
J. Math. Soc. Japan
Vol. 22, No. 2, 1970

Orbits of one-parameter groups II

(Linear group case)

By Morikuni GOTO1)

(Received Feb. 17, 1969)

\S 1. Introduction.

Let $R$ denote the field of real numbers. We denote by $X$ the factor group
of the additive group of $R$ modulo the subgroup composed of integers. A
compact connected one-dimensional Lie group is called a circle. A circle is
topologically isomorphic with $<\chi$ . A direct product Lie group of a finite num-
ber of circles will be called a toral group. By a torus we shall mean the
underlying analytic manifold of a toral group.

We can classify one-parameter subgroups of Lie groups topologically into
three types: (1) a closed straight line, which is topologically isomorphic with
the additive group of $R$ ; (2) a circle; and (3) a non-closed one-parameter
subgroup. When a one-parameter subgroup Ee is non-closed, the closure $\overline{X}$

is a toral group of dimension at least two.
We let $M(n, R)$ denote the Lie algebra of all $n$ by $n$ matrices with real

entries, and $\mathcal{G}t(n, R)$ the general linear group, the group of all invertible
matrices in $M(n, R)$ . In this paper we shall generalize the foregoing topo-
logical classification of one-parameter subgroups of $\mathcal{G}_{\rightarrow}\mathcal{L}(n, R)$ to the following
form:

THEOREM 1. Let $-\mathcal{L}$ be a closed connected subgroup, and let $X$ be $a$ one-
parameter subgroup of $\mathcal{G}X(n, R)$ . Then an orbit of ec in the left coset space
$\mathcal{G}X(n, R)/\Leftrightarrow C$ is either locally compact and homeomorphic with a point, $R$ or $\sigma X$ ,

or there exists an analytic submanifold $\ovalbox{\tt\small REJECT}$ in $\mathcal{G}_{\Leftrightarrow}C(n, R)/X$ , which is a torus,
such that the orbit can be regarded as an everywhere dense one-parameter sub-
group with respect to the toral group structure of $Bl$ .

We note here that although a locally compact one-parameter subgroup is
closed (and vice versa), a locally compact orbit is not necessarily closed. Also
it is to be noted that in general it is impossible to find a toral subgroup er
of $\mathcal{G}X(n, R)$ such that an orbit of $q$ coincides with the torus $\ovalbox{\tt\small REJECT}$ in Theorem 1.

When $\rightarrow C$ is a (not necessarily connected) algebraic subgroup in $\mathcal{G}_{\rightarrow}C(n, R)$ ,

1) Research supported in part by NSF Grant GP 4503.
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we can get an analogous theorem, essentially as an easier part of the proof
of Theorem 1. Moreover, in this case we can get a connection between the
topology of an orbit and the notion of play, which was introduced by the
author in a previous paper.2)

Let $g$ be a group, and let a and $B$ be subgroups of 9. By the play3) of
$d$ in $B$ , denoted by $9$) $(d, \mathscr{D})$ , we mean the intersection of all $a\mathscr{D}_{a^{-1}}$ for $a$

in $d$ . By definition, $\mathscr{L}(d, \mathscr{D})$ is a subgroup, and $\leftrightarrow q$ normalizes $q$)
$(\leftrightarrow t, 9)$ .

Hence $Q(d, \mathscr{D})=d\cdot 9(d, \mathscr{D})$ is a subgroup of $\mathcal{G}$ . The group $Q(d, 9)$ will be
called the extended play of cfl in $\mathscr{D}$ .

Now we can state our theorem:
THEOREM 2. Let -c be an algebraic subgroup, and let se be $a$ one-parameter

subgroup, of $\mathcal{G}X(n, R)$ . Then the orbit $XX/X$ is locally compact if and only

if the extended play $Q=Q(X, X)$ is closed. When the orbit $XX/X$ is not locally

compact, we can find a toral subgroup $q$ of the closure $\overline{Q}$ of $Q$ such that $XX/X$
is everywhere dense in $fX/X$ .

An example in \S 6 will show that it is impossible to generalize Theorem
2 to the case of non-algebraic $C$ .

This paper is organized into six sections. Because our proofs are based
mainly on the “ category argument ” and on the “ orbit theorem ‘’ of algebraic
groups, we first develop machinery on locally compact groups and on algebraic
groups in \S 2 and \S 3, respectively. We apply the results in \S 4 to obtain
Theorem 1. The proof of Theorem 2 is given in \S 5. Finally in \S 6 we give
examples of orbits and their closures.

\S 2. Locally compact groups.4)

Let .Si be a locally compact Hausdorff space, and let $S$ be a subset of $\ovalbox{\tt\small REJECT}$ .
If $S$ is open or closed in $\ovalbox{\tt\small REJECT}\ell$ , then $S$ is locally compact (with respect to the
relative topology). Conversely if $S$ is locally compact, then 8 is an intersection
of a closed set and an open set, i. e. $S$ is open in the closure $\overline{S}$ of $S$ .

Now let 9 be a locally compact group, and let $X$ be a subgroup of $\mathcal{G}$.
If $x$ is closed, then of course it is locally compact. Conversely if $t$ is locally
compact, then because the closure $\overline{X}$ is also a subgroup of $gx$ is an open
subgroup of $\overline{X}$, and since an open subgroup of a topological group is closed,

we have that $X$ is closed. Thus, a subgroup of a locally compact group is
locally compact if and only if it is closed.

2) Goto [3].
3) In Goto [3] the notion of “ play ” was introduced infinitesimally, $i$ . $e$ . the play

in [3] is the Lie algebra of the play in this paper.
4) Refer Montgomery and Zippin [4].
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For a pair of subsets $\llcorner fl$ and $\mathscr{D}$ of a group $\mathcal{G}$ , we adopt the notation:
( $d\cdot \mathscr{D}=\llcorner flg=\{ab; a\in d, b\in \mathscr{D}\}$ .

(2.1) Let 9 be a locally compact group, and let $X$ be a closed subgroup

of $\mathcal{G}$ . We denote by $g/\rightarrow \mathcal{L}$ the left coset space. Let $\mathscr{X}$ be a subset of $\mathcal{G}$ . Then
the set $\ovalbox{\tt\small REJECT} 1i$ is locally compact (or closed) in $\mathcal{G}$ if and only if $\mathscr{X}X/X$ is locally
compact (or closed) in $\mathcal{G}/X$ .

PROOF. Because the projection $g\ni g-\pi(g)=gX\in \mathcal{G}/X$ is continuous and
open, the set $\mathscr{X}X/X$ is closed or open, according as $\pi^{-1}(\ovalbox{\tt\small REJECT} 1i/X)=\ovalbox{\tt\small REJECT}_{\Leftrightarrow}c$ is closed
or open. A necessary and sufficient condition for $\ovalbox{\tt\small REJECT} x$ to be locally compact

is that $\ovalbox{\tt\small REJECT}_{-}\mathcal{L}$ is open in the closure $\overline{\ovalbox{\tt\small REJECT}_{\rightarrow}C}$. On the other hand, the closure of
$\mathscr{K}X/x$ in $\mathcal{G}/x$ coincides with $\overline{\ovalbox{\tt\small REJECT} X}/\rightarrow C$ , and $\ovalbox{\tt\small REJECT} X/X$ is open in $\overline{\ovalbox{\tt\small REJECT} I}/J$ if and
only if $\mathscr{X}X$ is open in $\overline{\ovalbox{\tt\small REJECT} X}$. Q. E. D.

(2.2) Let $\mathcal{G}$ be a locally compact group, and let .,4 and .ce be locally compact
groups with countable bases. Let $\alpha$ and $\beta$ be continuous one-one homomorphisms

from $\Delta$ and $\mathscr{D}$ into $\mathcal{G}$, respectively. Suppose that $\alpha(d)\beta(\mathscr{D})$ is locally compact.
Then the mapping $\rho$ :

$d\times \mathscr{D}\ni(a, b)-\rho(a, b)=\alpha(a)^{-1}\beta(b)$

is (continuous and) open. More precisely, setting

$C=\alpha(ci)\cap\beta(9)$ and $\mathscr{D}=\{(\alpha^{-1}(c), \beta^{-1}(c));c\in C\}$ ,

we have a homeomorphism $\tilde{\rho}$ , induced by $\rho$ , from the right coset space $9\backslash (ci\times \mathscr{D})$

onto $\alpha(d)\cdot\beta(\mathscr{D})$ .
(2.3) In (2.2) we suppose moreover that $C$ is compact. Then for a closed

subset $d_{1}$ of $d$ and a closed subset $\mathscr{D}_{1}$ of $\mathscr{L}$} the set $\alpha(d_{1})\beta(\mathscr{D}_{1})$ is closed in
$\alpha(d)\beta(B)$ , and so it is locally compact.

PROOF OF (2.2). Let $a$ and $a^{\prime}$ be elements of $d$ , and let $b$ and $b^{\prime}$ be ele-
ments of $\mathscr{D}$ . If $\rho(a, b)=\rho(a^{\prime}, b^{\prime})$ then we have that $(a^{\prime}, b^{\prime})\in 9(a, b)$ and vice
versa. Hence 9 is a closed subgroup of $d\times B$ and $\rho$ induces a continuous
one-one mapping $\tilde{\rho}$ from the right coset space $9\backslash (dX\mathscr{D})$ onto $\alpha(cA)\beta(9)$ .

Let $CU_{A}$ and $CU_{B}$ be compact symmetric neighborhoods of the identities of
$l$ and $\mathscr{D}$ , respectively. We take compact symmetric neighborhoods $\subset \mathcal{V}_{A}$ and
$\subset V_{B}$ of the identities of $d$ and $\mathscr{D}$ , with $\subset \mathcal{V}_{A}^{2}\subset CU_{A}$ and $ct\nearrow_{B}^{9}\subset CU_{B}$ . Then $C(\nearrow A$

$\times\subset l^{\prime_{B}}=C(\nearrow$ is a compact neighborhood of the identity of $d\times \mathscr{D}$ , and the image
$\rho(\subset 1\nearrow)$ is compact. Because $d\times \mathscr{D}$ has a countable base, we can find an at most

countable subset $\{(a_{1}, b_{1}), (a_{2}, b_{2}), \cdots\}$ of $dXB$ such that $ d\times \mathscr{D}=\bigcup_{k=1}^{\infty}\subset$]$\nearrow(a_{k}, b_{k})$ ,

from which it follows that $\alpha(d)\beta(\mathscr{D})=\bigcup_{k--1}^{\infty}\alpha(a_{k})^{-1}\rho(CV)\beta(b_{k})$ . Since $\alpha(d)\beta(\mathscr{D})$ is

locally compact we can find a number $k$ such that $\alpha(a_{k})^{-1}\rho(\subset\nu)\beta(a_{k})$ contains
an interior point.

The direct product group $AX\mathscr{D}$ is acting as a transformation group on
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the space $\mathcal{G}$ by

$(c1\times \mathscr{D})\times \mathcal{G}\ni((a, b),$ $g$) $->\alpha(a)^{-1}g\beta(b)\in \mathcal{G}$ ,

and $\alpha(A)\beta(\mathscr{D})$ is one of the orbits. Hence the space $\alpha(d)\beta(\mathscr{D})$ is homogeneous
with respect to the action of (

$il\chi g$ , and in particular we see that $\rho(\subset \mathcal{V})$ con-
tains an interior point, say $\rho(a_{0}, b_{0})$ . Denoting $CU_{A}X^{C}U_{B}=CU$ we have that
$\wp(a_{0}^{-1}, b_{0}^{-1})\subset c_{U}$ . Since $\rho(\wp(a_{0}^{-1}, b_{0}^{-1}))$ contains the identity as an interior point,
$\rho(^{c}U)$ is a neighborhood of the identity. This obviously implies that $\rho$ is an
open mapping. Q. E. D.

PROOF OF (2.3). Let us first prove that 9 is compact. Since 9 is a
locally compact group with a countable base, and

$\mathscr{D}\ni(\alpha^{-1}(c), \beta^{-1}(c))-\beta^{-1}(c)-\rangle c\in C$

gives a continuous one-one homomorphism from 9 onto a (locally) compact
group, 9 is homeomorphic with $C$.

Now because $d_{1}^{-}$ and $\mathscr{D}_{1}$ are closed subsets of $\circ fl$ and $\mathscr{D}$ respectively, we
have that $d_{1}^{-1}\times \mathscr{D}_{1}$ is closed in $cd\times \mathscr{D}$ . By the compactness of 9, $9(d_{1}^{-1}\times \mathscr{D}_{1})$

is closed, and from which it follows that $\rho(\mathscr{D}(d_{1}^{-1}\times \mathscr{D}_{1}))=\alpha(\llcorner fl_{1})\beta(9_{1})$ is closed
in $\alpha(\llcorner fl)\beta(\mathscr{D})$ . Q. E. D.

\S 3. Algebraic groups in $\mathcal{G}\mathcal{L}(n, R)$ .5)

Throughout this paper, for a topological group $\mathcal{G},$
$\mathcal{G}^{0}$ will denote the con-

nected component of 9 containing the identity; also, by a linear group we
shall mean an analytic subgroup of $\mathcal{G}\mathcal{L}(n, R)$ for a suitable $n$ .

Let $\mathcal{G}$ be an algebraic group in $\mathcal{G}_{\rightarrow}C(n, R)$ . Then $\mathcal{G}$ is a closed subgroup,
and $\mathcal{G}^{0}$ is of finite index in S. For a linear group $\ovalbox{\tt\small REJECT}$ we denote by $[\ovalbox{\tt\small REJECT}]$ the
algebraic hull of $cg\ell$ , which is the smallest algebraic group containing $\mathscr{K}$ .

A subalgebra of $M(n, R)$ is said to be algebraic if it is a Lie algebra of
an algebraic group. Let us call an element $X$ of $M(n, R)$ algebraic if the one-
dimensional Lie algebra $RX$ is algebraic. For a subalgebra $H$ of $M(n, R)$ , we
denote by $[H]$ the algebraic hull of $H$ , which is the smallest algebraic Lie
algebra containing $H$ . If $H$ is the Lie algebra of a linear group St, then $[H]$

is the Lie algebra of $[\ovalbox{\tt\small REJECT}]$ .
Let $\mathcal{G}$ be a linear group, and let $\Re$ be the normalizer of $\mathcal{G}$ . Denoting

$Ad(g)A=gAg^{-1}$ for $g\in \mathcal{G}t(n, R)$ and $A\in M(n, R)$ , we have that Srg $=\{g\in$

$\mathcal{G}_{\rightarrow}C(n, R);Ad(g)G=G\}$ , and so Su is an algebraic group. This implies in
particular

(3.1) A linear group $\mathcal{G}$ is a normal subgroup of its own algebraic hull $[\mathcal{G}]$ .

5) Throughout this section, the reader may refer Chevalley [1].
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Let $X$ be in $M(n, R)$ . The algebraic hull $[RX]$ of $RX$ may also be denoted
simply by [X]. [X] is the set of replicas of $X$ and forms an abelian Lie
algebra, and it is possible to find a basis of [X] composed of algebraic ele-
ments. From this fact we can obtain the following

(3.2) Let $X$ be in $M(n, R)$ , and let $B$ be a (not necessarily algebraic) sub-
algebra of [X]. Then we can find an algebraic Lie algebra $A$ such that

$[X]=A\oplus B$ (direct sum).

Now the following theorem is sometimes quoted as the orbit theorem:
(Orbit Theorem). Let $d$ and $\mathscr{D}$ be algebraic groups in $\mathcal{G}X(n, R)$ . Then

the product $d\mathscr{D}$ is Zariski-open in the Zariski closure of $d\mathscr{D}$ . If, in particular,
$d\mathscr{D}=\mathscr{D}d$ , then $d\mathscr{D}$ is an algebraic group.

For our purposes we need only the following direct consequence of the
orbit theorem:

(3.3) Let $d$ and $\mathscr{D}$ be algebraic groups in $\mathcal{G}X(n, R)$ . Then the product
$A\mathscr{D}$ is locally compact, and so is $d^{0}\mathscr{D}^{0}$ .

\S 4. Proof of Theorem 1.

Let $X$ be a closed connected subgroup, and let $X=expRX$ be a one-
parameter subgroup, of $\mathcal{G}X(n, R)$ . Let $g$ be an element of $\mathcal{G}_{\rightarrow}C(n, R)$ . The
orbit of $X$ passing through the point $ g\Sigma$ is $XgX/X$ . Since the right trans-
lation by $g^{-1}$ maps $XgX$ onto $X(gXg^{-1})$ and $gXg^{-1}$ is a closed connected sub-
group with -C, in order to prove Theorem 1 we may assume that $g=I$, the
identity matrix, without loss of generality.

Let $L$ denote the Lie algebra of -C. We first exclude the trivial case
when $X\in L$ . We set $[X]\cap L=R$ . Then by (3.2) we can find an algebraic
subalgebra $S$ such that $[X]=R\oplus S$ . Hence there exist an element $X_{1}$ in $R$

and an element $X_{2}$ in $S$ with $X=X_{1}+X_{2}$ . Since $X_{1}$ and $X_{2}$ are commutative,
we have that

$\exp\lambda X\cdot X=\exp\lambda X_{2}\cdot\exp\lambda X_{1}\cdot X=\exp\lambda X_{2}\cdot\Leftrightarrow C$ for $\lambda\in R$ .

Moreover, that $X_{2}\in S$ implies $[X_{2}]\cap L=\{0\}$ . Hence after this we may assume
that $[X]\cap L=\{0\}$ , without loss of generality.

If $X$ is in $[L]$ , then the orbit $XX/x$ is a one-parameter subgroup of the
Lie group $[\Leftrightarrow C]/\approx C$ , by (3.1), and so our theorem is obvious in this case. We
set $[X]\cap[L]=B$ , and take an algebraic Lie algebra $A$ with $[X]=A\oplus B$ ,

by (3.2). By the foregoing remark, we may assume that $A\neq\{0\}$ after this.
Let us suppose that $B=\{0\}$ . By (3.3) the set [X] $[t]$ is locally compact,

and moreover that $B=\{0\}$ implies that $[X]\cap[X]$ is a finite group, as a zero-
dimensional algebraic group. On the other hand, $\overline{X}$ is closed in [Ee] and $\rightarrow C$



128 M. GOTO

is closed in [X]. Hence $\overline{X}X$ is locally compact by (2.3). Therefore after this
let us consider only the case when $B\neq\{0\}$ . We decompose $X$ into the form
$X=Y+Z$, where $Y\in A$ and $Z\in B$ . Obviously, $[Y]=A$ and $[Z]=B$ .

Thus we are going to prove Theorem 1 under the following assumptions:

$\left\{\begin{array}{l}X=Y+Z, [X]=[Y]\oplus[Z],\\[Z]=[X]\cap[L], [Z]\cap L=\{0\},\\Y\neq 0, Z\neq 0.\end{array}\right.$

We set

$\wp=\exp RY$ , $\mathcal{Z}=\exp RZ$ , $[\wp]=d$ , $[X]\cap[X]=B$ .
Since a and $[J]$ are algebraic groups, the set $cfl[X]$ is locally compact by
(3.3), and that $[Y]\cap[L]=\{0\}$ implies that $d\cap[_{\rightarrow}C]$ is a finite group. Hence
by (2.3) $\overline{\wp}\cdot\overline{\mathcal{Z}X}$ is a locally compact set. Now we have two cases depending
on the closedness of the linear group $\mathcal{Z}X$ .

Case 1. The linear group $\mathcal{Z}X$ is closed.
We shall first prove that $\mathcal{Z}$ is closed in this case. Because the closure

$\overline{\mathcal{Z}}$ is contained in [%] and $[Z]\cap L=\{0\}$ , it is obvious.
Since $\mathcal{Z}$ is in $[_{\rightarrow}C],\overline{q_{j}}$ is in $d$ , and $d\cap[X]$ is finite, by using (2.3) again,

we see that the abelian group $\overline{q_{j\mathcal{Z}}}$ is closed. Next let us apply (2.2) to the
locally compact groups $\overline{q_{j\mathcal{Z}}}$ and $X$ . We set

$\overline{\wp}_{\mathcal{Z}}\cap x=c$ .
Then $C$ is a discrete subgroup. Since $X$ is in $\overline{q_{j\mathcal{Z}}}$ the closure $\overline{XX}$ in gzx
is given by $\overline{CX}X$ .

If $CX$ is a closed subgroup of $q_{\overline{j}Z}$ then $XX=CX_{-}L$ is locally compact.
Otherwise, using the isomorphism theorem (as analytic manifolds):

$\overline{cx}x/\rightarrow c\simeq\overline{cx}/c$ ,

we see that the orbit $XX/X\simeq CX/C$ is an everywhere dense one-parameter
subgroup of the toral group $\overline{cx}/c$ .

Case 2. The linear group $ZX$ is non-closed.
We first prove the following Lemma:
LEMMA. Let $\mathcal{G}$ be a Lie group, and let $3l$ be a non-closed analytic sub-

group of $\mathcal{G}$ . Suppose that su contains a normal analytic subgroup $X$ of codi-
mension one, which is closed in S. Then we can find a non-closed one-parameter
subgroup $cU$ of $yt$ with the closure El‘ such that $\Re=\sigma x-$ and $g\cap X$ is a finite
group.

PROOF. We can find a one-parameter subgroup $\ovalbox{\tt\small REJECT}$ of su such that $\Re-=\mathfrak{X}$ ,

see $e$ . $g$ . Goto [2]. The fact that $\ovalbox{\tt\small REJECT} X=\mathfrak{R}$ implies that $\Re-=\ovalbox{\tt\small REJECT}^{-}x$ . $\overline{\ell}$ is a toral
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group and $\mathscr{B}\cap X$ is a closed subgroup of $\mathscr{B}$ . Hence we can find a toral
subgroup $g$ of $\mathscr{B}$ such that $\mathscr{B}=f(\ovalbox{\tt\small REJECT}^{-}\cap X)^{0}$ and $q\cap(\mathscr{B}\cap x)^{0}=\{I\}$ , from which
it follows that St $\cap X$ is finite. Let $c_{U}$ be the one-parameter subgroup con-
tained in $9^{\cdot}\cap \mathfrak{R}$ . Because $\mathfrak{R}=cUX$ and $c_{\overline{U}}$ is compact, we see that $c_{\overline{U}}=X$.

Q. E. D.
We apply the Lemma for $\Re=Z_{\Leftrightarrow}C$ , and obtain the one-parameter subgroup

$c_{U}=\exp RU$ in $\mathcal{Z}X$ and the toral subgroup $C\overline{U}=9^{\cdot}$. By taking a suitable $CU$

we may suppose that there exists an analytic curve $l(\lambda)$ in $X$ such that

$\exp\lambda Z=\exp\lambda U\cdot l(\lambda)$ for $\lambda\in R$ .
We set

$v(\lambda)=\exp\lambda Y\cdot\exp\lambda U$ for $\lambda\in R$ .
$v(\lambda)$ is an analytic curve with $\exp\lambda X\cdot X=v(\lambda)\Leftrightarrow C$ . We note here that $v(\lambda)$ is
not necessarily a one-parameter subgroup.

As we have seen $\overline{\wp}9^{\cdot}X=\overline{\wp}\overline{z_{\rightarrow C}}$ is a locally compact set. $\overline{\wp}s$ is closed
because $X$ is compact. Let us define an analytic mapping $\phi$ , from the direct
product group $\overline{\wp}\times\sigma$ into $\mathcal{G}X(n, R)/x$ , by

$\overline{\wp}\times 9\ni(y, t)-\emptyset(y, t)=ytX$ .

Let $q$ denote the set of all elements $(y, t)$ in $\overline{\wp}\times 9$ with $\phi(y, t)=\rightarrow \mathcal{E}$ . Then $g$

is a subgroup of $c\overline{tj}\times f$ ; because if $y_{1}t_{1}=l_{1}$ and $y_{2}t_{2}=l_{2}$ for $y_{i}\in\overline{qj},$ $t_{i}\in g,$ $l_{i}\in I$ ,
\langle$i=1,2$), then

$(y_{2}y_{1}^{-1})(t_{2}t_{1}^{-1})=t_{1}t_{1}^{-1}y_{1}^{-1}y_{2}t_{2}t_{1}^{-1}=t_{1}(l_{1^{-1}}l_{2})t_{1}^{-1}\in x$ .

$q$ is a closed subgroup, and $\phi(y_{1}, t_{1})=\phi(y_{2}, t_{2})$ holds if and only if $(y_{2}, t_{2})$

$\in \mathcal{G}(y_{1}, t_{1})$ . Thus we have an analytic homeomorphism between the abelian
Lie group $(\overline{qJ}\times q)/q$ and the submanifold $\overline{q_{jXX}}/\rightarrow C$ of $\mathcal{G}X(n, R)/X$ .

Next we shall prove that $g$ is a finite group. We set $g_{1}=\overline{q_{j}}\cap\sigma x$ and
$S_{2}^{i}=X\cap X$ . Both $q_{1}$ and $q_{2}$ are finite groups. If $(y, t)$ is in $g$ , then since

$yt\in\rightarrow C$ implies that $y\in fJ$ , we have $y\in g_{1}$ . On the other hand, if both
$(y, t_{1})$ and $(y, t_{2})$ belong to $q$ , then $t_{2}^{-1}t_{1}=(yt_{2})^{-1}(yt_{1})\in X\cap 9^{\prime}=q_{2}$ . Hence $g$

is a finite group.
Next we set $\tilde{v}(\lambda)=(\exp\lambda Y, \exp\lambda U)$ for $\lambda\in R$ . Then $\tilde{v}$ is a one-parameter

subgroup of $\overline{qf}\times f$ .
When $c_{t}f$ is a closed straight line, $\tilde{v}(R)$ is clearly closed, and so is $g_{v}(R)$

by the finiteness of $g$ . Hence $\phi(\overline{v}(R))=v(R)t/x$ is closed in $c_{tjZX}/x$ , i. e.
the orbit $xx/x$ is locally compact.

Now we may suppose that $\overline{Qj}$ is a toral group. Let us denote by $\wp$ the



130 M. GOTO

closure of the one-parameter subgroup $\tilde{v}(R)$ in the toral group $\overline{q_{j\times 9}}$ . Then
$\phi(cW)$ is the closure of $\phi(\tilde{v}(R))=XX/t$ in the coset space $\mathcal{G}X(n, R)/X$ . Since
$c_{W9}/g$ is a toral group with $c_{W}\phi(\mathscr{U})$ is a torus.

\S 5. Proof of Theorem 2.

Let -C be an algebraic subgroup, and let $X=\exp RX$ be a one-parameter
subgroup of $gX(n, R)$ . For $g$ in $\mathcal{G}X(n, R)$ , the group $gtg^{-1}$ is also algebraic.
Hence the play of ee in $x$

$9=9)(X, X)=\bigcap_{=\lambda_{\sim}R}\exp\lambda X\cdot X\cdot\exp(-\lambda X)$

is algebraic, as an intersection of algebraic groups. In particular, $9^{0}$ is of
finite index in 9) Let $Q$ be the extended play: $Q=X9$) Obviously, $Q^{0}=X\mathscr{L}P^{0}$

and $Q$ is a closed subgroup if and only if $Q^{0}$ is.
When $Q$ is not closed, by the Lemma in \S 4, we can find a non-closed

one-parameter subgroup $c\ell J$ of $Q^{0}$ such that $\overline{Q}^{0}=\overline{q_{j9^{0}}}$ and $\overline{q_{j}}\cap \mathscr{L}^{0}$ is finite. We
set $\overline{\wp}=\sigma$ . Using $Q^{0}=X9$) $0=q_{j9^{0}}$ we have that $\mathcal{G}X=\overline{XX}$ . Hence $\overline{X_{\rightarrow}C}/\rightarrow C$

$\simeq g\cdot/X\cap t$ as analytic manifolds. Since $X\cap X$ is a finite group as a subgroup
of $g\cap 9$ , the toral group $9^{\cdot}/9^{\cdot}\cap X$ is of dimension at least two, and $XX/X$
$=\wp_{\rightarrow C}/X$ corresponds to an everywhere dense one-parameter subgroup in the
toral group.

Next, let us suppose that $Q$ is closed. If $X$ normalizes $L$ , then $Q^{0}=XX^{0}$

is closed, and so is $XX$ . Hence we may assume, after this, that

$X=Y+Z$ , $[Y, Z]=0$ , $Z\in L$ ,

$[Y]\cap L=\{0\}$ and $Y\neq 0$ .

Since $\exp RZc9$ , the one-parameter subgroup $\wp=\exp RY$ is contained in $Q$ .
Because the closure $\overline{q_{f}}$ is contained in $[cU]$ , the intersection $\overline{\wp}\cap 9$ is a finite
group. Hence for $\overline{q_{j9}}$ to be in $Q$ , it is necessary that $\dim^{c}\overline{q}=1$ , i. e. q7 is
closed. Applying (2.3) for $[Qf]$ and $X$ , we see that $cqx$ is closed in the locally
compact set $[\wp]X$ .

\S 6. Examples.

EXAMPLE 1. We choose real numbers $\alpha,$ $\beta$ and $\gamma$ such that the system
$\{1, \alpha, \beta, \gamma\}$ is linearly independent over the rationals. We set

$e=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ , $i=\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ , $0=\left(\begin{array}{ll}0 & 0\\0 & 0\end{array}\right)$ ,

and define matrices $L$ and $X$ in $M(8, R)$ by
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$L=\left(\begin{array}{llllll}e-i & 0 & 0 & & 0 & \\0 & e-\alpha i & 0 & & 0 & \\0 & 0 & e-i & & 0 & \\0 & 0 & 0 & e & & \beta i\end{array}\right)$

and

$X=\left(\begin{array}{llll}e & -\gamma e & 0 & 0\\r^{e} & e & 0 & 0\\0 & 0 & e & -\gamma e\\0 & 0 & \gamma e & e\end{array}\right)$

For a real number $\lambda$ ,

$exp\lambda L=\exp\lambda\cdot\left(\begin{array}{lllll}r(-\lambda) & 0 & 0 & & 0\\0 & r(-\alpha\lambda) & 0 & & 0\\0 & 0 & r(-\lambda) & & 0\\0 & 0 & 0 & r( & \beta\lambda)\end{array}\right)$

where
$r(\mu)=exp\mu i=\left(\begin{array}{lll}cos\mu & -sin & \mu\\sin\mu & cos\mu & \end{array}\right)$ ,

and

$\exp\lambda X=\exp\lambda\cdot\left(\begin{array}{lllll}cos\gamma\lambda\cdot e & -sin\gamma\lambda\cdot e & 0 & & 0\\sin\gamma\lambda\cdot e & cos\gamma\lambda\cdot e & 0 & & 0\\0 & 0 & cos\gamma\lambda\cdot e & -sin & \gamma\lambda\cdot e\end{array}\right)$

.
$0$ $0$ $\sin\gamma\lambda\cdot e$ $\cos\gamma\lambda\cdot e$

Both $t=\exp RL$ and $X=\exp RX$ are closed straight lines.
The Lie algebra $[L]$ is of dimension four and is given by $[L]=RI\oplus T$,

where $T$ is the Lie algebra of a toral group $g$ and $T$ has a basis:

$H_{1}=\left(\begin{array}{llll}i & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & i & 0\\0 & 0 & 0 & 0\end{array}\right)$ $H_{2}=\left(\begin{array}{llll}0 & 0 & 0 & 0\\0 & i & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{array}\right)$ , $H_{s}=\left(\begin{array}{llll}0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & i\end{array}\right)$

.

Next, setting $Y=X-I$ we have that $[X]=RI+RY$ and $[X]\cap[L]=RI$ .
The one-parameter subgroup $\wp=\exp RY$ is a circle. We set $Y=\gamma H_{0}$ and

$v(\lambda)=\exp(\lambda\gamma H_{0})\cdot\exp(\lambda H_{1}+\lambda\alpha H_{2}+\lambda\beta H_{3})$ , $\lambda\in R$ .
$v(\lambda)$ is a curve in gs and $v(\lambda)X=\exp\lambda X$ . X.

Since $qf\cap q=\{\pm I\}$ , the set .St $=\% q$ can be identified with the toral group
($Qt\times \mathfrak{D}/\{\pm(I, I)\}$ and .Sn is a torus. The curve $v(\lambda)$ is obviously everywhere
dense in .St. Because $\det(m)=1$ for $m\in\ovalbox{\tt\small REJECT}$ and $\det(\exp\lambda L)=\exp(8\lambda)$ , we see
that the mapping $sa\times x\ni(m, l)-ml\in\ovalbox{\tt\small REJECT} X$ is one-one. Thus, we have proved
that the closure of the orbit $XX/\approx C$ can be identified with the four-dimensional
torus $\ovalbox{\tt\small REJECT}$ .
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Next, let us prove the following two propositions concerning our example:
(i) $9^{)}(X, \Leftrightarrow C)=\{I\}$ , and so the extended play ec is closed.
(ii) For any toral subgroup YI of $\mathcal{G}X(8, R),$ $\ovalbox{\tt\small REJECT}_{\Leftrightarrow}C$ cannot contain $X_{\leftarrow}C$ .
PROOF OF (i). Computing [X, $L$] we see that {X, $L$ } cannot be a basis of

two-dimensional Lie algebra. Hence $9$) $=9$)$(X, X)$ is discrete. Since EC is
connected and ec normalizes $q,$ $X$ must centralize 9. On the other hand, the
equality

$[$ ( $r(-\lambda)0$ $r(-\alpha\lambda)0$ ), $\left(\begin{array}{ll}0 & -\gamma e\\\gamma e & 0\end{array}\right)]=0$

implies that r(\lambda )=r(\mbox{\boldmath $\alpha$}\‘A), $i$ . $e$ . $\alpha\lambda-\lambda=2m\pi$ for some integer $m$ . If we have
moreover that $\beta\lambda-\lambda=2n\pi$ for some integer $n$ , then $\lambda$ must vanish by the
linear independence of $\{1, \alpha, \beta\}$ . This proves that $9=\{I\}$ .

PROOF OF (ii). Suppose that $\ovalbox{\tt\small REJECT} X\supset X_{-}C$ . Since $\ell X$ is closed, we have
that $\ovalbox{\tt\small REJECT} J\supset\overline{XX}=\ovalbox{\tt\small REJECT} x$ . Because a toral subgroup of $\mathcal{G}X(8, R)$ is of dimension
at most four, and $\dim(\ovalbox{\tt\small REJECT} X)=5$ , we have that $\dim\ovalbox{\tt\small REJECT}=4$ . From the equality
$\dim(\ovalbox{\tt\small REJECT} X)+\dim(\ovalbox{\tt\small REJECT}\cap qX)=\dim\ovalbox{\tt\small REJECT}+\dim(9X)$ , we have $\dim(\ovalbox{\tt\small REJECT}\cap q_{\rightarrow \mathcal{E})}=3$ . On
the other hand, $q$ is the largest compact subgroup of $9X$ . Hence we have
$\ovalbox{\tt\small REJECT}\cap 9^{\cdot}X=f$, whence $\mathscr{X}\supset \mathcal{G}$ . Since $9X=expRI\cdot Z,$ $\ovalbox{\tt\small REJECT}\supset ff$ implies that $\ovalbox{\tt\small REJECT}_{-}C$

is an abelian group, which contradicts the fact that [X, $L$] $\neq 0$ .
EXAMPLE 2. Let $li$ be a closed connected subgroup or an algebraic sub-

group, and let $X$ be a one-parameter subgroup, of $\mathcal{G}1i(n, R)$ . Suppose the
orbit XX/-C is a locally compact straight line. Let $\mathscr{D}$ be the boundary of
the orbit, i. e. $\mathscr{D}$ is the complement of $X_{-}C/X$ in $\overline{XX}/X$ . We can find ex-
amples of $X$ and $X$ such that $\mathscr{D}$ is empty, one end-point, or two end-points.
Also $\mathscr{D}$ can be a single point in the closure of the orbit which is a circle.
In these cases, the boundary points are all fixed points of the one-parameter
group $x$ . When $X$ is algebraic and $X=\exp RX$, with $X$ algebraic, by the
orbit theorem we can prove this is true.

However the following example shows that it is not true in general.
For an irrational number $\alpha$ we consider the orbit of the one-parameter

group $\exp RX$ :

$X=\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0\\0 & 0 & -\alpha & 0 & 0\\0 & \alpha & 0 & 0 & 0\\0 & 0 & 0 & 0 & -1\\0 & 0 & 0 & 1 & 0\end{array}\right)$ ,

passing through the point (1, 1, 1, 1, 1) in $R^{5}$ . Then the boundary of the orbit
is a torus of two dimension, although the isotropy group is algebraic.
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