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\S 1. Introduction.

By an analytic group and by an analytic subgroup of a Lie group, we
mean a connected Lie group and a connected Lie subgroup of a Lie group,
respectively. Unless specified otherwise, an analytic subgroup and its cor-
responding Lie subalgebra will be denoted by the same capital script and
capital Roman letter, respectively. For example, if $\mathcal{G}$ denotes an analytic
group and $C$ denotes an analytic subgroup of $4^{i}$ , then $G$ will denote the Lie
algebra of $\mathcal{G}$, and $L$ will denote the subalgebra of $G$ corresponding to -C. We
make the convention that the Lie algebra of a Lie group is the tangent space
of that group at the identity.

The fields of real numbers and complex numbers will be denoted by $R$

and $C$, respectively.
Throughout this paper, we shall adopt the terminology and utilize the

theorems in

N. Jacobson, Lie algebras, Tracts in Math. 10, Interscience, 1962,
and

C. Chevalley, Theory of Lie groups I, Princeton, 1946.
In particular, \S 2 and \S 3 below are connected with the former, and \S 4 and
\S 5 with the latter.

Let 9 be an analytic group, and let $X$ be an analytic subgroup of $\mathcal{G}$ . Let
$X$ and $Y$ be elements of $G$ . The purpose of this paper is to give a necessary
and sufficient condition, in terms of Lie algebras, for the validity of the
equality $\exp RX\cdot X=\exp RY\cdot X$ . In particular, if $X$ is a closed subgroup,
this equality implies that the orbits of one-parameter groups $\exp RX$ and
$\exp RY$ , passing through the point $X$ , coincide in the factor space $\mathcal{G}/X$ .

In order to explain our results, we first adopt the notation $(adA)B=[A,$ $ B\lrcorner\urcorner$

for elements $A$ and $B$ of a Lie algebra, and introduce the following
DEFINITION. Let $G$ be a Lie algebra, and let $L$ be a subalgebra of $G$ .

1) Research supported in part by NSF Grant GP 4503.
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Let $X$ be an element of $G$ . The set

$P(X, L)=$ { $A\in L;(adX)^{n}A\in L$ for $n=1,$ 2, }

is called the play of $X$ in $L$ .
Obviously, $P(X, L)$ is a subalgebra of $L$ , and $X$ normalizes $P(X, L)$ .
Let $x$ and $y$ be independent non-commutative indeterminates over the field

of rational numbers. By the Campbell-Hausdorff formula, see Jacobson loc.
cit., $\ln(\exp(-x)\cdot\exp y)$ can be written as a formal Lie power series. That is,
we have

$\exp(-x)\cdot\exp y=\exp\{\varphi_{1}(x, y)+\varphi_{2}(x, y)+ \}$ ,

where $\varphi_{n}(x, y)$ is a homogeneous Lie polynomial of degree $n$ over the field of
rational numbers.

The significance of the notion of “ play ” is now made apparent by the
following theorem:

THEOREM 1. Let $\Phi$ be a field of characteristic $0$ , and let $G$ be a Lie algebra
over $\Phi$ . Let $L$ be a subalgebra of $G$ , and let $X$ and $Y$ be elements of G. Let
$\varphi_{n}$ be the homogeneous Lie polynomial of $x$ and $y$ , of degree $n$ , such that

$\exp(-x)\cdot\exp y=\exp\{\varphi_{1}(x, y)+\varphi_{2}(x, y)+ \}$ .
Then all the $\varphi_{n}(X, Y)$ belong to $L$ if and only if $Y-X$ belongs to $P(X, L)$ .

After establishing this, it is not difficult to translate it into the following
form:

PROPOSITION 6. Let $\mathcal{G}$ be an analytic group, and let $X$ be an analytic sub-
group of $\mathcal{G}$ . Let $X$ and $Y$ be elements of G. Then the one-parameter subgroup
$\exp tY,$ $t\in R$ , can be written in a form

$\exp tY=\exp tX\cdot l(t)$ $t\in R$

where $l(t)$ is an analytic curve in the analytic group $-\mathcal{L}$ , if and only if $Y-X$

belongs to the play $P(X, L)$ .
On the other hand, by complexifying the analytic groups $\mathcal{G},$ $X,$ $\exp tX$

and $\exp tY$ , and using the fact that the only conformal automorphisms of the
complex plane $C$ are linear functions, we can prove the following proposition:

PROPOSITION 7. Let $\mathcal{G}$ be an analytic group, and let $X$ be an analytic sub-
group of $\mathcal{G}$ . If $\exp RX\cdot X=\exp RY\cdot X$ for $X,$ $Y\in G$ , then there exists a real
number $\gamma\neq 0$ such that $Y-\gamma X\in P(X, L)$ .

Combining the above two propositions, we can realize our purpose as
follows:

THEOREM 2. Let $\mathcal{G}$ be an analytic group, and let $X$ be an analytic subgroup

of $\mathcal{G}$. Let $X$ and $Y$ be elements of G. Then $\exp RX\cdot t=\exp RY\cdot X$ if and
only if there exists a non-zero real number $\gamma$ such that $Y-\gamma X\in P(X, L)$ .
Moreover, in this case, we have $\exp(-t\gamma X)\cdot\exp tY\in X$ for $t\in R$ .
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If $Q$ is an analytic group, and :EP a normal analytic subgroup of codimen-
sion one, then for any one-parameter subgroup ec of $Q$ , with the direction at
the identity not in $\mathscr{L}$ , we have $Q=XB$ . Roughly speaking, Theorem 2 claims
that this rather trivial situation must occur in case we have $\exp RX\cdot X$

$=\exp RY\cdot X$ in an analytic group $\mathcal{G}$ . (Put $P=P(X, L)$ and $Q=RX+P=RY$
$+P.)$

REMARK. In general, $\exp RY\cdot J$ can be a non-trivial proper part of
$\exp RX\cdot X$ . For example, a two-dimensional analytic group acts transitively
on the straight line $R$ , by $y=\alpha x+\beta(\alpha, \beta\in R, \alpha>0)$ , and the only orbit of
the translation group $y=x+t$ is $R$ itself; on the other hand, the open interval
$(-1, \infty)$ is the orbit of the one-parameter group $y=e^{t}x+e^{t}-1$ , containing $0$ .

The paper is organized into five sections. In \S 2, we introduce the notion
of the length of a Lie polynomial without a linear term, which plays an
important role in the proof of Theorem 1, in \S 3. In \S 4 we develop some
machinery on analytic subgroups, which we apply in \S 5 to obtain Proposition
6, Proposition 7 and Theorem 2. Finally, at the end of this paper, an ex-
ample of a play in an infinite-dimensional Lie algebra will be given.

\S 2. Length of a Lie polynomial without a linear term.

Let $\Phi$ be a field of characteristic $0$ , and let $\mathfrak{F}$ be a free associative algebra
generated by a pair $\{x, y\}$ over $\Phi$ . For a non-negative integer $n$ , we denote
by $\mathfrak{F}_{n}$ the $n$ times tensor product of the two-dimensional vector space $\Phi x+\Phi y$ .
Then $\mathfrak{F}$ can be identified with the direct sum of the vector spaces $\mathfrak{F}_{0},$ $\mathfrak{F}_{1},$ $\mathfrak{F}_{2},$ $\cdots$

For $f$ and $g$ in $\mathfrak{F}$ , we define the commutator $[f, g]$ by $[f, g]=fg-gf$, and
obtain the Lie algebra $\mathfrak{F}_{\mathfrak{L}}$ . Let $\mathfrak{F}\mathfrak{L}$ be the subalgebra of $\mathfrak{F}_{\mathfrak{L}}$ generated by $x$

and $y$ . By a Lie polynomial (of $x$ and y) we mean an element of $\mathfrak{F}\mathfrak{L}$ . $\mathfrak{F}\mathfrak{L}$ is
a free Lie algebra generated by the $\{x, y\}$ , and $\mathfrak{F}$ is a universal enveloping
algebra of $\mathfrak{F}\mathfrak{L}$ . $\mathfrak{F}\mathfrak{L}$ is the direct sum of subspaces $\mathfrak{F}\mathfrak{L}_{n}=\mathfrak{F}_{n}\cap \mathfrak{F}\mathfrak{L}(n=1,2, \cdots)$ ,

composed of homogeneous Lie polynomials of degree $n$ .
When there is no danger of confusion, the expression $[a_{1},$ $[a_{2},$ $[\cdots,$ $[a_{n- 1}$ ,

$a_{n}]]$ ]] will be written simply as $a_{1}a_{2}\cdots a_{n-1}a_{n}$ . A Lie polynomial is a linear
combination of monomials of the form $a_{1}a_{2}\cdots a_{n- 1}a_{n}$ , where each $a_{i}$ is either
$x$ or $y$ . By a normalized monomial of degree $n\geqq 2$ , we mean a monomial of
the form $a_{1}a_{2}\ldots a_{n- 1}a_{n}$ , with $a_{n- 1}=x$ and $a_{n}=y$ . Then, a Lie polynomial
without a linear term, $i$ . $e$ . an element in $\mathfrak{F}\mathfrak{L}_{2}+\mathfrak{F}\mathfrak{L}_{3}+\cdots$ , can be written as a
linear combination of normalized monomials. Note that formally distinct
normalized monomials can be identical, $e$ . $g$ . $xyxy=yxxy$ ; however, we have
the following proposition:

PROPOSITION 1. Let $f_{1},$ $f_{2},$
$\cdots,$

$f_{k}$ , and $g_{1},$ $g_{2},$ $\cdots$ , $g_{\iota}$ be normalized monomials.
If
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$\alpha_{1}f_{1}+\alpha_{2}f_{2}+$ $+\alpha_{k}f_{k}=\beta_{1}g_{1}+\beta_{2}g_{2}+\cdots+\beta_{l}g_{l}$

for $\alpha_{1},$ $\alpha_{2},$
$\cdots$ , $\alpha_{k}$ and $\beta_{1},$ $\beta_{2},$ $\beta_{l}$ in $\Phi$ , then $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}=\beta_{1}+\beta_{2}+\cdots+\beta_{l}$ .

PROOF. We set

$X=\left(\begin{array}{ll}1 & 0\\0 & 0\end{array}\right)$ , $Y=\left(\begin{array}{ll}1 & 1\\0 & 0\end{array}\right)$ , $A=\left(\begin{array}{ll}0 & 1\\0 & 0\end{array}\right)$ .

Then {X, $Y$ } forms a basis of a two-dimensional non-abelian Lie algebra and
we have

[X, $Y$ ] $=[X, A]=[Y, A]=A$ .
Hence, if we substitute {X, $Y$ } in place of $\{x, y\}$ in any normalized monomial,

then it reduces to $A$ . So under our assumptions we have
$(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}^{\backslash })A=(\beta_{1}+\beta_{2}+\cdots+\beta_{\iota})A$ . Q. E. D.

By the Proposition 1, we can define the length of $\alpha_{1}f_{1}+\alpha_{2}f_{2}+\cdots+\alpha_{k}f_{k}$ ,

as follows:
$|\alpha_{1}f_{1}+\alpha_{2}f_{2}+\cdots+\alpha_{k}f_{k}|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ .

Next we extend the free algebra $\mathfrak{F}$ to the algebra $\overline{\mathfrak{F}}$ of formal power
series in the $\{x, y\}$ , and accordingly the free Lie algebra $\mathfrak{F}\mathfrak{L}$ to the Lie algebra

$\overline{\mathfrak{F}\mathfrak{L}}$ of formal Lie power series in $\overline{\mathfrak{F}}$ ; and obtain the Campbell-Hausdorff
formula

$\exp x\cdot\exp y=\exp\psi(x, y)$ ,
where

$\psi(x, y)=\psi_{1}(x, y)+\psi_{2}(x, y)+\cdots\in\overline{\mathfrak{F}\mathfrak{L}}$ ,

with
$\psi_{1}(x, y)=x+y\in \mathfrak{F}\mathfrak{L}_{1}$ , $\psi_{2}(x, y)=\frac{1}{2}[x, y]\in \mathfrak{F}\mathfrak{L}_{2},$ $\cdots$ .

We set $\varphi(x, y)=\psi(-x, y)$ and $\varphi_{n}(x, y)=\psi_{n}(-x, y)$ for $n=1,2,$ $\cdots$

In order to compute the length of $\varphi_{n}(n\geqq 2)$ , we make use of the two-
dimensional Lie algebra in the proof of Proposition 1 again. Retaining the
notations, the equality

$\exp(-tX)\cdot\exp tY=\left(\begin{array}{ll}e^{-t} & 0\\0 & 1\end{array}\right)\left(\begin{array}{ll}e^{t} & e^{t}-1\\0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 1-e^{-t}\\0 & 1\end{array}\right)$

$=\exp(\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n!}t^{n})A$ ,

leads to the following proposition:

PROPOSITION 2. $|\varphi_{n}|=\frac{(-1)^{n+1}}{n!}$ for $n\geqq 2$ .
REMARK. For the length of $\psi_{n}$ , we have the following formula:

$t$

$ t\tanh-2^{-}=|\psi_{2}|t^{2}+|\psi_{8}|t^{8}+\cdots$ .
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\S 3. Proof of Theorem 1.

Let $G$ be a Lie algebra over the field $\Phi$ of characteristic $0$ , and let $L$ be
a subalgebra of $G$ . Let $X$ and $Y$ be elements of $G$ .

PROPOSITION 3. If $(adX)^{m}(Y-X)\in L$ for $m=0,1$ , $\cdot$ .. , $n-1,$ $(n\geqq 1)$ , then
for any normalized monomial $f(x, y)$ of degree $n+1$ , we have

$f(X, Y)-(adX)^{n}Y\in L$ .

PROOF (by induction on $n$). When $n=l,$ $xy=(adx)y$ is the only normalized
monomial of degree 2, and it is obvious.

Let us suppose that the proposition is true for $k<n$ . This means all the
homogeneous Lie polynomials of degree $k,$ $2\leqq k\leqq n$ , of the {X, $Y$ }, belong to
$L$ . Let $f(x, y)=a_{1}a_{2}\cdots a_{n- 1}xy$ be a normalized monomial of degree $n+1$ . If
$a_{1}=a_{2}=\ldots=a_{n- 1}=x$ , there is nothing to prove. Otherwise, we can find the
smallest integer $i$ such that $a_{i}=y$ . When $i=1$ , we set $f_{1}(x, y)=xa_{2}\cdots a_{n-1}xy$

and get $f(x, y)-f_{1}(x, y)=[y-x, a_{2}\cdots a_{n- 1}xy]$ . Hence by the induction hypo-
thesis, we have that $f(X, Y)-f_{1}(X, Y)\in L$ . When $i>1$ , we set $a_{i+1}a_{i+2}\cdots a_{n-1}xy$

$=g(x, y)=g$. Then by Jacobi identity, we have that $xyg=yxg+[xy, g]$ , from
which it follows that

$f(x, y)=x^{i- 2}xyg=x^{i- 2}yxg+x^{i- 2}[xy, g]$ .

On the other hand, the last term is written as

$\sum_{j=0}^{i2}\left(\begin{array}{l}i-2\\j\end{array}\right)[x^{j}xy, x^{i- 2- j}g]$ ,

and by the induction hypothesis, reduces to an element of $L$ , if we substitute
the {X, $Y$ } in the $\{x, y\}$ . Therefore putting $f_{2}(x, y)=x^{i- 2}yxg$ we have $f(X, Y)$

$-f_{2}(X, Y)\in L$ . Repeating the process, the $y$ which was in the i-th position
can be moved to the first position; and it can be replaced by $x$ using the case
when $i=1$ ; that is, setting $f_{3}(x, y)=x^{i}g$, we have $f(X, Y)-f_{8}(X, Y)\in L$ . When
there exists a $j>i$ with $a_{j}=y$ , we can proceed in a similar way. Q. E. D.

PROOF OF THEOREM 1. Suppose that $\varphi_{n}(X, Y)\in L$ for all $n$ . Let us prove
that $(adX)^{n}(Y-X)\in L$ for $n=0,1,2,$ $\cdots$ by induction on $n$ . Since $\varphi_{1}(X, Y)$

$=Y-X$, it is true for $n=0$ . For $n\geqq 1$ , we can write $\varphi_{n+1}(x, y)$ as a linear
combination of normalized monomials, $f_{1},$ $f_{2},$ $\cdots$ , $f_{k}$ , as follows:

$\varphi_{n+1}(x, y)=\alpha_{1}f_{1}(x, y)+\alpha_{2}f_{2}(x, y)+\cdots+\alpha_{k}f_{k}(x, y)$

where $\alpha_{i}\in\Phi,$ $1\leqq i\leqq k$ . By the induction hypothesis $(adX)^{m}(Y-X)\in L$ for
$m=0,1$ , $\cdot$ .. , $n-1$ . Hence by Proposition 3, $f_{i}(X, Y)-(adX)^{n}(Y-X)\in L$ , for
$i=1,2,$ $\cdots$ , $k$ , which implies that

$\varphi_{n+1}(X, Y)-|\varphi_{n+1}|(adX)^{n}(Y-X)\in L$ .
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Since $|\varphi_{n+1}|\neq 0$ by Proposition 2, we have $(adX)^{n}(Y-X)\in L$ .
Conversely, if $(adX)^{n}(Y-X)\in L$ for $n=0,1,2$ , $\cdot$ .. , then all Lie poly-

nomials without a linear term, together with $Y-X$, belong to $L$ , by Proposi-
tion 3.

\S 4. Propositions on analytic subgroups.

Let $\mathcal{G}$ be an analytic group of dimension $r$ , and let $e$ denote the identity
of $\mathcal{G}$ . Let $d$ and 9 be analytic groups, and let us suppose there exist con-
tinuous (analytic) one-one homomorphisms $\alpha$ and $\beta$ from $\llcorner fl$ and $\mathscr{D}$ into $\mathcal{G}$,
respectively. The images $\alpha(d)$ and $\beta(\mathscr{D})$ are analytic subgroups of $\mathcal{G}$ . We
shall study the properties of the double coset $\alpha(A)g\beta(\mathscr{D})$ for $g\in \mathcal{G}$ .

We fix an element gof $\mathcal{G}$, and set $C=C(g)=\alpha(d)\cap g\beta(\mathscr{D})g^{-1}$ . Then $C$ is
a subgroup of $\mathcal{G}$ . We consider a mapping $\rho=\rho(g)$ from the direct product
group $dX\mathscr{D}$ into $\mathcal{G}$, defined by

$d\times \mathscr{D}\ni(a, b)-\alpha(a)^{-1}g\beta(b)\in \mathcal{G}$ .
We set $9=\mathscr{D}(g)=\{(\alpha^{-1}(c), \beta^{-1}(g^{-1}cg));c\in C\}$ . Then $\rho$ is analytic and

$\rho(a, b)=\rho(a^{\prime}, b^{\prime})$ if and only if $(a^{\prime}, b^{\prime})\in 9(a, b)$ . Hence 9 is a closed subgroup
of $d\times \mathscr{D}$ and $\rho$ induces a one-one analytic mapping $\tilde{\rho}=\tilde{\rho}(g)$ from $(A\times \mathscr{D})/9(g)$

into $\mathcal{G}$ . We denote by $d(g)$ the dimension of the manifold $(d\times \mathscr{D})/9(g)$ .
Let us denote by $Ad(g)$ the automorphism of the Lie algebra $G$ induced

by the inner automorphism: $\mathcal{G}\ni h-ghg^{-1}\in \mathcal{G}$ . We also denote by $\alpha(A)$ and
$\beta(B)$ the Lie algebras of $\alpha(d)$ and $\beta(\mathscr{D})$ , respectively, and we set $C=C(g)=$
$\alpha(A)\cap(Ad(g))\beta(B)$ . Then $C(g)$ is a subalgebra of $G$ .

Let $\mathscr{Q})^{0}$ be the connected component containing the identity of se. We
denote by $C^{0}=C^{0}(g)$ the image by $\alpha$ of the projection of $9^{0}$ into .,4. Then
$C^{0}$ is an analytic subgroup of S. Since $C^{0}\subset\alpha(A)\cap g\beta(\mathscr{D})g^{-1}=C(g)$ , the Lie
algebra of $C^{0}$ is contained in $C(g)$ . On the other hand, for any $X$ in $C(g)$ ,
we have $\exp RX\subset C(g)$ , and $(\alpha^{-1}(\exp tX), \beta^{-1}(g^{-1}(\exp tX)g))\in 9^{0}$ for all $t\in R$ .
Hence $\exp tX\subset C^{0}$ . Hence $C(g)$ is the Lie algebra of the analytic subgroup
$C^{0}(g)$ . Since we have a continuous one-one homomorphism from $9^{0}$ onto $C^{0}$ ,

we have that
$\dim \mathscr{D}=\dim \mathscr{Q})^{0}=\dim C^{0}=\dim C$ .

This implies, in particular, that

$d(g)=\dim d+\dim \mathscr{D}-\dim 9=\dim(\alpha(A)+(Ad(g))\beta(B))$ .
Let us take the maximum $d_{0}$ of all $d(g),$ $g\in \mathcal{G}$ , and we set $S=\{g\in \mathcal{G}$ ;

$d(g)<d_{0}\}$ . We are, now, going to prove that $S$ is an analytic set in $\mathcal{G}$ . For
that purpose, we take a basis $\{X_{1}, \cdots , X_{k}\}$ of $\alpha(A)$ , and extend it into a basis
$\{X_{1}, \cdots , X_{k}, X_{k+1}, \cdots , X_{\gamma}\}$ of $G$ . Let $Y_{1},$ $Y_{2},$ $\cdots$ , $Y_{\iota}$ be a basis of $\beta(B)$ , and
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we set

$Ad(g)Y_{i}=\sum_{j=1}^{r}\xi_{ji}(g)X_{j}$ for $i=1,2,$ $\cdots$ , $l$ ,

$j$-th
and consider the $(k+l)\times r$ matrix $M(g)$ , whose j-th row is $(0, \cdot.. , 0,1,0, \cdot.. , 0)$

for $1\leqq 4\leqq k$ , and $(k+i)$ -th row is $(\xi_{1i}(g), \xi_{2i}(g),$ $\cdots$ , $\xi_{ri}(g))$ , for $1\leqq i\leqq l$ . Then
$g\in S$ if and only if all the $d_{0}\times d_{0}$ minor determinants of $M(g)$ vanish.

Let us call $g$ regular if $ges$ . Then the set $\mathcal{G}-S$ of all regular points is
an open, everywhere dense, submanifold of S.

For $X$ in $G$ , we denote by $*x$ (or $X^{*}$) the left (or right) invariant vector
field with the value $X$ at $e$ . We denote the value of a vector field $U$ at $g$ by
$U(g)$ , and for a vector subspace $M$ of $G$ we use the notation $*M=\{^{*}X;X\in M\}$

and $*M(g)=$ $\{^{*}X(g);X\in M\}$ . $M^{*},$ $M^{*}(g)$ will be defined in a similar way.
We define the analytic mappings $\Phi_{g},$ $\Psi_{g}$ and $J$ by $\Phi_{g}h=gh$ , $\Psi_{g}h=hg$, and
$Jg=g^{-1}$ , respectively. These are all analytic automorphisms of the analytic
manifold $\mathcal{G}$ onto itself.

Since $(Ad(g)X)^{\star_{1}}(g)=d\Psi_{g}d\Psi_{g}$ d $\Phi X^{*}(e)$ and $X^{*}(e)=X$, we have
$(Ad(g)X)^{*}(g)=*X(g)$ , which implies that

$\dim(\alpha(A)^{*}(g)+*\beta(B)(g))=\dim(\alpha(A)^{*}(g)+(Ad(g)\beta(B))^{*}(g))$

$=\dim(\alpha(A)+(Ad(g))\beta(B))=d(g)$ .
Since $\Phi_{g}\circ\Psi_{h}=\Psi_{h}\circ\Phi_{h}$ for every pair $(g, h)$ in $\mathcal{G}$ , we have $[\alpha(A)^{*}, *\beta(B)]$

$=0$ , and since $\alpha(A)^{*}$ and $*\beta(B)$ are Lie algebras,

$\Delta(g)=\alpha(A)^{*}(g)+*\beta(B)(g)$

defines a $d_{0}$-dimensional analytic involutive distribution $\Delta$ in $\mathcal{G}-S$ .
Let $Y$ be in $A$ , and let $*Y$ be the left invariant vector field of $d\chi \mathscr{Q}$ with

the value $Y$ at the identity. We extend the homomorphism $\alpha$ into the homo-
morphism $\tilde{\alpha}$ from $d\times \mathscr{D}$ into $\mathcal{G}$ by $\tilde{\alpha}(a, b)=\alpha(a)$ . We denote the tangential
map corresponding to $\alpha$ from $A$ into $G$ by $d\alpha_{1}$ , and set $d\alpha_{1}(Y)=X$. Then
we have $d\tilde{\alpha}^{*}Y(a, b)=*X(\alpha(a))$ . For elements in cfl $X\mathscr{D}$ , we have $\rho(a, b)=$

$(\Psi_{g\beta(b)}\circ J\circ\tilde{\alpha})(a, b)$ . On the other hand, we have $dJ(*X(g))=-X^{*}(g^{-1})$ . Hence
we have

$d\rho^{*}Y(a, b)=-X^{*}(\alpha(a)^{-1}g\beta(b))$ .
Similarly for $Y$ in $B$ and the image $d\beta_{1}(Y)=X\in\beta(B)$ we have

$d\rho^{*}Y(a, b)=*X(\alpha(a)^{-1}g\beta(b))$ .

We denote by $(cfl\times \mathscr{D})(a, b)$ the tangent space of $d\times \mathscr{D}$ at $(a, b)$ . Then we have

$d\rho\cdot(cA\times \mathscr{D})(a, b)=\Delta(\alpha(a)^{-1}g\beta(b))$ .
Hence, changing the notations we have
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PROPOSITION 4. Let $\mathcal{G}$ be an analytic group of dimension $r$, and let $A$ and
$B$ be subalgebras of G. Let $S$ be the set of all elements $g$ in $\mathcal{G}$ such that
$\dim(A+Ad(g)B)$ is not maximal. Then $S$ is an analytic set of dimension
$\leqq r-1$ , and $A^{*}+*B=\Delta de/ines$ an analytic involutive distribution in the open
submanifold $g-S$ . For $g$ in $\mathcal{G}-S$ , we can define a closed subgroup $\mathscr{D}(g)$ in
$d\times \mathscr{D}$ such that

$\tilde{\rho}(g)$ : $(d\times \mathscr{D})/9(g)\rightarrow dgB$

defines an integral manifold of $\Delta$ through $g$.
REMARK 1. It is easy to see that $dgB$ is an analytic submanifold of 9,

even if $g$ is in $S$ .
REMARK 2. When $e$ is not in $S$ , we say that the pair $(A, B)$ is in a

generic position. When $A\cap B=\{0\}$ , the pair is always in a generic position.
REMARK 3. If, in particular, $A=\{0\}$ , then the set $S$ is empty.
PROPOSITION 5. Let $f$ be an analytic function from an open interval in

$R$ into $g-S$ . If there exists a subinterval, for which the image of $f$ is con-
tained in $dg_{0}\mathscr{D},$ $g_{0}\in 9-S$ , then $f(t)$ is completely contained in $dg_{0}B$ , and
$\overline{\rho}(g_{0})^{-1}f(t)$ is analytic from the interval into $(dX\mathscr{D})/9(g_{0})$ .

PROOF. Suppose it is not true, and we assume that $f(t)\in dg_{0}\mathscr{D}$ if $-\epsilon<t$

$<\epsilon$ , and $f(t)\not\in dg_{0}\mathscr{D}$ for some $t>0$ , without loss of generality. Let $t_{1}$ be the
greatest lower bound of the set { $t\in R;f(t)\not\in dg_{0}B$ and $t>0$ }. Then $t_{1}$ is
positive. We can find a neighborhood $cU$ of $f(t_{1})=g_{1}$ , and an analytic co-
ordinate system $\{\xi^{1}, \xi^{2}, \cdot. , \xi^{r}\}$ defined in $c_{U}$ such that $\xi^{a_{0+1}}=\gamma^{1}$ , $\cdot$ .. , $\xi^{r}=\gamma^{r-a_{0}}$

defines a slice for $(\gamma^{1}, \cdots , \gamma^{r-(}t_{0})$ sufficiently close to the origin in $R^{r- d_{0}}$ . We
note that .,1 $g_{0}\mathscr{D}\cap^{c}U$ is composed of at most countably many slices. We can
take a positive number $\delta$ , small enough, such that $ f(i)\in c_{U}t_{1}-\delta<t<t_{1}+\delta$ .
Then the curve $f(t),$ $t_{1}-\delta<t<t_{1}$ is in one of the slices, and we have $\xi^{a_{0+j}}(f(t))$

$=\gamma^{j}$ for $j=1,2$ , $\cdot$ .. , $r-d_{0}$ . Hence the equation must be true for all $t$ , i. e. $f(t)$

is in $dg_{0}\mathscr{D}$ for all $t$ with $ t_{1}-\delta<t<t_{1}+\delta$ . This contradicts the choice of $t_{1}$ .
Now the last statement is obvious. Q. E. D.
$CoROLLARY$ . For $g\not\in S,$ $AgB$ is a maximal integral manifold of $\Delta$ .
PROOF. Suppose there exists a connected analytic manifold $\mathscr{R}$ , containing

$(dX\mathscr{D})/9(g)$ as a proper open submanifold, and an analytic mapping $\overline{\rho}$ which
is an extension of $\tilde{\rho}$ , such that (.St, $\overline{\rho}$) defines an integral manifold of $\Delta$ . Let
$p$ be a point in the boundary of $(d\times \mathscr{D})/9(g)$ in $\ovalbox{\tt\small REJECT}$ , and let $cU$ be a neigh-
borhood of $p$ with an analytic coordinate system $(\xi^{1}, \xi^{2}, \cdots , \xi^{a_{0}})$ , with $\xi^{i}(p)=0$

for $i=1,2,$ $\cdots$ , $d_{0}$ , and $-1<\xi^{1}<1,$ $\cdots$ , $-1<\xi^{d_{0}}<1$ . Let $q$ be a point in
$cU\cap(d\times \mathscr{D})/\mathscr{D}(g)$ , with $\xi^{i}(g)=\gamma^{i}$ for $i=1,2,$ $\cdots$ , $d_{0}$ . For $t$, with $|t|<1$ , we
associate a point $p_{t}$ in $cU$ such that $\xi^{i}(p_{t})=\gamma^{i}t(i=1,2, \cdot.. , d_{0})$ . Then $\overline{\rho}(p_{t})$

defines an analytic curve in $\mathcal{G}-S$ , which satisfies the conditions in Prop-
osition 5.
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\S 5. Proof of Theorem 2.

We shall prove Propositions 6 and 7, see \S 1, which imply Theorem 2.
PROOF OF PROPOSITION 6. If $\exp(tY)=\exp(tX)\cdot l(t),$ $l(t)\in X$ for $t$ in $R$ ,

we can find a positive number $\epsilon$ such that

$(*)$ $\exp(-tX)\cdot\exp(tY)=\exp\{\varphi_{1}(X, Y)t+\varphi_{2}(X, Y)t^{2}+ \}$

$\varphi_{1}(X, Y)t+\varphi_{2}(X, Y)t^{2}+\cdots\in L$

for $|t|<\epsilon$ . Thus we have $\varphi_{n}(X, Y)\in L$ for $n=1,2,$ $\cdots$ , and it follows that
$Y-X\in P(X, L)$ by Theorem 1.

Conversely, we assume that $Y-X\in P(X, L)$ and put $\exp(-tX)\cdot\exp(tY)$

$=l(t)$ . Then for $t$ , sufficiently close to $0,$ $l(t)$ is given by the right side of $(*)$ ,

and is contained in $X$ . Since $l$ is analytic, $l(t)\in X$ for all $t\in R$ , by Prop-
osition 5. Q. E. D.

PROOF OF PROPOSITION 7. Let $G^{c}$ be the complexification of $G$ , $i$ . $e$ .
$G^{C}=G\otimes_{R}$ C. $G^{C}$ is a Lie algebra over $C$, and contains $G$ in a natural way.
The complexification $L^{C}$ of $L$ can be canonically imbedded in $G^{C}$ , with
$G\cap L^{C}=L$ .

Let $\mathcal{G}^{C}$ be one of the complex analytic groups with the Lie algebra $G^{c}$ .
$\mathcal{G}^{C}$ contains an analytic subgroup.$C^{C}$ , whose Lie algebra is $L^{c}$ .

Let us suppose that $X$ is not in $L$ . Then for $cA=\exp(RX)$ and $\mathscr{D}=X$ ,

in the discussions of \S 4, $\mathscr{D}(e)$ is a discrete subgroup of a $\times B$ . We denote by
$\pi$ the homomorphism $ R\ni t-\rangle$ $\exp(tX)\in d$ . Then $\sigma;RXB\ni(t, b)\leftrightarrow 9(e)(\pi(t), b)$

$\in(d\times \mathscr{D})/9(e)$ is a covering mapping. Since $\exp(tY)$ is an analytic curve
in $d\mathscr{D}$ , we can find a unique analytic curve $(f(t), g(t))$ in $R\times \mathscr{D}$ such that

$\tilde{\rho}(e)\pi(f(t), g(t))=\exp(tY)$ $t\in R$ ,

and
$f(O)=g(0)=the$ identity ,

$i$ . $e$ . we have $\exp(tY)=\exp(f(t)X)\cdot g(t),$ $g(t)\in \mathscr{D}$ .
We denote the exponential function from $G^{C}$ into $\mathcal{G}^{C}$ also by $exp$ . Since

$f(t)$ is an analytic function defined on $R$ , it can be extended to an entire
function on $C$. We shall denote the extension also by $f$. Then $\xi(z)=$

$\exp(-f(z)X)\cdot\exp(zY)$ is an analytic function from $C$ into $gc$ . Let $X_{1},$ $X_{2}$ ,
... , $X_{k}$ be a basis of $L$ . Then for a real number $t$ sufficiently close to $0$ , we
have $\xi(t)=g(t)=\exp\{l_{1}(t)X_{1}+l_{2}(t)X_{2}+\cdots+l_{k}(t)X_{k}\}$ , where $l_{1}(t),$ $l_{2}(t),$ $\cdots$ , $l_{k}(t)$

are power series of $t$ . Hence for a complex number $z$ sufficiently close to $0$ ,
we have

$\xi(z)=\exp\{l_{1}(z)X_{1}+l_{2}(z)X_{2}+\cdots+l_{k}(z)X_{k}\}$ ,

$i$ . $e$ . $\xi(z)\in X^{C}$ . Hence by Proposition 5, $\xi(z)$ is completely contained in $X^{C}$ .
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So we have
$\exp(zY)=\exp(f(z)X)\cdot\xi(z)$ , $z\in C$ .

Similarly we have

$\exp(zX)=\exp(h(z)Y)\cdot\eta(z)$ , $\eta(z)\in-C^{C}$ , $z\in C$ .
Hence we have

$\exp(zX)=\exp(f(h(z))X)\cdot\xi(h(z))\eta(z)$ .
Since $XeL^{C}$ , at least for $z$ sufficiently close to $0$ , we have $z=f(h(z))$ , and
the functional relation must be valid for all $z$ . Hence $f(z)$ must be a linear
function. On the other hand, since $f(O)=0$ , we have $f(z)=\gamma z$ . Q. E. D.

EXAMPLE. Let $\Gamma_{n}$ denote the set composed of all germs of analytic vector
fields of $R^{n},$ $n\geqq 1$ , at the origin $0=$ $(0,0, \cdot.. , 0)$ . Then $\Gamma_{n}$ is a Lie algebra of
infinite dimension over $R$ . The set of elements of $\Gamma_{n}$ which vanish at $0$ forms
a subalgebra $\Lambda_{n}$ .

For an element $X$ of $\Gamma_{n}$ which can be expressed as

$X=X_{1}\frac{\partial}{\partial x_{1}}+X_{2}\frac{\partial}{\partial x_{2}}+\cdots+X_{n}\frac{\partial}{\partial x_{n}}$ ,

we associate the following analytic ordinary differential equation

(1) $\frac{dx_{i}}{dt}=X_{i}(x_{1}, x_{2}, \cdots , x_{n})$ $i=1,2,$ $\cdots$ , $n$ ,

and consider the (germ of) solution of (1) with the initial condition

(2) $x_{1}(0)=x_{2}(0)=\ldots=x_{n}(0)=0$ .
When $X$ is in $\Lambda_{n}$ , the solution is trivial. If $X$ does not vanish at $0$ , by
choosing a suitable analytic coordinate system around $0$ , we may assume that

$X=\frac{\partial}{\partial x_{1}}$ . Let $A$ be an element of $\Lambda_{n}$ : $A=A_{1}\frac{\partial}{\partial x_{1}}+A_{2}\frac{\partial}{\partial x_{2}}+\cdots+A_{n}\frac{\partial}{\partial x_{n}}$ . If

the solution $(t, 0, \cdot.. , 0)$ of $X$ is also a solution of $X+A$ , then $A_{1}(x_{1},0, \cdot., , 0)$

$=A_{2}(x_{1},0, \cdots , 0)=A_{n}(x_{1},0, \cdots , 0)=0$ , and vice versa.
On the other hand, since we have

$(adX)^{k}A=\frac{\partial^{k}A_{1}\partial}{\partial x_{1}^{k}\partial x_{1}}+\frac{\partial^{k}A_{2}}{\partial x_{1}^{k}}\frac{\partial}{\partial x_{2}}+\cdots+\frac{\partial^{k}A_{n}\partial}{\partial x_{1}^{k}\partial x_{n}}$ , $k=1,2,$ $\cdots$

$A$ is contained in the play $P(X, \Lambda_{n})$ if and only if all $\frac{\partial^{k}A_{i}}{\partial x_{1}^{k}}(0)=0,$
$i$ . $e$ .

$A_{i}(x_{1},0, \cdot.. , 0)=0$ for $i=1,2$ , $\cdot$ .. , $n$ . Thus we have the following conclusion:
Two germs of analytic vector fields $X$ and $Y$, at the origin of $R^{n}$ , give the same
solution, with (2), if and only if $Y-X\in P(X, \Lambda_{n})$ .
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