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Introduction

We shall assume that the reader is familiar with the paper [1]

Let £ be an algebraic number field, and £ a finite Galois extension of £
with Galois group g. As in [1], let (k/£2, G, ¢) be the imbedding problem
associated with an exact sequence of finite groups

@
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For each prime p of £, we choose a prime P in k2 lying above p and fix
it once and for all. Usually we shall denote the B-adic completion kg by k.

Let g* be the local Galois group G(k*/82,) and put G*= ¢ *(g*). Then we have
an exact sequence

903’
1 A G* g? 1.

Here, ¢* denotes the restriction of ¢ to G*.

Let E be a finite set of primes of £, and suppose that we are given a
solution K(p) of (k*/£2,, G*, ¢*) for each prime p= E. We say that the imbed-
ding problem with given local behavior

(kR/2,G, ¢; Kp),pe E)

is solvable, if there exists a solution K of (k/£2, G, ¢) with the following pro-
perties :

1) The algebra K is a field.

2) The algebra Ky (=k*®,K) is identified with K(p) as Galois algebras

for each p= E.

In this paper we shall treat this problem in case A is a cyclic group.
Since it will be shown that this problem can be reduced to the case where
A has a prime power order [*, and further to the case where we can suppose
that k contains a primitive [™th root of unity {, we can restrict our attention
to that case.
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In order to state the theorem to be proved, we need to introduce some
more notations. Let z be a generator of the cyclic group A, and x be a
character of A defined by x(z)={. Put

h={heg; x@Z)=x)"}.

b is a normal subgroup of g, and the quotient group g/§ may be considered
as a subgroup of the group of reduced residue classes of the rational integers
mod [*. Therefore, in particular, if [ is an odd prime number, then g/} is a
cyclic group.

THEOREM. Suppose that E contains all the primes which ramify n k/82,
and that g/Y is cyclic. Then the imbedding problem with given local behavior
has infinitely many solutions. If G 1s,in particular, a split extension of A by g,
then the assertion is true without the assumption that E contains all the primes
which ramify in k/£Q.

This result extends Ikeda’s one (cf.[3]) which deals with the case where
[ is an odd prime and where G is a split extension.

§1. The imbedding problem in case G is a split extension.

In this section we shall treat the imbedding problem (k/2, G, ¢) under
the following assumptions :

1) The field £ has characteristic 0.

2) A is a cyclic group of prime power order [

3) k contains a primitive ["-th root of unity .
We shall use the following notations:

Z, X the same in Introduction,

[s] (s€g) an integer such that x°®= x[%]

() (s=g) an integer such that {*={",

{sy (s=g) an integer such that z°=2z<
Clearly we have a formula

) =[s]<s) (mod (™).

1.1. Suppose that (k/£2, G, ¢) is solvable. And let K be one of its solu-
tions. Since K is a Galois algebra over k with Galois group A4, and since
{ €k, there is an element g in k* such that K is isomorphic to k[ X7/(X""—p),
where k[ X is the polynomial ring in one variable X over k. That is, there
exists an element w in K such that

K=Flw], o"=peck, o' ={w. (2

An element p satisfying (2) will be called a ‘power factor’ of the Galois
algebra K/k. From w®s=w?%*, we have
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w® =ow"E;, and hence p°= p=EY" 3

for some suitable &, 'k*. (Recall that g, (s = g) is an element of G satisfying
©(gs) =5s.)

Let g, and pu, be two power factors of K/k. Then pu, =y, (in k). Here,
and in what follows, the notation a = 8 (in k) signifies that «8~' is an [*-th
power in k*. "

Now suppose that (k/£2, G, ¢) has another solution K. And let yx’ be a
power factor of K’/k. Then E[X]/(X"—p/p) is easily shown to be a Galois
algebra over £, and to be a solution of the imbedding problem assocciated
with the identity class of H?*(g, A), i.e. associated with a split extension of
A by g.

Conversely, let G, be a split extension of A by g, and let ¢,: G,—g be
the canonical surjection. Let m be a power factor of a solution of (k/£2, G,,
¢,). Then, it is also easily shown that k[ X]/(X—pum) is a solution of (k/£,
G, ©). Thus it is necessary to determine the solutions of (k/2, G, ¢,) in
order to investigate the difference of two solutions of (k/Q2, G, ¢).

1.2. Let § be the normal subgroup of g defined in Introduction, i.e.
h={heg;[h]=1 (mod[™}. And suppose that g/f is cyclic. Let

=Y

be a coset decomposition of g modulo ¥, and V a complete system of repre-
sentatives. We choose an element u & V whose coset generates g/f. In case
[ =2, we shall treat the following case independently :

lu]l=—1 (mod 2%). S

We denote by w the expression > v[v™']. Let L be the subfield of %
vV

corresponding to ), then we have the
PROPOSITION. Let K be a solution of (k/82, G,, ¢,), and p a power factor
of K. Then there is an element & in L* such that

pET n B
In the special case (S), there are £ & L* and a < 2% such that
p= Eva®™t (in k).
To prove this Proposition, we need the following lemma which is found

in [2], with a sketch-proof.
LEMMA. Suppose that m=(g:9) #1. Put e= ﬁl%f (A—[ul™. Then we can

take [u] such that ¢ is prime to I, except the case (S).
Proor. Let m=myl (m, )=1. If ¢=0, then the Lemma is obvious.
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Suppose that e=>1. It suffices to show [u]™"= 1 (mod (**') under the following
assumptions :

[u)”=1 (mod![®) for 1<y <m, and [u]"=1 (mod[").

Put [u]m* ' =1-+al’ (a,l)=1. Then we see b=1. Since ([u]™" )= 1+1ial’
(mod [?) for i=1, 2, ---, [—1, we have

l—i—[u:]"”’le_l—F +([u]mOl€—l>l—1 El—-]— % a(l—l)lb’“ (mod 12)

=/ (mod [?), if [+2.

Hence, in case [ # 2, it follows from’[u]™ = 1 (mod [**) that [4]™" ' =1 (mod [?).
This contradicts the minimality of m.

If /=2, then n =3, since m+#1 and [u]== —1 (mod 2"). Let m=2¢ (Note
that 2 is the only prime which divides m.) If e¢=2, then [u]**"' =142,
2xa, and b=2, since n=3. Hence we have [u]**'+1=2 (mod4). Hence
[u]*=1 (mod 2™*) implies [u]*'=1 (mod2"). Finally, if e=1, then [u]

= +1+2""! (mod 2"). Hence we have ¢= é A—[u]H=1 (mod2). Q.E.D.

PROOF OF OUR PROPOSITION. (i) First, we prove that if m=1, then
p=~E& (in k) for some &< 2* From (3) there is an element &, € k* such that

s=wé; (seg). From this we have &,=§&; (s,t=g). Since H(g, k*) =1,
there is n € k* satisfying £,=%'"°. Hence (w7)*=wy for every s<g, which
means py'" e 2%,
Note that we can assume that w*=w for s<g, and that g is an element
of 2%
(ii) From (i) we may assume that

o"=w for hel) and o'"=pcL*.
From (3) we have

"= "¢, with some &, k*. @
From (4) we have

1

m—
_am __rugme ), ubaam—isd
w=w =" ‘Eu =0 ‘

Since [u]™=1—¢l", we have

m-1

s £, 2T = gy (in k).
n

Operating h (€ %) on both sides of (4), we have &:=¢,. Hence &, L. We
can find y satisfying the congruence ey=1 (mod ["), by virtue of the above
Lemma. Put £=£&27'%, Then we have p~¢£¥ (in k) and & L*

(iili) Let us consider the case (5). We may assume that
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o"=w for helh, pelL*,

From (3) we have
-1

w=w'a, aes L*, )

since [u]= —1 (mod 2"). Operating u on both sides of (5), we have w=wa®"?,
or equivalently, a*=«a, which asserts that « is an element of 0Q*.

Raising both sides of (5) to the 2°-th power, we have p“=p'a*", or
equivalently, Ny o(¢/a?* )=1. By Hilbert’s Theorem 90, we have u/a®*"*
=£'-% with some & L*. This completes the proof. Q.E.D.

1.3. The converse of Proposition 1.2 is also true, i.e. we have the fol-
lowing.

PROPOSITION. Let & be an arbitrary element in L*. Put

p=E(= L),

V=V

(For the case (S), let &€ and « be arbitrary elements in L* and in 2%, respec-
twely. And put
ﬂ — El«uaZn"l -)

Then an algebra E[X/(X™—p) is a Galois algebra over Q, and this is a solu-
tion of (k/82, Gy ©o)-

Proor. In the special case (S), the assertion of our proposition is obvious.

Let F be an abelian group of type (I*, ---, (") with basis {z,},ey. For
seg let 5 and s be the uniquely determined elements of V and of ), respec-
tively, such that s=s5 holds. Define the operation of g on F by

28 =77,
8

Noticing vs vst=uvst, it is easily seen that F is a g-module. The map which
sends z, to z<%> induces a g-homomorphism of F onto A. We denote this

homomorphism by f.
Let {w,}ver be a set of symbols, and define

n
wy' =&, wy=og, op={"w,,
W =@, , if vvv, v,veV.

Then a commutative algebra A[w,; ve V] is a Galois algebra with Galois

group g- F (=a split extension of F by g) over £ and with Galois group F

over k. Let N be the kernel of the homomorphism f. Then the fixed sub-

algebra K of kLw,; ve V] under N has the Galois group g- A (=G,) over L.
An element IJzl» of F belongs to N, if and only if

vV

2 i)y =0 (mod I7). (6)
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As (T 0o )or ™ = (5% [T wiv, TT ol belongs to K, if and only if we
vEV vEV VIV
have
2 [ )i, j, =0 (mod![™)
VEV

for any set {i,}.er satisfying (6). From this it follows that J] wi» belongs

veEV
to K if and only if j, =[v"']- ¢ (mod [") for some constant ¢. Put o= IIVa)E}"‘],
vE
then K=Fk[w], and we see o' =&, Q.E.D.

Note that the proposition is true without the assumption that g/Y is cyclic.

1.4. PROPOSITION. Suppose that Q2 is an algebraic number field, and that
A is cyclic of prime power order [™, and also that a primitive [™-th root of
unity is contained in k. If there is a solution K of (k/8, G, ¢) satisfying
KQk?=K() for pe E, then the imbedding problem with given local behavior
(k/82, G, ¢ ; K@), pe E) has infinitely many solutions.

PROOF. Let q be an arbitrary finite prime of £ which splits completely
in L/f2. Denote by q; one of the primes in L lying above g. Then every
prime conjugate with g, over £ is written ¢ with some v V, and these ¢%
(ve V) are all distinct. Let p be an element of L such that o=0 (modq;)
but p=0 (modq}). Consider the following system of congruences:

§=p (modai)
=0 (modad) for all W(=1) e V
£=1 (modyph for a sufficiently large 2 and all pe E.

Clearly there is a solution & in L.

Let u# be a power factor of K. Then k(A/u£¥) is a field and a solution
of (k/2, G, ¢). By the third congruence we have §“=1 (modp®). This means

wx~1 (in k%). Hence we have k(A uE®) Rk’ = kLol @k’ = K@) by the as-
sumption of our proposition. There are infinitely many primes which split

completely in L/£, so the imbedding problem with given local behavior has
infinitely many solutions. Q. E.D.

§2. Reduction

Throughout this section we assume the following :

(1) £ is an algebraic number field.

(2) A is a cyclic group.

2.1. We shall use the same notations in 2.1 of [I]

Suppose that we are given two imbedding problems with given local be-
havior (k/£, G, ¢,; K,(p),pe E), i=1,2. By virtue of Proposition 2.1 of [1],
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K,(®) ®y Ky(p) is a solution of (k*/£,, G*, #*). Hence we have another imbed-
ding problem with given local behavior (k/£, CN}, ;5 Ki0) R, K®), pe E).

PROPOSITION. [If (k/£, 6,¢;K1(p)®kp1{2(p),peE) is solvable, then (k/£2,
Gy o Ki(),pe E) is solvable for each 1. If the orders of A, and A, are
relatively prime, then the converse is also true.

Proor. Let K be a solution of (&/2,G, ¢; K,() QukK,®), v E), and K,
the fixed subfield of K under A,. Then K, is a solution of (¢/92, G,, ¢,). Since
R* Q. K, is the fixed subalgebra of k”@k[? under A,, we have k", K, = K,(0).
Hence K, is a solution of (k/2, G,, ¢,; K.(»), b E).

Conversely, let K, be a solution of (k/2, G, ¢;; K,(»),p< E) for each 1.
Then K, Q.K, is a field by the assumption on the orders of A,, and this is a
solution of (k/2, G, . Moreover we have

R Q(K, Qi K2) = (B Q@i K1) @ n(k* Qi K»)
= K,(0) @K,
Hence K,®.K, is a solution of (k/£, G, &; K@ RK,®), pe E). Q.E.D.
By this proposition the imbedding problem with given local behavior can

be reduced to the case A has prime power order.

2.2. From now on we shall assume that A is cyclic of prime power order
[*. We adjoin to k£ a primitive [*th root of unity { and denote k() by k.
Let g be the Galois group G(£/£), and j the natural epimorphism of g onto
g. Define T°=T%% for Te A and &3 Then A has the structure of a g-
module. Let

1—A—G g ——1

be a group extension of A by g corresponding to Inf,(a) € H%(g, A), where a
is the cohomology class of H*(g, A) determined by the exact sequence (1).
Then we have another imbedding problem (&/R2, G, &) (cf. 2.2 of [17).

Let B be any fixed prime in % lying above P, and let §* be the local
Galois group G(k*/R,), where £* denotes k. By virtue of Proposition 2.2 of
[1], noticing

Res % Inf{(a) =Inf % - Res % (a),

we see that K(b) ®,»k* is a solution of (£*/£y, G*, ). Thus we have another
imbedding problem with given local behavior (2/R, G, & ; K(v) Rk, pe E).
PROPOSITION. (£/2, G, ¢ ; K(b) Q,+k* p & E) is solvable, if and only if (k/9,
G,o; K@), pe E) is solvable.
Proor. Let K be a solution of (£/9Q,G, &; K@) R,k p< E), then the
fixed subfield K of K under G(k/k) is a solution of (k/%, G, ¢) and we have
K=K®k. In addition, we have
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Ky = KEQek® = (K@ k) @k = K Qu(k Qik?)
= KQuk* = KQu(k* Qok*) = (KQ1k*) @ ok
=Ky @k’ . Kg=Ks@uk".

Since Ky = K(p)®,sk" by the assumption, we have

KgB ®kpl€p = I((D) ®kp]€p .

Since Ky is elementwise fixed by G(E*/k"), Ky is contained in K(p). This
shows Ky= K(p). .

Conversely, let K be a solution of (k/2, G, ¢; K(),pe E). Then K®k is
a solution of (£/2, G, . In addition, we have

(K Quk) Qi k* = KQuk* = K@k @0k
= (KQuk") @k’ = K@) @ k" -

Applying Proposition 1.4 we come to the conclusion. Q. E.D.

§3. Proof of main theorem

3.1. From the preceding considerations we may suppose that A is cyclic
of prime power order [*, and that a primitive [*-th root of unity is contained
in k. Suppose that E contains all the primes which ramify in k2/£, and that
g/h is cyclic. Then by Corollary to Theorem 1.3 in and Theorem of Beyer
the imbedding problem (k/£2, G, ¢) is solvable.

Put *=¢*N"Y, and p,=PNL. Denote L,, by L’ Then we have })?
=G(k*/L?). Let

g'= U Dh"-v

vp - Vyp
be a coset decomposition of g* modulo §*, and V, be a complete system of
representatives. Let

g= \U 0p-[g’

oV p
be a decomposition of g into right cosets modulo the composite group §g*, and
V, a complete system of representatives. Then it is obvious that the set
(Dyvy; Do e Vo, 1y € V,} is a complete system of representatives modulo ¥, since
h is a normal subgroup of g. Hence we may use this set as V.

3.2. Let ko] (" =p' € k*¥) be a solution of (k/2,G, ¢). Then k'[w’]
=k[w']R,k" is a solution of (k*/£2,, G*, ¢*). For pe E, K(p) is a solution of
(R*/82y, G*, ©*) by the definition. Hence, by Proposition 1.2, we have

-1
W ILE™™ (in k)
»

n vVpEV
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for some &, L*. Here, p, is a power factor of K(p)/k*.
If we can find an element & € L such that

vplop 11

~ II & (in &%)
n VpEVy

gv= 1I ‘EEP%[”;I;’PAJ
VpEVY
E.pE’I}p
for p= E, then the proof of Main Theorem is complete, by virtue of Proposi-

tion 1.4. But it suffices to find &, satisfying

" =6 (n L) ™

VpETVp
for p= E. Since 9, (#+ 1) is not contained in §g*, we have
PYP £ PP, if o)+ 0y.

Hence we can find £ € L satisfying the congruences

E=& (modpd), £=1(modpy %  for m(xD)e Vp.
Then we have
E=¢, (modyp}), E%=1 (modp}) for d(=De V,.

Hence & satisfies (7).

If G is a split extension, it is clear that the condition that E contains
the ramified primes may be removed.

We can prove the case (S) in a similar way, so its proof is omitted.

§4. On Grunwald’s existence theorem

Let £ be an algebraic number field, and A a cyclic group of prime power
order [*. Suppose that we are given a Galois algebra K(p) over £, with
Galois group A for each prime p of E, where E is a given finite set of primes
of 2. Then Grunwald’s existence problem is stated as follows:

To find a necessary and sufficient condition which assures that there
exists a field K/2 whose Galois group over £ is isomorphic to A, and whose
p-adic completion K, = K®go2, is K(p) for each pe E.

By our Main Theorem, if 2()/£ is a cyclic extension, then there are
infinitely many solutions for Grunwald’s existence problem. S. Wang and H.
Hasse (for example, see have solved this problem even in case where
2)/£ is not cyclic. However, the imbedding problem with given local be-
havior remains as an open question, if the condition that g/§ is cyclic is not
satisfied.

Tokyo Institute of Technology
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