
J. Math. Soc. Japan
Vol. 21, No. 4, 1969

On compact complex analytic manifolds of
complex dimension 3, II

By S\={o}ichi KAWAI

(Received March 26, 1969)

The present paper is a continuation of our previous paper [3] and the
object is to investigate the structure of compact complex manifolds of dimen-
sion 3 with (meromorphic) function fields of dimension 1 or $0$ . The results
are stated in the following two theorems.

THEOREM 1. Let $\varphi:M\rightarrow\Delta$ be a holomorphic mapping of a compact complex

manifold of dimension 3 onto a compact Riemann surface. If the mapping $\varphi$

induces an isomorphism of the meromorphic function field of $\Delta$ to the mero-
morphic function field of $M$, then a general fibre of $\varphi$ must be one of surfaces
of the following classes; (i) $K3$ surface, (ii) surface with first Betti number $b_{1}=1$ ,
(iii) complex torus, (iv) elliptic surface with a trivial canonical bundle, (v) ruled
surface with irregularity $q=1$ , (vi) rational surface, (vii) Enriques surface.

THEOREM 2. A compact Kahler manifold of dimension 3 which has no
non-constant meromorphic functions is bimeromorphically equivalent to (i) $a$

complex torus, (ii) an elliptic fibre space or a projective line bundle over a com-
plex torus, or (iii) a regular manifold with geometric genus $p_{g}=0$ or 1.

\S 1. Proof of Theorem 1.

In Kodaira [5] surfaces are classified into the following classes:
I) the class of algebraic surfaces with $p_{g}=0$ ;

II) the class of $K3$ surfaces;
III) the class of complex tori;
IV) the class of elliptic surfaces with $p_{g}\geqq 1$ ;
V) the class of algebraic surfaces with $p_{g}\geqq 1$ ;

VI) the class of elliptic surfaces with $b_{1}\equiv 1(2),$ $p_{g}\geqq 1$ ;
VI1) the class of surfaces with $b_{1}=1$ .

Here $p_{g}$ and $b_{1}$ are the geometric genus and the first Betti number, respec-
tively. Surfaces of class (I) are classified furthermore into (i) rational sur-
faces, (ii) Enriques surfaces, (iii) elliptic surfaces, (iv) ruled surfaces with
irregularity $q=1$ , (v) ruled surface with $q\geqq 2$ , and (vi) surfaces of which
pluri genera increase infinitely.
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In the sequel we shall check whether any surface may appear as a fibre
of $\varphi$ in the theorem.

PROPOSITION 1. Let $\varphi:M\rightarrow\Delta$ be a holomorphic mapping of a compact
complex threefold onto a compact Riemann surface. If a general fibre of $\varphi$ is
a surface of class (IV) or (V), or a surface of class (VI) with a non-trivial
canonical bundle, then the dimension of the function field of $M$ is greater than 1.

PROOF. Let ff be the canonical bundle of $M$ and $\mathcal{O}(m\theta)$ the sheaf of
holomorphic sections of the bundle $mR$ . By a fundamental theorem of Grauert
[1] the direct image $\varphi_{*}(o(m9))$ is a coherent sheaf. Hence, by means of
Grothendieck [2], the projective space $\lambda:P(\varphi_{*}(O(mR)))\rightarrow\Delta$ is defined. Let $U$

be the set of points of $M$ where the canonical homomorphism $\varphi^{*}(\varphi_{*}(O(mff))\rangle$

$\rightarrow \mathcal{O}(m\theta)$ is surjective, then $U$ is a complement of an analytic set of $M$, and
a morphism $\Phi$ of $U$ to P(\varphi *(O(m\mbox{\boldmath $\zeta$}\S ))) over $\Delta$ is $\Phi:U\subset M\rightarrow P(\varphi_{*}(O(mf?)))$

$\varphi*/$ $\lambda$

$\Delta$

defined canonically. If $u$ is a general point of $\Delta$ , then $\lambda^{-1}(u)$ is a projective
space defined by the vector space $H^{0}(\varphi^{-1}(u), \mathcal{O}(mff)/\mathfrak{m}_{u}o(m\theta))$ , where $\mathfrak{m}_{u}$ is the
maximal ideal of the local ring at $u$ , and the restriction $\Phi_{u}$ of $\Phi$ to $\varphi^{-1}(u)\cap U$

is a morphism defined by a base of $H^{0}(\varphi^{-1}(u), \mathcal{O}(m\theta)/\mathfrak{m}_{u}o(mR))$ . Now the
sheaf $\mathcal{O}(mff)/\mathfrak{m}_{u}o(mff)$ is isomorphic to the sheaf of sections of multi-canonical
bundle $mK$ of $S_{u}=\varphi^{-1}(u),$ $K$ being the canonical bundle of $S_{u}$ . By results of
Kodaira we know that the dimension of $H^{0}(S, G(mK))$ increases infinitely as
an integer $m$ increases. Hence for a large $m$ the morphism $\Phi_{u}$ is defined
almost everywhere and meromorphic on $S_{u}$ , and the image by $\Phi_{u}$ is not a
point. Therefore $U$ is non-empty, $\Phi$ is extensible to a meromorphic map of
$M$, and the image by $\Phi$ is an irreducible analytic set of $P(\varphi_{*}(O(mP)))$ of
dimension greater than 1. Since the analytic space $P(\varphi_{*}(\mathcal{O}(mff)))$ is algebraic,
its analytic subset is also algebraic. Consequently dimension of the function
field of $M$ is greater than 1.

PROPOSITION 2. Let $\varphi:M\rightarrow\Delta$ be as in the above. If a general fibre $S_{u}$

over $ u\in\Delta$ is a surface with geometric genus $p_{g}=0$ and irregularity $q\geqq 1$ , then
there are a complex space $\lambda:V\rightarrow\Delta$ over $\Delta$ and a meromorphic mapping $\Psi$ of
$M$ to $V$ over $\Delta$ such that the restriction $\Psi_{u}$ of $\Psi$ to $S_{u}$ is Albanese map of $S_{u}$

onto the image of Albanese map, that is, a non-singular curve with genus $q$ .
PROOF. Let $\{a_{i}\}$ be a finite set of points of $\Delta$ such that the restriction

$\varphi^{\prime}$ of $\varphi$ to $M^{\prime}=M-\varphi^{-1}(\{a_{i}\})$ is a simple morphism of $M^{\prime}$ onto $\Delta^{\prime}=\Delta-\{a_{i}\}$ .
We may assume that $\Delta^{\prime}\neq\Delta$ . Let $\Omega_{M/\Delta}^{1}$ be the sheaf of holomorphic l-differ-
entials along fibres of $\varphi$ (cf. Grothendieck [2]). By Grauert the sheaf $\varphi_{*}(\Omega_{M/\Delta}^{1})$

is a coherent sheaf and for $u\in\Delta^{\prime}\varphi_{*}(\Omega_{M/\Delta}^{1})_{u}/\mathfrak{m}_{u}\varphi_{*}(\Omega_{M/\Delta}^{1})_{u}$ is canonically isomor-
phic to $H^{0}(S_{u}, \Omega_{M/\Delta}^{1}/\mathfrak{m}_{u}\Omega_{M/\Delta}^{1})$ which is the space of holomorphic l-differentials
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on $S_{u}$ . Here $\mathfrak{m}_{u}$ is the maximal ideal of the local ring at $u$ . Since the space
$\Delta$ ‘ is affine, there are sections $(w^{1}$ , $\cdot$ .. , $w^{q})$ of $\Gamma(\Delta^{\prime}, \varphi_{*}(\Omega_{M/\Delta}^{1}))=\Gamma(M^{\prime}, \Omega_{M/\Delta}^{1})$

which generate $H^{0}(S_{u}, \Omega_{M/\Delta}^{1}/\mathfrak{m}_{u}\Omega_{M/\Delta}^{1})$ . Adding some $a_{i}$ , if necessary, we may
assume that $(w^{1}$ , $\cdot$ .. , $w^{q})$ generate $H^{0}(S_{u}, \Omega_{M/\Delta}^{1}/\mathfrak{m}_{u}\Omega_{M/\Delta}^{1})$ for every $u\in\Delta^{\prime}$ . We
denote by $(w^{1}(u), \cdots , w^{q}(u))$ the elements of $H^{0}(S_{u}, \Omega_{M/\Delta}^{1}/\mathfrak{m}_{u}\Omega_{M/\Delta}^{1})$ which corre-
spond to $(w^{1}, \cdots , w^{q})$ . We fix a fibre $S_{0}=S_{u_{0}}$ and a base $(\gamma_{1}, \cdots , \gamma_{2_{Q}})$ of the
first Betti group of $S_{0}$ . The fibre space $\varphi^{\prime}$ : $M^{\prime}\rightarrow\Delta^{\prime}$ being topologically locally
trivial, we have a base $(\gamma_{1}(u), \cdots , \gamma_{z_{q}}(u))$ of the first Betti group of $S_{u}$ such
that each $\gamma_{j}(u)$ depends continuously on $u$ and $\gamma_{j}(u_{0})=\gamma_{j}$ . If we deform
$(\gamma_{1}, \cdots , \gamma_{2q})$ continuously along a path $\beta\in\pi_{1}(\Delta^{\prime})=\pi_{1}(\Delta^{\prime}, u_{0}),$ $(\gamma_{1}, \cdots , \gamma_{2q})$ is trans-
formed into $(\sum_{j}a_{j_{1}}(\beta)\gamma_{j}, \cdots , \sum_{j}a_{j_{2q}}(\beta)\gamma_{j})$ , where $(a_{jk}(\beta))$ is a unimodular matrix.

The integral $\int_{r_{J^{(u)}}}w^{k}(u)$ is a multi-valued holomorphic functions of $u$ . Putting

$\omega_{j}(u)=(\int_{\gamma_{J^{(u)}}}w^{1}(u),$
$\cdots$ , $\int_{r_{J^{(u)}}}w^{q}(u))$ , the multi-vector-valued function $\omega_{j}(u)$ is

transformed into $\sum_{k}a_{kj}(\beta)\omega_{k}(u)$ , by the analytic continuation along a path $\beta$ .
Let or: $U^{\prime}\rightarrow\Delta^{\prime}$ be the universal covering of $\Delta^{\prime}$ . We denote simply by $\omega_{j}(\tilde{u})$

the single vector-valued holomorphic function $\omega_{j}(\sigma(\tilde{u}))$ of $\tilde{u}\in U^{\prime}$ . Identifying
$\pi_{1}(\Delta^{\prime})$ with the covering transformation group with respect to $\varpi^{\prime}$ , we consider
the following automorphism of $U^{\prime}\times C^{q}$ ;

$g(\beta, n):(\tilde{u}, \zeta)\rightarrow(\beta\tilde{u}, \zeta+\sum_{k=1}^{2q}n_{k}\sum_{j}a_{jk}(\beta)\omega_{j}(\tilde{u}))$ ,

where $\beta\in\pi_{1}(\Delta^{\prime}),$ $n=(n_{j})\in Z^{2q},\tilde{u}\in U^{\prime},$ $\zeta\in C^{q}$ . The set $G=\{g(\beta, n)|\beta\in\pi_{1}(\Delta^{\prime})$ ,
$n\in Z^{2q}\}$ is a group of automorphisms of $U^{\prime}\times C^{q}$ without fixed points. We
form the quotient space $U^{\prime}\times C^{q}/G$ , which is a complex manifold and is denoted
by $B^{\prime}$ . The natural projection of $U^{\prime}\times C^{q}$ to $U^{\prime}$ induces a holomorphic map $\mu$

of $B^{\prime}$ onto $\Delta^{\prime}$ and the map $U^{\prime}\ni\tilde{u}\rightarrow(\tilde{u}, O)\in U^{\prime}\times C^{q}$ induces the holomorphic
map $\nu$ of $\Delta^{\prime}$ to $B^{\prime}$ such that $\mu\circ\nu=identity$ . Here $0$ is the null-element of
vector space $C^{q}$ .

Let $\{U_{j}\}$ be an open covering of $\Delta^{\prime}$ such that there is a holomorphic sec-
tion $s_{j}$ to $M^{\prime}$ over $U_{j}$ . The map

$\psi_{j}$ : $\varphi^{-1}(U_{j})\ni z\rightarrow(\varphi(z),$
$(\int_{s^{z_{j}}(\varphi^{(z))}}w^{1}(\varphi(z)),$ $\int_{s((z))}^{z_{j\varphi}}w^{q}(\varphi(z))))\in U^{\prime}\times C^{q}/G=B^{\prime}$

is a well-defined holomorphic map and it holds $\psi_{j}\circ s_{j}=\nu|U_{j}$ . If $U_{j}\cap U_{k}$ is
non-empty, we have a unique automorphism $\Lambda_{jk}$ of $B^{\prime}|U_{j}\cap U_{k}=\mu^{-1}(U_{j}\cap U_{k})$ ,

which is a translation along a fibre, such that $\Lambda_{jk}\circ\nu=\psi_{j}\circ s_{lo}$ . We see immedi-
ately that $\Lambda_{kl}\cdot\Lambda_{jk}=\Lambda_{jl}$ , if $ U_{j}\cap U_{k}\cap U_{l}\neq\phi$ . Hence we can patch together
$B^{\prime}|U_{j}=\mu^{-1}(U_{j})$ by automorphisms $\{\Lambda_{jk}\}$ . The space obtained by patching
together is denoted by $A^{\prime}$ . The map $\mu$ may be considered as a map of $A^{\prime}$

to $\Delta^{\prime}$ and $\{\psi_{j}\}$ induce a holomorphic map $\Psi^{\prime}$ of $M^{\prime}$ to $A^{\prime}$ . By the theory of
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surfaces we know the image $\Psi^{\gamma}(S_{u})$ of $S_{u}$ is a non-singular curve with genus
$q$ . Hence the image $V^{\prime}=\Psi^{\prime}(M^{\prime})$ of $M^{\prime}$ is a complex submanifold of $A^{\prime}$ . We
denote by $\lambda^{\prime}$ the restriction of $\mu$ to $V^{\prime}$ .

Now we shall extend the complex manifold $V^{\prime}$ over $\Delta^{\prime}$ to the complex
space $V$ over $\Delta$ . Take an $a_{i}$ and a small open disk $U_{i}$ with center $a_{i}$ , let $m$

be the least common multiple of the multiplicities of irreducible components
of $\varphi^{-1}(a_{i})$ and let $\pi:D\rightarrow U_{i}$ be an m-fold covering with the point $\tilde{a}$ lying over
$a_{i}$ as a branch point of degree $(m-1)$ . Considering the normalization $M_{i}^{*}$ of
the fibre product $(M|U_{i})\times_{U_{i}}D$ and the natural projection $\varphi_{i}$ from $M_{i}^{*}$ to $D$ ,

we see immediately that each irreducible component of $\varphi_{i}^{-1}(\tilde{a})$ has multiplicity
1. Hence for every simple point of $\varphi^{-1}(\tilde{a})$ there exists a section $s_{i}$ : $D\rightarrow M_{i}^{*}$ .
Since $D$ is a Stein manifold, there are sections $(w^{1}, \cdots , w^{q})$ of $(\varphi_{i})_{*}(\Omega_{M_{i}^{*}/D}^{1})$ over
$D$ which generate $(\varphi_{i})_{*}(\Omega^{1}*)/\mathfrak{m}_{\sigma}(\varphi_{i})_{*}(\Omega_{M_{i^{/D}}^{*)}}^{1}$ for every point $\sigma$ of $D^{\prime}=D-\tilde{a}$ .
In the same notation as before $w^{j}(\sigma)$ is a holomorphic l-differential in simple
points of $S_{\sigma}=\varphi_{i}^{-1}(\sigma)$ for $\sigma\in D$ . We fix a point $\sigma_{0}$ of $D^{\prime}$ and a first Betti base
$\gamma_{1}$ , , $\gamma_{2q}$ of $S_{\sigma_{0}}$ . As before we denote by $\gamma_{1}(\sigma)$ , $\cdot$ .. , $\gamma_{2q}(\sigma)$ the first Betti base
such that $\gamma_{j}(\sigma)$ depends continuously on $\sigma$ and $\gamma_{j}(\sigma_{0})=\gamma_{j}$ . An element $\beta$ of
the fundamental group $\pi_{1}(D^{\prime})$ induces a transformation $(\gamma_{j})\rightarrow(\sum_{k}a_{kj}(\beta)\gamma_{k})$ . Let
$\varpi^{\prime}$ : $U\rightarrow D^{\prime}$ be the universal covering with the covering transformation group
identified with $\pi_{1}(D^{\prime})$ . Putting

$\omega_{j}(\sigma)=(\int_{r_{J^{(\sigma)}}}w^{1}(\sigma),$ $\int_{\gamma_{j}(\sigma)}w^{q}(\sigma))$ ,

$\omega_{j}(\tilde{\sigma})=\omega_{j}(\varpi^{\prime}(\tilde{\sigma}))$ for $\tilde{\sigma}\in U$ ,

$g(\beta, n):(\tilde{\sigma}, \zeta)\rightarrow(\beta\tilde{\sigma}, \zeta+\Sigma n_{k}\sum a_{jk}(\beta)\omega_{j}(\tilde{\sigma}))$ ,

$G=\{g(\beta, n)\}$ ,

we form the quotient manifold $B_{i}=U\times C^{q}/G$ . As before we let $\mu_{i}$ be the
natural projection from $B_{i}$ to $D^{\prime}$ and let $\psi_{i}^{\prime}$ be the holomorphic map

$\psi_{i}^{\prime}:M_{i}^{*}|D^{\prime}\ni z\rightarrow(\varphi_{i}(z),$
$(\int_{s(}^{z_{i\varphi\iota^{(z))}}}w^{1}(\varphi_{i}(z)),$ $\int_{s((z)}^{z_{i\varphi i}}w_{)}^{q}(\varphi_{i}(z))))\in B_{i}$ .

The analytic set $E^{\prime}=\psi_{i^{-1}}^{\prime}(\psi_{i}^{\prime}(s_{i}(D^{\prime})))$ is extensible to the analytic set $E$ of $M_{i}^{*}$ .
In fact $f_{j}(z)=\int_{s(}^{z_{i\varphi i(z))}}w^{j}(\varphi_{i}(z))$ is holomorphic in simple points of $\varphi_{i}^{-1}(\tilde{a})$ . Hence
$E^{\prime}$ is holomorphically extensible to simple points of $\varphi_{i}^{-1}(\tilde{a})$ . Therefore by a
theorem of Remmert-Stein $E^{\prime}$ is holomorphically extensible to $M_{i}^{*}$ over all.
The analytic set $E$ is an irreducible surface, to which corresponds the com-
plex line bundle $[E]$ on $M_{i}^{*}$ . Let $\lambda_{i}$ : $V_{i}=P((\varphi_{i})_{*}(O(mE)))\rightarrow D$ be the projec-
tive space defined by the coherent sheaf $(\varphi_{i})_{*}(o(m[E]))$ on $D$ , where $m$ is a
large integer, and let $\psi_{i}$ : $M_{i}^{*}\rightarrow V_{t}$ be the canonical meromorphic mapping.



608 S. KAWAI

Then the fibre $\lambda_{t}^{-1}(\sigma)$ over $\sigma\in D^{\prime}$ is isomorphic to the image $\psi_{i}^{\prime}(S_{\sigma})$ of $S_{\sigma}$ in its
Albanese variety $\mu_{i}^{-1}(\sigma)\subset B_{i}$ , and $\psi_{i}|S_{\sigma}$ is equivalent to the Albanese map
$\psi_{i}^{\prime}|S_{d}$ . Now the covering transformation group $g$ of $D$ with respect to $\pi$

operates naturally on $M_{b}^{*}j$ and we have $M_{i}^{*}/\mathcal{G}=M|U_{i}$ . It is easily seen that
an element of $g$ transforms the surface $E$ onto itself, and that it induces the
automorphism of the line bundle $[E]$ , which also induces the automorphism
of the complex space $V_{i}$ . Thus we may consider $\mathcal{G}$ to be a group of auto-
morphisms of $V_{i}$ . Since $\mathcal{G}$ is a finite group, we can form the quotient space
$V_{i}/\mathcal{G}$ which we denote by the same notation $V_{i}$ . The mapping $\psi_{i}$ induces a
meromorphic mapping $\Psi_{i}$ of $M_{i}|U_{i}$ to $V_{i}$ . Seeing the construction it is clear
that $V^{\prime}|U_{i}^{\prime}$ is canonically isomorphic to $V_{i}|U_{i}^{\prime}$ , and that $\Psi_{i}|U_{i}^{\prime}$ is equivalent
to $\Psi^{\prime}$ . Here $U_{i}^{\prime}=U_{i}-a_{i}$ . Thus we can extend the manifold $V^{\prime}$ to the com-
plex space $V$ and the holomorphic map $\Psi^{\prime}$ to the meromorphic map $\Psi$ .

$CoROLLARY$ . If a general fibre $S_{u}$ of $\varphi:M\rightarrow\Delta$ is a ruled surface with
irregularity $q\geqq 2$ or an elliptic surface with canonical bundle $K$ such that $mK\sim O$

for a positive integer $m$ , the dimension of the function field of $M$ is greater
than 1.

PROOF. In the same notation as above a general fibre $C_{u}$ of $\lambda:V\rightarrow\Delta$ is
a curve with genus $q$ or an elliptic curve. In the latter case it is known by
a surface theory of Kodaira that the general fibre $S_{u}$ is an elliptic surface
over $C_{u}$ with multiple singular fibres. Since the set of points of indeterminacy
of the meromorphic map $\Psi$ and points where $\Psi$ is regular and not simple
constitute an analytic set of $M$, the image by $\Psi$ of singular fibres of elliptic
surfaces $S_{u}$ forms a curve $0$ of $V$ such that $\lambda(\Theta)=\Delta$ . Therefore in both
cases by results of Kodaira the surface $V$ is bimeromorphically equivalent to
an algebraic surface. The dimension of the function field of $M$ is not less
than that of $V$. This ends the proof.

\S 2. Examples and some propositions.

PROPOSITION. Let $\varphi:M\rightarrow\Delta$ be a holomorphic map of a compact complex
threefold onto a compact Riemann surface. If there lies on $M$ a surface which
has no non-constant meromorphic functions, then dimension of the function field
of $M$ is 1.

PROOF. Supposing that dimension of the function field of $M$ is greater
than 1, we shall obtain a contradiction. In case the dimension is 3, it is easy.
So we suppose that the dimension of the function field is 2. Then there are
a compact complex threefold $\tilde{M}$ and a holomorphic map $f$ (resp. $\psi$) onto $M$

(resp. an algebraic surface $V$ ). It suffices to prove that every irreducible
surface $S$ on $\tilde{M}$ has infinitely many curves. In case $\psi(S)$ has positive dimen-
sion, it is clear. In case $\psi(S)$ is a point $a$ of $V$ , take a general simple point
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$z_{0}$ of $\psi^{-1}(a)$ which belongs to $S$ and let $\xi,$ $\zeta,$
$\eta$ (resp. $x,$ $y$) be local coordinates

with center $z_{0}$ (resp. $a$). Put $x=x(\psi(z))=g(\xi, \zeta, \eta),$ $y=y(\psi(z))=h(\xi, \zeta, \eta)$ for
a neighboring point $z$ of $z_{0}$ . We may assume that $S$ is defined by the
equation $\xi=0$ in a neighborhood of $z_{0}$ and that the functions $g(\xi, \zeta, \eta),$ $h(\xi,$ $\zeta,$ $\eta\rangle$

are expressed as
$g(\xi, \zeta, \eta)=\xi^{\alpha}(a_{0}(\zeta, \eta)+a_{1}(\zeta, \eta)\xi+$ ), $h(\xi, \zeta, \eta)=\xi^{\beta}(b_{0}(\zeta, \eta)+$ ).

Furthermore we may assume that $g(\xi, \zeta, \eta)=\xi^{\alpha}$, the point $z_{0}$ being a general
point. Now in case $b_{0}(\zeta, \eta)$ is non-constant, the inverse image $\psi^{-1}(C_{\lambda})$ of the
curve $C_{\lambda}$ defined by the equation $x^{\beta}-\lambda y^{\alpha}=0$ on $\Delta$ cuts a variable curve on $S$,

where $\lambda$ is a variable. If $b_{0}(\zeta, \eta)$ is a constant $b_{0}$ and $b_{1}(\zeta, \eta)$ is non-constant,

the inverse image $\psi^{-1}(C_{\lambda})$ of the curve $C_{\lambda}$ defined by the equation $(y^{\alpha}-b_{0}^{\alpha}x^{\beta})^{\alpha}$

$-\lambda x^{\alpha\beta}y=0$ cuts a variable curve on $S$ , and so on. q. e. $d$ .
PROPOSITION. Let $\varphi:M\rightarrow\Delta$ be an analytic fibre bundle of abelian varieties

of general type over a compact Riemann surface. If the manifold $M$ is non-
algebraic, then dimension of its function field is 1.

PROOF. Suppose that dimension of the function field of $M$ is greater than
1. Then there is an irreducible hypersurface $S$ on $M$ such that $\varphi(S)=\Delta$ .
Since each fibre $\varphi^{-1}(u)$ is an abelian variety of general type, $S\cap\varphi^{-1}(u)$ is an
ample divisor on $\varphi^{-1}(u)$ . Therefore the complex line bundle $m$ [S] is very
ample for a large integer $m$ by Grothendieck [2].

EXAMPLE 1. Let $S$ be an elliptic surface with a trivial canonical bundle.
If $S$ is not a complex torus, then by Kodaira [5] it is isomorphic to a quotient
manifold $C^{2}/G,$ $G$ being an affine transformation group generated by $g_{1},$ $g_{2}$ ,
$g_{3},$ $g_{4}$ defined as

$g_{j}w_{1}=w_{1}+\alpha_{j},$ $g_{j}w_{2}=w_{2}+\alpha_{j}w_{1}+\beta_{j},$ $j=1,$ $\cdots$ , 4 for $(w_{1}, w_{2})\in C^{2}$ ,

where $\alpha_{1},$ $\cdots$ , $\alpha_{4},$ $\beta_{1},$ $\cdots$ , $\beta_{4}$ are constant satisfying the conditions
$\alpha_{1}=\alpha_{2}=0$ , $\alpha_{3}\alpha_{4}-\alpha_{4}\alpha_{3}=m\beta_{2}\neq 0$ ,

$m$ being a positive integer.
We put $M=C^{3}/G^{\prime},$ $G^{\prime}$ being an affine transformation group generated by

$\sigma,$ $\tau,$ $g_{1},$ $g_{2},$ $g_{3},$ $g_{4}$ defined as
$\sigma z=z+1,$ $\sigma w_{1}=w_{1},$ $\sigma w_{2}=w_{2}$

$\tau z=z+\sqrt{-1},$ $\tau w_{1}=w_{1}+\alpha,$ $\tau w_{2}=w_{2}$ ,

$g_{j}z=z,$ $g_{j}w_{1}=w_{1}+\alpha_{j},$ $g_{j}w_{2}=\alpha_{j}w_{1}+\beta_{j}$ for $(z, w_{1}, w_{2})\in C^{3}$ ,
where

$\alpha=-\frac{3(2+\sqrt{2})}{4}+\frac{-4+3\sqrt{2}}{4}\sqrt{-1}$

$\beta_{1}=-\frac{3(2+\sqrt{2})}{4}+\frac{4+3\sqrt{2}}{4}\sqrt{-1},$ $\beta_{2}=2\sqrt{-1},$ $\beta_{s}=\beta_{4}=0$
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$\alpha_{1}=\alpha_{2}=0,$ $\alpha_{3}=1,$ $\alpha_{4}=2+\sqrt{-1}$ .
Let $\Delta$ be the complex torus $C/\{1, \sqrt{-1}\}$ and let $\varphi:M\rightarrow\Delta$ be the natural pro-
jection. Then a fibre of $\varphi$ is the elliptic surface $S$ and dimension of the
function field of $M$ is 1. In fact, putting

$\sigma^{\prime}z=z+1,$ $\sigma^{\prime}w_{1}=w_{1}$ ,

$\tau^{\prime}z=z+\sqrt{-1},$ $\tau^{\prime}w_{1}=w_{1}+\alpha$ ,

$g_{j}z=z,$ $g_{j}w_{1}=w_{1}+\alpha_{j},$ $j=3,4$ for $(z, w_{1})\in C^{2}$ ,

and letting $H$ be an affine transformation group generated by $\sigma^{\prime},$ $\tau^{\prime},$
$g_{3}$ and

$g_{4}$ , we obtain an elliptic surface $T=C^{2}/H$. By results of Kodaira [4] it is
easily proved that $T$ is non-algebraic. Let $\lambda:M\rightarrow T$ and $\mu:T\rightarrow\Delta$ be the
natural projections. If dimension of the function field of $M$ were greater than
1, there would be a surface $D$ on $M$ such that $\lambda(D)=T$. Then the elliptic
surface $S$ would be algebraic, which yields a contradiction.

EXAMPLE 2. Let $P^{1}$ be a projective line with non-homogeneous coordinate
$\chi$ . Putting

$\sigma z=z+1,$ $\sigma x=ax+b$ ,

$\tau z=z+\sqrt{-1}$ , $\tau x=cx+d,$ $ac\neq 0$ for $(z, x)\in C\times P^{1}$ ,

and letting $G$ be a group of automorphisms of $C\times P^{1}$ generated by $\sigma$ and $\tau$ ,

we obtain a compact surface $R=C\times P^{1}/G$ . The natural projection induces a
holomorphic mapping $\lambda$ of $R$ onto a l-dimensional complex torus $T$ with periods
$(1, ’-1)$ . The surface $R$ is a ruled surface with irregularity 1. Let $S$ be
an analytic principal bundle with group $T$ over a compact Riemann surface
$\Delta$ which is not an algebraic surface, the existence of which is proved easily.
Since translations of $C$ commute with $\sigma$ and $\tau$ , the group $T$ operates naturally
on $R$ . Hence an analytic fibre bundle $M$ with fibre $R$ associated to $S$ is defined.
Let $\varphi$ : $ M\rightarrow\Delta$ and $\psi:M\rightarrow S$ be the natural projections. Now we shall show
that dimension of the function field of $M$ is greater than 1 if $a,$ $b,$ $c$ and $d$

are general complex numbers. Suppose that dimension of the function field
is greater than 1. Then we see by [3] that $M$ is elliptic and that almost all
irreducible surfaces on $M$ are elliptic. Hence a general fibre of $\varphi$ , that is, $R$

is an elliptic surface. However $R$ is non-elliptic for general $a,$ $b,$ $c$ and $d$ .
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In fact; if $R$ is an elliptic surface, it contains infinitely many elliptic curves
$C$ such that $\lambda(C)=T$. It is easily proved by Hurwitz’s formula that elliptic
curve $C$ is an unramified covering of $T$. Consequently a projective line bundle
induced from the bundle $\lambda:R\rightarrow T$ on an appropriate unramified covering of
$T$ has infinitely many holomorphic sections. Therefore we infer readily that
there are positive integers $m,$ $n$ and infinitely many meromorphic functions
$f(z)$ of $z$ such that

$f(z+m)=a^{m}f(z)+b(1+a+\cdots+a^{m- 1})$ ,

$f(z+n’-1)=c^{n}f(z)+d(1+c+ +c^{n-1})$ .
This yields the relation

$a^{m}d\sum_{j=0}^{n-1}c^{j}+b\sum_{k=0}^{m-1}a^{k}=c^{n}b\sum_{k=0}^{m-1}a^{k}+d\sum_{j=0}^{n-1}c^{j}$ .

Thus $R$ is not an elliptic surface for general $a,$ $b,$ $c,$
$d$, e. g., $a=b=1,$ $c=d=2$ .

REMARK. I have no example of a compact threefold $M$ with a function
field of dimension 1 such that there is a holomorphic map $\varphi$ of $M$ onto a
compact Riemann surface $\Delta$ and a general fibre of $\varphi$ is an Enriques surface
or a rational surface.

\S 3. Proof of Theorem 2.

Let $M$ be a compact K\"ahler manifold of dimension 3 cn which there is
no non-constant meromorphic functions. We denote by $h$ “ the dimension of
the linear space of holomorphic v-forms on $M$.

PROPOSITION 3. $h^{3}\leqq 1$ .
PROOF. Suppose that $h^{3}\geqq 2$ . Let $\omega_{1},$ $\omega_{2}$ be linearly independent holo-

morphic 3-forms. By local coordinates $(z^{1}, z^{2}, z^{3})\omega_{i}$ is expressed as $f_{i}(z)$

$dz^{1}$ A $dz^{2}\wedge dz^{3}$ and the function $F(z)=f_{1}(z)/f_{2}(z)$ is a well-defined meromorphic
function on $M$ which is not a constant. This is a contradiction.

PROPOSITION 4. $h^{1}\leqq 3$ .
PROOF. Suppose that $h^{1}\geqq 4$ . Let $\varphi_{1},$ $\varphi_{2},$ $\varphi_{3},$ $\varphi_{4}$ be linearly independent

holomorphic l-forms. By the above proposition there are constants $\alpha$ and $\beta$ ,

either of which does not vanish, such that

$\alpha\varphi_{1}$ A $\varphi_{2}$ A $\varphi_{3}+\beta\varphi_{1}$ A $\varphi_{2}\Lambda\varphi_{4}=0$ .
If $\varphi_{1}$ A $\varphi_{2}\neq 0$, then there are meromorphic functions $f_{1},$ $f_{2}$ such that $\alpha\varphi_{3}+\beta\varphi_{4}$

$=f_{1}\varphi_{1}+f_{2}\varphi_{2}$ , which yields a contradiction. If $\varphi_{1}$ A $\varphi_{2}=0$, then there is a mero-
morphic function $f$ and we have $\varphi_{2}=f\varphi_{1}$ . This is a contradiction, too. Q.E.D.

Now we write $h^{1}=q$ and let $\varphi_{1},$ $\cdots$ , $\varphi_{q}$ be linearly independent holomorphic
l-forms. Since $M$ is K\"ahlerian by assumption, its first Betti number is $2q$ .
Let $\gamma_{1},$

$\cdots$ , $\gamma_{zq}$ be a base of the first Betti group and put
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$\omega_{\alpha}=(\int_{\gamma_{\alpha}}\varphi_{1},$ $\int_{\gamma_{\alpha}}\varphi_{q})$ ,

$\Omega=\{n_{1}\omega_{1}+ +n_{2q}\omega_{2q}|n_{\alpha}\in Z\}$ .
Then $\Omega$ is a discrete subgroup of $C^{q}$ of rank $2q$ and $ T^{q}=C^{q}/\Omega$ is a complex
torus of dimension $q$ . We fix a point $z_{0}$ of $M$ and consider the mapping

$\varphi:M\ni z\rightarrow(\int_{z_{0}^{z}}\varphi_{1},$ $\int_{z^{z_{0}}}\varphi_{q})\in C^{q}/\Omega=T^{q}$ .

The mapping $\varphi$ is a well-defined holomorphic map and is called Albanese map.
PROPOSITION 5. The underlying continuous map of $\varphi$ is a surjection.
PROOF. In case $q=3$ , we express the 3-form $\varphi_{1}\Lambda\varphi_{2}\Lambda\varphi_{3}$ by local coordi-

nates as $\varphi_{1}\Lambda\varphi_{2}\Lambda\varphi_{3}=f(z)dz^{1}\wedge dz^{2}$ A $dz^{3}$ . Then the points of degeneracy of
$\varphi$ are defined by the equation $f(z)=0$ . If $f(z)\neq 0$ at some point $(z)$ , it is clear
that $\varphi$ is a surjection. If otherwise, we have $\varphi_{1}$ A $\varphi_{2}$ A $\varphi_{3}=0$ . This produces
a contradiction as in the proof of the above proposition. The other case are
dealt similarly.

PROPOSITION 6. In case $q=3$ , the mapping $\varphi$ is one to one almost every-
where. Therefore the threefold $M$ is bimeromorphically equivalent to a complex
torus.

PROOF. There exist no surfaces on $T^{3}$ . In fact let there be an irreducible
surface $D$ on $T^{3}$ and let $\theta(x)$ be a reduced theta function defining $D$ , then the
function $f(x)=\theta(x+a)\theta(x-a)/\theta(x)^{2}$ is a non-constant meromorphic function on
$T^{3}$ for general constant vector $a$ , which contradicts the assumption to the
effect that no non-constant meromorphic function exists on $M$. We denote
by $A$ the set of points of degeneracy of $\varphi$ . The set $A$ is an analytic set and
has dimension not greater than 1 by the above. Clearly the map $\varphi$ induces
a surjective homomorphism of the fundamental group $\pi_{1}(M)$ of $M$ to the $\cdot$

fundamental group $\pi_{1}(T)$ of $T$. Therefore the restriction $\varphi|(M-A)$ of $\varphi$

induces a surjective homomorphism of $\pi_{1}(M-A)$ to $\pi_{1}(T-\varphi(A))$ , for $\varphi(A)$ is.
an analytic set of codimension greater than 1. The map $\varphi|(M-A)$ is a cover-
ing map. Hence the manifold $M-A$ is homeomorphic to the manifold $ T-\varphi(A),\sim$

$q$ . $e$ . $d$ .
PROPOSITION 7. In case $q=2$ , a general fibre of $\varphi:M\rightarrow T^{2}$ is a rational $\cdot$

curve or an elliptic curve.
PROOF. We shall prove at first that every fibre of $\varphi$ is connected. Let

$\psi_{1}$ $\psi_{2}$

$\varphi:M\rightarrow T^{\prime}\rightarrow T$ be the Stein factorization of the map $\varphi$ . The analytic
space $T^{\prime}$ is by definition a space having connected components of fibres of $\varphi$ as.
points. Hence the map $\psi_{2}$ : $T^{\prime}\rightarrow T$ is a covering map possibly with ramifica-
tion. Since $T$ has no curve by the assumption, the covering map $\psi_{2}$ is un-
ramified. The map $\psi_{2}$ induces a surjective homomorphism of the fundamental
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groups, because $\psi=\psi_{2}\circ\psi_{1}$ induces a surjective homomorphism of the funda-
mental groups. Consequently the covering map $\psi_{2}$ : $T^{\prime}\rightarrow T$ is an isomorphism
and every fibre is connected. Next we shall prove that genus $g$ of a general
fibre of $\varphi$ is less than 2. Suppose that $g\geqq 2$ . Let $A$ be the set of degeneracy
points of the map $\varphi$ . The image $\varphi(A)$ consists of points $\{a_{i}\}$ of a finite num-
ber, for there lies no curve on $T$ because of the fact that it has no non-
constant meromorphic functions. Let $R_{g}$ be the space of moduli of algebraic
curves with genus $g$ . It is well-known that $R_{g}$ is a Zariski-open set of a pro-
jective variety. Since a fibre $C_{t}$ over a point $t$ of $T^{\prime}=T-\{a_{i}\}$ is an alge-
braic curve with genus $g$ , we have a natural map $\psi$ of $T^{\prime}$ to $R_{g}$ . By Hartogs’
theorem the holomorphic map $\psi$ is meromorphic on $T$ over all. From the
fact that $T$ has no non-constant meromorphic function, we infer readily that
the image $\psi(T)$ is a single point. Consequently the fibre space $\psi|(M-A)$ :
$M-A\rightarrow\tau/$ is an analytic fibre bundle. Its fibre is denoted by $C$ . Taking a
polycylinder $E_{i}$ in a coordinate neighborhood with center $a_{i}$ , we are to replace
$M|E_{i}=\varphi^{-1}(E_{i})$ by $E_{i}\times C$. Clearly there exists an isomorphism $\mu$ of $(E_{i}-a_{i})\times C$

to $M|(E_{i}-a_{i})$ . If we prove the existence of many meromorphic functions on
$M|E_{i}$ , we see by Hartogs’ theorem that $\mu$ is extensible to a bimeromorphic
map of $E_{i}\times C$ to $M|E_{i}$ . We denote by $P$ the canonical bundle of $M$. The
direct image $\varphi_{*}(o(m\Omega))$ of the sheaf of holomorphic sections to mff is a coher-
ent sheaf on $T$ by a fundamental theorem of Grauert. Since $E_{i}$ is a Stein
manifold, for a large integer $m$ we have sections $f_{0}$ , $\cdot$ .. , $f_{r}$ of $\varphi_{*}(O(m\theta))$ over
$E_{i}$ such that the well-defined mapping

$(M|E_{i})\ni z\rightarrow(\varphi(z), (f_{0}(z), f_{r}(z)))\in E\times P^{\gamma}$

is a bimeromorphic map which is an isomorphism on $M|(E_{i}-a_{i})$ . Here $P^{r}$ is
a projective space of dimension $r$. Thus we have proved the existence of
many meromorphic functions on $M|E_{i}$ and we see that $\mu$ is extensible to a
$bimeromorphicmapofE_{i}\times CandM|E_{i}$ . By means of the isomorphism $\mu$ replac-
ing $M|E_{i}$ by $E_{i}\times C$, we obtain an analytic fibre bundle $\varphi^{*}:$ $M^{*}\rightarrow T$. The
threefold $M^{*}$ is bimeromorphically equivalent to $M$. There are only a finite
number of automorphisms on $C$ and we see immediately the existence of non-
constant meromorphic functions on $M^{*}$ . This is a contradiction.

In case $q=1,$ $T$ is an elliptic curve and has non-constant meromorphic
functions. Thus we have completed the proof of the theorem.

As a corollary to the theorem we obtain the following proposition.
PROPOSITION. There are only a finite number of irreducible surfaces on a

compact Kahler manifold $M$ of dimension 3 which has no non-constant mero-
morphic function.

PROOF. In case the irregularity of $M$ is equal to 3, the proof of Proposi-
tion 6 shows that there are only a finite number of irreducible surfaces on
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$M$. Let $\varphi:M\rightarrow T$ be an elliptic fibre space over a complex torus which has
no non-constant meromorphic function and suppose that $M$ has infinitely many
irreducible surfaces. There lies an irreducible surface $S$ on $M$ such that
$\varphi(S)=T$. Using the same notations as in the proof of Proposition 7, we infer
readily that the fibre space $\varphi|(M-A):M-A\rightarrow T-\varphi(A)$ is an analytic fibre
bundle. Its fibre is denoted by $C$. We take a small simply connected neigh-
borhood $U_{i}$ of a point $a_{i}$ of $\varphi(A)$ . We put $M_{i}=M|U_{i},$ $S_{i}=S\cap M_{i},$ $U_{i}^{\prime}=U_{i}-a_{i}$ ,
$M_{i}^{\prime}=M|U_{i}^{\prime},$ $S_{i}^{\prime}=S\cap M_{i}^{\prime}$ . Each connected component of $S_{i}^{\prime}$ is an unramified
covering of $U_{i}^{\prime}$ , which is simply connected. Hence each irreducible component
of $S_{i}$ is bimeromorphically equivalent to $U_{i}$ and consequently we have a holo-
morphic section to $M_{\iota}^{\prime}$ over $U_{i}^{\prime}$ which is extensible to a meromorphic mapping
of $U_{i}$ to $M_{i}$ . Therefore we can prove in a similar manner to Kodaira [4]

that there is a bimeromorphic map of $M_{i}$ to $U_{i}\times C$ . By means of this bimero-
morphic map replacing $M_{i}$ by $U_{i}\times C$ for each $a_{i}$ , we obtain an elliptic fibre
space $\varphi^{*}:$

$M^{*}\rightarrow T$ which is an analytic fibre bundle. The threefold $M^{*}$ is
bimeromorphically equivalent to $M$. Let $S^{*}$ be the irreducible surface on $M^{*}$

corresponding to $S$ . We put $\psi*=\varphi^{*}|S^{*}$ and let $\psi^{*}:$ $S^{*}\rightarrow T^{\prime}\rightarrow T$ be the Stein
factorization. It is easily seen that $T^{\prime}$ is an unramified covering of $T$. Clearly
the induced bundle from $M^{*}$ on $T^{\prime}$ has a holomorphic section and consequently
it is isomorphic to a product bundle. Thus we see that $M^{*}$ has non-constant
meromorphic functions. The case where $M$ is a fibre space of projective lines
can be dealt with similarly. In case the irregularity of $M$ vanishes, from the
exact sequence

$0\rightarrow Z\rightarrow 0\rightarrow O^{*}\rightarrow 0$

we have the exact sequence

$H^{1}(M, 0)\rightarrow H(M, \mathcal{O}^{*})\rightarrow H^{2}(M, Z)$ ,

in which $H(M, O)=0$ . Hence if there were an infinite sequence $S_{1},$ $S_{2},$ $\cdots$ , $S_{i},$ $\cdots$

of irreducible surfaces on $M$, there would be integers $n_{1},$ $\cdots$ , $n_{k}$ , all of which

did not vanish, and the divisor $\sum_{i=1}^{k}n_{i}S_{i}$ was linearly equivalent to zero. This
is a contradiction, $q$ . $e$ . $d$ .

As an example we prove the following
PROPOSITION. Let $\varphi:M\rightarrow S$ be a projective line bundle on a $K3$ surface $S$

which contains no irreducible curve. If $M$ has non-constant meromorphic func-
tions, then it is equivalent to a product bundle.

PROOF. If $M$ has non-constant meromorphic functions, there are infinitely
many irreducible surfaces S. such that $\varphi(S_{\nu})=S$ . We shall prove that each
S. is isomorphic to $S$ and S. does not intersect $S_{\mu}$ for $\mu\neq\nu$ . Let $A$ be the
set of singular points of S. and simple points where the restriction of $\varphi$ to
S. degenerates. By the assumption the image $\varphi(A)$ consists of points $\{a_{i}\}$ of
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a finite number. Since $S$ is simply connected, $S-\varphi(A)$ is also simply connected
and $S_{\nu}-A$ is isomorphic to $S-\varphi(A)$ , for it is clear that $S.-A$ is an unramified
covering of $S-\varphi(A)$ . Hence there is a meromorphic map $s_{\nu}$ of $S$ to $M$ which
is the inverse of the restriction of $\varphi$ to $S_{\nu}$ . The map $s_{\nu}$ is holomorphic on $S$

over all. In fact if $s_{\nu}(a_{i})$ is a point for a point $a_{i}$ of $\varphi(A)$ , clearly $s_{\nu}$ is holo-
morphic at $a_{i}$ . Suppose that $s_{\nu}(a_{i})$ is not a point. Then it must be a projec-
tive line and $s_{\nu}$ is a quadratic transformation in a neighborhood of $a_{i}$ . Taking
a small neighborhood $U_{i}$ of $a_{i}$ and letting $P^{1}$ be a projective line, we identify
$M|U_{i}$ with $U_{i}\times P^{1}$ . Then the surface $S_{\nu}|U_{i}$ is defined by the equation
$\lambda^{1}x-\text{\‘{A}}^{0}y=0$ , where $(x, y)$ are appropriate coordinates with center $a_{i}$ and $(\lambda^{0}, \lambda^{1})$

is a system of homogeneous coordinates of $P^{1}$ . Now $S_{\mu}\cap S_{\nu}$ is a curve for
$\mu\neq\nu$ and $\varphi(S_{\mu}\cap S_{\nu})$ consists of a finite number of points to which the point
$a_{i}$ belongs. Therefore taking an appropriate system of coordinates $(x_{1}, y_{1})$

with center $a_{i}$ , the surface $S_{\mu}|U_{i}$ is defined by the equation $\lambda^{1}x_{1}-\lambda^{0}y_{1}=0$ .
Consequently $\varphi(S_{\mu}\cap S_{\nu})$ contains a curve defined by the equation $xy_{1}-x_{1}y=0$,
which is a contradiction. Thus we see S. is isomorphic to $S$ and there is a
holomorphic section $s_{\nu}$ to $M$ over $S$ . We can prove in a similar manner that $S_{\nu}$

does not intersect $S_{\mu}$ for $\mu\neq\nu$ . Once we have infinitely many holomorphic
sections to $M$ which do not intersect one another, it is clear that the projective
line bundle $\varphi:M\rightarrow S$ is equivalent to the product bundle $S\times P^{1}$ .

NOTE. In the following manner we see the existence of a projective line
bundle which is not equivalent to a product bundle. From the exact sequence

(1) $\rightarrow C^{*}\rightarrow GL(2)\rightarrow PGL(1)\rightarrow(1)$ ,

we have the exact sequence
$\rho$

$H^{1}(S, \mathcal{O}^{*})\rightarrow H^{1}(S, GL(2))\rightarrow H^{1}(S, PGL(1))$ .
By a result of Kodaira [5] we have $H^{1}(S, O^{*})=0$ for a general $K3$ surface $S$.
Let $\tau_{S}$ be the tangent bundle of $S$ and let $\varphi$ : $M\rightarrow S$ be the associated projec-
tive line bundle to $\rho(\tau_{S})$ . Then it is not equivalent to a product bundle, and
$M$ is K\"ahlerian if $S$ is K\"ahlerian.
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