On the group of units of an absolutely cyclic number field of prime degree

By Armand Brumer

(Received Feb. 25, 1969)

Let K be a cyclic extension of odd prime degree p over \boldsymbol{Q} with Galois group G generated by s and let \boldsymbol{E} be the group of units of K of norm 1 (so that the group of units of K is the direct product of \boldsymbol{E} and $\{ \pm 1\}$). It was shown by Hasse ([1]) in case p is 3 and in a recent paper by Morikawa ([3]) for $p=5$ that we can find a unit ε in \boldsymbol{E} which together with its conjugates generates \boldsymbol{E}. We shall call such a unit a Minkowski unit for K. We have the following generalization of the above results.

Theorem. Let h be the class number of K. Consider the set \boldsymbol{A} of integral ideals \boldsymbol{a} in the cyclotomic field \boldsymbol{Q}_{p} of $p^{\text {th }}$ roots of unity such that $h=N(\boldsymbol{a})$, where N denotes the absolute norm.
i) If all ideals \boldsymbol{a} in \boldsymbol{A} are principal, then K has a Minkowski unit;
ii) If no ideal \boldsymbol{a} in \boldsymbol{A} is principal, then K has no Minkowski unit.

Corollary. If p is at most 19, then K has a Minkowski unit since \boldsymbol{Q}_{p} has class number 1 in those cases.

Remark. The second assertion suggests that a fearless computer would have no problem finding fields K with no Minkowski units.

Proof of the Theorem. Clearly \boldsymbol{E} is a module over $\boldsymbol{Z}[G] /\left(1+s \cdots+s^{p-1}\right)$ which is isomorphic with the ring of integers \boldsymbol{O} in \boldsymbol{Q}_{p} by the map sending s on a fixed primitive $p^{\text {th }}$ root of unity. The cyclotomic units of K form a G submodule \boldsymbol{H} of \boldsymbol{E} of index h by the analytic class number formulae (cf. [2]). In fact, \boldsymbol{H} is the free \boldsymbol{O}-module generated by a cyclotomic unit η; since \boldsymbol{O} is Dedekind and \boldsymbol{E} has rank $p-1$, the isomorphism of \boldsymbol{O} with \boldsymbol{H} induced by sending 1 to η extends uniquely to an isomorphism of \boldsymbol{a}^{-1} with \boldsymbol{E} for a suitable integral ideal \boldsymbol{a} of \boldsymbol{Q}_{p}. Hence we have $h=[\boldsymbol{E}: \boldsymbol{H}]=\left[\boldsymbol{a}^{-1}: \boldsymbol{O}\right]=N(\boldsymbol{a})$ which proves the theorem since K has a Minkowski unit if and only if \boldsymbol{E} is a free \boldsymbol{O}-module, i. e. if and only if \boldsymbol{a} is principal.

The author wishes to thank Professor Kawada for pointing out that our corollary was also found by B. A. Zeǐnalov, The units of a cyclic real field, in Dagestan State University, Coll. Sci. Papers, pp. 21/23, Dagestan Kniž. Indat., Makhachkale, 1965 (Math. Rev. Vol. 36, No. 1, 140).

References

[1] H. Hasse, Arithmetische Bestimmung von Grundeinheit in zyklischen kubischeı, Zahlkörpern, Abh. Deutsch. Akad. Wiss. Berlin, no. 2, 1948.
[2] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Berlin, 1952, p. 25.
[3] R. Morikawa, On the unit group for absolutely cyclic number fields of degree five, J. Math. Soc. Japan, 20 (1968), 263-265.

