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Double ruled surfaces and their canonical systems*)

By Satoshi ARIMA

(Received July 9, 1969)

Generally we shall follow the definitions and notations in Weil [4] and
we shall consider projective varieties exclusively. Thus varieties are projective
varieties, and surfaces and curves are (projective) varieties of dimension two
and one respectively. To state our results, we first recall and introduce
several definitions. $k$ denotes, once and for always, an algebraically closed
subfield of the field of complex numbers.

DEFINITION. (i) A variety $U$ is a rational variety over $k$ if and only if $U$

is birationally equivalent over $k$ to a projective space $P_{n}$ . (ii) A surface $S$ is
a ruled surface over $k$ with the base $B$ if and only if $S$ is birationally equi-
valent over $k$ to the product of the projective line $P_{1}$ and a curve $B$ defined
over $k$ . (iii) A surface $S$ is a double ruled surface over $k$ with the base $B$ if
and only if there is a rational mapping defined over $k$ of degree two of $S$ to
a ruled surface $P_{1}\times B$ over $k$ . $S$ is a double plane over $k$ if and only if there
is a rational mapping defined over $k$ of degree two of $S$ to a rational surface
over $k$ (or the projective plane). (iv) We say that $\pi:S\rightarrow B$ is a pencil over
$k$ of curves or $S$ has a pencil over $k$ of curves if and only if $S$ is a non-
singular surface defined over $k,$ $B$ a non-singular curve defined over $k,$ $\pi$ a
morphism defined over $k$ , and a generic fibre $F_{b}=pr_{s}[\Gamma_{\pi}\cdot(S\times b)],$ $b\in B$ , is
irreducible (a curve defined over $k(b)$).

The purpose of this note is to find the image $S_{K}$ of a double ruled surface
$S$ over $k$ under the rational mapping induced by the canonical system. It
turns out that, if $S_{K}$ is of dimension two, then it is a ruled surface over $k$

(Theorem 1); in particular we see that, if $S$ is a double plane over $k$ , then
the image $S_{K}$ is a rational variety over $k$ (Corollary 2 to Theorem 1). These
results remind us of a well-understood property of the canonical system of
hyperelliptic curves. On the way to reach Theorem 1, the following results
are proven and used. Proposition 2 generalizes, in some sense, L\"uroth’s

Theorem to the effect that if a surface is the image of a rational mapping

$*)$ This work was done while the author stayed at State University of New York
at Buffalo, and announced in Vol. 16, No. 3 of Notices of the American Mathematical
Society.
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defined over $k$ of a ruled surface over $k$ then it is a ruled surface over $k$

again. In Proposition 3 it is proven that double ruled surfaces carry with
them pencils of rational curves, or of elliptic curves, or of hyperelliptic curves.

$NoTATIONS$ . If $V$ is a variety defined over a field $k^{\prime}$ , then $R_{k^{\prime}}(V)$ denotes
the function-field over $k^{\prime}$ of $V$ , and $L(D)=L_{V/k},(D)$ denotes the vector-space
over $k^{\prime}$ of all functions $u\in R_{k},(V)$ with $div(u)+D\geqq 0,$ $D$ being a divisor
rational over $k^{\prime}$ on $V$ . If $b$ is a point (a variety of dimension $0$), then $k^{\prime}(b)$

denotes the field generated over $k^{\prime}$ by the coordinates of an affine representa-
tive of $b$ . If $\pi;U\rightarrow V$ is a rational mapping, then $\Gamma_{\pi}$ denotes the graph of
$\pi$ and $\pi^{*}(v)$ denotes the cycle $pr_{U}[\Gamma_{\pi}\cdot(U\times v)]$ on $U,$ $v$ being a point on $V$

([4, p. 222]).

\S 1. Fibered surfaces and ruled surfaces.

PROPOSITION 1. Let $h:S\rightarrow V$ be a rational mapping defined over $k$ of a
non-singular surface $S$ to a variety $V$ of dimension 1 or 2. Then, applying to
$S$ a finite sequence of dilatations $\sigma=\sigma_{n}\ldots\sigma_{1}$ , we have a surface $s*=a(S)$

such that the rational mapping $h\circ\sigma^{-1}$ : $S^{*}\rightarrow V$ is a morphism. ($S^{*}$ and $h\circ\sigma^{-1}$

are also defined over $k.$)

This generalizes Theorem 1 in \v{S}afarevi\v{c} [3, p. 14]. Recall that, as the
fundamental locus of $h$ is of codimension 2, the number of fundamental points
of $h$ is finite (Weil [4, p. 201, Corollary 2 to Theorem 9]). The proof given
in [3] does not make full use of the fact that the mapping is birational, but
it uses only the fact that the number of fundamental points of a rational
mapping of a surface is finite. Therefore he has actually proven the above
proposition.

We shall often use a theorem of Bertini to the effect
(1) Let $S,$ $B$ be non-singular surface and curve defined over $k$ , and $\pi;S\rightarrow B$

be a morphism over $k$ of $S$ onto B. If a generic fibre $F_{b}=\pi^{*}(b),$ $b\in B$ , is
irreducible (a curve defined over $k(b)$), then it is non-singular. (Akizuki [1]).

Also we shall frequently use
(2) If $S$ is a surface defined over $k$ , then there is a non-singular surface

which is birationally equivalent over $k$ to S. (Zariski [5])

We first generalize L\"uroth’s Theorem to the effect
PROPOSITION 2. Let $R$ be the function-field over $k$ of a ruled surface over

$k$ . Let $R^{\prime}$ be an intermediary field between $R$ and $k$ over which $R$ is of finite
degree:

$R\geqq R^{\prime}$ , $[R:R^{\prime}]<\infty$ ,

then $R^{\prime}$ is also the function-field of a ruled surface over $k$ .
PROOF. Let $S$ and $S^{\prime}$ be non-singular models of $R/k$ and $R^{\prime}/k$ respectively.
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The inclusion $R^{\prime}\leqq R$ induces a rational mapping $f:S\rightarrow S^{\prime}$ over $k$ . In view
of Proposition 1, we may assume that $f$ is a morphism. Let $q$ and $q^{\prime}$ be the
irregularities of $S$ and $S^{\prime}$ respectively. Since the bigenus $P_{2}$ of $S$ is $0$ , the
bigenus $P_{2}^{\prime}$ of $S^{\prime}$ is $0$ . It follows from this, by a theorem of Castelnuovo-
Zariski, that if $q^{\prime}=0$ then $S^{\prime}$ is a rational (ruled) surface over $k$ . (Cf. Zariski
[6, p. 303].) Assume that $q^{\prime}\geqq 1$ . Let $\pi;S\rightarrow A,$ $\pi^{\prime}$ ; $S^{\prime}\rightarrow A^{\prime}$ be the Albanese
mappings of $S,$ $S^{\prime}$, and call $B,$ $B^{\prime}$ the images of $S,$ $S^{\prime}$ by $\pi$ and $\pi^{\prime}$ respectively.
$\pi$ and $\pi^{\prime}$ are morphisms as is well known. Since $k$ is algebraically closed,
$A,$ $\pi,$ $B,$ $A^{\prime},$ $\pi^{\prime},$

$B^{\prime}$ are defined over $k$ . We have $q\geqq q^{\prime}\geqq 1$ . Since the geometric
genus of $S$ is $0$ and so the geometric genus of $S^{\prime}$ is $0,$ $B$ and $B^{\prime}$ are non-
singular irreducible curves ($\check{S}afarevi\check{c}[3$ , p. 54, Theorem 3]). There exists a
homomorphism $\lambda:A\rightarrow A^{\prime}$ and a constant $c’\in B^{\prime}$ such that $\pi^{\prime}\circ f=\lambda\circ\pi+c^{\prime}$ .
Replacing $\pi^{\prime}$ by $\pi^{\prime}-c^{\prime}$ , we may assume that $c^{\prime}=0$ . Thus we have a com-
mutative diagram

$S\underline{f}S^{\prime}$

$\pi\downarrow$ $|\pi^{\prime}$

$\lambda$

$B-\rightarrow B^{\prime}$

Let $z$ be a generic point of Sover $k$ . Then $b=\pi(z),$ $z^{\prime}=f(z),$ $b^{\prime}=\pi^{\prime}(z^{\prime})=\lambda(b)$

are generic points of $B,$ $S^{\prime},$ $B^{\prime}$ respectively. The locus of $z$ over $k(b)$ is the
fibre $F_{b}=\pi^{*}(b)$ of $\pi$ , which is a non-singular curve defined over $k(b)$ . (Cf.

\v{S}afarevi\v{c} [3, p. 55, Theorem 4] and (1).) We also see that the genus of $F_{b}$

is zero. Similarly, the locus of $z^{\prime}$ over $k(b^{\prime})$ is the fibre $F_{b},$ $=\pi^{\prime*}(b^{\prime})$ of $\pi^{\prime}$ ,
which is a non-singular curve defined over $k(b^{\prime})$ . Clearly, if $P\in F_{b}$ , then $f(P)$

$\in F_{b}$ . Since $k(z^{\prime})$ is a regular extension $of_{A}^{-}k(b^{\prime})$ and since $k(b)$ is algebraic
over $k(b^{\prime}),$ $k(z^{\prime})$ and $k(b)$ are linearly disjoint over $k(b^{\prime})$ . Hence $z^{\prime}$ is a generic
point of $F_{b’}$ over $k(b)$ , too. Thus $z\wedge r\rightarrow z^{\prime}=f(z)$ induces a rational mapping
$F_{b}\rightarrow F_{b’}$ defined over $k(b)$ . Since $F_{b}$ is of zero genus, the genus of $F_{b’}$ is $0$ .
It follows, from this and Noether’s Theorem ([3, p. 53, Theorem 2]), that $S^{\prime}$

is a ruled surface over $k$ . Proposition 2 is thereby proved.

\S 2. Surfaces with pencils of hyperelliptic curves.

Let $F$ be a non-singular curve defined over a field $k^{\prime}$ . $F$ is hyperelliptic
over $k^{\prime}$ if and only if there is a divisor $\mathfrak{a}$ on $F$ rational over $k^{\prime}$ such that
$\deg(\mathfrak{a})=2$ and $\dim L_{F/k},(\mathfrak{a})\geqq 2$ . It is known that, if a curve $F$ is hyperelliptic
over $k^{\prime}$ , then the canonical system on $F$ induces a rational mapping $F\rightarrow C$ to
a curve of zero genus (Chevalley [2, p. 74, Theorem 9]).

PROPOSITION 3. If a surface $S$ is a double ruled surface over $k$ , then $S$ is
birationally equivalent over $k$ to either a (rational or irrational) ruled surface
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over $k$ , or an elliptic surface, or a surface with a pencil over $k$ of hyperelliptic
curves.

PROOF. By the assumption of Proposition 3, there is a rational mapping
over $k,$ $f:S\rightarrow P_{1}\times B$ such that $[R_{k}(S):R_{k}(P_{1}\times B)]=\deg f=2$ , where $B$ is a
non-singular curve defined over $k$ . Let $\pi_{0}$ ; $P_{1}\times B\rightarrow B$ be the projection. Its
generic fibre $C_{b}=\pi_{0}^{*}(b)=P_{1}\times b$ is a curve defined over $k(b)$ and of genus $0$ .
Replacing $S$ by its non-singular model and using Proposition 1, we may assume
that $S$ is non-singular and $f$ is a morphism. Hence $\pi=\pi_{0}\circ f:S\rightarrow B$ is a
morphism. Call $z$ a generic point of $S$ over $k$ , and put $(t, b)=f(z)\in P_{1}\times B$ .
We have $b=\pi(z)=\pi_{0}(t, b)$ , and the generic fibre $F_{b}=\pi^{*}(b)=f^{*}(t, b)$ is the
locus of $z$ over $k(b)$ and a prime rational cycle over $k(b)$ on $S$ .

CASE 1 where $k(b)$ is algebraically closed in $k(z)$ : Then $k(z)$ is a regular
extension of $k(b)$ , and $F_{b}$ is a curve defined over $k(b)$ . It follows from (1) that
$F_{b}$ is non-singular. If $F_{b}$ is of genus $0$ , then $S$ is a ruled surface over $k$ by
Noether’s Theorem. If $F_{b}$ is of genus 1, then $S$ is, by definition, an elliptic
surface, ( $F_{b}$ may not have a rational point over $k(b).$) If the genus of $F_{b}$ is
$\geqq 2$ , then it follows from the isomorphisms

$R_{k(b)}(F_{b})\cong k(b)(z)=k(z)\cong R_{k}(S)$

$F_{k(b)}(C_{b})\cong k(b)(t, b)=k(t, b)\cong R_{k}(P_{1}\times B)$

that $[R_{k(b)}(F_{b}):R_{k(b)}(C_{b})]=2$ and that $F_{b}$ is a hyperelliptic curve defined over
$k(b)$ .

CASE 2 where $k(b)$ is not algebraically closed in $k(z)$ : Then call $k(b^{\prime})$ the
algebraic closure of $k(b)$ in $k(z)$ . Since $(t, b)=f(z)$ is a generic point of $P_{1}\times B$

over $k,$ $k(t)$ and $k(b)$ are linearly disjoint over $k$ , and $k(t, b)$ is a regular ex-
tension of $k(b)$ . Hence $k(t, b)$ and $k(b^{\prime})$ are linearly disjoint over $k(b)$ , and we
have $2=[k(z):k(t, b)]\geqq[k(t, b^{\prime}):k(t, b)]=[k(b^{\prime}):k(b)]>1$ . (Cf. Weil [4, p. 5,
Proposition 6].) It follows from this that $k(z)=k(t, b^{\prime})$ . Since $k(b^{\prime})$ is algebra-
ically closed in $k(z),$ $k(t, b^{\prime})=k(z)$ is a regular extension of $k(b^{\prime})$ . We may
assume that $b^{\prime}$ is the coordinates of a generic point of a non-singular curve
$B^{\prime}$ over $k$ . The inclusion $k(b^{\prime})\leqq k(z)$ defines a rational mapping $\pi^{\prime}$ : $S\rightarrow B^{\prime}$ .
In view of Proposition 1, we may assume that $\pi^{\prime}$ is a morphism. The fibre
$G_{b}=\pi^{\prime*}(b^{\prime})$ of $\pi^{\prime}$ is the locus of $z$ over $k(b^{\prime})$ . It follows, from $R_{k(b^{\prime})}(G_{b^{\prime}}^{\prime})$

$\cong k(b^{\prime}, z)=k(t, b^{\prime})\cong R_{k(b^{\prime})}(P_{1})$ , that $G_{b^{\prime}}$ is of genus $0$ and that $S$ is a ruled
surface over $k$ . Proposition 3 is thereby proved.

Conversely we have
PROPOSITION 4. If $\pi;S\rightarrow B$ is a pencil over $k$ of hyperelliptic curves, then

$S$ is a double ruled surface over $k$ with the base $B$ .
PROOF. Take a generic point $z$ of $S$ over $k$ . Then $b=\pi(z)$ is a generic

point of $B$ over $k$ and $z$ is a generic point of the hyperelliptic curve $F_{b}$ over
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$k(b)$ . The canonical system of $F_{b}/k(b)$ induces a rational mapping $g:F_{b}\rightarrow C_{b}$

of $F_{b}$ to a curve $C_{b}$ which is defined over $k(b)$ and of genus $0$ , and [ $R_{k(b)}(F_{b})$ :
$R_{k(b)}(C_{b})]=2$ holds. $\chi=g(z)$ is a generic point of $C_{b}$ over $k(b)$ . Let $S^{\prime}$ be the
locus of $(x, b)$ over $k$ . We have isomorphisms

$R_{k(b)}(F_{b})\cong k(b)(z)=k(z)\cong R_{k}(S)$

$R_{k(b)}(C_{b})\cong k(b)(x)=k(x, b)\cong R_{k}(S^{\prime})$ ,

and $[R_{k}(S):R_{k}(S^{\prime})]=2$ . $(x, b)\rightarrow b$ defines a rational mapping $\pi_{0}^{\prime}$ : $S^{\prime}\rightarrow B$ . The
locus $\pi^{\prime*}(b)$ of $(x, b)$ over $k(b)$ is the curve $C_{b}\chi b$ of genus $0$ . Replacing $S^{\prime}$ by
its non-singular model and using Proposition 1 and (1), we see that there is
a pencil over $k$ of curves $\pi_{0}$ : $S_{0}\rightarrow B$ such that the generic fibre $\pi_{0}^{\star}(b)$ is a
non-singular curve defined over $k(b)$ and of genus $0$ and that $[R_{k}(S):R_{k}(S_{0})]$

$=2$ . It follows from Noether’s Theorem that $S_{0}$ is a ruled surface over $k$

with the base $B$ . Hence $S$ is a double ruled surface over $k$ with the base $B$ .
Proposition 4 is thereby proved.

REMARK. Clearly a ruled surface over $k$ is a double ruled surface over $k$ .
However, if $\pi:S\rightarrow B$ is a pencil of elliptic curves over $k,$ $i$ . $e.$ , if a generic
fibre $F_{b}=\pi^{*}(b)$ is a curve defined over $k(b)$ of genus 1, we do not know that
$S$ is a double ruled surface over $k$ . ( $F_{b}$ may not have a rational point over
$k(b)!)$

\S 3. The canonical systems of double ruled surfaces.

PROPOSITION 5. Let $\pi;S\rightarrow B$ be a pencil of curves, and let $F$ be an irredu-
cible non-singular fibre. If $F$ is not a component of a canonical divisor $K$ on
$S$ , then the intersection cycle

$f=F\cdot K$

is a canonical divisor of $F$.
PROOF. Let $F=\pi^{*}(b),$ $b\in B$ , and let $K$ be the divisor of a 2-form to on

$S$ . Let $k$ be an algebraically closed field of definition for $S,$ $B,$ $\pi,$ $\omega$ and $b$ .
Let $\tau$ be an uniformizing parameter of $b$ on $B/k$ , and let $div(\tau)=b+\sum n_{i}a_{i}$ .
It follows that $ t=\tau\circ\pi$ is a uniformizing parameter of $F$ on $S/k$ and that
$div(t)=\pi^{*}(div(\tau))=F+\Sigma n_{i}F_{a_{i}}$ . It follows that $K+F-div(t)=K-\Sigma n_{i}F_{a_{i}}$ .
The divisor of the Poincar\’e residue to of to with respect to $t$ is given by
$div$ (to) $=F\cdot(K+F-div(t))=F\cdot(K-\Sigma n_{i}F_{a_{i}})=F\cdot K$ (Zariski [7]). Proposition
5 is thereby proved.

Now we shall study the rational mapping induced by the canonical systems
on double ruled surfaces. $\Phi_{mK}$ : $S\rightarrow S_{7nK}$ denotes the rational mapping induced
by the pluri-canonical system $|mK|$ on a non-singular surface $S$ . If the
geometric genus $p$ of a surface $S$ is $0\leqq p\leqq 2$, then the rational mapping $\Phi_{K}$
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is trivial, $i$ . $e.$ , its image $S_{K}$ is empty, a point, or the projective line.
PROPOSITION 6. (Cf. \v{S}afarevi\v{c} [3, p. 120, Lemma 5, $3$) $\Rightarrow 1$)] $.$) Let $S$ be a

non-singular surface defined over $k$ of geometric genus $p\geqq 2$ . If $S$ has a pencil
$\pi:S\rightarrow B$ over $k$ of elliptic curves, $i$ . $e.$ , a generic fibre $F_{b}=\pi^{*}(b)$ is a non-
singular curve defined over $k(b)$ of genus 1, then $\Phi_{mK}$ is decomposed as $S^{\pi}\rightarrow B$

$\rightarrow S_{mK}$ , in particular $S_{mK}$ is a curve. $(m\geqq 1)$ .
PROOF. Let $\pi:S\rightarrow B$ be a pencil over $k$ , of curves whose generic fibre

$F_{b}$ is irreducible. Let $z$ be a generic point of $S$ over $k$ with $b=\pi(z)$ . Then
the fibre $F_{b}=\pi^{*}(b)$ is the locus of $z$ over $k(b)$ and a non-singular curve defined
over $k(b)$ . Take a canonical divisor $K\geqq 0$ , on $S$ , rational over $k$ . It is a
matter of triviality to see that $F_{b}$ is not defined over $k$ . Hence the intersec-
tion cycle $f_{b}=F_{b}\cdot K$ is defined and a canonical divisor on $F_{b}$ , rational over
$k(b)$ , by Proposition 5. Each function $u\in R_{k}(S)$ is defined along $F_{b}$ and
induces the function $\overline{u}\in R_{k(b)}(F_{b})$ . We see that $u\rightarrow\overline{u}$ induces an isomorphism

(3) $R_{k}(S)\cong R_{k(b)}(F_{b})$

of fields, under which the subfield $R_{k}(B)$ goes to the constant field $k(b)$ . We
have, by [4, p. 251, Corollary to Theorem 3], $div(\overline{u})=(div(u))\cdot F_{b}$ . If $div(u)$

$+mK\geqq 0$, then we have $div(\overline{u})+mf_{b}\geqq 0$ . This shows that the mapping $u\rightarrow\overline{u}$

induces an injection
(4) $L_{k}(mK)\rightarrow L_{k(b)}(mf_{b})$ .

Now assume that $F_{b}$ is of genus 1. Then the canonical divisor $f_{b}$ is the
null divisor and we have $L_{k(b)}(mf_{b})=k(b)$ . It follows from this and the iso-
morphism (3) that $L_{k}(mK)\leqq R_{k}(B)$ and that $R_{k}(S_{mK})\leqq R_{k}(B)$ . Proposition 6 is
thereby proved.

THEOREM 1. Let $S$ be a non-singular surface defined over $k$ of geometric
genus $p\geqq 2$ . If $S$ has a pencil $\pi:S\rightarrow B$ over $k$ of hyperelliptic curves (therefore,
by Proposition 4, there is a rational mapping $f:S\rightarrow P_{1}\times B$ of degree 2 defined
over $k$), then either (a) $S_{K}$ is a ruled surface over $k$ and $\Phi_{K}$ is decomposed as
$S\rightarrow fP_{1}\times B\rightarrow S_{K}$ , or (b) $S_{K}$ is a curve and $\Phi_{K}$ is decomposed as $S\rightarrow\pi B\rightarrow S_{K}$ , or
(c) $S_{K}$ is a rational curve over $k$ and $\Phi_{K}$ is decomposed as $S\rightarrow P_{1}\times B\rightarrow S_{K}$ .

PROOF. We use the isomorphism (3) and the injection (4) in the first half
of the proof of Proposition 6. By the assumption of Theorem 1, the generic
fibre $F_{b}$ of $\pi$ is a hyperelliptic curve defined over $k(b)$ . Hence the canonical
system $|f_{b}|$ induces the rational mapping of $F_{b}$ to a curve $C_{b}$ of genus $0$

defined over $k(b)$ . The proof of Proposition 6 shows that the isomorphism (3)
induces an isomorphism $R_{k}(P_{1}\times B)\cong R_{k(b)}(C_{b})$ . Hence it follows from $L_{k(b)}(f_{b})$

$\leqq R_{k(b)}(C_{b})$ that $L_{k}(K)\leqq R_{k}(P_{1}\times B)$ and that
$R_{k}(S_{K})\leqq R_{k}(P_{1}\times B)$ .

(a) If $S_{K}$ is a surface, then it is a ruled surface over $k$ by Proposition 2.
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(b) If $\dim S_{K}=trans$ . $deg$ . $k(L_{k}(K))/k=1$ and $R_{k}(B)(L_{k}(K))$ is an algebraic ex-
tension of $R_{k}(B)$ , then we have $R_{k}(B)(L_{k}(K))=R_{k}(B)$ since $R_{k}(B)$ is algebraically
closed in $R_{k}(P_{1}\times B)$ . This implies that $R_{k}(S_{K})=k(L_{k}(K))\leqq R_{k}(B)$ and proves
the assertion (b). (c) Finally assume that trans. $deg$ . $k(L_{k}(K))/k=1$ and
$R_{k}(B)(L_{k}(K))$ is a transcendental extension of $R_{k}(B)$ . Then $R_{k}(B)(L_{k}(K))$ is a
field of algebraic functions of one variable over $R_{k}(B)$ of genus $0$, since, under
(3), $R_{k}(B)(L_{k}(K))/R_{k}(B)$ goes to a subfield of $R_{k(b)}(C_{b})/k(b)$ whose genus is $0$ .
It follows from

trans. $deg$ . $R_{k}(B)(L_{k}(K))/k=2$

$=trans$ . $deg$ . $R_{k}(B)/k+trans$ . $deg$ . $k(L_{k}(K))/k$

that $R_{k}(S_{K})$ and $R_{k}(B)$ are linearly disjoint over $k$ . (Cf. Weil [4, p. 18, Theorem
5].) This implies that $R_{k}(S_{K})=k(L_{k}(K))$ over $k$ has the same genus $0$ as that
of $R_{k}(B)(L_{k}(K))$ over $R_{k}(B)$ and proves our assertion (c). Theorem 1 is thereby
proved.

The followings are immediate consequences of Proposition 3, Proposition
6, Theorem 1 and L\"uroth’s Theorem for curves.

COROLLARY 1. If $S$ is a non-singular double ruled surface over $k$ , then the
rational map $\Phi_{K}$ induced by the canonical system on $S$ is not birational.

COROLLARY 2. If $S$ is a non-singular double plane over $k$ of geometric
genus $p\geqq 2$ , then the image $S_{K}$ of the rational mapping induced by the canonical
system on $S$ is a rational variety over $k$ of dimension 1 or 2.

REMARK 1. Let $S$ be a non-singular surface defined over $k$ and $K$ be a
canonical divisor $\geqq 0$ on $S$ rational over $k$ . It is easy to see that the subfield
$k(L_{s/k}(mK))$ of $R_{k}(S)$ is independent of the choice of models $S$ and canonical
divisors $K\geqq 0$ . Hence our results in Theorem 1 and its Corollaries are prop-
erties of the function-fields and independent of the models $S$ .

REMARK 2. An algebraic surface $S$ is, by definition, of general type (or

of fundamental type), if and only if, for some $m>0,$ $\dim L(mK)\geqq 2$ and $S$

does not have a pencil of elliptic curves ($\check{S}afarevi\check{c}[3$ , p. 120]). In view of
the results in Theorem 1, we are inclined to consider surfaces of general type
of geometric genus $p\geqq 2$ with a pencil of hyperelliptic curves as what cor-
respond to hyperelliptic curves. However, differing from the case of dimension
one, it will not be true in general that $R_{k}(S_{K})=R_{k}(P_{1}\times B)$ in Theorem 1 even
if $S_{K}$ is a surface as we see it in Example 1 below.

EXAMPLE 1. Let $F_{i}$ be a hyperelliptic curve defined over $k$ , and $f_{i}\geqq 0$ be
a canonical divisor on $F_{i}$ rational over $k$ , and let $C_{i}$ be the image of $F_{i}$ by
the rational mapping induced by the canonical system $|f_{i}|(1\leqq i\leqq 2)$ . $C_{1}$ and
$C_{2}$ are curves of genus $0$ defined over $k$ . $S=F_{1}\times F_{2}$ is a double ruled surface
over $k$ covering the ruled surface $C_{1}\times F_{2}$ . $K=\mathfrak{k}_{1}\times F_{2}+F_{1}\times f_{2}$ is a canonical
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divisor on S. We see easily that $R_{k}(S_{K})=k(L_{s/k}(K))=R_{k}(C_{1}\times F_{2})\cap R_{k}(F_{1}\times C_{2})$

:; $R_{k}(C_{1}\times F_{2})$ . This is an example of (a) in Theorem 1 with $R_{k}(S_{K})\neq R_{k}(P_{1}\times B)$ .
EXAMPLE 2. Let $B$ be a non-hyperelliptic curve of genus $\geqq 3$ , and $E$ be

an elliptic curve, both defined over $k$ . Call $f$ a canonical divisor $\geqq 0$ on $B$

rational over $k$ . There is a degree 2 rational mapping $E\rightarrow C$ of $E$ to a rational
curve $C$ since $k$ is algebraically closed. $S=E\times B$ is a double ruled surface
over $k$ covering the ruled surface $C\times B$ , and $K=E\times f$ is a canonical divisor
on $S$ . The linear system $|f|$ induces a birational mapping of $B$ . It follows
from this that $R_{k}(S_{K})=R_{k}(B)$ , which is an example of (b) in Theorem 1.

EXAMPLE 3. Let $B$ be a hyperelliptic curve, and $E$ be an elliptic curve,
both defined over $k$ . Call $C$ the image of the rational mapping induced by
the canonical system $|f|$ on B. $S=E\times B$ is a double ruled surface over $k$

covering the ruled surface $E\times C$ . We see easily that $R_{k}(S_{K})=R_{k}(B)\cap R_{k}(E\chi C)$

$=R_{k}(C)$ . This gives an example of (c) in Theorem 1.

Waseda University, Tokyo
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