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§0. Introduction.

In this note we shall generalize the results of the author’s previous papers
and to the case of general elliptic boundary problems of even order.

Suppose X and Y are respectively smooth vector bundles over a compact
oriented Riemannian manifold M and its boundary oM. Let A be an elliptic
partial differential operator operating on smooth sections of X and let B be
a boundary differential operator mapping sections of X to those of V. We
denote by Az the closed extension of A considered under the homogeneous
boundary condition Bu=0. Under a certain condition posed on the pair (4, B)
(cf. § 3), we construct the Green operator (Az+2)~' in § 4. Our expression of the
operator (Ap+2)~* enables us to know the asymptotic behaviour of (Ap+z)!
when z tends to infinity along ray of minimal growth introduced in Agmon
[1] Using this, we obtain the asymptotic expansion of Tracee ‘4 when ¢—0
and of Trace(Az+2A)! when A—oo. In the latter case, we of course assume
that the order of A is larger than the dimension of M.

The behaviour of the pure imaginary power A% of Aj is, in general, very
delicate even in L*-theory. The simplest case is treated in §6. If A is a
single second order principally real operator and if B is the linear combination
of the Neumann and the Dirichlet condition, then we can prove that A% is a
bounded operator in L? (1 < p< o) space and its norm can be estimated using
the above results. This enables us to determine the domain D(A$%) of fractional
power A% (0 <@ <1) of Ay in L? space. If B includes derivatives which are
tangential to oM, A% is, in general, unbounded except for x=0 even in L2
space.

All these results are obtained by using a special class of pseudo-differential
operators treated in [6]

Results similar to those presented in §2, §4 and §5 were announced by
several authors (Seeley [18], Shimakura, Asano and Arima).
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§1. Pseudo-differential operators.

Given a C> n-manifold M countable at infinity and a differentiable vector
bundle X over M with fibre C%, we shall denote by 9(M, X) the space of C~
sections of X with compact support and by &(M, X) the space of C* sections
of X. They are provided with usual topologies. When X is the trivial line
bundle 1,, we shall respectively use the notations 9(M) and &(M) instead of
DM, 1) and &M, 1). S(R™) and S’(R™) mean the space of rapidly decreasing
C= functions on R™ and its dual space. ©,(R™) stands for the space of slowly
increasing C= functions on R™. (cf. L. Schwartz [16]).

Let @: MXR™— M be the projection. Then we denote the induced bundle
of X by @*X. Then &-'X is isomorphic to the exterior tensor product X @ 1gm.
We have &(MxR™ &-'X)=&M, X)Q&(R™, where &M, X)D&(R™ is the
completion of &M, X)X &(R™) by its projective topology (cf. A. Grothendieck
[100D.

Now we assume that another vector bundle Y with fibre C® is given
over M.

DeEFINITION 1.1. A continuous linear mapping @ from 9(M, X )@5’(13”")
into &(M, Y)@S’(Rm) is called a B-pseudo-differential operator of order z, if
there is a sequence of complex numbers {z;,=s;+i;};-, with real parts
S;> Sju > - > —oo satisfying the following properties:

(1) For any fe 9(M, X) and compact set X in &M) consisting of real
elements g with dg =0 on supp f, e ¥eetsOp( foikeetsory (2, p= R* 5,0 R™) is
the pull back of a section p(f, g, x, p,0,2), x€ M in &M, V).

(i) There exist sections p;(f, g x, p, o) &M, V) (=0, 1, 2, ---) such that
for any integer N >0,

. N—-1
2 (p(f, 8 % p, 0, D— Z P f 8 % 0 0)x1)
is bounded in &(M, Y)®&(S), when 2 tends to infinity, where S,={(p, 0)
eRm“;%észrlawgz}.
As usual, here we have denoted

m m 1/2
s-0=2,s;0; and la|:<203~> .
j=1 j=1

We shall call the formal sum (@) f, g)= 3 b/ f, & % p, )% the (f, g)
i=o

symbol of @. Clearly pi(f, g x, p, o) is homogeneous of degree z;, in g.
b f, & x, p, ©) has the following meaning. Let dg(x) be the cotangent vector

1) In author’s previous note [6], only the case m =1 was treated. However all of
the discussion there are valid for m = 1.
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to M at x determined by g. Then p dg(x)+0 # 0 represents a cotangent vector
to MXR™ at (x,s). There is a linear map o(®)(x, pdg, o) from X,, the fibre
of X over x, to Y, such that

po(f’ 8, X, 0, 0) - 0'(@)(.76, png O')f(X) .

We call o(®) the principal symbol of ¢. Since ¢(2) is independent of s, we
can consider o(%) as a section of the bundle /7-* Hom (X @1z, Y Q14m) over
& =the set of non-zero elements in T*(MX R™) over Mx {0}. Where I/ is the
projection of the cotangent bundle T*(M X R™) of MXR™.

Suppose both X and Y are trivial over a coordinate neighborhoods U, M.
For any ¥ < 9(U,) such that ¥ =1 in some open set U,C U,, and for any
section v of X, which is constant with respect to the trivialization of X
and for the coordinate functions (x, x,, -+, x,) valid in U, and Yée R",
¥s,Yo & R™, e “@+5 0 P(Wyeit=i+59) depends linearly on v. So we write this
as ¢ W@ D p(Pypleitsay — P x, &, o)v. We call P(¥'; x, & o) the Fourier
integral kernel of P¥ with respect to the local coordinates. Clearly P(¥;
x, & o) has an asymptotic expansion

P(w: X E’ U)NEPJ(?F: X, E! U)

which we shall call the symbol of ¥ with respect to local coordinates. When
xe U, p;¥, x, & o) is independent of ¥, so we shall denote this by p(x, &, o),
omitting the symbol .

Let {¥;};-1,,,. be a Cy partition of unity on M. Then @ is a -pseudo-
differential operator if and only if the mappings u— ¥,V u, uc I(M, X)
@S’(Rm), are all B-pseudo-differential operators. Therefore, given a smooth
section over the set © of /7! Hom (X®1z7, Y ®1,m) homogeneous in the fibre,
we can find a B-pseudo-differential operator ¢ whose principal symbol coincides
with it. A p-pseudo-differential operator & is called elliptic if o(2) is the
section of [1-*Isom (X®1gm, Y ®1zm). In addition to the results in [6], we
shall use the following properties of j-pseudo-differential operators in the
subsequent sections of this note.

N Given a ,B-pseudo/-\differential operator ¢ of order z, mapping 92(M, X)
RS(R™ to &M, VIR S/(R™), it is clear that for any ¢” € R™**%, 0< k< m, the
mapping f—>e‘i5”";.cz\>( fet'?"), is a ﬁ-pseil\do-differential operator of order z,
mapping 9(M, X)X S(R*) into &M, V)R S'(R¥). We shall denote this by 2.

THEOREM 1.1. If @ is an elliptic B-pseudo-differential operator of order z,
mapping DM, X)QS'(R™ to &M, X)QS(R™ and if |o| is larger than a
certain constant C, then P; exists and 1s a B-pseudo-differential operator of
order —z,.

Moreover if (%) is a family of elliptic B-pseudo-diereffntial operators depend-
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ing on a parameter t and if the asymptotic expansion (1.1) is uniform in t, then
we can so choose the above constant C>0 that C is independent of t and the
asymptotic expansion of P,(t)"* of the form (1.1) is uniform in t.

We shall give a proof of this theorem in the appendix.

Now, we shall treat behaviour at the boundary of J-pseudo-differential
operators. We assume that M= UxI, where U is an n—1 manifold and I is

the interval (—1,1). We shall denote the generic point x in M as (x/, x,),
xXelU, x,cl.

Let ¢ be a §-pseudo-differential operator of order z, mapping 9(M, XY
R S(R™ to &M, X)Q S (R™. Further we assume that when supp f is in a
coordinate neighborhood £ where coordinate functions (x, «--, X, x,) are
valid, for fixed (x, &, ¢) every term p,(x, &, ¢) of the asymptotic expansion

e_i(x.gq-s-a)gg( fei(x-é'-l-sw))NE pj(x’ g, 0')
J

is a rational function of &, in the upper half plane. We denote by J,, the
Dirac distribution in 9/(I). Clearly for any ¢ DU, X), ¢X0,, is in
D'(M, X).

We assert that

THEOREM 1.2. If ¢ € 9(U, XU)@:X’, where X is one of the spaces S'(R™),.
Ou(R™ and S(R™), then @@®?3.,) is defined in (M, X)QS'(R™) and there
exists a distribution ¢ in (M, X)@i{’ such that

=2P(eRa,,) wm U*,

where Ut={xe M; x,>0}.
This and the next are analogues of Theorem 2.1.4 of Hor-
mander [127.

THEOREM 1.3. Under the same hypothesis, the mapping
N\
DU, XYBS'(R™ 2 ¢ — P9 @34, 2eso € EU, X)DS'(R™

is a B-pseudo-differential operator of ovder z,4+1. For any functions ¢, ¢,
€ D(M) such that coordinates x=(x,, -, X,) are valid in some neighbourhood
of supp ¢,\Jsupp ¢,, we have the asymptotic expansion

o D @, @ D )
~> (Dn‘l‘én)ypj(x,r 0, 5/: Ens 0)5’;505&
J=0 I‘(-’l),f’,o‘)

where p; are given by the expansion

e‘“’”'E'”'”’¢1Q(gozei(x'5+s"’))~ lej(x, £, o).
=
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Proofs of Theorems [.2] will be given in the appendix.

§ 2. Elliptic operators on compact manifold without boundary.

We shall assume that X=7Y, [,=1[,=1, and that M is a compact oriented
Riemannian manifold without boundary. We assume that X has a smooth
hermitian metric. We denote this metric by (u|v), u, v X,.

In the following we consider an elliptic differential operator A of even
order m, operating in D(M, X), satisfying the following

AssUMPTION (A-I): For any xe M, 0+&< T#(M) and any positive
number z, o(A)(x, £)+2I is an isomorphism from X, to X,. Where ] is the
identity mapping in X,.

REMARK 2.1. Since M is compact and o(A)(x, §) is homogeneous in &, if
A satisfies the assumption (A-I), then A satisfies the following assumption
(Ag) with some 6. (Ag): For any xe M, 0+ £ T#(M) and for any z in the
sector

do={ze(C; |largz|<O}, 0<O<~m,

o(A)(x, £)+2zI is an isomorphism from X, to X,.

The aim of this section is to know the asymptotic behaviour of (A+2)!
when z tends to oo in the sector Xy. This was treated in and [8]
(Seeley and treated general case in a little different manner.) In the
following, we shall repeat it briefly. Let {(z) be a C*-function in R?® satisfying

| 7] when |z]=1
C(T)le

when |7| gém

We denote by {(D) the following operator
SRY2 T—EC@DT) e SR,
where 7' means the Fourier transform of 7.
Now we assume that A satisfies Ag. Then with any z in a compact set
in Y,
@2.1) AP = A+2D)™

is an elliptic §-pseudo-differential operator of order m operating on 9(M, X)
AN
& S'(R?).
The principal symbol of A® is, for any (x, &, 0) =S,
(2.2) o(APNx, &, 0) = o(A)x, )+z|o|™].

It is clear that the expansion of the form (1.1) is uniform in z. If [g,] is
large enough the operator 4% defined in section 1 is a S-pseudo operator
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A—I—Z(—AJrag)'Tg”, where 4 is the Laplacian operator on R®
From [Theorem 1.1, we have

THEOREM 2.1. If |0,| is larger than some constant >0, there is a B-pseudo-
differential operator (A+z(—«,d+o§)1§)‘1 of order —m operating on DM, X)
QS'(RY). The asymptotic expansion of the form (L1) for (A-+z(—A-+a2) )~
s uniform in z in some compact set in Xg.

COROLLARY 2.2. If 7, is large enough, the inverse (A+Z(D§+r?))‘%i)‘1 exists
as a B-pseudo-differential operator of order —m operating in D(M, X)@S’(Rl).

Where Ds:-i'az"- The asymptotic expansions of the form (1.1) for (A+=z(D?

+20) ! is uniform in z.

COROLLARY 2.3. If ©>0 is larger than a constant, the Green operator
(A42zz™)™! exists.

We denote the kernel function of the Green operator by G(x, y, zc™). Let
P be any parametrix of A, that is, ¢® is a S-pseudo-differential operator
operating on D(M, X)® S'(R®) satisfying S(APPDY f, g) =1 or S(PPAV) [, g)
=1. And let 6<2)(x, g. 7™ be the Kkernel function of the mapping @% with
0=(z,0,0). Then

THEOREM 24. For any x,y< M and for any integer N >0, there is a con-
stant ¢ >0 such that

(2.3) 1G(x, 3, 2e™—G2(x, 3, e™| = e[z +D .
Given two points x and ¥y on M, we choose a not necessarily connected

neighbourhood U of x and y, where the bundle X is triviall. JA® is identified

with /x [ matrix-valued differential operator. Let a(x, &, z™¢) be a [x[ matrix
valued function of xe U, (&, o) € R***—{0}, such that

L e s
a(_X, 5, zm 0>U: e—lz-cAelz-cv+Z]0|mv

where v is a constant vector in C‘ and x- &= Exl& is a real linear functlon
of coordinate function x,, ---, x,. We determine the formal sum b(x, &, zm )

—ij(x &, zma) of X[ matrix valued functions b;(x, &, zm » ¢) homogeneous of
j__
degree —m—j in (&, o) by Leibniz’s rule

(2.4) @ " Dtax, &, 27 G)DEb(x, &, 2 oY= I
or
25) 5 O Deatx, &, 27 0)D3b(x, &, 2w o) =1

o

where a=(a,, -, @,) is a multi-index and D¢ is the partial differential
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0 ay 0 an
operator <i3x1> ('iaxn) ’
THEOREM 2.5. Then the kernel function G(x,y, z6™) has the estimate
,G(x 20— e B | b € z"%‘o)ei<x—v>-fd5|<c(1+|a|)&zv
:3’: (271')” =0 dgn A\ S =

where the constant ¢ >0 is independent of x, y, z.
Setting x =7y, we have
THEOREM 2.6. If m>n, we have the asymptotic expansions

o0 1
2.7 trace G(x, x, z6™)~ (2%)7 3 gnmd ><f trace by(x, &, zm)dé
i=0 1
and
m 1 - n-m-jg
(2.8) trace (A-+20™) oo 33 07" j bi@dp(x),

L
where bj:‘f trace b,(x, &, z™)d&, and dp(x) is the Riemannian volume element.
R'n

Proofs of Theorems 2.4, and 2.6 are omitted because we can find them
in [8]. ,

Finally we must note that b,(x, & z™) are holomorphic in z& 2y because
of [Theorem 1.1l

§3. Formulation of boundary value problems.

We assume that A has the boundary dM and X also has the boundary 0.X.

We denote by A and X the copies of M and X respectively. Gluing X
with X and M with M along their respective boundary, we have another
vector bundle X which we may assume endowed with hermitian metric (1).
The bundle X which we shall call the double of X satisfies the following
properties :

(i) There is an isometric map @,: X— X which is linear in each fibre.

(ii) There is a diffeomorphism @, : X— X which is linear in each fibre.

(iii) @®,=@®,-¥ on 60X, where ¥ is the natural isomorphism from X to X.
The existence of X is assured by the following fact: there is a neighbourhood
V of oM such that V is diffeomorphic to [0, 1)X0M and the part of X over
V is induced from X|,y, the part of X over oM, by the retraction: V—odM.

DEFINITION 3.1. A smooth linear elliptic partial differential operator A
given on M is called uniformly elliptic if with some constant ¢>0 we have
the estimate

(CRY) ¢ &M lulls = Nlo(AXx, Oulle = cE]™ul

for any u € X, and for any non-zero & € T}X(M). Where |u|, stands for the



488 D. Fujiwara

norm of u in the fibre X,.

A of H. Whitney proves the following.

PROPOSITION 3.2. Given a uniformly elliptic partial differential operator A
on &M, X), we can find an elliptic partial differential operator on e, )?)
which ts an extension of A.

Further, if A satisfies the condition (Ag), the extension also satisfies this.

In the following, we shall denote this extension by the same symbol A,
which will not cause any confusion. The [Theoreml of H. Whitney or Calderén
[3] also proves

PROPOSITION 3.3. There is an extension mapping

A: &M, X)—eM, X)

which is linear and continuous.

Recall that the principal symbol ¢(A®)(x, &, o), (x, &, 0)eS, is an iso-
morphism in X,. We shall denote its determinant by det o(1®)(x, &, 0). In
addition to the condition (A-I) we shall assume the following condition called
the root condition. (cf. 5. Agmon, A. Douglis and L. Nirenberg [2]).

Root condition (R). For any linearly independent (,0) and (£, 0)e®
det o()(x, £+77, o) is a polynomial of = of even degree 2p. The equation
det o(A®)(x, E+77, 0)=0 has just p roots with positive imaginary parts. In
the following we use a fixed z. So we omit z and write ® as .

We shall respectively denote by i (x, &, ), -, tf(x, & o) and by z7(x, &, 0),
-, 75(x, & o) the roots with positive imaginary part and with negative
imaginary part.

We shall denote by J7 the conormal bundle of oM with the orientation
compatible with the unit inner conormal vector v, at x €9M. Then we can
define the following polynomials in 7,

(3.4 L &, 0, 1) = I (e—75(x5, &, o))

(3.5) L & 0, )= 11 (e—<j(5, &, 0).
Setting

(3.6) Li(x, & o, t)=1tP+afc? "+ - +af,

and

3.7 L~(x, & 0,t)=1°+arc? '+ -+ +a5,

we obtain functions aj(x, &, ¢) and aj(x, &, ¢) which are homogeneous in (&, o)
of degree j. Further aj and a; are C* in (x, &, o) if (& 0)+0. This is because
o(AD)(x, E+7v, 0) has no real roots.

Using a} and a7, we can define for any %k, 0<k<p—1,
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3.8) Li(x, &, 0, 7) =T+ af 7" '+ - +ai,
and
(3'9) Ll;(x’ S’ g, 7:) — TkJi_al_Tk_l”‘\- o +a,§ .

Li(x, & 0,7) and Lig(x, & o, t) are homogeneous in (&, o, ¢) of degree k.

Now we can formulate our boundary conditions. Let us denote by Y
(J=12,-.-,k) vector bundle over oM and by B; (j=1,2,--, k) boundary
differential operators of order p; mapping _@(M, X) to 9(0M, Y;). We define

Hepg
pg=max p;. If p;<p, we consider (1—4) 2 B, instead of B, Where 4
j
is the Laplacian operator associated with the Riemannian structure of 9M X R®.

So we may assume all Bys are of order p. Set Y=Y, ®---PY, and
B=B,D--PB,, then we assume

(B-1) dim ¥ =p.

Now introduce the cofactor matrix ﬁ(x, g 0,7) of o(A)(x, E+7v, 0) for any
(x,£,0)in T=T*M)P R*—{0}. Considering o(B)(x, E+1V)A(x, &, 0,7), x € 0M,
as a Hom (X,, Y,) valued polynomial in 7, we can find a polynomial H such
that

(3.10) o(B)(x, E+T)A(x, §, 0, D)= H(x, §, 0, )
modulo L*(x, &, o, 7). It is clear that H(x, &, o, 7) is homogeneous in (&, g, 7)

of degree yu+2p—m and for fixed (&, o) in |&|*+|0|?=1, H(x, &, 0, 7) is rational

in 7 in the upper complex half-plane. We regard H(x, &, o, 7) as an element
j

.oeZl_ . . : ——F——
in > 77 &® Hom (X,, Y,) where 71, is the j-tensor product 7,&) --- ® I, of .
7=0
—1
Therefore H(x, &, o, ) defines a linear map from FZ TR X, to Y,, where J1;7
7=0
is the j-tensor product 7;'® --- ® 77! of normal vector space J1;1. Especially,
setting z =1, we have for Y(x, &, 0) %

Hx, €,0,1): S 07@X,— Y.
j=o

Our assumption on the boundary operator @ is the condition and
(B-2). The mapping

H & 0,1): S99 X,— Y,
=0

is onto when (x, £, 0) = 3,.

This was called complementing condition in S. Agmon, A. Douglis and L.
Nirenberg [2].

Now we shall explain the condition (B-2) in the rest of this section. First
we define H;(x, &, o) by
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@.11) H(x, &, 0, 7) :’;zl H(x, & o)ro-1-d.

Hyx, & 0) is a Hom (X,, Y,) valued function in (x, § ¢)=2 which is homo-
geneous in (&, o) of degree py+p—m+j+1. The mapping H(x, & o,1) maps an
element

U= u9—1®(u0-2®”*)+ “I‘(uo@V*p_l)
into
(312) Hu= HP—I(uP—1>+HP—2(uP—2)+ +Ho(uo) .

where v* stands for the unit outer normal to oM at x.
This mapping is given also in the following manner.

1 H(x, &, 0, 7)

p-1
(3.13) Hu= 5 T*WF)< DLt & o, r)uj) dz

where y is a complex contour enclosing 7}, (1<j=<p). In fact, the right hand

side of [(3.13) is equal to
1 e Hk(x) Ey G)

L A\ K &5 0)  oakg 4 dr — . )
(3.14) o jch‘_,:o LHx E 0, 1) oV kL%, &, 0, D)uyde = ;H,(x, g ou;.
Because

1 e Lix, 6, 0,7) 4
(3.15) o LT e ey e =

where 0% is the Kronecker’s symbol.
Let Z(x, &, o) be the kernel of H(x, & o,1), that is we have the exact

sequence :
H(ic,8,0,1)

0 Z(x, & 0) — S 7R X, —y, —0.
ji=0

The complementing condition assures that ‘%:(xk{,) Z(x, &, 0) is a vector sub-
bundle of U("J —glo 71/ ®X) over T. Since 7-/@ X is endowed with the metric,
we have a splitting
(3.16) H—l("é}:}z—f@x\) —ZOW
over ¥ and the lift up .

K%, £, 0): H—lYeH-l(iéﬂzﬂ'@X} :

3.17)
H(x, & o0, DK(x, &, 0)=1.

Decompose K(x, &, o) into components and we obtain for any ue Y,

K(X, 5’ 0')1,! :(Kp—l(x’ E’ o‘)u, Tt KO(X, 5, 0‘)® y*P'l)‘
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Ky(x, & o) maps Y, to X,. And
(3.18) SVHyx, &, 0, DK x, £, o) =1
i—0

Kj(x, & o) is a homogeneous function in (§, ¢) of degree —(pu+p—m-+j5+1).
For any x = 0M let us consider the following ordinary differential equa-
tions.

(3.19 o(A)x, E+ Dy, OOu)=0, >0

(3.20) o(BY(x, E+ Dy, V)U|iero =1, vey,

where D, = } é"’[‘

PROPOSITION 3.4. The complementing condition (B-1) is equivalent to the
fact that the exponentially decaying solution of (3.19) (3.20) exists uniquely for
every veY,.

Proof is omitted here. See S. Agmon, A. Douglis and L. Nirenberg [2]
However it is important to note that the solution of and is given
by

(3.21 w(t) = A(x, & 0,7)

2’” , LH(x, €, 0,7)
! ‘

< (S Litx, & 0, s, €, ow)etde,
i—-0

where y is a complex contour enclosing the roots of L*(x, &, g, 7). We shall
verify this.

o(A)(x, §+ Dy, o)ut)

— 2&{ i f det Z&éxg itf)v "><‘§: Li(x, & 0, DK, &, oW)edr

=0

and we have
o(B)(x, E—!—D_,.JJ)M =40

[ PEEEWAR L 0D (° Liw 6, 0, 9K (5, & o)de

2m
(3.22)

:"2}51" 1{{%5 7 Tf)) (Z Li(x, & 0, DK (x, & ow)de

=v.

Here we have used [(3.10), [3.13) and [3.18).
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§4. The Poisson kernels and the Green kernels.

In §3 we considered vector bundles J1, Y, etc. and homomorphisms over
OM. We shall extend these to some neighbourhood of M in M.

We choose such a neighbourhood U of M in M that U is diffeomorphic
to OMxI, I=(—1,1) and that UM and UM correspond respectively to
OMx[0,1) and oM x(—1,0] by this diffeomorphism. We shall denote the
generic point x in U as (¥, x,), ¥’ €0M and x, =(—1,1). Taking U sufficiently
small we may assume further that the segments x’/=const. are orthogonal to
oM and the vector bundles over U, X|, and T*(U) are induced by the re-
traction U—0oM from X|s,, and T*(M)|sy. Hence X,=X|;»X1;. Since
T*(M)| gy = TH*OM)P T (Whitney sum), T*(U) also splits. Using the same
symbols, we shall denote this as

4.1 THU) = T*OM)YD I .

Since (4.1) holds over U, o(A)x, E+ty, 0), Alx, &, 0, 7), L*(x, &, 0, 7) and Li(x,
&, 0,7), k=0, ,p—1, are defined in &, =the part of & over U. af(x, ¢, o)
are defined in T=T*0OM)PD R*—{0}. We shall define the induced bundle from
Y by the retraction U-—0dM and denote it by the same symbol Y. The
boundary operator @ is also extended over U. Therefore H(x, &, g, 7) is defined
over ©. 29 ®Hom(X,Y) and ¥77/Q@Hom (X, Y) are defined over U.
Taking U srjnall, we may assume tflat the complementing condition (B-II)
holds over U. Hyx, & 0) j=0,1,--, p—1 are defined over ¥. The vector
bundle Z is defined over ¥ and is a subbundle of /-7 7®X). The

splitting holds over ¥ and defines a bundle W over ;md a lift up
pl )
K, &, 1): T7Y -1 (77 ® X)
7=0

satisfying (3.17) over . K,(x, &, o) are defined and satisfy over 3.
Now we can construct the Poisson kernel for A+Z|c¢|™ and B.
Since af(x, &, o), j=1, ---, p, are defined over ¥ and homogeneous of degree
J, we can define §-pseudo-differential op/e\rators Aj with the principal symbol
o(A}) = aF(x, & o) operating on D(OM)RS'(R?). Using these, we can define
operators

(42) L =IQDi+ A @ Dy 4 - + A Q1
(43) L =IQ D4+ A @D -+ + i @1
(4.4) Lt =@ DE+ A @ DE 4 - + A @1
and

(4.5) Ly =I1QDi+ A @D+ + A R
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where we denoted by D, the partial differential operator —ifai—a All of them
map DU, XY SR to &U, X)DS'(R?). "
Let ¢(f) be a C* function with carrier in (—1,1) and ¢()=1 in (—% %)
We define
L5 =)L),  Li =)L) .

From we have the B-pseudo-differential operator (A-+z(—4
o))t on 9, X)RS/(R) if |o,| is large. We denote this by F,. We
denote by .7, the operator L., defined in §1.

THEOREM 4.1. F,,.L;, is an operator mapping _@(1\7[, )?)@S/(RZ) to D(M, )?)
@8’(132). Foy-L5, has the following properties:

(i) For any ¢ € DM, X|5) RS (RY and integer k=0,

Supp (A-+2(— A+0Y) )F,, - L7608 COMX R® .

(i) For any ¢ € DOM, X|0) D2, theve is a ¢ € oG, )R X such that
Foy L@ R0F)=¢ on M, where X 1is the one of the spaces S'(R?), Oy(R?)
and S'(R?).

(iii) the mapping

P F oy Lo(P RO | zy=r0
is a fB-pseudo-differential operator mapping
DOM, X|s)DSR) 1o 9OM, X|a) DS (R).
PrROOF. We shall prove (i)
(A+2(d+09) )T 0y L7,(6 @0
= L5 (¢ Q0%
o .
= Z‘BJG (D) R @(xy) - D5 (p(xy) - 05)+ P D3 (x,)05) -
=
supp (A-+2(d-+0) )T s, - L3P D OE) CIM.

Our fundamental results are the following.
1
THEOREM 4.2. If 0” =(0,, 0;) has large |6”|=(03+03) 2, there are B-pseudo-
differential operators K; j=0,1, -, p—1 of order —(u+p—m-+j+1) mapping

DEM, VIS S(RY to DOM, X|5m)& S'(RY
such that

0—1
B, F gL > L5l ® Oer))
P

=]
ZTp=+0
and



494 D. Fujiwara

(A+2(D2+ |67 15) DT L Lo AK,R0,)=0  on M
J
1 0
1 0S;°
Proor. Let us recall that we can find a B-pseudo-differential operators
K j=0,1, -, p—1 with the principal symbol o(X,)x, & 0)=IKx, &, 9)
operating

where F, and L}, respectively denote F .1, L} and Dy =-

DOM, V)R S(RY into 9GM, X)Q S (R .
Then we have for Yve Y, and ¢’ =(0,, 0,)
(4'7) a<=@63gds=£;3< ? I;‘l:og(ﬂj,ﬂs ® 5xn)))(x’ E! U/)U

= | o Fo)x, &, 0, ) B L & 0, DECx, &, o

=v.

It follows that there is a j-pseudo-differential operator &’ of degree <0 from

DEM, VYD S(RD to DOM, X)Q S (R
such that

By L 7( D Lo K ;R0 =T+ K.
J

Hence, it follows from that if o, is large enough, there is S-pseudo-
differential operator (I-+J,,)"* of order 0. If we define J; as K, (I-+H},)",
then «; satisfies the property required.

As a corollary to and we have

THEOREM 4.3. Let % be one of the spaces, S'(R'), ©Oy(R") and S(R') and
let ¢ be in D(OM, X)@jé’. Then there is a u  D(M, )?)@36’ such that

ozl |
U= EF,,//I;//( 2 ,L;a//(Jngo(X)(Zm))
j=0
on M.
DEFINITION 4.4. We shall call the map

p—1
0= Fol 5T L1 D))

the Poisson operator and its kernel the Poisson kernel.

REMARK 4.5. Theorem 4.2 and Theorem 4.3 are very general. However
it is not pleasant that we have used the splitting (3.16) which is not unique.
If the vector bundle X is a line bundle, we can avoid this. In fact, in this
case,
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dim S W@ X, = p=dim Y.
=0

The complementing condition (B-2) means that H(x, &, o, z) is an isomorphism.
Therefore we must define K as H(x, &, o, 7).
Now we wish to solve the boundary value problems:

{(AJrz(Dil—Ha”IZ)%)u:f on MxR!

4.8
Bulgyvrr=¢
feedl, HQSRY, ¢ cD@M, YIRS (RY
and
(A+z|o|™v=g on M
4.9 {

Bvlaw=19¢ on M
geelM, X), ¢cDOM,Y).

The following theorems follow from Theorems K.2] and (4.3
THEOREM 4.6. Let A be the extension mapping from &M, X) to D(M, X).
Then

u=F W AQ DS+ FrLr("E LI G BT A AD DS o) D 2)

gives the unique solution of (4.8).
COROLLARY 4.7.

u=F A DS~ F L ('S LI K (ST MABDS o) D))

gives the unique solution of the problem (4.8) with ¢ =0.
THEOREM 4.8.

V= FADHFo L5 (S L1 sy (= .5 (gD B0

gives the unique solution of (4.9).
COROLLARY 4.9.

0= AT L7 (D L5 BT o (A8)D0.,))

gives the unique solution of (4.9) with ¢ =0.

As to the proof of and 4.8, the only point that we must prove
is the uniqueness. However, this was done in S. Agmon [I]. So we omit it
here.

DEFINITION 4.10. Let us denote by 4 the following mapping from @(1\71, )?)
SS(RY to 9, HHRS'(RY:

p—1
U—FgU— g,,//.f}/( Z()“C;:d”(<‘j(j$v”go"/u) ® 5_7,"' )) .
j=
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DeFINITION 4.11. We call the mapping defined in Corollary 4.9 the Green
operator G, corresponding to the system

{(A+z|o|™), B} .

Or we call it simply the Green operator, if there is no fear of confusion.
In the next section we shall consider the kernel function of the Green
operators, that is, the Green function.

REMARK 4.12. All the argument above is valid uniformly in z €2y because
of Theorem 1.1.

§5. The asymptotic behaviour of Trace(Z-+A)"' and Trace e 4.
We shall denote the Green function of {(A-+z|d|™), B} by G(x,y, z|o|™),
that is, for any u, ve &M, X)
CGavy=[  (Glx zlo™u()|v()dp(dug),
MXM

where dyu(x) is the measure on M associated with the Riemannian structure
of M.
We shall divide G, into two parts.

G.1) C,=GCP—G?,
(.2) GPu=F,du,
—1
(5.3) COU=TF,L; ("12230 L0 H 4 BoFu DU @ Dy ) -

And we shall denote corresponding kernel functions by G®(x, y, z|e|™) and
G®(x, v, z|o|™) respectively. Since G¥® was considered in § 2, here we shall
treat only G®.

Setting P, = BuF 1,

0 =L("S L) = 5 ey DY

Py = (La)ar,0,0 aNd Qo =(Qs1)s1,0,0
we have, for any u, v e &M, X),

(CPU, 0> = Fgq (Polu)pp, v

=3 { (@ Aul g, F Fvydp (x)

where dy’(x) is the volume element of oM.
J
Let > ¥ ;=1 be the smooth partition of unity on M such that for any
=1

six functions of them, there is a coordinate neighbourhood (not necessarily
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connected) which contains the union of support of them.

For any double index a=(a;, @,) we shall denote the operator ¥, ,@,¥ ,,
by .?,. Let a, f and y be arbitrary three double indices. We can choose
coordinate functions (x,, ---, x,) valid in some neighbourhood U of supports of

six functions ¥,,, ¥,,, etc.. We denote by +/g(x)dx the volume element of M.

Then we shall denote the Fourier integral kernels of aﬂ’,,//%, 1T and g
with respect to local coordinates by

6.7 WP X, €, 0) Nj:%_#a@a,/,_j(x, £, 0)

9 S E )~ S g o) ((&]+]ol-e)
and

G mE I~ B e mEa) (81—,

Set grRyr = parF. Then g R, also has Fourier integral kernel r(x, &, o))
with respect to the local coordinates. And if |o,]|>1, we have the asymptotic
expansion ;

(& o)~ S SR o (5 & o)D) E (5 €, )

Jik,a

= 3 rx & o).

D
a

j=p+

From these, we obtain
[, e ), 0)] gr R (!, O)vdpe/ (')
— 2 -2n D /’ , &, iw'-é"/\
@myn [ (f, abor’, 0, &, 03¢ < Aug)de |

f o BT W 0,7, a,)e" T()dy ) dp'(w') .
Therefore

(5.11) trace g R 1 oPo
— -2 N
= (2m) "Lﬁ_d}’ faM v/ gwdw’ lethrace r¥w’, 0,9, 0,)
X aDe(W’, 0, &, @)™ W' -V g=tw ~vndy &
— -2n TN o
= (2m) jﬁidy jlaM v g )dw ijn trace r¥(w’, 0, 9, oy)
X aDgrW’, 0, &, 0,)e~ W< 1dy dE

=@n " [ Ve@hdw [ “dy, | erm-ivdg,dy,

j  trace rg(w’, 0, &, &ny 0)aPu(W’, 0, &5 70, 01)dE" .
R™
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The last equality follows from Parseval’s equality. Replacing [(5.7) and (5.10)
into (5.11) we have the asymptotic expansion

(512) trace ﬂr.cRd// aPao

:(271')'” 53 oyt 2 'S‘aM\/g(w/)dw/

r=m+1 jtk=r
f , trace r*,w’, 0, & 1) upgr, (W, 0, &, 1)d§ .
R

On the other hand for any fixed x& M we can choose such partition of
unity {¥;},e; that ¥,(x)=1 in some neighbourhood of x. Then for any
a=(ay, a,) which is not equal to (1,1) we have ,p. i & ¢)=0 and
afor,-i(% & 0,)=0 and ,q,,-4(x, & ¢,)=0. Therefore we have proved

THEOREM 5.2. When m >n we have the following asymptotic expansion

m_ 00 ©0
trace (A+z(lo”|?+od) 2 )1~ 3 a0 "— ) bo¥"
r=m

r=m+1

a; and b; are calculated in the following manner. We can trivialize X and Y
near an arbitrary point x € M and identify operators above with matrix valued
B-pseudo-differential operators. We choose W(x) in D(M) which is identically 1
near x. We consider the asymptotic expansions:

(5.13) -i(x$+sw1)(A+z(lo-//l +D2 ) )- < w z($5+810'1)>m zfa,,, ](x = 0'1)

(514) e_icx5+sld1)@‘,‘l/ EFJ// ’\/w‘((x‘z) 1(x$+sw“)>’\/ % pa”,—j(x’ E, 01) N
j=m—p

(15) e EN( N T L LEp K YT DTN B T, 5§, 0)
i=p

lo,[>1, [&'1>D,

where for,-j Dor,-j and qu,-; are homogeneous in (&, 0,) of degree —j. Then,
we have

(5.16) a, (fﬂnf «/g(x)dxj trace f.(x, &, 1)dé&
and

1 / 4
G.17) b=y, 2 > | | NE@ydw

X | tracer,, @', 0, & Dby, @', 0, & 1)d& .
Rn

Now we assume 6 < 2 In this case the operator — A considered under

boundary condition B generates a strong continuous semigroup e *4 of bounded
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operators in L*(M, X) which is holomorphic in |arg?|<®. (cf.S. Agmon [1],
K. Yosida [20]) We shall treat the asymptotic behaviour of trace e-*4 when
t— +0. In the following, we omit the assumption m > n.

To do this, we must note that the operators G, Fs Lo 40 «Por and pqg
depend holomorphically on z in Yy, and that the asymptotic expansion of them
of the type (1.1) are uniform in z when z remains in a compact set in Y.
To express the dependence of them on z, we denote respectively Ges Fror Lros

q¢tas av.CPC,,-//, B¢a"> a,fc,,r,,_]-(x, E, CO'I), a,p:,,//,,j(x, S, CO'l) instead of Go’: ?’0, Py Ggs a-g)a'”!

adg’s a'fa”,—j(x: E, g); npa”,—j(x: 5’ 01) and Q'QO'”,"‘j(x’ S’ 01) With C:ZT”T'
The operator e-*4 is given for any u,v < 9(M, X) by

(5.18) (e ty, vd = ;21?1'&] 191" Gou, vy d(z) 0 |™)
s

where y is the complex contour {z|g|™; |argz|o|™—z,|=0} with v2~<0<7r
—0O and sufficient large z,.

For any double index a =(a;, a,), we denote the operator ¥, G, ¥,., by
«Ges and define functions ,g,/,-(x, & {o,) by

(.19) e~ SaE oW, (At2(|o” P+ D) 3 ) ( —esEanan)

= o Zear(¥, &, (0) ”,--_% Gewr- (1, €, C0Y).

Then we have

(5.20) Trace 2% f ™ GOd(z|o|™)

(27[)" f v gdx

- tzlo|m " m
Xjkn trace[ (i) Le «Zea(X, &, Lo)d(z| 0| )] dé.
Therefore we have the asymptotic expansion

1 2lo|m m ‘l_ < PR
(5.21) Trace fr 1 G| 0™ ~ e 2 jM\/g(x)dx

X j trace [ 9"y, (2, &, Condtalo|™ ] de

—n+ —m

(271')“ 2 t j Vg(x)dx

%[ o trace [ i [ g &, Loddtalo|m] d

where we have used that g, -,(x, & {o,) is a rational function of ((0).
Similarly for any two double indices «, 5, we have
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Trace oy | €49t abeod(zl 1™

=@n™ | . VE@yduw

X 5‘ ., trace [—2—}[—1.— J( ; e e, 0, &, L0 )aber W', 0, &, Lo)d(z] o™ | dE

and we have the following asymptotic expansion

: o ™ > ol duw’
Trace *sz*fre“ "orls abes d(z|01I~CE) B E:er Ve W'y dw

XjRndE trace [*2‘7—]_.”*5‘7 eczlalmﬁr?a//,—j(w/; O: E, CO'x)apCa”,—k(w/r O; ‘S: CO'l)d(Z] Olm)]

r—m-n
m

—@r)y" 3 ¢

r=m-+1

j-i%:r 5‘6M \/g(w/> dw’

1 m / / m
Xyandf trace [*25_7 jrezlﬂl ﬁrzea//,—j(w y 0: E’ C(Tl)ap:a”,—k(w ’ O, E: Cdl)d(ZlO'[ )] -

Therefore adding these terms, we have proved
THEOREM 5.3 We have the following asymptotic expansion

o rem—m oo r—m-n,
Tracee 4~ X a,t ™ + 3> bt ™ t—0
r=m r=m+1

whevre

a,=2r)"" fM Vg(x)dx

XIRn trace [Ti_l* fr ezwlmg&t”,—r(xl E: Col)d(z [ g l m)] dé

1 m /‘ I4 m
Xfﬂndé trace [ere’“” v, - w’, 0, & Lo)pegr,- W', 0, &, Lo,)d(z| 0| )] -

§ 6. The pure imaginary power of some elliptic operators of the second
order.

In this section we assume that X is a trivial line bundle and A is an
elliptic differential operator of the second order operating S(M, X). We assume
that with respect to some coordinate system, A is represented by

A=2a;;(x0)D;D;+ > a;(x)D;+a(x) ,
i 7

where a;; are real and X a,;§,&; is a positive definite quadratic form. Further
we assume that the boundary operator is represented by either
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Bu = D, u(x)+b(x)u(x)
Bu=u(x).

or

Let LP(M, X) (1 <p< o) be the Banach space of L? sections of X. It is
well known that the operator A considered under the boundary condition
Bu|s, =0 has minimal closed extension A in the space LP(M, X). Adding,
if necessary, some large positive number to Az, we may assume that the

sector |arg (z-+1)| §~%n belongs to the resolvent set of —Ap in LM, X).
For any u in the domain of Agz we can define (Az+7,)’u (—1 <Red <0) by

1
©6.1) Agteu= oy | (' QFri+ A5 ud

where 7 is a complex contour lying in the resolvent of Ay and enclosing

(—OO, ~52Ti and the branch of 27 is so taken that 17=1. The aim of this

section is to prove
THEOREM 6.1. (Ap+to), k €R' is a bounded operator in LP(M, X). For
any ¢ >0, there is a constant C>0 such that

6.2 I(Ap+eo) i <Ce™.

First we shall prepare a lemma.

LEMMA 6.2. Let P be a pseudo-differential operator of order ik, k€ R,
operating 6’(1\7[, )?). Then there exists a unique continuous extension of P
operating in LM, X) (1 < p < o).

PROOF. Let p(x, &) be a function in B(RMHQO (R and let pyx, £) be a
function in _@(R")@S(R”—{O}) homogeneous of degree ix in & Further we
assume that for any multi-index «; |a| <n+1, and |§|>1, we have the
estimate

[ DECP(x, E)—po(x, E)) | = M, | &7,
with some y>0. Then the mapping T defined by

63) Tf@=@my | p(x O @ dé
is a bounded map in L?(R™ and we have the estimate
CXY I TS = Copp(My+M) [ 1]
where

(6.5) M,= sup | Dgpo(x, €)1 .

X<
181 =1, lal <2n

Clearly lemma 6.2 follows from [(6.4).
Now we shall prove
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Let ¢(f) be a C=-function on ¢ =0, such that ¢()=0 for 0= Vt§—~;, and
¢o()=1on t=1. We can write

©66) TF@ =@y | pulx, (16 DS @)e = de

@y | (00 ©)—piln, (€S (e .

Let Y,,.(&) be the spherical harmonics of degree . Then we can expand
bo(x, E)p(1€1) as
Dox, (1D = 2 (%) €| Fo(1ENY wm(8)

Using Mikhilin’s theorem on the Fourier multiplier (cf. Mikhilin [147]), we can
estimate the first term of [(6.6).
Set

p/(l’, Z) == (Zﬂ)-nfﬂn(p(x’ 5)_190()(’ $)QD(IED)2”5dE
then
|p(x, 2)| < Co p M, (A4 2])7 "

and we can estimate the second term of [6.6).
Note that both the mappings v— F,,v and

p—1
v Feo Lo 2 L K soi BT o) D0,

can be extended continuously from L?(M, X) to L?(M, X) and G,, is independent
of the mapping 4. Hence as far as we consider G, in L?(M, X), we can omit

4 in and [(5.3).

Now we consider A%. For any u < D(Ap)
A= 15 (— DA+ Ap)-ud 2
B® 271 7o B

J— 1 2\ET 2
= ‘—Z;ETLI(- z20%)" F rou d(207)
+ 1 o (=20 G d(zo?)

1
where 7, is the complex contour arg (z¢®*-+1)= irc and {=2z?. Consider the

operator
1 P
ori L (=208 F.,u d(zo%) .
1
[t is clear this coincides with the pure imaginary power A** of A considered

on M.
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PROPOSITION 6.3. A** is a pseudo-differential operator of order ki. The
principal symbol of A is given by

o( A = a(A)~* .

(This was first proved in [17].)

Proor. Let {¥,} be the partition of unity used in §5. For any double
index a=(a,, @,) and coordinate functions (x,, -+, x,) valid in supp ¥,
Usupp ¥,, and for any (&, &, -+, &) in R", we have
6.8 e ESY (A 4,0

— 1 2\&T —ix-Ew‘ forrd w iz‘g’d( m)
= 72%{5‘72(-20) e ar Feo? oy @ zo

~ (20 5, &, (o™

j=-2m
where § fa,i(%, €, Lo) is the asymptotic expansion of e U, ¥, ¢'** and
j=—2
7. 1S the complex contour |arg (zo®-+1)| =~277r.
To treat the second term of (6.7) we recall that
Gézo)'u = -CFCaQCa((-g?Cau) ] oM ® 5Jcn) .

Let {¥;},c; be the partition of unity treated in §5. As in §5, for any
double index a=(ay, a,)=Jx ], we denote by ,P,, the operator ¥, Pr¥ ..
We shall respectively denote the Fourier integral kernels of P, gecor and
rFeqr» With respect to local coordinates by

oe]

(6.13) abza(%, &, Cal)wjzgy abear,-5%, & C0y)
(614> TfCa”(x’ E» Col)NJéffCﬂ”,—j(x’ ‘Sr Cal)
it (¢,0)#0
(6'15) ﬁqCa”(x’ E’ Co.l)Nj:;;ill ﬁqCU”,—j(x’ Ei C‘H) PR lf .‘E (Sl’ 01) * O -

And we define the operator M by

Mu = (2r)~"(2r1)™! L (—z0%)**d(z0%) jRn_l eie e j Fe”n"/day

X[ parleon, 2 0 & 0, 0)slcon1- ', 0, €, 0)

xap[.'a”,pt-z(x/: O’ '5’ Ul)ﬁ(s)dfn

where I' is a complex contour enclosing z{(x/, 0, £/, ¢,). Then
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1 2\~ K1 2
v(x)= *ZHL rF o1 ° 81207 © aPlat, - (W —20%) " d(20%)— Mu
1

= | (mzoyetdaot) [ (Cx, 0,8, 0.0+Cul & oiDug)ede
where
A+ 161+ Lo, DA+ 181+ [La,N)Cx', 0, &, 0.0)
is bounded in 9(U) and
A+ 81+ Lo, )" A+ 1€ |+ Lo, ) Colx, &, 0,8)

is bounded in 9(U), (cf. Appendix). Using these and the generalized Mikhilin’s
theorem, we can prove that ||v|| ruy < C||u|lra, Where C is independent of &
and of u.

Near the boundary oM we choose a coordinate system such that oM is
represented by x,=0, and o(A)(x, &)= nil a; (0516, at x€dM. In the
i,j=1
following we shall denote &’ -&' = 21 a;{(x)&;&; Then
4,j=1

(6.18) o(AXx, §)=¢&"-&'+&2 .
For any & e TF(OM)

w},_.

(6.19) o)X, &4y, pO) =& - hpz L=z
And a(A)(x, &' +7v, p{) =0 has roots

6.20) (5 &, pO) =i - &Y
®.21) (3, &, pl)= —i§' - 40

1 1
where the branch of (£/-&'+4p*¢®)? is so taken that 1?2 =1. Thus, Imz*+>0,
Im 7= <0. Therefore, we have

(6.22) L*(x, & p,0)=7—i(E - & ’+PZC2)%
(6.23) L(x & p, T)=1+1(& - 5’+P2C2)%
(6.24) Li=1.

In the case of #=1 (Dirichlet boundary condition). In this case .. =1.
Therefore we have only to estimate the function

(6.25) Q=@ e | (- p )
o] [ WSy
)P el T EV e € E T
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where y, is the complex contour |arg ({*p®+1)] :%—n and I' is the complex

contour enclosing i(p*¢*+-£/-&)¥2. Therefore integrating first by z, we have

(6.26) v(x) = (Zﬁ)—n‘fﬂn—l oia 8 j’rl(__pzcz)m‘e-xncngz+$r.5’>1/2d(pzcz)

wehn)
Sweetrbee @ for m>0.

Now_we replace i(p®*+&/-&)% with &,. Then we have
6.27) = —20@ay | | (@ gy ede,
R g

a¢’, ndy
Tl

where y, is the complex contour represented in the following figure:

Im

Since support of u is contained in x,>0, #(§’, ») is holomorphic in Imz <0,
and continuous and uniformly bounded on Im#7»=<0. And we have

6.28) { ugf_?dn = THEZE) | gor

Substituting this for we have

¥nET,.

629) =0 f | [ @ erag, —eeidg s,
Therefore by we obtain

lvllzocr, x> = cllull Lo, x»

where ¢ is independent of «.
Now we shall treat the case

o(B)(x, &' +Tv)=7.
In this case

(6.30) o(BYx, §'Frv)=1i(&- & +p*D)?, mod L*,
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(6.31) Kooelx, &, p0) = - T E T Ty

Therefore, we have only to estimate the function

1 e ger [ (=P ¢ e¥ntdr
632 v0= g [ | S b (e ey
nu€,m)

X) i @ E Lyt oy -

Integrating by z and substituting i(&’-&+p*(*)=§&,, we have

(6.33) v<x>=@;§m_ J e e
f vu(E 77)
R1 7] fn

When u = C°(M) and support u is contained in x,>d >0, then #(¢&’, n) is
holomorphic in Im» <d and @(&’, ) decreases exponentially as Im» tends to
—oo. Hence we have

(6. 30) Ll 777)”(5 ' gy — (27”)%(5/ 5n)

Substituting this into (6.33) we have, for x, >0,
V@ = gy ], —g g gy ds
Therefore from we obtain

(6.35) lvlizecn, x) = clluliLrcn, x, -

The estimate was proved only for sections Cg*(M, X) whose support
is contained in x,>¢ with some ¢ >0. Since these are dense in L?(M, X),
holds for any u e LP(M, X). This and complete the proof of
Theorem 6.1\

REMARK. If B includes tangential derivatives, then AZ’ is not bounded
for k0. This can be proved by the same method as in the proof of
[Theorem 6.1.

Now we shall describe some consequences of [Theorem 6.1l

THEOREM 6.5. The family of bounded operators {(Ap+7o)*}re =0 forms a
holomorphic semigroup in Re u <0 and continuous in Re g <0 (cf. Yosida [207]).
Its generator is log (Ag+1,).

Proor. We have only to prove that the generator of {(Ap+47,)*}re y=o IS
log (Ag+7,). We may assume Rer>=0 is contained in the resolvent set of
—Ap and assume z,=0. Recall that the operator log Az is the minimal closed
extension of the operator
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_ 1 ¢ loga
(6.36) (log Apu = jr 2 ApA—Ag)uda
defined for those x that satisfy
log 1
(6:37) J P 1ARG— A e, x,dR < oo

507

We denote by D, the set of u satisfying and by log Ap the infinitesimal
generator of {A%4}ge,.=c. Let D> stand for those elements in L?(M, X) defined

by
J we Az dp

with some y € C;°(0, o) and some u  L?(M, X).

To prove [Theorem 6.5, it is sufficient that we show
(6.38) D, DD,
(6.39) D; c the domain of Log Ap,
and
(6.40) log Ap="Log Apg on Dj.

Take any u e L?(M, X) and y = Cy°(0, ), let § be the lower bound of

support y. We define

v={ y(nAzudp.
For any g >0

I Az #(A—Ap)~'ull = CllAp(A—Ap)~ ull"* [(A—Ap)~"u”

= CA+12])*.
Then

log 2
1‘ o8 '“AB(X“—AB)_W”LP(M, xdA

log 4

=[5 { A2 [ U DIAFG—Apy ul v, xdp

§650 | x(e)] dpe 5"r110g21 114z

has been proved.
Let uw = D;, then

7%— (Ap"—IDu= /%r [ Grrr—29AG— Ay ud 2
r

:f A "z—l—s log 2 ds A(2— A)*ud A

h
:hf dsf A5 log A AA—A)"'ud 2.
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Thus
1s —lim (A" —1u =(og Ap)u .
h—0

We have thus proved and and this completes the proof of
Theorem 6.5.

We denote by D(A%) the domain of A§. Then another direct consequence
of is the following
THEOREM 6.6.

(6.41) DAY =LL"M, X), D(Ap)ly 0=0=1.

The right hand side of (6.41) is the complex interpolation space between LP(M, X)
and D(Ap). (cf. Calderdn [4])

Proor. This is a consequence of general theory for complex interpolation
spaces (see, for example, [13]). So we omit the proof here.

The identification of [L?(M, X), D(Ap)]y with some function spaces was
done in the author’s previous note [9]. Using these, we have proved.

THEOREM 6.7.

1° if o(B)(x, &+1v)=r<, for x€0M,
D(Af) = {u & H?(M, X)| Bu|py=0} when 1+71;<20§2,

D(Ag) = H***(M, X)  when 0<20< 1+—-11; .
2° if o(B)x, & +rv)=1 for xedM,
D(Af)= {u e H®*(M, X)| Bulgy=0} when % <20<2,

DIAD = H»(M, X)  when 0=20< %

where H¥?(M, X) is the space of sections of X which can locally be identified
with functions in HSP(R™).Y

Appendix I

First we assume 0M = ¢ and we shall prove [Theorem L.I. Since there is
a p-pseudo-differential operator @’ such that @.®’—[ and @’ P—I are -
pseudo-differential operators of order —oo, we may assume from the first that
P =1I+q where ¢ is a B-pseudo-differential operator of order —co. Theorem
31 in asserts that for any N >0, there is a constant C and we have the
estimate, for any u < LM, X) and ¢” € R™*

1) HsP(R™) is the image of the convolution mapping LP(R™) = f—>J-5*f. Where
- 5.
Jr={ vt g vae.
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(A-1) I et @Dl L2car, x> = CAA+-[0” )V [[ull L2cn, x> -
When |o”| is larger than a constant, &;} exists as a bounded operator oper-
ating in L*(M, X) and is given by

d=3 (-0,

Jj=0

We must prove that @,/ is a B-pseudo-differential operator of order 0. For
any o/,s’ € R*, N>0 and u € 9(M, X), we have from Theorem 31 in
(A-2) lle=®"7Q e "W gacu, x, = Call-+ 0| +|0” ) ¥l L2, x>

where H*(M, X) is the space of Sobolev sections of X of order ¢ and of
exponent 2 and C, is a constant depending on ¢ but independent of ¢/ and
o”. Hence, for any j=1,

le™™" "' @) (™" " W naca, 2 = CE'Cel+ 107 | 4107 )V u Locar, x, -

Thus e %"7(2,)"(e***'u) is the pull back of a section of X and if we denote
this again by e~ (25)(e"'u),

(A-3) lle=#"7" (@)™ " u) wa o, x>

Co(14-10" |+ 0’ )N
§{<1TC0(1+T0”|+Ta’iI)‘N >+1}”u||LZ‘M’X’

gives that the map u— @;'(1 ® u) is continuous from 9(M, X) to D(M, X).
P} satisfies the equation

(A-4) P =140 Pt =142} O}

and for any 1<k

a is? ’ 18/ 1
(A,_5> aa. (e—zs g Q)D_—//lets g u)
J
a —18'qg’ i8'-0! ,—18"0" p =1 p —1,18'-0'
= (e Qe"e PAPH "),
J

This together with proves that
0-"9' @ 1oy = (M, X)ROu(R¥) .
We define for any u®@ T DM, X)R S'(RF),

RpuQT) =)+ [ (e @™ "u) - T)e" "' do
R

where the integral of the right hand side represents symbolically partial
Fourier inverse transform of e~ @;(e*"'u)T over R* space. R, coincides
with @, on 9(M, X)X S(R*) and is continuous linear mapping from 9(M, X)
QSR to 9(M, X)QS(R¥. Thus defining Piu@T)=R,uQT), we
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obtain a continuous linear map from D(M, X)@S’(R’“) to (M, X)@S’(R").
Now let ¥; (1 £j <4) be functions in D(M). We assume that (x;, X, **+, Xz)

4
be coordinate functions valid in some neighbourhood U of \Jsupp ¥;. Then,
. j=1
by assumption, for any N>0 and A>1
(A_G) LS ii.(r-5+8'-a');[/'2 Qa” gr'l(ei,l(z-c”»fs'-wu)
remains bounded in &(UXS)).
Therefore we have only to prove the mapping
U — ei2<x-5»ks'-a')w4 g_;a—//lws oM z4st ey,
is equicontinuous in &(UXS,), when 2 tends to infinity. By Theorem 29 of
7], for any N>0 and ¢, b= R
(A—7) H e-il(x-6+s-a)w4 Qg w's (ei,i(x-f‘rs'-owu) HH‘”b(M, ©
= CA+ 12D |ullzewr, x> -
Hence
|- txxstsn a0y p W (e =S I pa ar, 1y
=¥, ws””H“‘(M,X)
+ “e-iz(x'5+s'.o'>w'4 Qa”wj eil(r-5+5ha')e—ii(x'5+8'-a’)wk9“7lw3 eil(z-fﬂna')u“Ha(M’ I

= lullgacu, x,t-lle” &St o0, @G X300y |y, xy

= Cllullgecar, x5+ 11wl 2cr, x5) -
Thus the mappings u— e @&+800Y @ AP ptA&C+5"90y gare equicontinuous in

/\ . . . . /\
EM, X)YRC(S,). Equicontinuity in &M, X)R&(S,) follows from [(A-5) and
0

(A_S) Y e—ii(z-5+8’-a')w4 Q",;//lw3 eil(x-f—l—s'-a')u

0&;

— _ije-i1(1-6+s'-a')w‘4 gaﬂ—/—/lw's ei,l(x-6+s'.a')u
_]’_Ze—il(x-5+s'-a')w'4 gad—lllw'3 eii(x-ﬂs'-a')xju )

The above argument holds uniformly in ¢, if ¢ depends on a parameter ¢ and
satisfies the condition stated in [Theorem 1.I. Therefore we have proved
[Theorem 1.1

Let U be an open set in R™ and [ be the unit interval I=(—1,1). We
shall denote by x=(x’, x,) the generic point of UXI. (& ¢)=(&, &,, o) stands
for the point in R™™. We are given functions K(x, £, ¢) in &(UXI)& 0 (R™™)
and Kjx, & 0), j=1,2,3, - which are in C* (UXIX(R"™—{0})) and homo-
geneous in (&, o) of degree z;,=s;-+it; with real parts s; decreasing to —co.
And

(1&]-+[a ) sarieattie DRDE(K(x, &, 0)— NZ:KJ'(X, §, o))
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are bounded in &UXI), when |&|+4|o|—>oo. We assume that K;(x, & o) is
holomorphic in &, for Im&,>—¢ (&, o), where z,(&’, o) is a positive homogeneous
function of (¢, o) € R**™*—{0} of degree 1.

PROPOSITION A-1. Define the mapping

K DUXDRQSR™)—E(UXIT)QS(R™)
(A9 K(epR¢RT)=Cr)y | e & DEENFENT (el E52dE - do .

Then we can uniquely extend K as a continuous linear mapping from
Pay
E'(UXIQS(R™ to 9'(UxIxR™). 1f s,< —1, then we have for any ¢ € 9(U),
T e S'(R™)
Hp®0,,RT)

= @my

n+m-1

¢(5/)T(O.)ei(z'~$'+s'-a'>d§/d0. 5‘51 K(X, S: U)Qiznfndgn

and H(p®0d, ®QT) belongs to &U)RDCU)D¥, where % is one of the
spaces S(R™), Ox(R™) and S'(R™).

Proor. A B-pseudo-differential operator maps continuously D(UXIXR™)
into E(UXI)@?S(R"‘). Theorem 19 of implies that X maps continuously
(E(UXI)@S(R”‘))’:6”(U><I)®S’(R”‘) into 9(UXIXR™). To complete the
proof it is sufficient to prove that X(p®3,, @ T)<&U)RcU)QS(R™ if
so< —1. It is clear that

[ K & oye=ninds, e BB O uBRY™) .

Therefore, we have X(¢p®9,,R7T) eé’(U)@C(I)@SE’.

CoROLLARY A-2. If s,< —m—1,

HP®R0,®T)eU)BC"HBx, for peal), Tex,

where X is one of the spaces S(R™), Oy(R™) and S'(R™).

PROPOSITION A-3. Let K(x, &, o) be the function defined above, and ¥(&’,
&ny 0) be a C* function on R"*XCXR™ which is identically 0 near the origin
and 1if |o[*+|& |+ |8, *= L.

Set K=H;=K;¥ in (A-9), then we obtain the mapping 4,;: &(UXI)
RS(R™ to 9'(UxIXR™. For any ¢ c 2(U)RS(R™), A p®3,,) coincides
in x,>0 with

(A-10) jfj(@) — (Zﬂ)—n—mj' B(E!, G)eiw e DdEl g

RN 1+m

X 5‘ Hj(x: 8/9 En’ g)eixnfndétn
¢ ,e)

where I'(¢’, ¢’) is the complex contour enclosing the pole of K,(x, &, &,, o) and
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represented in the following figure:

0 Re

ProOF. We have only to prove .4,(¢ @ ¢) coincides with (¢ ® s, R P)
in x,>0 when ¢ € 9(U), ¢ € S(R™). However this is clear.

COROLLARY A-4. If goe.@(U)@SE’, then j?j(go) belongs to 8(U><I)@2C,
where X is one of the spaces S(R™), ©y(R™) and S'(R™).

ProOOF. It is clear that

jf(e ) H.f(x’ E/’ En: 0>eixn.5nd§n e 8<U>< I)@@M(Rn+m_l) :

The corollary immediately follows from this.
This Corollary A-4 together with Corollary A-2 proves Theorem 1.2.
THEOREM A-5. For any ¢ € D(U), & € R*, s, € R™ and YN >0

(A-11) A5y [e~il(z’-$’+s-o):jc(¢ ® 8, eil(z'-5'+s-0))(x/, _??;_)

D¥p(x) 1 (ixn k
7 lal <N i<t al! k!

[ DEDEE(, 0,48, &, M) windg, |
TG, 20)
is bounded in EUXI,XS), where [ =0<x,<1
S={(¢,o)e R, 271 = |&|*+o|? =2} .
PrROOF. By definition we have

(A_].Z) e_iZ(x"5'+s'a)JC(g0®5$ne”‘u"5'+s'”)}
N N-1 A
= e e [ (K 7', 7 A0)— 3 Hy(%, 7', 9, 20)) 70/ —2E )y
R 7=0

-2z & et ' G ' 2ENd! H. x, /’ ",2 iZnn g .
+3e e | POy —20dy' [ Hy(x s 70 AO) TN

Rn-l
Taking 5’—2£’ as new variables, we have
(A-13) e~ E D (o R) amneil(z'.£l+s.a)>

N—1 ‘
= '[Rn (K(x; 77""‘26/, Ny /20')"‘ EQHJ‘(X’ 7]/__{_/25/, N 20‘))@(7’]/)8“"'7](17]
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' B! drn’ X / / Txpn .
+§Ln_1e ¢(n")dn fm,w,m Hy(x, 7/ +28', a, A0)e"*ndn,

Let D%, a’=(ay, -+, @y-y), be the differential operator D, .-, D42-1, then
|CK(x, 7'+ 28", N, 20)—2 Hy(x, '+ 2, 9y 20))|
J

= CA+|9'+28" |+ | 9al 4] 20| )y .

Therefore we have
N1 A .
(A—14) jkn (K(x’ 7]+ZE: Nns 20‘)"" 27 H(_x’ 7)/__1_2&/’ Dy /20')>(P(7]/)81x.7]d77
_S_ Cj‘Rn(l_{_ |7]’+z§’l “+ l‘)?nl -} IZO‘])SN(l—{— lv/ l)—]sN]_n_ld’)?
= Cjkn_l(1+ [/ [Yew (L | 287 | + | Aa | )L+ |/ ) Bw1=m=1dp

< CA+21& [+ alolyx [ Ay D)y

Setting
(A15)  Hx 428 m0 20— S, 3 C G0 be pe (21,0, 267,90, 20)
k<l lal <M
= xR(x, n, 2¢’, 20),
we have
(A-16) | R(x, 7, A&7, 20)] S Cly' [P A+ 28" |+ |9a| + A0 | )57

if |7'] <‘%*(|25'|+}20]) and otherwise we have
|R(x, 9, 28", 20)| = Cly’ |1+ |20 |+ |7 )57

Hence for x,=0,

(A—18) l fRn_leix,‘W'gﬁ(yi’)dn/ 5‘1"(-0’ e 20‘)Hj(x, 7]""25,’ Nns Ro)eix"'%dﬁn

(xn)* (D) *o(x")
ialen k! a!l

DE D% H{x', 0, A&', nn, A0)eisnmndy,
fme,,m D Hy(x &'y Ny A0)e* 00y

:xé

R(x, 9, A&, 20)$(n")e**dy
Rn

éCx,%[f [ ML+ | A& |+ | 9al +2] 0| Y~ H(14- |5’ |)-H-7-1dy
ln/!< 5 (21¢7] + 12a1)
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+ |7/ | M (Lt | 20|+ ] 5L [ [y 202y |

ly' 1> (21g] +21al)

< Cat[ A+ 12871+ 1oyt [ ! [HCL ! )=y

(14 Mo.Dsj—Mﬂj Iy’ |1+ [77/1)—2M_n—1d77]
| >5-(21g71 + 2lal)

= Cx,l,[(l_Q_,{ ||+ e )M+ (1420 l)sj_M+l(l—{—~%72 & [>—M+s7~ u]
< Cx}(1+21& | +2]a])sswet,

Thus we have proved

(A—19) AN [g—i(x &repse “’JC(90®5 PGS a))( X/, n

DS Do(x)) 1 (zxn>

TN e al

Dk D% Hi(x', 0, 2&', N, 4 et n gy,
fr(ze'.xa) e Hi( §'s s 49) 7 ]

= C(A+ Ay,

when (x, & 0) € UXI;XS. The left hand side of (A-19) is bounded in C(UX,
X S). That is

(A-20) e-il(z’-f'-{-s-a)x(@ ® 5wnei2(x"5'+s~a))<x/’ ;”;n))

has an asymptotic expansion in C(UXI,XS).
flgjsn—1

(A—Zl) ije—i'«x"e'*‘s'a)cff((p ® 5wnei,z(x:.5,+s.a))
= e—il(z'-é%s-a)([)szjc)(go ® 5xngil(x'.5'+s-o'))
+ e'“(ml'el'l's'“)JC(ijgp ® B, et E ks
n

where (D;X) is the operator with the kernel D,,K instead of K. Thus

Dzvje-iz(x'-f’-ss-a)‘x(go@5xneu<z'-$'+s-a))(x/, i;n_)
has an asymptotic expansion in C(UXI,XS).
(A—22) D e—il(x'-5’+s-o)JC(gD®5 eu(x'-e'—x-s-a))
— e-u(x' Else ”’(D JC)(S”@‘;wneu(x o8 a))
—I—e‘”“"s’*s"”(JCEn)(go ® 53:"81](.1 & +s-a))

where &, is the operator of the above type with kernel K(x, & 0)&,. Hence
Do =80 J (0 R) 55,0 4% 4" +59%) has an asymptotic expansion in C(U X I;XS).
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(A—23) DEIJ- e—il(z"£'+s-a)‘]€(€0 ®5xneiz<x'-5f+s-a))
— Zx]{e~il(z'.5'+s-a)JC(gp®5$neil(x’~$’+s-a))
_ze-il(x'-5'+s-a)cjc(xj¢® 5xnei2(a:'.$'+s-u))
and
(A—24) Daje—iz(zf-f'ﬂ-s-a)(]c(so ® 5xneiz<x'~$'+s-a))
= 2™ KD, HY(p R B 0T H)

where D, X is the operator with the kernel D,K(x, & o). Therefore both
D*’ -1z & +s U)JC(§D®5 eu(z &S a)) and D e—z,l(x &S 0>JC(§0®5 emx RIENN a)) has

an asymptotic expansion in C(Ux/I,xS). Repeating these process, we can
prove that e M@ 8D (R d,, e @ ¥'+) hag an asymptotic expansion in
SUXI, xS).
We shall denote by I, the interval (0, 1) and by 1. 70, 1).
DEFINITION A-6. A continuous linear operator
H: IR S(R™—eUXI)DS(R™

is called a B-pseudo Poisson kernel if the following conditions are satisfied:
(1) e W& &+ (™ ¢+ jg a function independent of s, which we
shall denote by k(x, 2&/, A0).

(ii) k(x’, Z L, A&, la) has an asymptotic expansion in &(U X1, XS)

k(w2 g, la)wf‘_,k,(x Xy &, OV

where {z;} is a sequence of complex numbers whose real parts decreases
monotonically to —co.
(ili) & has a unique continuous extension mapping

SR S(R™ to &UXINDS(R™.
THEOREM A-7. Let @ be a B-pseudo-differential operator in UXI, I=(-1,
1), and let p(x, &, o)wg)pj(x, & o) be its Fourier integral kernel and its
asymptotic expansion. ’ﬁzoen for any o e D(UXI) and for any f in DU), we
have the asymptotic expansion in EUXI,XS,), where Szz{({:, a): %:g |1&]?

1
+lolr=2, 5 S 181 Hol =2}
e_m(x,,,’:/,l_s.g)(]{(f _g;.(soeu(x'.c’;"-x-s-o)) Iwn"0® 5$n)

1 1 /ix, N\ . , o
~Z .72L¥ 2 al 11 (—2_> jr(ze:, 10) Die Den K51, 0, 487, 3, 20)emmndn

kB ja L
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%D~y D3, D, O, 48, 1)

PROOF.

e—il(a:-E+s-a)g(¢eizcx-é+s-a>)

g—D’“go(x)D,%gpk(x, A&, 20) in &UXIXS).

[B !
Therefore
(A—16) e-—iX(x-;‘+s-a)g)(SDei2(x-E+s-6)) |
NZ ﬁ' DBp(x’, 0)DBp(x/, 0, A€, 20) in &UxS).
Hence

o KT E8D Jo( fP(peH LSO | 5 )(x/ Xn >
n= n ’
_ e—u(x Ergse ”)JC( fetl(x' NIEEN a)(e—u(x &8 0>EP(§DQM(x L8 a))lx 0)®5x )(x/ n
n= n

12z &' +800 iz’ Seq 1 , , ) X
Nk’gﬁe— a-r45.0) g foilla!-E+ >[8'D@@(x,O)Dﬁepk(x,O,zg,zg)@)gxn)(x,%,)

ix, -
NEM P LE a' I ( > yr(xé’ 2 )D/us Dan K57, 0, 28", g, A0)e

x D (5, ﬁl, fDBg(x', DR, 0, 26, 20)).

Especially if ¢ =1 on U’'XI’, f=1 on U’, where U'C U and I’C [, then for
xelU' xl,
g 1ACE G s 21 ( fP(peii: L 1. 0®5mn>(x/ Xa >
X, ,
~ oS, lm‘ 7T (79 Dp(x', 0, 2¢, 40)
D% D (¥ ’ . iZnnp -
§ e, s DDA, 0, 287, 70, A)e 507y

THEOREM A-8. Let ¢ be a B-pseudo-differential operator mapping D(U)
Pl N\
RS (R™) into E(U)RQS'(R™) which is defined by the Fourier integral:

¢T= (2m)-"-m+1 f q(x’, &, VI, 0)et= €59 de da

n-1+m
where q(x’, &', 0) admits the asymptotic expansion
Q(x/; E/! U)NZQJ'(X/: 5/! 0') .
J

Let K be the B-pseudo-Poisson operator K treated in Theorem A-5. Then for
any fe9U), the mapping
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DU)RS(R™) — eUXDE S'(R™)
! !
© —  Kfqp

is a B-pseudo-Poisson operator.
Moreover, if ¢ =f=1 near x,

e—i/l(z/-5’-+s~a)JCfQ(gpei,i(x'-$'+s-a))

1 1 ~D&L ., . 1 /i, \* e
~oT Dx,(Dﬁ'go(x )*Bgrcb'(x » &' 0)) ﬂ(‘j{”) D
f D:ka'(x/’ 0, 25/) En: Zo-)gmn'fndén .

raug, o)

This is a direct consequence of A-5.
THEOREM A-9. [In addition to the assumptions of Theorem A-8 we assume
that g € 9(U), which is identically 1 near x, and that P is a B-pseudo-differential

operator mapping Q(Ux[)@&’(Rm) mto .@(UXI)@S’(Rm), defined by the
Fourier integral operator

PT=2r) "™ jR b(x, & OT(E, d)et=s+92de dg

n+m
where p(x, &, o) admits the asymptotic expansion:
px, &, o)~ ;pj(x: £ 0).

Then we have the asymptotic expansion:

e‘“(xl'sl"Ls‘a)Jffq g(gg(gpeil(x-g‘+s-a))‘wn_0®5aM)
1 | 1 l . n N
~%- D¢ (7; D2 fai(x', 28/, 20)DEgp (', 0, 28, 29)) 4 (")

I DEDgek (%', 0, 28, D, Za)e”n'ﬂdv
g, o)

uniform in 8(§).
§={x & 0): xeUxl, 5 <|&1+101<2 |&]<1}.

This is a consequence of A-7 and A-8.

Appendix I

Here we collect some properties of tangential -operators. Proofs are left
to the readers.

We shall denote the partial Fourier transform of ¢ € S(R™) by
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B x = e, xyer =
R
Similarly, for any u & S(R™*™), we shall denote

w(x!, x,, S)e~ U=yl ds

ﬁ(f’, Xns O') - j.R

n+m-1

DEFINITION (A-II-1). A continuous linear mapping ¢ from _@(R”)@S’(Rm)v
to &RHE S(R™ defined by

® T =y [ b )Tk, o) rdg d

R?)’H—'ﬂ"l

is called a tangential 8-operator of order z,, if p(x, &, o) satisfies the following
properties :

(1) peoBHDOAR ™.

(ii) There is a sequence of functions px, &, ¢), j=0, 1,2, ---. The func-
tion p,(x, &/, o) is homogeneous in (§’, o) of degree z;=s;+it,C. It is C* in
x and in (&, 0)#0. The sequence {s;} decreases monotonically to —oco.

(iii) For any multi-indices a’ = (a,, ay, *--, @,-y) and B=(By, Bo = » Pm)

@ 181+ lo 1y 125 Di(p(x, &' )= T pu(x €, )

is bounded in &(R™) when (&, ¢) runs in |&'|+|o|=1.

THEOREM (A-1I-2). A continuous linear mapping P from .CD(R")@S’(R"‘)
to 6’(R")®S’(Rm) is a tangential B-operator of order z, if and only if the
following properties hold:

(i) There is a sequence z;=s;+it;, 7=0,1,2, -, of complex numbers
whose real parts s; decrease monotonically to —co.

(i) For any fe D(R™) and for any real function g in a compact set X
in &(R™Y whose gradient dg does not vanish on the support of f, e *4es+so
P( fe'oetsy s independent of s and with some functions p f, pg, x, ), ] =0,
1,2 -,

N—
) 2w (e iprre D @ fekostio) > 0/, 08 %, o)zzf‘)
=0
remains bounded in &(R"XS,) when A—oo and g runs in KX, where we denoted’
by S, the set S,={(p, )= R™': 5 =< p*+|o|* <2}
(iii) For any function fe D(R") and ¢ € D(R)
€y Plp(x) )= p(x)P([)

COROLLARY (A-I1-3). If @ is defined by (1), we have the asymptotic expan-
ston
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e-iz(pg+s-a)g>( fei/lcpg+s-a))

Nzl

eal ] sz‘la"lDz‘é,pj(x, pf;, 0)(li')a’(fe“‘”hx') ,

where
En=grad g(x), h,(V)=g)—gx)—Ly'—=x/, &Ly, x=(', %Xn).

DEFINITION (A-II-4). We call the formal sum og( f-g)=§;bj(f, 08, X,

0)A% the symbol of 2.

REMARK (A-II-5). Theorem (A-II-2) enables us to define tangential -
operators operating in .@(U)@S’(RB) in §4.

THEOREM (A-1I-6). If @ is an operator defined by (1), then

(i) @(T) has its support in B2 XR™ for any T in 9RQS(R™.

(i) @ induces a mapping from @(17{_)@8’(13’”) to S(E)@)S’(Rm).

We shall denote the induced mapping by the same symbol 2.

DEFINITION (A-II-7). The space H®»?(R™™) is the completion offS(R™™)
by the norm

L
= [ | 8E 0L+ 1614|019+ 16/ 0|0 dE o] 2
The space H®”?(R") is the completion of S(R™) by the norm
Ielgo=[] ,lo@I*a-+1§197 A+ 1819 de]*.

THEOREM (A-II-8). If @ is a tangential operator of order z,= s,+it, and
if o= D(R"™), then

(i) For any (p, Q) € R?, there is a constant C>0 such that for any (&, o)
e R™™ !, and for any u < S(R™™) we have

) lle it D@ (uet )| o 0 < CA+E |+ o 1)1l cp,gevses -

(ii) For any (p, @) € R? there is a constant C>0 such that for any (&, o)
e R™™-! and for any f< S(R™ we have

(8) Ile-i(x’-f’-&-s-a)gog)( fei(x’-f’i-sca))”(p’q) § C(1+ |{:/ | -+ l‘f Dml”f”(p,q-%sm .

THEOREM (A-~I1-9). In addition to the assumption of Theorem (A-II-8),
assume that s, is smaller than 0, then

(1) For any (p,q) € R? and b & [s,, —S,], there is a constant C>0 such
that for any (&, o) € R™™ ! and for any u & S(R™™) we have

(9) “e—i(z'.e'—}-s.a)sogy(uei(x'-E'+s.a))“ é C(1+ [5/ ‘ + [U[)“b”u“(p,qw) .

(ii) For any (p,q) € R? and for any b in [s, —S,]), there is a™ constant
C >0 such that for any (&', 6) € R*™* and for any f in S(R™), ‘
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10) lle=scen et 2o @( fel= " ) g 0 = CA+E [+ 10 1)1 Fllsas -

(ili) For any (p,q) € R* and for any 0 < b < —s,, there is a constant C >0
such that for any o € R™, f in D(R"™) we have the following estimate

QL le=* 0P fe"* Mp,0o = CA+ 1) fllep g0 -
THEOREM (A-I1-10). To every tangential B-operator there is one and only
one tangential B-operator ‘P, called the formal adjoint of P, such that for any

w, v in SRMHDSR™, {Pu, v>=<u, ' @v>. If P is the operator defined by (1),
we have the asymptotic expansion in &U)

o~ Uz & +se0) za@(@ei(x'-&'nus-a))w » "&%T(_“Dx')a’ Jgow(x’ _5/, __0.)

al,j

where ¢ is a function in D(R™) which is identically 1 in some neighbourhood
of the closure of an open set U in R™

THEOREM (A-1I-11). Any tangential B-operator can be extended to a con-
tinuous linear mapping from 6”(R")(§S’(Rm) to D(R™™).

THEOREM (A-I11-12). Let & be a tangential B-operator defined by definition
(A-1I-1). Then for any T e DRHQS(R™,

D1, B(T® D, 3(x,) = @y ™"+ | DEED(x!, 2y, &', OYI(E, 0)dE do

Rm+n—1
where 6(x,) is the Dirac’s o-distribution in x,-space.

THEOREM (A-1I-13). Let S be the set S={(&,0)e R %g V3E
+|o|2§2} and let P be a tangential B-operator defined in Definition (A-II-1).
Then for any ¢ in D(R™ and for any (&, o) in S, we have the asymptotic ex-
pansion in ER"XS)

e—il(x'-’;"—i‘s-a)g)(goei/l(x"$'+S-0))(xl’ ,Z;n_)
1
1522w BBl
X (@D D82 o(x’, Q) .

THEOREM (A-II-14). Let K be a B-pseudo Poisson kernel defined by Fourier
integral kernel k(x, &, o) with the expansion

Hei~Pr-Pem1a| yBi+62 D DBLp (i, 0, &, 0)

k(xlr ‘%@U A&, 20‘),\/]‘% kj(x,’ Xny & O)ATT

(See Definition A-6). Then for any f in D(R™), the mapping ¢— PfK(p) is a
B-pseudo Poisson kernel. Let U be an open set in Rr. If f and ¢ are iden-
tically 1 in some neighbourhood of U, then we have the asymptotic expansion
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in eU)

1]
£z1]

£3]
[4]
[s]
£6]
L7]

[8]
9]
[10]
1]
[12]
[13]
[14]
[15]

-1 150154 3 [-IER N X
e VG ARESE ] U)g’fJf(gDeU'(x S8 a))(x/, ,ZTL)

1
~ e A2jEe- | i=B1-Bagy BirB2 e DBL p (k! 0. &, &
ac',le),pz a'l B 1B, " # e, 0, & 0)

X@ADy)* D8 R(x', 0, &, 0).
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