m-dimensional Riemannian manifold (M, g) is equal to or smaller than $m(m+1) / 2$. The maximum is attained if and only if (M, g) is of constant curvature and one of the following manifolds: a sphere S^{m}, a real projective space P^{m}, a Euclidean space E^{m}, and a hyperbolic space H^{m} (cf. S. Kobayashi and K. Nomizu [5], p. 308).
G. Fubini's theorem ([2], or [1]; p. 229) says that in an m-dimensional Riemannian manifold ($m>2$) the dimension of the isometry group can not be equal to $m(m+1) / 2-1$. Further, by H. C. Wang [12] and K. Yano [13] it was shown that in an m-dimensional Riemannian manifold ($m \neq 4$), there exists no group of isometries of order s such that

$$
\begin{equation*}
m(m+1) / 2>s>m(m-1) / 2+1 . \tag{1.1}
\end{equation*}
$$

Riemannian manifolds admitting isometry groups of dimension $m(m-1) / 2+1$ were studied by K. Yano [13], and the related subjects were studied by S. Ishihara [4], M. Obata [7], etc.

We consider similar problems in Sasakian manifolds. For a Sasakian manifold M with structure tensors (ϕ, ξ, η, g) we denote by $I(M)$ and $A(M)$ the group of isometries and the group of automorphisms. By $S^{2 n+1}[H]$ for $H>-3, E^{2 n+1}[-3]$, and $\left(L, C D^{n}\right)[H]$ for $H<-3$, we denote complete and simply connected Sasakian manifolds of ($2 n+1$)-dimension with constant ϕ holomorphic sectional curvature $H>-3,-3$, and $H<-3$, respectively (S. Tanno [11]). These Sasakian manifolds admit the automorphism groups of the maximum dimension $(n+1)^{2}$ (cf. S. Tanno [10]). By $F(t)$ we denote the cyclic group generated by $\exp t \xi$ for a real number t. Manifolds are assumed to be connected and structure tensors are assumed to be of class C^{∞}.

In this paper the main theorem is as follows:
Theorem A. Let (M, ϕ, ξ, η, g) be a complete Sasakian manifold of m dimension, $m=2 n+1$.
(i) If $\operatorname{dim} I(M)=(n+1)^{2}$, then (M, ϕ, ξ, η, g) is one of the following manifolds:

```
(i-1) a Sasakian manifold of constant curvature,
(i-2) \(S^{m}[H] / F\left(t_{1}\right)\) for \(H>-3\) and \(H \neq 1\),
(i-3) \(E^{m}[-3] / F\left(t_{2}\right)\),
(i-4) \(\left(L, C D^{n}\right)[H] / F\left(t_{3}\right)\) for \(H<-3\).
```

(ii) If $\operatorname{dim} I(M)>(n+1)^{2}$, then (M, g) is of constant curvature.

If M is simply connected, we can give the complete classification of (M, $\phi, \xi, \eta, g)$ whose isometry group has dimension $\geqq(n+1)^{2}=(m+1)^{2} / 4,(M, g)$ being complete.

Theorem A'. Let (M, ϕ, ξ, η, g) be a complete and simply connected Sasakian manifold of m-dimension, $m=2 n+1$. Then,
(i) $\operatorname{dim} I(M)=(n+1)^{2}$, if and only if (M, ϕ, ξ, η, g) is one of the following manifolds:
(i-1) $S^{m}[H]$ for $H>-3$ and $H \neq 1$,
(i-2) $E^{m}[-3]$,
(i-3) $\left(L, C D^{n}\right)[H]$ for $H<-3$.
(ii) $\operatorname{dim} I(M)>(n+1)^{2}$, if and only if $\operatorname{dim} I(M)=(n+1)(2 n+1)=m(m+1) / 2$ and $(M, \phi, \xi, \eta, g)=S^{m}[1]$.

In Theorem A, Sasakian manifolds (i-2) $\sim(\mathrm{i}-4)$ have a property $\operatorname{dim} I(M)$ $=\operatorname{dim} A(M)$. More precisely, we have $I(M)=A(M) \cup A^{\prime}(M)$, where $A^{\prime}(M)$ is composed of isometries φ satisfying $\varphi \xi=-\xi$.

Corollary. Let (M, g) be a complete Riemannian manifold of m-dimension, $m=2 n+1$. Assume that

$$
\operatorname{dim} I(M)>(n+1)^{2}=(m+1)^{2} / 4
$$

Then (M, g) is of constant curvature 1 , if and only if (M, g) admits a Sasakian structure (ϕ, ξ, η, g).

§ 2. Preliminaries

Let (M, g) be a Riemannian manifold with a fixed Riemannian metric g. Then a Sasakian structure (ϕ, ξ, η, g) on (M, g) is characterized by a unit Killing vector field ξ such that

$$
\begin{equation*}
\nabla_{X}(\nabla \xi) \cdot Y=g(\xi, Y) X-g(X, Y) \xi \tag{2.1}
\end{equation*}
$$

or

(2.1)

$$
-R(X, \xi) Y=g(\xi, Y) X-g(X, Y) \xi
$$

where X, Y are vector fields on M, ∇ is the Riemannian connection defined by g, and R is the Riemannian curvature tensor. ϕ and η are defined by $\phi=-\nabla \xi$ and $\eta(X)=g(\xi, X)$ (cf. [3], [8], [10], etc.). So we denote by (M, ξ, g) a Sasakian manifold and by ξ a Sasakian structure on (M, g).

If we have two Sasakian structures $\xi_{(1)}$ and $\xi_{(2)}$, which are orthogonal, namely $g\left(\xi_{(1)}, \xi_{(2)}\right)=0$ on M, then we have the third Sasakian structure $\xi_{(3)}$:

$$
\begin{align*}
\xi_{(3)} & =(1 / 2)\left[\xi_{(1)}, \xi_{(2)}\right] \tag{2.2}\\
& =\phi_{(1)} \xi_{(2)}=-\phi_{(2)} \xi_{(1)}
\end{align*}
$$

such that $\xi_{(1)}, \xi_{(2)}$ and $\xi_{(3)}$ are mutually orthogonal. A set $\left(\xi_{(1)}, \xi_{(2)}, \xi_{(3)}\right)$ is called a Sasakian 3 -structure and in this case the dimension of M is $4 r+3$ for some integer $r \geqq 0$ (Y. Y. Kuo [6]). They satisfy

$$
\begin{align*}
& \xi_{(1)}=(1 / 2)\left[\xi_{(2)}, \xi_{(3)}\right], \tag{2.3}\\
& \xi_{(2)}=(1 / 2)\left[\xi_{(3)}, \xi_{(1)}\right], \tag{2.4}
\end{align*}
$$

and there is no Sasakian structure $\xi_{(4)}$ on (M, g), which is orthogonal to the above three (S. Tachibana and W.N. Yu [9]).

The following lemma is useful in our arguments.
Lemma 2.1. (S. Tachibana and W.N. Yu [9]) Let (M, g) be a complete and simply connected Riemannian manifold of m-dimension. If (M, g) admits two Sasakian structures ξ and ξ^{\prime} with non-constant $g\left(\xi, \xi^{\prime}\right)$, then (M, g) is isometric with a unit sphere S^{m}.

Assume that a Riemannian manifold (M, g) admits a Sasakian structure ξ such that the isometry group $I(M)=I(M, g)$ is different from the automorphism group $A(M)=A(M, \xi, g)$. Then we have an isometry φ which is not an automorphism of the Sasakian structure. If φ preserves ξ, then φ preserves $\nabla \xi=-\phi$ and η, and hence, φ is an automorphism. Therefore, denoting by the same letter φ its differential, we have $\varphi \xi \neq \xi$. We show that this unit Killing vector field $\varphi \xi$ defines a Sasakian structure on (M, g). Let p be an arbitrary point and let X, Y be arbitrary vector fields on M. Since φ is an isometry, it preserves the Riemannian curvature tensor:

$$
R_{\varphi p}(\varphi X, \varphi \xi) \varphi Y=\varphi_{p}(R(X, \xi) Y)_{p}
$$

Consequently, by (2.1)' we have

$$
\begin{aligned}
-R_{\varphi p}(\varphi X, \varphi \xi) \varphi Y & =\varphi_{p}\left(g_{p}(\xi, Y) X-g_{p}(X, Y) \xi\right) \\
& =g_{p}(\xi, Y) \varphi X-g_{p}(X, Y) \varphi \xi
\end{aligned}
$$

Here we have

$$
g_{p}(\xi, Y)=\left(\varphi^{*} g\right)_{p}(\xi, Y)=g_{\varphi p}(\varphi \xi, \varphi Y),
$$

and, therefore, we get

$$
-R_{\varphi p}(\varphi X, \varphi \xi) \varphi Y=g_{\varphi p}(\varphi \xi, \varphi Y) \varphi X-g_{\varphi p}(\varphi X, \varphi Y) \varphi \xi .
$$

This means that $\varphi \xi$ is a Sasakian structure.
In [10] we have classified almost contact Riemannian manifolds of $(2 n+1)$ -
dimension admitting the automorphism groups of the maximum dimension $(n+1)^{2}$. The classification only for Sasakian manifolds is as follows:

Lemma 2.2. (S. Tanno [10], [11]) Let (M, ξ, g) be a Sasakian manifold of $(2 n+1)$-dimension. Then $\operatorname{dim} A(M) \leqq(n+1)^{2} . \operatorname{dim} A(M)=(n+1)^{2}$ holds, if and only if (M, ξ, g) has constant ϕ-holomorphic sectional curvature H and it is one of the followings:
(1) $S^{2 n+1}[H] / F\left(t_{1}\right)$ for $H>-3$, where $2 \pi \cdot 4(H+3)^{-1} / t_{1}$ is an integer,
(2) $E^{2 n+1}[-3] / F\left(t_{2}\right)$, where t_{2} is a real number,
(3) $\left(L, C D^{n}\right)[H] / F\left(t_{3}\right)$ for $H<-3$, where t_{3} is a real number.

§ 3. The case $\operatorname{dim} M=3$

First we have
Proposition 3.1. If a Riemannian manifold of 3-dimension admits a Sasakian 3 -structure, then it is of constant curvature 1.

Proof. In a Sasakian manifold, sectional curvature $K(\xi, X)$ for a 2-plane which contains ξ is equal to 1 (cf. (2.1)', or [3]). If (M, g) has a Sasakian 3 -structure $\xi_{(1)}, \xi_{(2)}, \xi_{(3)}$, then

$$
\xi=a \xi_{(1)}+b \xi_{(2)}+c \xi_{(3)}
$$

for constant a, b, c satisfying $a^{2}+b^{2}+c^{2}=1$, is also a Sasakian structure and (M, g) is of constant curvature 1 .

Theorem 3.2. Let (M, ξ, g) be a complete Sasakian manifold of 3-dimension.
(i) If $\operatorname{dim} I(M)=4$, then (M, ξ, g) is one of the followings:
(i-1) a Sasakian manifold of constant curvature,
(i-2) $S^{3}[H] / F\left(t_{1}\right)$ for $H>-3$ and $H \neq 1$,
(i-3) $E^{3}[-3] / F\left(t_{2}\right)$,
(i-4) $\left(L, C D^{1}\right)[H] / F\left(t_{3}\right)$ for $H<-3$.
(ii) If $\operatorname{dim} I(M)>4$, then $\operatorname{dim} I(M)=6$ and (M, ξ, g) is either $S^{3}[1]$ or $P^{3}[1]=S^{3}[1] / F(\pi)$.

Proof. Assume that $\operatorname{dim} I(M)=4$. Since $\operatorname{dim} A(M) \leqq 4$ by Lemma 2.2, we have either $\operatorname{dim} A(M)=\operatorname{dim} I(M)=4$ or $\operatorname{dim} A(M)<\operatorname{dim} I(M)$. The first case implies ($\mathrm{i}-1$) $\sim(\mathrm{i}-4)$ by Lemma 2.2 .

If $\operatorname{dim} A(M)<\operatorname{dim} I(M)$, we see that there is some isometry φ in the identity component of $I(M)$ which satisfies $\varphi \xi \neq \xi$ and $\varphi \xi \neq-\xi$. $\varphi \xi$ defines another Sasakian structure on (M, g). If $g(\xi, \varphi \xi$) is not constant on M, we consider the universal covering manifold ($* M, * g$) of (M, g), and naturally induced Sasakian structures $* \xi$ and $*(\varphi \xi)$. Then by Lemma $2.1,(* M, * g)$ is isometric with a unit sphere. Hence, (M, g) is of constant curvature 1.

Next we assume that $g(\xi, \varphi \xi)=a$ is constant on M. Since $\varphi \xi \neq \xi$ and
$\varphi \xi \neq-\xi$, we have $|a|<1$. Then we have a Sasakian structure

$$
\begin{equation*}
\xi_{(2)}=-a \xi / \sqrt{1-a^{2}}+(\varphi \xi) / \sqrt{1-a^{2}}, \tag{3.1}
\end{equation*}
$$

which is orthogonal to $\xi=\xi_{(1)}$, and hence (M, g) admits a Sasakian 3 -structure by (2.2). By Proposition 3.1, (M, g) is of constant curvature. This is the case (i-1).

Finally assume that $\operatorname{dim} I(M)>4$. By a theorem of G. Fubini we have $\operatorname{dim} I(M)=6 . \quad(M, g)$ is isometric to either S^{3} or P^{3}. Therefore, we have either $(M, \xi, g)=S^{3}[1]$ or $(M, \xi, g)=P^{3}[1]=S^{3}[1] / F(\pi)$.
§ 4. The difference of $\operatorname{dim} I(M)$ and $\operatorname{dim} A(M)$
Proposition 4.1. Let (M, ξ, g) be a complete Sasakian manifold. Assume that $\operatorname{dim} I(M)-\operatorname{dim} A(M)=1$. Then (M, g) is of constant curvature 1 .

Proof. Let $\left(A_{1}, \cdots, A_{\gamma_{-1}}, A_{\gamma}=\xi\right)$ be a basis of the Lie algebra composed of infinitesimal automorphisms, where $\gamma=\operatorname{dim} A(M)$. Since we have some isometry φ satisfying $\varphi \xi \neq \xi$ and $\varphi \xi \neq-\xi$ (cf. proof of Theorem 3.2), we have another Sasakian structure $\varphi \xi$. If $g(\xi, \varphi \xi)$ is not constant on $M,(M, g)$ is of constant curvature. If $g(\xi, \varphi \xi)$ is constant on M, then $\xi_{(2)}$ defined by (3.1) together with $\xi=\xi_{(1)}, \xi_{(3)}$ by (2.2), defines a Sasakian 3 -structure. Since $\xi_{(2)}$ is not an infinitesimal automorphism of $\xi_{(1)}$, but a Killing vector field, we can consider

$$
A_{1}, \cdots, A_{\gamma_{-1}}, \xi_{(1)}, \xi_{(2)}
$$

as a basis of the Lie algebra of Killing vector fields on (M, g). Thus, $\xi_{(3)}$ must be expressed in the form:

$$
\begin{equation*}
\xi_{(3)}=a_{1} A_{1}+\cdots+a_{r_{-1}} A_{r_{-1}}+a \xi_{(1)}+b \xi_{(2)} \tag{4.1}
\end{equation*}
$$

for some constant $a_{1}, \cdots, a_{r-1}, a, b$. However, this implies that $\xi_{(3)}-b \xi_{(2)}$ is an infinitesimal automorphism of $\xi_{(1)}$. On the other hand, by (2.2) and (2.4), we have

$$
\left[\xi_{(3)}-b \xi_{(2)}, \xi_{(1)}\right]=2\left(\xi_{(2)}+b \xi_{(3)}\right),
$$

which is a contradiction. Hence, only one possibility is that (M, g) is of constant curvature 1.

Lemma 4.2. Let (M, ξ, g) be a complete Sasakian manifold. Assume that $\operatorname{dim} I(M)-\operatorname{dim} A(M) \geqq 2$. Then either
(i) (M, g) is of constant curvature, or
(ii) (M, g) admits a Sasakian 3 -structure $\xi, \xi_{(2)}, \xi_{(3)}$ and we have a basis of the Lie algebra of Killing vector fields:

$$
\begin{equation*}
A_{1}, \cdots, A_{\gamma_{-1}}, A_{r}=\xi, X_{1}, \cdots, X_{\beta}, \xi_{(2)}, \xi_{(3)} \tag{4.2}
\end{equation*}
$$

where $\beta=\operatorname{dim} I(M)-\operatorname{dim} A(M)-2$, and $\left(A_{1}, \cdots, A_{r}\right)$ is a basis of the Lie algebra of infinitesimal automorphisms of ξ.

Proof. By $\operatorname{dim} A(M)<\operatorname{dim} I(M)$, we see that either (M, g) is of constant curvature, or (M, g) admits a Sasakian 3 -structure. So we consider the latter case. In the proof of the preceding Proposition, we have proved that $\xi_{(3)}$ can not be expressed in the form (4.1). Hence, $\xi_{(3)}$ is taken as one element of (4.2). If $\operatorname{dim} I(M)-\operatorname{dim} A(M)-2>0$, we can add β Killing vector fields X_{1}, \cdots, X_{β} to get (4.2).

Theorem 4.3. Let (M, ξ, g) be a complete Sasakian manifold. If $\operatorname{dim} I(M)$ $-\operatorname{dim} A(M) \geqq 3$, then (M, g) is of constant curvature.

Proof. By Lemma 4.2, we may assume that we have a basis (4.2) of the Lie algebra of Killing vector fields on (M, g), where $\beta \geqq 1$. Let $X=X_{1}$. Since (M, g) is complete, X generates the 1-parameter group $\exp s X,-\infty<s<\infty$, of isometries of (M, g). Since $\exp s X \cdot \xi_{(1)}$ is a unit Killing vector field, we have some constant $a_{1}, \cdots, a_{r-1}, a, b_{1}, \cdots, b_{\beta}, b, c$ depending on s such that

$$
\begin{aligned}
\exp s X \cdot \xi_{(1)}= & a_{1} A_{1}+\cdots+a_{r-1} A_{r-1}+b_{1} X_{1}+\cdots+b_{\beta} X_{\beta} \\
& +a \xi_{(1)}+b \xi_{(2)}+c \xi_{(3)} .
\end{aligned}
$$

We devide our arguments in several steps.
(I) The case where there is some s so that at least one of a_{1}, \cdots, a_{r-1}, b_{1}, \cdots, b_{β} is non-zero. In this case we have a non-zero Killing vector field Y defined by

$$
\begin{equation*}
Y=\exp s X \cdot \xi_{(1)}-a \xi_{(1)}-b \xi_{(2)}-c \xi_{(3)} \tag{4.3}
\end{equation*}
$$

(I-1) First suppose that the inner products of $\exp s X \cdot \xi_{(1)}$ and $\xi_{(1)}, \xi_{(2)}$, $\xi_{(3)}$ are all constant. Then $g(Y, Y)$ is a non-zero constant on M and $\xi_{[4]}$ defined by

$$
\begin{equation*}
\xi_{[4]}=Y / \sqrt{g(Y, Y)} \tag{4.4}
\end{equation*}
$$

is a Sasakian structure on (M, g), because all $\exp s X \cdot \xi_{(1)}, \xi_{(1)}, \xi_{(2)}, \xi_{(3)}$ are Sasakian structures and $\xi_{[4]}$ is of unit length. By our construction of $\xi_{[4]}$, the inner products of $\xi_{[4]}$ and $\xi_{(1)}, \xi_{(2)}, \xi_{(3)}$ are constant.
(I-1-i) If $\xi_{[4]}$ belongs to the 3 -dimensional distribution defined by $\xi_{(1)}$, $\xi_{(2)}, \xi_{(3)}$, then $\xi_{[4]}$ or Y is a linear combination of $\xi_{(1)}, \xi_{(2)}, \xi_{(3)}$ with real coefficients. So, $\exp s X \cdot \xi_{(1)}$ is of the form $a^{\prime} \xi_{(1)}+b^{\prime} \xi_{(2)}+c^{\prime} \xi_{(3)}$. This is a contradiction.
(I-1-ii) If $\xi_{[4]}$ does not belong to the 3 -dimensional distribution defined by $\xi_{(1)}, \xi_{(2)}, \xi_{(3)}$, then by normalization of the following vector field:

$$
\xi_{[4]}-g\left(\xi_{[4]}, \xi_{(1)}\right) \xi_{(1)}-g\left(\xi_{[4]}, \xi_{(2)}\right) \xi_{(2)}-g\left(\xi_{[4]}, \xi_{(3)}\right) \xi_{(3)}
$$

we have a Sasakian structure $\xi_{(4)}$, which is orthogonal to all $\xi_{(1)}, \xi_{(2)}, \xi_{(3)}$.

This is also a contradiction (cf. § 2).
(I-2) Suppose that at least one of the inner products of $\exp s X \cdot \xi_{(1)}$ and $\xi_{(1)}, \xi_{(2)}, \xi_{(3)}$ is not constant. Then, by Lemma 2.1 for the universal covering manifold, we see that (M, g) is of constant curvature.
(II) The case where, for any $s,-\infty<s<\infty$, we have

$$
\begin{equation*}
\exp s X \cdot \hat{\xi}_{(1)}=a(s) \xi_{(1)}+b(s) \xi_{(2)}+c(s) \hat{\xi}_{(3)} \tag{4.5}
\end{equation*}
$$

where a, b, c depend only on s. We differentiate (4.5) with respect to s and get

$$
\begin{equation*}
\left[X, \xi_{(1)}\right]=A \xi_{(1)}+B \xi_{(2)}+C \xi_{(3)}, \tag{4.6}
\end{equation*}
$$

where A, B, C are constant such that

$$
A=-(\partial a(s) / \partial s)_{0}, \quad B=-(\partial b(s) / \partial s)_{0}, \quad C=-(\partial c(s) / \partial s)_{0}
$$

We show that $A=0$. In fact, we have

$$
\begin{aligned}
A & =g\left(\left[X, \xi_{(1)}\right], \xi_{(1)}\right) \\
& =L_{X}\left(g\left(\xi_{(1)}, \xi_{(1)}\right)\right)-\left(L_{X} g\right)\left(\xi_{(1)}, \xi_{(1)}\right)-g\left(\xi_{(1)},\left[X, \xi_{(1)}\right]\right) \\
& =0-0-A,
\end{aligned}
$$

where L_{X} is the Lie derivation with respect to X. Hence, we have

$$
\begin{equation*}
\left[X, \xi_{(1)}\right]=B \xi_{(2)}+C \xi_{(3)} . \tag{4.7}
\end{equation*}
$$

Define a Killing vector field Z by

$$
\begin{equation*}
Z=X+(1 / 2) C \xi_{(2)}-(1 / 2) B \xi_{(3)} . \tag{4.8}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left[Z, \xi_{(1)}\right]=0 \tag{4.9}
\end{equation*}
$$

by (2.2) and (2.4), Thus, Z is an infinitesimal automorphism of the Sasakian structure $\xi_{(1)}$, and it is written as

$$
\begin{equation*}
Z=\alpha_{1} A_{1}+\cdots+\alpha_{\gamma_{-1}} A_{\gamma-1}+\alpha \xi_{(1)} \tag{4.10}
\end{equation*}
$$

for some constant $\alpha_{1}, \cdots, \alpha_{r-1}, \alpha$. By (4.8) and (4.10), we have

$$
X=\alpha_{1} A_{1}+\cdots+\alpha_{\gamma-1} A_{\gamma-1}+\alpha \xi_{(1)}-(1 / 2) C \xi_{(2)}+(1 / 2) B \xi_{(3)},
$$

which contradicts the choice of the basis (4.2), since $X=X_{1}$. Thus, only one possibility is that (M, g) is of constant curvature.

Theorem 4.4. Let (M, ξ, g) be a complete Sasakian manifold which is not of constant curvature. Then, we have either
(i) $\operatorname{dim} I(M)=\operatorname{dim} A(M) \quad[\rightleftarrows$ admitting no Sasakian 3-structure $]$, or
(ii) $\operatorname{dim} I(M)=\operatorname{dim} A(M)+2[\rightleftarrows$ admitting a Sasakian 3 -structure $]$.

Proof. Assume that (M, g) admits no Sasakian 3 -structure. If $\operatorname{dim} I(M)$ $>\operatorname{dim} A(M)$, by Proposition 4.1, Lemma 4.2 and Theorem 4.3, (M, g) must be of constant curvature. This is a contradiction. Hence, we have $\operatorname{dim} I(M)$ $=\operatorname{dim} A(M)$.

Assume that (M, g) admits a Sasakian 3 -structure $\left(\xi_{(1)}^{\prime}, \xi_{(2)}^{\prime}, \xi_{(3)}^{\prime}\right)$. Since (M, g) is not of constant curvature, $g\left(\xi, \xi_{(1)}^{\prime}\right)$ must be constant. Then we can construct a Sasakian 3 -structure ($\left.\xi=\xi_{(1)}, \xi_{(2)}, \xi_{(3)}\right)$. Hence, we have (ii); otherwise (M, g) is of constant curvature.

§ 5. The case $\operatorname{dim} I(M)=\operatorname{dim} A(M)+2$

In this section we assume that a complete Sasakian manifold (M, ξ, g) is not of constant curvature and $\operatorname{dim} I(M)=\operatorname{dim} A(M)+2$ holds. Then (M, g) admits a Sasakian 3 -structure and $\operatorname{dim} M=4 r+3$. By Lemma 4.2, we have a basis of Killing vector fields:

$$
A_{1}, \cdots, A_{\gamma-1}, A_{\gamma}=\xi=\xi_{(1)}, \xi_{(2)}, \xi_{(3)} .
$$

Lemma 5.1. Let f be an automorphism of ξ. Then we have a constant θ depending on f

$$
\begin{align*}
& f \xi_{(2)}=\sin \theta \xi_{(2)}+\cos \theta \xi_{(3)}, \tag{5.1}\\
& f \xi_{(3)}=\mp \cos \theta \xi_{(2)} \pm \sin \theta \xi_{(3)} . \tag{5.2}
\end{align*}
$$

Proof. First we have $f \xi_{(1)}=\xi_{(1)}$. Since $f \xi_{(2)}$ is a Killing vector field, we have

$$
\begin{equation*}
f \xi_{(2)}=a_{1} A_{1}+\cdots+a_{r-1} A_{\gamma-1}+a \xi_{(1)}+b \xi_{(2)}+c \xi_{(3)} \tag{5.3}
\end{equation*}
$$

for constant $a_{1}, \cdots, a_{r-1}, a, b$ and c. If at least one of a_{1}, \cdots, a_{r-1} is not equal to zero, we see that (M, g) is of constant curvature, as in (I) of proof of Theorem 4.3. This contradicts the assumption. Hence, we get

$$
\begin{equation*}
f \xi_{(2)}=a \xi_{(1)}+b \xi_{(2)}+c \xi_{(3)} . \tag{5.4}
\end{equation*}
$$

We show that $a=0$. This is done by

$$
\begin{aligned}
a & =g\left(f \xi_{(2)}, \xi_{(1)}\right)=g\left(f \xi_{(2)}, f \xi_{(1)}\right) \\
& =(f * g)\left(\xi_{(2)}, \xi_{(1)}\right)=g\left(\xi_{(2)}, \xi_{(1)}\right)=0 .
\end{aligned}
$$

Thus, $f \xi_{(2)}=b \xi_{(2)}+c \xi_{(3)}$. Since $f \xi_{(2)}$ is of unit length, b and c are replaced by $\sin \theta$ and $\cos \theta$. Similarly, we have $f \xi_{(3)}=b^{\prime} \xi_{(2)}+c^{\prime} \xi_{(3)}$. Then

$$
\begin{aligned}
g\left(f \xi_{(2)}, f \xi_{(3)}\right) & =g\left(b \xi_{(2)}+c \xi_{(3)}, b^{\prime} \xi_{(2)}+c^{\prime} \xi_{(3)}\right) \\
& =b b^{\prime}+c c^{\prime} .
\end{aligned}
$$

Since f is an isometry, we have $b b^{\prime}+c c^{\prime}=0$. Consequently, we have $b^{\prime}=$ $\mp \cos \theta$ and $c^{\prime}= \pm \sin \theta$.

Lemma 5.2. Let p be a point in M. Then the isotropy group P of the automorphism group $A(M)$ at p is a subgroup of $1 \times O(2) \times U(2 r)$.

Proof. Let $\xi=\xi_{(1)}, \xi_{(2)}, \xi_{(3)}=\phi \xi_{(2)}$,

$$
e_{1}, \cdots, e_{2 r}, \quad \phi e_{1}, \cdots, \phi e_{2 r}
$$

be a basis of the tangent space M_{p} at p. Let f be any element in P. Then we have $f \xi_{(1)}=\xi_{(1)}$ and (5.1), (5.2). This implies that f leaves the three subspaces V^{1}, V^{2} and $V^{4 r}$ of M_{p} invariant, where V^{1} is spanned by $\xi_{(1)}, V^{2}$ is spanned by $\xi_{(2)}$ and $\xi_{(3)}$, and $V^{4 r}=V^{4 r}\left(e_{1}, \cdots, e_{2 r}, \phi e_{1}, \cdots, \phi e_{2 r}\right)$ is the orthogonal complement of $V^{1}+V^{2}$ in M_{p}. The action of f on V^{1} is trivial. On V^{2} it is an element of the othogonal group $O(2)$. On $V^{4 r}$ the action of f is expressed by an element of (the real representation of) the unitary group $U(2 r)$.

Theorem 5.3. Let (M, ξ, g) be a complete Sasakian manifold which is not of constant curvature. If $\operatorname{dim} I(M)=\operatorname{dim} A(M)+2$ (or, equivalently, if (M, g) admits a Sasakian 3 -structure), then we have

$$
\begin{equation*}
\operatorname{dim} A(M) \leqq(2 r+1)^{2}+3, \quad m=4 r+3 . \tag{5.5}
\end{equation*}
$$

Proof. By Lemma 5.2, the dimension of the isotropy group P at p is equal to or smaller than $\operatorname{dim} O(2)+\operatorname{dim} U(2 r)=1+(2 r)^{2}$. The dimension of the subspace of M_{p} spanned by infinitesimal automorphisms is equal to or smaller than $\operatorname{dim} M=4 r+3$. Therefore we have $\operatorname{dim} A(M) \leqq(2 r)^{2}+1+(4 r+3)$.
\S 6. The case where $I(M)=A(M) \cup A^{\prime}(M)$
In a Sasakian manifold (M, ξ, g), we denote by $A^{\prime}(M)$ the set of all isometries φ satisfying $\varphi \xi=-\xi$.

Proposition 6.1. Let (M, ξ, g) be one of the following Sasakian manifolds:

$$
\begin{gathered}
S^{m}[H] / F\left(t_{1}\right) \quad \text { for } H>-3 \text { and } H \neq 1, \\
E^{m}[-3] / F\left(t_{2}\right), \quad\left(L, C D^{n}\right)[H] / F\left(t_{3}\right) \quad \text { for } H<-3 .
\end{gathered}
$$

Then we have $\operatorname{dim} I(M)=\operatorname{dim} A(M)$ and $I(M)=A(M) \cup A^{\prime}(M)$.
Proof. Since (M, g) is not of constant curvature, by Theorem 4.4, we have either $\operatorname{dim} I(M)=\operatorname{dim} A(M)$, or M admits a Sasakian 3 -structure, which is assumed to be $\left(\xi, \xi_{(2)}, \xi_{(3)}\right)$. In the latter case, we have $K\left(\xi_{(2)}, \xi_{(3)}\right)=1$ by (2.1)'. However, $K\left(\xi_{(2)}, \xi_{(3)}\right)=K\left(\xi_{(2)}, \phi \xi_{(2)}\right)$; that is, it is ϕ-holomorphic sectional curvature $(=H \neq 1)$. This is a contradiction. Hence, $\operatorname{dim} I(M)=\operatorname{dim} A(M)$.

Next we show that there is an isometry h such that $h \xi=-\xi$. Let (${ }^{*} M$, $* \xi, * g$) be the universal covering manifold of (M, ξ, g) such that (M, ξ, g)
$=(* M, * \xi, * g) / F\left(t_{0}\right)$. Then $\left({ }^{*} M,-* \xi, * g\right)$ is another Sasakian structure on $\left({ }^{*} M, * g\right)$, which has constant $*(-\phi)$-holomorphic sectional curvature H, too. Hence, $(* M, * \xi, * g)$ and $(* M, *(-\xi), * g)$ are isomorphic, and we have an isometry $* h$ such that $* h^{* \xi}=-* \xi$ (cf. Proposition 4.1 of [11]). ${ }^{*} h^{* \xi}$ and $-* \xi$ generate the 1-parameter groups $h^{-1} \cdot \exp t^{*} \xi \cdot * h$ and $\exp \left(-t^{*} \xi\right)$, respectively. Therefore we have

$$
\exp t^{*} \xi \cdot * h=* h \cdot \exp \left(-t^{*} \xi\right) .
$$

Let []: ${ }^{*} M \rightarrow M\left({ }^{*} p \rightarrow[* p]=p\right)$ be the projection. Define h by $h p=\left[{ }^{*} h^{*} p\right]$. For ${ }^{*} p^{\prime}$ such that $\left[{ }^{*} p^{\prime}\right]=p$, we have some integer z so that ${ }^{*} p^{\prime}=\exp t_{0} z^{*} \xi \cdot * p$. Then

$$
\begin{aligned}
{\left[h^{*} p^{\prime}\right] } & =\left[* h \cdot \exp t_{0} z^{*} \xi \cdot * p\right] \\
& =\left[\exp \left(-t_{0} z^{*} \xi\right) \cdot * h \cdot * p\right] \\
& =\left[* h^{*} p\right] .
\end{aligned}
$$

Therefore ${ }^{*} h$ induces a well defined h on (M, ξ, g). Clearly, h is an isometry and satisfies $h \xi=-\xi$.

Now, let φ be any isometry which is not an automorphism of (M, ξ, g). Then $\varphi \xi$ defines a Sasakian structure on (M, g) such that $\varphi \xi \neq \xi$. If $g(\xi, \varphi \xi)$ is not constant, (M, g) must be of constant curvature. This can not happen. Therefore $g(\xi, \varphi \xi)=a$ is constant, and we have either $|a|<1$ or $a=-1$. If $|a|<1$, we can construct a Sasakian 3 -structure, and we must have $\operatorname{dim} I(M)$ $\geqq \operatorname{dim} A(M)+2$.

This is a contradiction. Thus, we have $a=-1$ and $\varphi \xi=-\xi$. Then an isometry $h^{-1} \cdot \varphi$ satisfies $h^{-1} \cdot \varphi \xi=\xi$, which implies that $h^{-1} \cdot \varphi$ is an automorphism. Denoting this by f, we have $\varphi=h f$. This means that $I(M)=A(M)$ $\cup A^{\prime}(M)$, where $A^{\prime}(M)=h \cdot A(M)=\{h f ; f \in A(M)\}$.

§ 7. Theorems and corollaries

Theorem 7.1. Let (M, ξ, g) be a complete Sasakian manifold of m-dimension, $m=2 n+1$.
(i) If $\operatorname{dim} I(M)=(n+1)^{2}$, then (M, ξ, g) is one of the followings:
(i-1) a Sasakian manifold of constant curvature,
(i-2) $S^{m}[H] / F\left(t_{1}\right)$ for $H>-3$ and $H \neq 1$,
(i-3) $E^{m}[-3] / F\left(t_{2}\right)$, (i-4) $\left(L, C D^{n}\right)[H] / F\left(t_{3}\right)$ for $H<-3$.
(ii) If $\operatorname{dim} I(M)>(n+1)^{2}$, then (M, ξ, g) is of constant curvature 1 .

Proof. For $m=3$, see Theorem 3.2. Suppose that $m=2 n+1 \geqq 5$. Assume that $\operatorname{dim} I(M)=(n+1)^{2}$. By Theorem 4.4, we have (i-1), or $\operatorname{dim} I(M)=$ $\operatorname{dim} A(M)$, or $\operatorname{dim} I(M)=\operatorname{dim} A(M)+2$. If $\operatorname{dim} I(M)=\operatorname{dim} A(M)=(n+1)^{2}$, we
have (i-1) $\sim(\mathrm{i}-4)$ by Lemma 2.2.
If $\operatorname{dim} I(M)=\operatorname{dim} A(M)+2$ and if (M, g) is not of constant curvature, then $\operatorname{dim} M=4 r+3$ and we have $\operatorname{dim} A(M) \leqq(2 r+1)^{2}+3$ by Theorem 6.3. Then

$$
\begin{equation*}
\operatorname{dim} I(M)=\operatorname{dim} A(M)+2 \leqq(2 r+1)^{2}+5=(2 r+2)^{2}-(4 r-2) . \tag{7.1}
\end{equation*}
$$

Since $r \geqq 1$, we have $\operatorname{dim} I(M)<(2 r+2)^{2}=(n+1)^{2}$, which is a contradiction. This completes the proof of (i).

Next assume that $\operatorname{dim} I(M)>(n+1)^{2}$. Then (M, g) is of constant curvature, or $\operatorname{dim} I(M)=\operatorname{dim} A(M)+2$ by Theorem 4.4, If $\operatorname{dim} I(M)=\operatorname{dim} A(M)+2$ and if (M, g) is not of constant curvature, we have (7.1) as before. And we have a contradiction.

Theorem 7.2. Let (M, ξ, g) be a complete and simply connected Sasakian manifold of m-dimension, $m=2 n+1$. Then,
(i) $\operatorname{dim} I(M)=(n+1)^{2}$, if and only if (M, ξ, g) is one of the followings:
(i-1) $S^{m}[H]$ for $H>-3$ and $H \neq 1$,
(i-2) $E^{m}[-3]$,
(i-3) $\left(L, C D^{n}\right)[H]$ for $H<-3$.
(ii) $\operatorname{dim} I(M)>(n+1)^{2}$, if and only if $\operatorname{dim} I(M)=m(m+1) / 2$ and (M, ξ, g) $=S^{m}[1]$.

Proof. This follows from Proposition 6.1 and Theorem 7.1.
Corollary 7.3. Let (M, g) be a complete Riemannian manifold of m dimension, $m=2 n+1$. Assume that

$$
\operatorname{dim} I(M)>(n+1)^{2}=(m+1)^{2} / 4 .
$$

Then (M, g) is of constant curvature 1 , if and only if (M, g) admits a Sasakian structure (ξ, g).

Proof. This follows from Theorem 7.1 and (Proposition 5.1, [11]).
Corollary 7.4. Let (M, ξ, g) be a complete Sasakian manifold of $(4 r+1)$ dimension, which is not of constant curvature. Then $\operatorname{dim} I(M)=\operatorname{dim} A(M)$.

Proof. This follows from Theorem 4.4.
Remark. Let (M, ξ, g) be a complete Sasakian manifold, which is not of constant curvature. Assume that (M, g) admits a Sasakian 3 -structure and $\operatorname{dim} M=4 r+3$. Then by Theorem 5.3, the dimension of the automorphism group $A(M)$ can not satisfy

$$
\begin{aligned}
& (4 r+3)(4 r+4) / 2 \geqq \operatorname{dim} A(M)>(2 r+2)^{2}, \quad \text { nor } \\
& (2 r+2)^{2}>\operatorname{dim} A(M)>(2 r+1)^{2}+3 .
\end{aligned}
$$

Tôhoku University

References

[1] L.P. Eisenhart, Continuous groups of transformations, Princeton Univ. Press, 1933.
[2] G. Fubini, Sugli spazii che ammettono un gruppo continuo di movimenti, Ann. Mat. Pura Appl., (3) 8 (1903), 39-81.
[3] Y. Hatakeyama, Y. Ogawa and S. Tanno, Some properties of manifolds with contact metric structure, Tôhoku Math. J., 15 (1963), 42-48.
[4] S. Ishihara, Homogeneous Riemannian spaces of four dimension, J. Math. Soc. Japan, 7 (1955), 345-370.
[5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
[6] Y. Y. Kuo, On almost contact 3-structure, to appear in Tôhoku Math. J.
[7] M. Obata, On n-dimensional homogeneous spaces of Lie groups of dimension greater than $n(n-1) / 2$, J. Math. Soc. Japan, 7 (1955), 371-388.
[8] S. Sasaki, Almost contact manifolds, Lecture notes I, II, III, Tôhoku University.
[9] S. Tachibana and W.N. Yu, On a Riemannian space admitting more than one Sasakian structure, to appear.
[10] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tôhoku Math. J., 21 (1969), 21-38.
[11] S. Tanno, Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tôhoku Math. J., 21 (1969), 501-507.
[12] H.C. Wang, On Finsler spaces with completely integrable equations of Killing, J. London Math. Soc., 22 (1947), 5-9.
[13] K. Yano, On n-dimensional Riemannian spaces admitting a group of motions of order $n(n-1) / 2+1$, Trans. Amer. Math. Soc., 74 (1953), 260-279.

