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1. Introduction.

In [4, Theorems 1 and 2] T. Kato uses the notion of m-monotonicity to
establish the existence of solutions to the evolution system

w (O +A@u)=0

where A(t) is an (possibly nonlinear) operator on a Banach space E whose
dual space E* is uniformly convex. In of this paper we use
the logarithmic derivative (which is similar to a Lyapunov function) to ex-
tend this result to a general Banach space. In section 2 the logarithmic
derivative is defined and certain bhasic properties are derived. In certain
cases we establish a connection between operators which have a logarithmic
derivative and those which are monotonic or accretive. In section 3 several
existence theorems to ordinary differential equations are given and in section
4 we give the extension of the result of Kato mentioned above. In section 5
sufficient conditions for an operator A to generate a semigroup of operators
on F are given.

2. Operators with logarithmic derivative.

Let E be a Banach space over the real or complex field with norm de-
noted by |-|, and let E* be the dual space of E with the norm on E* also

denoted by |-|. We will let — denote norm convergence on E and 5 denote
weak convergence on E. For each subset D of E let H(D, E) denote the class
of all functions from D into E. In [4], Kato defines a member A of H(D, E)
to be monotonic if |x—y+p[Ax—Ay]|=|x—y| for all x and y in D and all
o0>0. If, in addition, the image of 14-pA (where 14+pA is the member B of
H(D, E) defined by Bx=x+pAx for all x in D) is E for each p>0, then A
is said to be m-monotonic.

For each x in E define F(xX)={f€ E*: (x, f)=|x|*=]|f]?} and G(x)=
(f eE*: |fl=1 and (x, f)=]x|}. It is immediate that if x=0, then f is in
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G(x) if and only if |x|f is in F(x). Kato [4, Lemma 1.1] shows that a mem-
ber A of H(D, E) is monotonic if and only if for each x and y in D there is
an f in F(x—y) such that Re (Ax—Ay, f)=0. Hence, it follows that A is
monotonic if and only if there is a g in G(x—y) such that Re (Ax—Ay, g)=0.

DEFINITION 2.1. For each subset D of E the class LN(D, E) will consist
of all members A of H(D, E) with the property that there is a constant K
such that for each bounded subset @ of D for which the image of @ under
A is bounded, and for each pair of positive numbers 8 and ¢, there is a
positive number ¢ such that whenever 0<h=<d, x and y are in @ with
|x—y| =, then

(2a) (lx—y+h[Ax—Ay]| —|x—y])/h = K|x—Y]|+e.

If A is in LN(D, E), denote by L’/ A] the smallest number K such that the
inequality in (2a) holds.

REMARK. If A is in LN(D, E), x and y are in D, and 0 <k < h, then
— | Ax—Ay| = (| x—y+RLAx—Ay]| — | x—y )/ < (|x—y+h[ Ax—Ay]| —[x—3|)/h
<|Ax—Ay|. Thus, if x+y, by taking Q = {x, ¥} and 8=|x—y| in the defini-
tion above, we have

Jim (|x—y+hALAx—AY]| —|2—=yD)/h = L'TAJ x—y].

PROPOSITION 2.1. Suppose that A and B ave in LN(D, E). Then
) if p>0, pA is in LN(D, E) with L'[pA]=pL'TA],
i) if for each bounded subset Q of D such that A+B is bounded on Q
it follows that A and B are bounded on Q, then A+ B is in LN(D, E)
with L'TA+B]< L'l A]+L’[B], and

iii) if a is in the field over E, L'[ A4+al]= L'[ A]J+Re (a).

INpDICATION OF PROOF. Part i) follows from the equality (Jx—y-+h[pAx
—pAy]l —|x—y|)h=p(|x—y+4ph[ Ax—Ay]| —|x—y|)/(ph) and part ii) follows
from the inequality (|x—y+h[Ax+Bx—Ay—Byl|—|x—y|)/h = (|x—y+2h[ Ax
— Ay —1x—=y1/Ch)+( x—y+2h[Bx—By]| —|x—»|)/(2h). Since (|x—y--hlax
—ay]| —|x—yD)/h=|x—y|(|1+ha| —1)/h and (]1+ha] —1)/h—Re (@) as h—+0,
we have L’[al]=Re(a). Thus, fromii), L'TA+al]< L'[A]+Re (a) and L'[A]
=LTA4+al—al]< L' TA+al]+L[—al]l= L[ A4+al]—Re(a) and iii) follows.

DEFINITION 2.2. A member A of H(D, E) will be called uniformly mono-
tonic if —A is in LN(D, E) and L'[—-A]<0. If, in addition, the image of
1+p0A is E for all p>0, then A will be called uniformly m-monotonic.

PRrROPOSITION 2.2. If A is a uniformly monotonic (resp. uniformly m-mono-
tonic) member of H(D, E), then A is monotonic (resp. m-monotonic).

INDICATION OF PROOF. Let x and y be in D, h>0, and g in G(x—).
Then —Re(Ax—Ay, g)=[Re(x—y—h[Ax—Ay], g)—|x—y|1/h<(x—y—h[ Ax
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—Ayll—|x—y|)/h. Since L[—A]=0, we have, by letting ~—+0, that
—Re (Ax— Ay, g) <0 and the proposition follows.

LEMMA 2.1. If A is a monotonic member of H(D, E) and the image of
14+p,A 1s E for some p,>0, then A is m-monotonic.

A proof of this lemma can be found in [7, Lemma 4].

For each subset D of E let LIP(D, E) denote the class of all members A
of H(D, E) for which there is a constant K such that |Ax—Ay| = K|x—y]|
for all x and y in D. Denote by N[ A] the smallest constant K for which
this inequality holds. If A is in LIP(D, E), x and y are in D, and A >0, then
the inequality [(Jx—y+h[Ax—Ay]|—|x—yD/h|=|Ax—Ay|=NT[A]lx—y|
shows that A is in LN(D, E) and |L'[A]|= N'[A]. For each A in LIP(D, E)
let M'TA] :hlin})(N/[H—hAj—l)/h. If x and ¥ are in E and A >0, then (|x—y

+ALAx—AY]| — | x—yD/h S| x—y|(N'[1+hA]-D/h—|x—y|M'TA] as h—+0
so that L'[TAIJ<MT[A]. If A is a linear member of LIP(E, E), it can be
shown that L'[A]l= M'[A].

LEMMA 2.2. If A is in LIP(E, E) and p >0 is such that pN'[ A] <1, then

i) (A+pA)*isin LIPE, E) and

i) if 0<o<1 and Q is a bounded subset of E, then there is a constant

K such that if 0=2p=<0 and x is in Q, then |(1+pA)'x—1—pA)x|
= Kp*

INDICATION OF PROOF. The proof is contained in a proof of J. W. Neu-
berger [6, Lemma 1] and we outline it here. Let By,=1 and for n=1 take
B,=1—pAB,_,. Let M >0 be such that |Ax|=<M for all x in Q and let
B=pNTA]<L. If n=1we have |B,x—B,_ x| Sf|Bn_sx—B, x| = - =B |pAx|
< B*K, where K,=M/N'{A]. Consequently, if m>n=1, then |B,x—B,x|
< §I|Bix—3i_lx1éﬁnﬂKl/(pﬁ). It follows that B,x—(1+pA)'x and that

(1~;pA)‘1 is in LIP(E, E) so that i) is true. Since |(1+pA) 'x—1—pA)x|
= lim | B,x—Bx| < B°K,/(1— ) we have ii).

M0

PROPOSITION 2.3. If A is in LIP(E, E) then A is monotonic if and only if
A is uniformly m-monotonic.

INDICATION OF PROOF. The “if” part follows from [Proposition 2.2l Sup-
pose that A is monotonic. By Lemmas 2.2 and 21 we have that A is m-
monotonic. Let Q be a bounded subset of E. By ii) of there are
constants K and ¢ such that |(1+hA)*x—(1—hA)x|< Kh? for all x in Q and
0<h=4g. Thus, since |Q+rA)x—(1+rA)'y|<|x—y|, we have (|x—y—h[Ax
— Ay —1x—yD/h=(1—-hA)x—A—hrA)y|—|x—=y)/h=(|A+hA) ' x—A+hA) Y|
+2Kh*—|x—y])/h £2Kh and the proposition follows.

LEMMA 2.3. Suppose that E* is uniformly convex, A isin H(D, E), and Q
is a bounded subset of D for which there is a constant M such that |Ax|<M
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Sfor all x in Q. Then for each pair of positive numbers 8 and ¢ there is a >0
such that if x and y are in Q, |x—y|=p, 0<h =<9, and g is the member of
G(x—Y), we have Re(Ax—Ay, g@)=(|x—y+h[Ax—Ay]|—|x—y|)/h <Re (Ax
—Ay, g)+e.

INDICATION OF PROOF. Since E* is uniformly convex, let ¢/ be such that
if f, and f, are in E* with [f,|=|/,|=1 and |f,+f,|=2—¢/, then |f,—f,]|
=¢/(2M). Choose d=¢'B/(4M) and let g be in G(x—y), 0< h=<4, and f be in
Gx—y+h[Ax— Ay]). Then Re(Ax— Ay, @) =[Re(x—y+hr[Ax—Ay], g —
lx—y|1/h=(|x—y+h[Ax—Ay]|—|x—y]|)/h which gives the left side of the
inequality. By the choice of f,

(lx=y+h[Ax—Ay]|—1x—y])/h=[Re (x—y+h[Ax—Ay], /)—|x—y|1/h
=Re (x—y, /)/h-+|Ax—Ay|—|x—y|/h.

Transposing terms and multiplying by & we have |x—y|—h|Ax—Ay|+|x—y
+h[Ax—Ay]|—|x—y|=Re(x—y, /) and hence, |x—y|—4hM <Re (x—y, /).
Thus, |f4+g|=[Re (x—y, f+9)]/|x—y|=2—4hM/|x—y|=2—¢'. By the choice
of ¢, |f—g|=e¢/(2M) and since Re(x—y, /)=<|x—y| and Re(Ax—Ay, f—2)
=|Ax—Ay||f—g|<e we have

(lx=y+hLAx—Ay]| —|x—y|)/h=Re (Ax— Ay, /)+[Re (x—y, /)—|x—y|]/h
= Re (Ax— Ay, g2)+Re (Ax— Ay, f—g)

= Re (Ax— Ay, 9)+¢
and the lemma is true.
As an immediate consequence of and the definition of F and
G we have
THEOREM 2.1. [If E* is uniformly convex and A is in H(D, E), these are
equivalent :
1) Aiisin LN(D, E).
iiy There is a constant K such that Re (Ax—Ay, @) < K|x—y| for all x
and y in D and g in G(x—y).
iii) There is a constant K such that Re (Ax—Ay, /)= K|x—y|* for all x
and v in D and f in F(x—y).
Furthermore, if i) holds, then L'[A] is the smallest constant K such that the
mequality in ii)—or iil)—holds.
From [Theorem 2.1 and [Proposition 2.2 we have
COROLLARY 2.1. If E* is uniformly convex, then A is monotonic (vesp. m-
monotonic) if and only if A is uniformly monotonic (resp. uniformly m-mono-
tonic).
NOTATION. Suppose that A is in LN(D, E) and ¢<—L'[A]. Then
L[A+cl]=L[A]+c=<0 so that —A-—cl is uniformly monotonic. Assume
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that —A—cl is uniformly m-monotonic and for each positive integer n define
D Jo=[1—n"(A4c)]*.

(2b) 2) Aj=—(A+cD)Ji=nl-]D.
3) Bi=Ali=—Ai—c]i=—[nl—(n—0)J7].

ProrosITION 2.4. If A is in LN(D, E) and there is a c,= —L'[ A] such
that —A—c,1 is uniformly m-monotonic, then — A—cl is uniformly m-monotonic
for all c=—L'[A]

INDICATION OF PROOF. Letc¢< —L'[ A] and choose p >0 sufficiently small
so that plc—c,| <1. Then 14+ p(—A—cl)=14p(—A—c )+ po(c,—c)1 =1+ p(c,
—o)NH1+p[l4+plco—c) ] [—A—col]}. Since p[1+p(c,—c)17*> 0, we have that the
image of 1+p[14+p(c,—c)]*[—A—c,1] is E and so the image of 1+ p(—A—cl)
is E. The assertion of the proposition now follows from Lemma 2.1.

LEMMA 2.4. Using the notation above we have

D J¢is i LIPE, E) with N[ JE1=1 for all nz=1.

i)y A is in LIP(E, E) with N'TA]1=2n and L'[—A;]1=0 for all nz=1.

itiy B¢ is in LIP(E, E) with N [Bi]1<2n+|c| and L'[BS]1=|c| for all

n=1.

iv) If xisin D then |ASx| < |(A+cx| and |Box| = A+ |c|n )| (A+cl)x]

+lecx| for all n=1.

v) If x is in the closure of D then Jix—x as n—oo.

INDICATION OF PRrROOF. i) is immediate since —A—cl is m-monotonic and
ii) follows from [4, Lemma 2.37 and [Proposition 2.3 Since B¢ =—A:—c]Js,
iii) follows from i) and ii) and from part ii) of [Proposition 2.1 iv) follows
from [4, Lemma 2.37] and the identity B = —A%—-¢Ji=—A—c(l—n"*A%). V)
is of [1]

LEmMMA 25. Let A be in LN(D, E) and suppose that A has the property
that for each sequence (x,) in D such that x,—x and the |Ax,| are bounded,

w
it follows that Ax, — Ax. Using the notation above we have the following:
1) If (yu) is a sequence in E such that y,—y and the | ASy,| are bounded,

then y is in D, A%y, — —(A+cl)y, and By, — Av.

w w
iy If zis in D then ALz — —(A+cl)z and B4z — Az.
w
INDICATION OF PROOF. It is immediate that — Ax,—cx, — —Ax—cx. Let-
ting x,=J¢y, we have y,—x,=n"'4%y,—0 so that x,—y. Hence, A%y,

= —Ax,—Cx, 5 —(A+cl)y and since B = — A% —cJ¢, we have BSy, - Ay. Thus
)7is true and part ii) follows from i) with y,=2z and part iv) of

In [2] Browder defines a member A of H(D, E) to be accretive if Re (Ax
—Ay, f)=0 for all x and ¥ in D and all f in F(x—y). Thus, A is accretive
if and only if Re(Ax—Ay, £0)=0 for all x and y in D and all g in G(x—y),
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and if A is accretive, then A is monotonic.

PROPOSITION 2.5. Let A be in H(D, E). Then —A is accretive if and only
if Ilim(|x——y+h[Ax—Ay]I—[x;yl)/h_é_o for all x and y in D.

= 0

INDICATION OF PrOOF. If g is in G(x—y) then Re (Ax— Ay, g) =[Re (x—y
+hlAx—Ay]), 9)—|x—y|1/h = (| x—=y+h[Ax—Ay]|—|x—y[)/h for all h>0.
Thus, if lim (Jx—y+h[Ax—Ay]|—|x—y|)/h <0, then Re(Ax—Ay, ©)<0 for

h~-0

all g in G(x—y) so that — A is accretive. Now suppose that —A is accretive.
For each A >0 let g, be in G(x—y-+h[ Ax—Ay]). From the above, if g is in
G(x—y), then Re(Ax— Ay, @ =(lx—y+h[Ax—Ay]|—|x—y])/h=[Re (x—y
+h[Ax— Ay], gn)—|x—y|1/h=Re(x—3, g)/h+Re (Ax— Ay, g)—|x—|/h.
Transposing terms and multiplying by h, we have |x—vy|-+h[Re (Ax— Ay, 2
—Re (Ax— Ay, g»)]1 =< Re (x—y, gn). Since |(x—y, gn)|=|x—y]|, it follows that
ijglo(x—y, g,) =|x—y|. Since the unit ball in E* is w* compact, there is an

J in E* with |f|=<1 and a sequence of positive numbers (k,) such that
limh,=0 and if f,=g,, for each n=1, then lim (z, f,)=(z, /) for each z in

n—00

E. Since (x—y, f)=lim (x—y, f,)=|x—y|, f is in G(x—)) and hence, Re (Ax

—Ay, /)=0. Consequently, lim(|x—y+hl{Ax—Ay]|—|x—y|)/h=1lm (|x—y
h—+0 T

+ ha[Ax — Ay]|—|x—3)/hn= lim [Re (x—y 4 h,[Ax — Ay], fo)—1x—y|1/hn

<lim Re (Ax— Ay, f,)=Re (Ax— Ay, /)<0 and the proposition is true.

N-—0

COROLLARY 2.2. If A is in HD, E) and K is a constant, then these are
equivalent :

i) Re(Ax—Ay, HEK|x—yl|? for all x and y in D and [ in F(x—y).

iiy Re(Ax—Ay, 99 < K|x—y| for all x and y in D and g in G(x—y).

iii) hlirlno({x—y—{—h[/lxwfly:ll—Ix—yl)/thlx—yl for all x and y in D.

INDICATION OF PROOF. The proof that i) is equivalent to ii) is immediate.
It follows that ii) and iii) are equivalent from [Proposition 2.5 and the proof
of [Proposition 2.1,

3. Ordinary differential equations in LN(D, E).

Let I be an interval in the real line and let {A(®):t<= 1} be a family of
members of LN(D, E). In this section we will be concerned with solving the
initial value problem

(3a) u'(t) = A@u(t), ula) =z

where ¢ is in I, z is in D, and the function (¢, x)— A(®)x of IXD into E is
continuous and maps bounded subsets of /XD into bounded subsets of E.
DEFINITION 3.1. If @Q is a bounded subset of D, the family {A(®:t 1}
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is said to have uniform logarithmic derivative on IxXQ if there are constants
M and K such that |A()x| < M for all (¢, x) in IXQ and for each pair of posi-
tive numbers 8 and ¢, there is a positive number ¢ such that if ¢ is in J, x
and y are in Q with |x—y|= 8, and 0 <A =g, then

(lx—y+hLA®x—ANY]| — |x—y])/h = K| x—y[+e.

LEMMA 3.1. Suppose that I is a compact interval, Q is a bounded subset
of D, and the function (t, x) — A(Dx of IxXD into E is continuous and maps
bounded subsets of D into bounded subsets of E.

D) If A®) is in LIP(D, E) with NTAWI=<K for all t in I then {A(®):
te I} has uniform logarithmic derivative on IXQ.

ii) If the family of functions {g,: x< Q} where g,(t)= A®)x is equicon-
tinuous on I and L'TAWN]Z K, then {AW):te I} has uniform logari-
thmic derwative on I'XQ.

iii) If E* is uniformly convex and Re (A()x— AQ@)y, /)= K|x—y|* for all
xand y in Q, t in I, and f in F(x—y), then {A®):t< 1} has uniform
logarithmic derivative on IXQ.

INDICATION OF PROOF. Part i) follows from the inequality (|x—y-+h[A{)x
—A®y]| - x—y)/h =S| A x—A@®y| < K|x—y|. Let B and ¢ be positive num-
bers and choose &/ >0 such that if |t—s|< 87, then |A(D)x— A(s)x|<¢/3 for
all x in Q. Let (¢,)7 be a partition of I such that |¢;—¢,_,| = 0’ and choose §;
so that (|x—y+hALAW)x—A(t)y]| —[x—y])/h = L'TA¢)I | x—y|+e/3 for x and y
in Q with |x—y|= 8, and 0<h<§,. Let d=min{d,:1<i=<n}. If tisin [,
there is a #; such that |{—#;] =<’ so that if xand y are in @ with |x—y|=§
and 0 < h=8, we have (|x—y+h[ A@®)x— A®y]| — | x—31)/h = (| x—y+hL At)x—
Aty = [x=yDh+ | A x— Alt)x| + [ ADy— Aty | = L'TAC) ]| x—y| +¢/3+¢/3
+¢/3< K|x—y|-+e and part ii) follows. The proof of part iii) is similar to
that of and is omitted.

LEMMA 3.2. Let I be an open inlerval and q a continuous function from
I into E such that ¢,(t) exists for all tin I. If p()=|q(t)| for all t in I, then
P exists and

pit) = lim (1¢()+hq’ (B — 19O D/h.

Furthermore, if 6>0, p/.() < (1q)+0q,@)|—1q®)|)/d in as much as the expres-
sion in the limit is nonincreasing as h— 0.

For a proof of this lemma see [3, p. 3.

THEOREM 3.1. Let a be a real number, T >0, and I=1[a, a+T7]. Also let
z be in E, D a bounded neighborhood of z, and {A@®):t< I} a family of mem-
bers of LN(D, E) such that

1) The function (¢, x) > A{D)x of IXD into E is continuous.

2) The family {A({®):te I} has uniform logarithmic derivative on IX D.
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Then there is a p >0 and a unique continuously differentiable function u from
La, a+-p] into D such that u(a)=2z and u'(t) = A@u(t) for all t in [a, a+p].
INDICATION OF PROOF. Let M and K be as in and assume,
without loss, that K is positive. Choose 0< p=T so that if |x—z|= pM,
then x is in D. For each positive integer n let (17) be a partition of [a, a+p]
such that |7,—f|<n"'. For each n=1 let u, be the function from [a, a+p]

¢
into E defined by u,(a) =z, and if 2 <t =7, then u,()=u, () + L,?A(s) U, (1M ds.

It follows that u, maps [a, a+p] into D, |u,()—u,(s)| =< M|t—s|, and if (2=t
< 124, then (u,), () = A(Hu,(t¥). Suppose that ¢ is a positive number and for the
pair ' =cexp(—Kp)/6 and ¢/ =K exp (—Kp)/3, choose d >0 such that (|x—y
+h[AOx—A®Y] — | x—=y|)/h £ K|x—y|+¢’ whenever 0 <h=<0 and x and y
are in D with |x—y|=p’. Choose n,=1 so that ny'<min {p'/2CM),
eexp (—Kp)/[T12KM(K+07"]}. The claim is that whenever m > =n, then
Ju,()—uy()| =e for all ¢t in [a, a+p]. Assume, for contradiction, that there
is a t, in [aq, a+p] and integers n and m such that m >n=n, and that
|u,(t)—uyt)| >e. Let p)=|u,)—u,(®]| for all t in [a, a+p]. Then p is
continuous, p(a) =0, and p(t,)) > ¢, so there is a ¢, in (a, t,) such that p(t,) =28’
and p@)=2p" for all ¢ in [t, ¢t,]. Thus, if ¢ is in [¢, ¢,] there is a pair of
integers ¢ and j such that 2 <t<tr,, =1 <i%y, (u) ()= A®)u,(m, and
() () = ADu,(t™). By we have

P = (up(O—un®+ L ADO U — AD U7 ]| — [ 1O —un() )/ 0
= (lun () —un(17)+ 0L AD UL — ADUREF) ]| — [, (1) —un(t) ) /0
+2[ (=, (t)] /042 (D) — un(t7) 1 /0
= Klu, (i) —un (tP) | +e’+2Mo7 (n™ +m™)
= KpO+2MK (n™'+m~)+e'+2Mo- (n""+m™")

where we wused that |u,(7)—u,(P)|=|uy®—un(®)| —|u()—u,E0 | — | un ()
— Uy ()| =28 —2ng*M = B’.  Thus, pL()=Kp@)+ e’ +4Mns (K401 < Kp(t)+
2¢e exp (—Kp)/3 for all ¢ in [#, 1,]. Solving this differential inequality gives

() = p(t,) exp (K(I—1,)+2e exp (—Kp)[exp (K(t—t,)—11/3.

Since p(ty) =|u,(t) —unylty) | =cexp (—Kp)/3 and t,—t, =< p, we have |u,(t,)—u,(t,)]
=p(t,) = ¢/3+2¢/3=¢ which is a contradiction to the assumption that |u,(t,)
—un(t)| >e. Consequently, the sequence (u,) is uniformly Cauchy on [qa, a+p]
and hence, converges to a continuous limit u uniformly on [a, a+p]. For
each integer n=1 define the function g, from [q, a+p] into D by g,
= A(Du,(7) whenever 2 =<{< ;. By the construction of u, we have that

g, ()| =M and that un(t)zz+jtgn(s)ds for all ¢ in [a,a+p]l. If 7=t <1y,
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we have |u,((1)—u@®)| = |u, 00 —u )| + | u () —u@® | = n M+ | u,()—u(®)| so that
if gt)=A®u(), then g,(t)—g({ by the continuity of A(). Furthermore,
since the sequence (g,) is uniformly bounded, it follows by bounded con-
vergence that u(f)= lim u,(t) = lim z+ | g,()ds=z+[ A®u(s)ds. Thus, u is

continuously differentiable and satisfies on [a, a+p]. Suppose that v is
a continuously differentiable function on [a, a+p] which satisfies [3a). If
PO =|u@®—v®)| for all ¢t in [a, a+p], then pﬁr(t):hliIPO(Iu(t)—v(t)+h[A(t)u(t)
— A1 — u@—v®/h= Kp@®. As p(a)=0 we have p(t)=|u®)—v(®)|=0
for all ¢ in [q, a+p] so that v=u. This completes the proof of the theorem.
THEOREM 3.2. Let S denote the set of nonnegative real numbers and sup-
pose that {A():t< S} is a family of members of LN(E, E) with the following
properties:
1) The function (¢, x)— A(Dx is continuous.
2) The family {A@{):t< S} has uniform logarithmic derivative on bounded
subsets of SXE.
3) There is a continuous function ¢ from S into the real numbers such
that L'TAMD] < c®) for all t in S.
Then for each a in S and z in E, there is a unique continuously differentiable
Junction u from [a, co) into E such that

(3b) u'(t) = A@®u), u(a) =z

Jor all t in [a, oo). Furthermore, Iu(t)—zlgjt[/l(s)zlexp (5. tc(r)dr)ds for all
t in [a, ), and if U(a, )z denotes u(t) for all t in [a, o0) and z in E, then
Ua, 1) is in LIP(E, E) with N'LU(a, ] = exp ([ e(s)ds).

INDICATION OF PRrOOF. It follows from [Theorem 3.1 that there is a solu-
tion u to [3b) on some interval [a, a4-p) where p > 0. Also, u can be extended
so long as its image remains in a bounded subset of F. However, so long
as u exists, we have that if p()=]|u(t)—z|, then

Pt = lim (Ju()—z+hAOu®| | u®—z)/h
= lim (Ju()—z+h[AQu)— AWV | — [u®—2z[)/h+ | AD)z]

= LTA@Iwt)—z|+ | Az
= c(OpO+ | AM=].
Solving this differential inequality gives |u(t)—z{§IL|A(s)z|exp<j tc(r)dr ds.

It follows that u is bounded on bounded subintervals of [a, o) and hence,
can be extended to all of [a, o). If wis in E and v is a solution to
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such that v(a) =w, then letting ¢() =|u(®)—v()| we have
¢4+(D) = lim (ju()—v(O+hLAOu®O—AOVO ]| | u@®—v®1)/h

= c(t)q@) -

Thus, |u@®)—v@®)| = |u(a)—v(a)|exp (jtc(s)ds) and the assertions of the theorem
follow. ‘

COROLLARY 3.1. Suppose that {A{):te S} is a family in LIP(E, E) for
which there is a continuous function d from S into S such that N'LA®)]=d(@)
for all t in S. Furthermore, suppose that for each bounded subset IXQ of SXE
therve are constants M >0 and 6 >0 such that if (t,s) is in IXI with |[t—s| <0
and x is in Q, then |AQ)x—A@G)x| = |t—s|MA4-| A(s)x|). Then the conclusions
of Theorem 3.2 are valid.

INDICATION OF PROOF. Since L'[A(#)]= N'[A®] there is a continuous
function ¢ on S satisfying condition 3) of [Theorem 3.2. By using part i) of
and [Theorem 3.2 we need only show that the function (¢, x) — A(H)x
is continuous and maps bounded subsets of SXFE into bounded subsets of E.
This is routine and the proof is omitted.

THEOREM 3.3. Let a be a real number, T >0, and I=[a, a+T7]. Also let
z be in E, D a bounded neighborhood of z, and {A():te 1} a family of mem-
bers of H(D, E) such that

1) The function (t, x)— A®)x of IXD into E is continuous and bounded.

2) The family {A({):te 1} is uniformly equicontinuous on D.

3) There is a constant K such that Re (A@®)x—A®y, /) K|x—y|? for all

xand yin D, t in I, and [ in F(x—).
Then there is a p>0 and a unique continuously differentiable function u from
Ca, a+p] into D such that u(a)=z and w'(t)= At)u(t) for all t in [a, a+p].
REMARK. Note that 2) holds if the function (¢, x) — A(®)x is uniformly

continuous on IXD. Furthermore, from Corollary 2.2 we have lim (jx—y
h—+0

F+h[ADx— Ay —|x—y])/h £ K|x—y] for all x and ¥ in D and ¢ in I

INDICATION OF PROOF. Assume that K >0 and let M be such that | A(®)x]|
<M for all (¢, x) in IXD. Let p, (), and (u,) be as in the proof of Theorem
3.1 and suppose that ¢ is a positive number. Choose ¢ >0 such that if ¢ is
in I and xand y are in D with |x—y| < d, then | A()x—AQ@)y|=eKexp (—Kp)/2.
Let n, be a positive integer such that ny!M < 0. Thus, if k=n, and F < <t
then |u(O)—u (@) |EM|t—tF|=ME*<06. Now let n>m=n, and let p{)
=|u,B)—u, )| for all ¢t in [a,a+p]. If ¢ is in [a, a+p] and 7 and j are
integers such that 7 </ <17, and 17 <t <%, then

() = lim (Jua(t) — () +hLA@OURIE) — A URET) ]| — [ unlt) —un® /A
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= ’{ij{lo(l Un(8) — U (D) +ALAD U — ADUnO) ]| — | un() —un(D D/ h

+ | ADu () — AU | + | ADuR() — ADunD)].

But |u,(t})—u,(0)| = 0 and |u,(t7)—u,(D| = 0 so that pi(f) = Kp(t)+eK exp (—kp).
Consequently, p(t) = p(a) exp (K(t—a))+ecKexp(—Kp)[exp (K(t—a))—1]/K. Since
p(@)=0 and t—a =< p we have that p() =|u,)—u.®| < e for all ¢ in [a, a+p].
Thus, the sequence (u,) is uniformly Cauchy on [a, a+p] and the completion
of the proof is essentially the same as in the proof of [Theorem 3.1l

THEOREM 3.4, Let S denote the set of nonnegative real numbers and sup-
pose that {A({):te S} is a family of members of H(E, E) with the following
properties :

1) The function (I, x)— A(Dx is continuous and maps bounded subsets of

SXE into bounded subsets of E.
2) Each point (¢, x) in SXE has a neighborhood IxQ such that the family
{A(D):te I} is uniformly equicontinuous on Q.
3) There is a continuous function ¢ from S into the veal numbers such
that Re (A®)x—AW®y, )L c®|x—y|? for all x and y in E, t in S, and
fin F(x—y).
Then the conclusions of Theorem 3.2 hold.

The proof of this theorem is analogous to that of and is
omitted.

REMARK. In [5, Theorem 3] Murakami constructs the functions u, de-
fined in the proofs of Theorems 3.1 and 3.3 and, with the assumption of the
existence of a continuously differentiable Lyapunov function, proves that
they converge to the solution u. Here we are essentially using the norm as
a Lyapunov function but it is not necessarily differentiable. The difference
in the suppositions of Theorems 3.1 and 3.3 is that in 3.1 the A({Y) may only
be continuous but the limits defining the Gateaux differential are uniform in
x and y so long as they remain a positive distance apart while in 3.3 we
relax the uniform limit of the Gateaux differential and require that the A(®)
be uniformly continuous.

4. Evolution equations in LN(D, E).

Let S denote the set of nonnegative real numbers and suppose that
{A@®):te S} is a family of members of LN(D, E) with the following properties :
1) There is a continuously differentiable function ¢ from S into the
real numbers such that —A(f)—c(f)1 is uniformly m-monotonic for all

tin S.
2) There is a continuous function d from SxXSxS into S such that | A(H)x
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(4a) —A@)x| Z|t—s|d, s, | x])A+| A x|+ A(s)x]) for all (¢, s) in SXS and
all x in D.
3) If tisin S and (x,) is a sequence in D such that x,—x and | A(#)x,|

are bounded for #=1, then x is in D and A(f)x, — A()x.

REMARK. We have from [4, Lemma 2.5] that if E* is uniformly convex,
then 1) implies 3). Condition 2) is that of Browder in [I]. Note that 3 is
satisfied if D is closed and A(#) is demicontinuous for all ¢ in S.

We will be concerned with finding solutions to the evolution system

(4h) u'(t) = A(Hu(t), ula)y==z

where a is in S, z is in D, and ¢ is in [a, o).

THEOREM 4.1. Suppose that the family {A({):t& S} satisfies the conditions
of (4a) and that a is in S and z is in D. Then there is a unique function u
from [a, o) into D which is Lipschitz continuous on bounded subintervals of
[a, o) and satisfies (4b) in the following sense:

1) wu(a)=z, the weak derivative ul, of u exists, is weakly continuous, and

satisfies ul(t)= A@®)u(t) for all t in [a, o).
iiy The function t— A(u() of [a, o) into E is Bochner integrable on

bounded subintervals of [a, o) and u(z‘):z{—(B)ftA(s)u(s)ds for all t in

[a, ). In particular, the derivative w' of u exists almost everywhere
on [a, o) and w'(t) = AWDu(t) for almost all t in [a, o).
Furthermore, if for each (a,t) in SXS with a<t and each z in D, U(a, D)z de-

notes u(t), then Ula, 1) is in LIP(D, E) with N'TU(a, 1< exp ([ e(ds).

REMARK. If E* is uniformly convex, then this theorem is essentially
Theorems 1 and 2 of Kato in [4]. We will prove this theorem with a sequence
of lemmas which parallels those of Kato.

NOTATION. For each positive integer n and each ¢ in S let [ =
[1—n"YABO+cOD]I, Ayt) = —[ADO+c®OIJi®), and B;@)= A®)Ji®). Note
that J(b), As(H) and B(t) satisfy the conclusions of Lemma 2.4. Furthermore,
with the assumption of part 3) in (4a), the conclusions of Lemma 2.5 are valid.

In what follows we assume that 7T is a positive number and [ is the
interval [a, a+T].

LEMMA 4.1. For each bounded subset Q of D thereisa 6 >0 and an M>0
such that if x is in Q, (¢, 5) is in IXI with |[t—s| =0, then |AQx—A(s)x| <
[t—s| MA+2] A(s)x]).

INDICATION OF PROOF. Take M=2sup {d{t, s, |x]):x=Q, (¢, s)=IxI} and
let 0=1/M. If xisin Q and |f—s|=d, then |A{®)x—A(S)x| = |t—s|MQA+|Al)x
— A x| +2|AG) x])/2 < 0M| A()x— A(s)x| /2 + | t—s| M + 2] A(s)x])/2 and the
assertion of the lemma follows.
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LEMMA 4.2. Suppose that Q is a bounded subset of D and K is a positive
constant. Then there is a constant K’ such that if for some s in I, | A(S)x|= K
Sfor all x in Q, then |A(Dx| < K’ for all (t, x) in IXQ.

INDICATION OF PrROOF. Let d and M be as in and let n, be
an integer such that if (¢, s) is in I/, then |f—s|=n,0. Take K’ =1+43"K
+f’>5:3 Suppose that s is in I and |A(s)x|=< K for all x in Q. If ¢ is in I

and [t—s|=<0, we have |A(x|=|A®x—A(s)x|+|A(s)x|=14+3K by
4.1. Assume that for some 1 <k < n,we have that if |f{—s|=<kd, then | A(D)x|

k=1 . .
<14+ 3 3+3*K. A simple induction argument shows that this inequality
i=1

holds with k=n, and hence, if ¢ is in /, then |f—s|=<n.,0 so that |A@®x| < K’
and the lemma is true.

LEMMA 4.3. If Q is a bounded subset of E, then there is a constant K
such that |Ji®)x| < K for all (¢, x) in IXQ and all n=1.

INDICATION OF PROOF. Let M be such that |x|< M for all x in Q, let z
be in D, and take K= M-+sup {|A)z+c)z| :tel}+2|z]. If x is in Q, ¢ is
in I, and n=1, then by part i) of Lemma 2.4, | J:(Ox| < |Jitx—Ji®z|+ | JH)z|
Slx—z|+|[1—ntAs®]z| S | x| +2] 2] +nt As(Wz]|. The lemma now follows
from iv) of

LEMMA 4.4. If Q is a bounded subset of E, there is a 6 >0 and an M>0
such that |BS()x—Bi(s)x| = |t—s|MA+2|Bs(s)x|) for all n=1, x in Q, and
(¢, 8) in IXI with [t—s|=0.

INDICATION OF PROOF. It follows from part 3) of (2b) that

B, ®x—Bi(s)x=[n—c®]JiOx—[n—c(s)] Ji(s)x
= [n—c(®)ILJsOx—Ji)x]+Le()—c®T () x .
From i) of we have
| Ji@x—Ji(s)x| = | iYL —n"(AS)+c($)1)1 /()
— 5O —n" (A@+cOD 1 J5(s)x]
= n7A® Ji(8)x—A(s) Ji(s)x]

+n7te@®—c(s)| 1)5(s)x].
Thus,

| B (Dx—Bi()x| = [14+n7"c(®) | | A®) Ja(s)— A(s) Ji(s)x]
+A+n"D c®—c() | | Ja(s)x]

and from Lemmas L1 and there is a 6 >0 and constants M’ and K such
that if |t—s|=<d, then |Bi®)x—Bi(s)x|<|1—nte(®)||t—s|M'[1+2] A(S)J(s)x]|]
+A—n"YH|c@®)—c(s)| K. The assertion of the lemma now follows since ¢ is
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continuously differentiable on I.

Since B4(t) is in LIP(E, E) with N'[BL(H)] < 2n-+|c(®)| (see iii) of
2.4) we have by Lemma 4.4 and [Corollary 3.1] that for each n=1, there is a
continuously differentiable function u, from [a, o) into E such that

(o) up () = BrOu, @,  ul@=z

for all ¢ in [a, o).

LEmMMA 45. There is a constant K such that |u,()|< K and |u,()|=
|Beu, | < K for all n=1 and all t in I.

INDICATION OF PROOF. Since L'[Bi(D)]<|c(®)]| for all ¢ in S and all nz=1,
we have by that the |u,(#)| are bounded on I. Now let Q be a
bounded subset of E which contains u,(f) for all ¢t in I and n=1. Choose 0
and M as in [Lemma 4.4 and for each ¢t in [, 0< A <4, and n=1, let P, (8
=|u(t+h)—u,()|. Then

(Po,n)e(8) = lim (fu, (t+P) —un(B)+EL B+ hyu,(t+h)—By(Hu.(D]]

— lu(t+h)—u O/ k
= lim (| U (1) — 1, (O -+ RLB5(E+ R, (t+h) — By (t+Ru (1)

— Uy (t+h)—u, D))/ k-t | Ba(+mu,(0)— By Ou,(t) |
=|e@®| Pp ) +RrMA--2] B (Dun (D)) .
Consequently, |1, (t+ 1) — u, (O] = | un(@+ b — un(a)| exp ([ |e(o)] ds) + M| @
42| B()un(s)]) exp (j ”1c(r)|dr)ds for all 0</h =<4, n=1, and ¢ in I Dividing
by h, letting h— +0, and noting that B4(s)u,(s)=u,(s), we have |u,(H)]|<
t t t
|u(a) | exp (j 1c<s)[ds)+2Mj (A-+2]u(s) ) exp j c(|dr)ds. Since |u(a)]|=
| B¢(a)z| is bounded by part iv) of it follows from Gronwall’s
inequality (see e.g. [3, p. 197) that |u/(¥)| is bounded for all f in I and n=1.

LEmMMA 4.6. If Q={xc E:x=JOu,®t) for n=1 and t in I}, then Q 1is
bounded and the family {A@): t < I} has uniform logarithmic derivative on IXQ
(see Definition 3.1).

INDICATION OF PROOF. Since |u,(f)| <K, Q is bounded by
Since | A®) JiOu, ()| =|Bs®u,(t)| < K, we have by [Lemma 4.2 that there is a
constant K’ such that |A(s)x|= K’ for all sin] and x in Q. Let B and ¢ be
positive numbers. From there is a ¢’>0 and an M’ >0 such
that if |f—s|<¢’ and x is in Q, then |AHx—A(G)x|=|t—s|K, where K,
= M'(1+2K"). Let (r,)® be a partition of I such that |r,—7;_;| < min{d’, ¢/@K))}
and choose §;>0 such that if x and y are in Q with |x—y|= 8, and 0<h =0,,
then (|x—y-+h[A@r)x—AF)yll—|x—y)/h= L'[A(r)]lx—y]| +¢/2. Now take
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0=min{§,:1<i<m} and let K,=sup{|c(s)|:sel}=sup {LTAG)]:sel}.
If ¢t is in [ there is an integer ¢ such that |t—r;|=<¢’. Thus, if x and y are
in Q with |x—y|=8, and 0<Ah =9, then (|x—y-+FA[A®x—ADY]|—|x—y])/h
S (| x—y+hLAC)x—AC )y — | x—=y )/ h+ | A x— A(rox |+ | ADy— A(r)y| S K, | x
—y|+e/2+2|t—r;| K, and the assertion of the lemma follows since 2|f—r,]
=¢/(2K)).

LEMMA 4.7. There is a Lipschitz continuous function u from I into E such
that u,(t) —u(t) uniformly on I.

INDICATION OF PROOF. Let Q be as in Lemma 46 and suppose that ¢ is
a positive number. Since the family {A{):t<1} has uniform logarithmic
derivative on IXQ let K be as in and assume that
K is positive. For the pair p'=cexp(—KT)/6 and ¢’ =eKexp(—KT)/3,
choose 0> 0 such that (|x—y+h[ABOx—A@G)y]|— | x—y|)/h £ K|x—y| -+ when-
ever x and y arein @ with |x—y|=p and 0 <A =4. Since |u,(s)—Ji(s)u,(s)]
=n" AL(S)uy(s)| = n | BE(S)un(s)| +nte(s) JiS)uL(s)| < n 'K, for some constant
K, there is an integer n, such that 2nj'K, <e¢exp (—KT)/6 and n;1(2KK,
+4K,/0) = e¢Kexp (—KT)/3. Suppose, for contradiction, that there are integers
n>m=n, and a t; in I such that |u,(t,)—u,{)|>e Let p)=]|u,(t)—uy(d)|
for all ¢ in I. Since p(a)=0 and p(t,) >¢, there is a ¢, in [a, t,) such that
pty)=28" and p(t)=2p’ for all ¢ in [4, t,]. We have from that

P40 = (Jua(®) —un(D+0LB; () un(H) — Bo(D (D] — |, () —u,n(D)])/0
= (|5 un()—J (D) + 0L A®) J(Duy(8)
—A®) J5OQun(H1| — | O urO)—J 5. Dun@®1)/ 0
+2] [iOua@®)—un ()| /0+2| J5u@un(t) —un(®)] /6 .
Since [ [()un(t) — Jn@un(®) | = | JAOUAE) — un(®) + un(t) = Upn(t) + () — TS (D tm(D) }
= | () — Un(D) | — | JAOUA) — un(B) | — [ Ja@)Un(t) — um(t) | = € exp (—KT')/3—2n;'K,
=cexp (—KT)/6=p" for all ¢ in [¢, t,], we have by the choice of B’ that
Pi(0) = K| Ji(Ou () —J5@®un(®) | +4n51K,/6+¢’
= Kp()+ng'CKK,+4K,/0)+¢’
< Kp(H)+2¢Kexp (—KT)/3.

Thus, for each ¢ in [{, #,] we have p(¥) < p(t,) exp (K(t—t))+2¢K exp (—KT)
Cexp (K({t—t)—11/(BK) and since p(f,) =cexp (—KT)/3 and t,—t,<T, it fol-
lows that p(f;) =<e/3+42¢/3=¢. This contradicts the assumption that () > e
Consequently, the sequence (u,) is uniformly Cauchy and since E is complete,
there is a continuous function # from [ into E such that u,(t) —u(¢) uniformly

on I. As |u,(®)| are bounded for ¢ in [ and n =1, it follows that u is Lipschitz
continuous on [ so that the lemma is true.
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LEMMA 4.8. The function u in Lemma 4.7 maps I into D, the function
t— AQ@u() of I into E is weakly continuous, and for each [ in E* the funclion
t—@), ) of I 1into the field over E is continuously differentiable with
du@®), )/dt=(A®u@), f) for all t in I.

INDICATION OF PROOF. Since u,(t)—u(t) and |Bi(Hu, ()| =K, we have
|Ae(Du,()| are bounded and hence, u(?) is in D, Bg(t)un(t)iA(t)u(t), and
[ A®u(t)| < K (this follows from the conclusions of which are valid
due to the assumption of condition 3) of (4a)). Let 6 and M be as in
41 with Q={xe E:x=u() for tin I}. Then if s is in [/ and |t—s|=9,
| ADu() — A@u@®)| = [t—s|MA+2| Au@®|) = |t —s| M1 +2K). Furthermore,
since u(t) —u(s) as t—s, we have by condition 3) of (4a) that A(s)u(#) Z A(s)u(s).
Hence, A(t)u(t)—-A(s)u(s):A(t)u(t)—A(s)u(t)—JrA(s)u(t)——A(s)u(s)iO and it fol-
lows that t— Au(t) is weakly continuous on I. If f is in E*, then (u,(?), f)
=(z, f)—l—jt(Bﬁ,(s)un(s),f)ds for all n=1 and tin I. Since u,(¥)— u(t), Bo(®)u, ()

w t
— A@u(), and [(Bs(s)ux(s), /)| = K|}, we have (u(®), /)= (z, f)+fa(/1(8)u(8), fds
and the assertion of the lemma follows.

LEMMA 4.9. The function t— A@®)u(t) of Iinto E is Bochner integrable and

Jor each tin I, u(t)=z+(B)| A u(s)ds.

The proof of this lemma is the same as [4, Lemma 4.6] and is omitted.

We have now established the existence of a function u from [a, co) into
D which is Lipschitz continuous on bounded subintervals of [a, o) and satisfies
parts i) and ii) of [Theorem 4.1, Suppose that w is in D and v is a function
from [a, o) into D which is Lipschitz continuous on bounded subintervals of
[a, o) and satisfies each of the conditions i) and ii) of u in [Theorem 4.1
except that v(a)=w. For each t in [a, o0) let p(t)=|u@®)—v@®|. By
3.2 pi(t) exists for almost all ¢ in [a, co) and for all such ¢,

i) = lim (Ju(®)—v(+hLABU® — AOvO]| —[u®—vO /A

= L'TAG] u@®—v®].

By part 1) of (4a) we have that L'[A{)4¢()1]1=<0 so by part iii) of Proposi-
tion 2.1, L'[A(®)]< —c(?). Hence, pi(t) £ —c(@)p(t) for almost all ¢ in [a, co)
and since p is absolutely continuous on bounded subintervals of [a, o), it
follows that

lu@—v)| < |z—wlexp (~j:c(s)d5)

for each ¢ in [a, o0). The uniqueness of u and the last assertion of
4.1 follow easily from this inequality and the proof of is complete.
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5. Semi-groups of operators.

In this section we will give sufficient conditions for a member A of
H(D, E) to generate a semi-group U of operators in LIP(E, E).
DerFINITION 5.1. A function U from S into LIP(E, E) will be called a
semi-group of operators in LIP(E, E) if the following holds:
1) U@©)=1 and U@RU(s)= U(t+s) for all t and s in S.
(5a) 2) There is a constant K such that N'[U{)] < exp (Kt) for all ¢ in S.
3) If zis in E and u,(f)=U(t)z for all t in S then u, is continuous on S.
If D is a dense subset of E and A is a member of H(D, E), then A is said
to be a generator (resp. weak generator) of U if for each z in D,

[U(h)z—2]/h— Az (vesp. [U(W)z—z]/h — AZ) as h— 0.

THEOREM 5.1. Suppose A is in H(E, E), A is continuous, Re (Ax— Ay, f)
= K|x—y|® for all x and vy in E and [ in F(x—Yy), and either

1) each z in E has a neighborhood V, such that the restriction of A to V,

1s in LN(V,, E), or

2) A is locally uniformly continuous on E.
Then A generates a semi-group of operators U satisfying (5a). Furthermore,
u, is differentiable on S for each z in E and ui(t) = Au,(t) for all t in S.

INDICATION OF PROOF. The local existence of solutions to u/(f) = Au(?)
where A satisfies either 1) or 2) follows from Theorems or 3.3. To com-
plete the proof we need only show that u can be extended to S. Let 7>0
and suppose that u is defined on [0, T). Let 0<t <, <T and for each ¢ in
[0, #,] define p()=|u(t+t,—t)—u(@®|. Then pi() =71h}})(lu(t+tz—f1)—u(t)

+hALAu(t+1t,—t)— Au@®]| — lul+t,—t)—u(®)|)/h < Kp(t) and hence, |u(t,)—u(l)]
<exp (KT)|u(t,—t,)—u(0)|. Thus, tlign_ u(t) exists and the theorem follows.

THEOREM 5.2. Suppose that A is in H(D, E) and either of the following is

satisfied : '

1) D is dense in E, —(A—K1) is uniformly m-monotonic, and if (x,) is a
sequence in D such that x,—x and |Ax,| are bounded, then x is in D
and Ax, % Ax,

2) D=E, A is demicontinuous on E, Re (Ax—Ay, /)= K|x—y|* for all x
and y in E and f in F(x—y), and each z in E has a neighborhood V,
such that A is bounded on V, and the restriction of A to V, is in
LN(V, E).

Then A is a weak generator of a semi-group of operators U satisfying (5a).
Also, for each z in D the weak derivative (u,), of u, exists on S and (u,),(t)
= Au,t) for all t in S. Furthermore, for almost all t in S, ujt) exists and
equals Au,(t).
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INDICATION OF PROOF. If A satisfies 1) then the conclusions are an im-
mediate consequence of [Theorem 4.1 In a manner similar to the proof of
[Theorem 3.1, for each z in E and some T >0 we can find a locally Lipschitz
continuous function u# from [0, 7") into E which is weakly differentiable and
satisfies #(0)=z and u,(t)= Au(®) for all ¢ in [0,T). Thus, for each ¢ in

[0, T) we have u(t)= z+(B)ftAu(s)ds (where (B) denotes the Bochner integral)
0

and hence, u/(¢¥) exists for almost all ¢ in [0, T) and equals Au(f). The proof
now follows in a manner similar to the proof of by using the
Lebesgue integral in solving the differential inequalities.

REMARK. If A is a continuous member of H(E, E) and A generates a
semi-group U satisfying (5a) with A=0 and with the functions u, being
differentiable and satisfying uj(f) = Au,(t) for all + in S and z in E, then —A
is necessarily accretive. This can easily be seen for if x and y are in E and
() =|ux()—u,@)|, then p is nonincreasing on S and hence, p/ () <0. Con-
sequently, hlir}r(l)(lx—y+h[Ax~Ay]|—lx~y|)/h:p;(0)g0 so —A is accretive
by [Proposition 2.5 If @ is a bounded subset of F and for each ¢>0 there
is a 0 >0 such that if x is in Q and 0<h =9, we have |[u,(h)—x]/h—Ax|Ze,
then the restriction of A to Q is in LN(Q, E) and —A is uniformly mono-
tonic on . This can easily be seen for if x and y are in Q and 0<h<d,
then

(x—y+hLAx—AyY|—|x—yD/h = (x—y+[u,(W)—x—u,(W+y]|—|x—y)/h+2¢
=(UWx—UWy|—|x—y[)/h+2e

<2

since |UM)x—U(h)y|<|x—y|. In particular, if A is locally uniformly con-
tinuous on FE, then —A is accretive if and only if —A is locally uniformly
monotonic (i.e. for each z in E there is a neighborhood V, of z such that
the restriction of A4 to V, is in LN(V,, E) and L'TA|V,]1=0).
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