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\S 0. Introduction.

The main purpose of the present paper is to exhibit an extensive class of
set-theoretical interpretations of the primitive logic which seems to cover
almost all known set-theoretical interpretations, model-theoretical interpreta-
tions, and truth-value-theoretic interpretations of logics. The primitive logic
has been introduced in my papers [2] and [3].

Throughout this paper, I will denote by upper case letters $A,$ $B,$ $\cdots$ prop-
ositions as well as predicates, and by the corresponding lower case letters
$a,$ $b,$ $\cdots$ the interpretations of the propositions or predicates. The letters
$x,$ $y,$ $\cdots$ are object variables. For any set-theoretical interpretation of the primi-
tive logic LO of the present paper, a class of subsets of a certain set ru is
employed, which can be regarded as the class of closed sets of the space ru
by introducing a suitable topology $\mathfrak{T}$ to $\omega$ . By introducing another topology $\mathfrak{T}^{*}$

to the same space $\omega$ , I define the set-theoretical interpretation of “ implication “

and ” universal quantification ”, which are the only logical constants of the
primitive logic LO. As is shown in my papers [3] and [4], the classical logic
LK and the intuitionistic logic LJ are reducible to the primitive logic LO.
Accordingly, logical constants of the logics LK and LJ other than “ implication “

and ” universal quantification “ can be defined in terms of these two logical
constants in the primitive logic LO. So, the newly defined logical constants
are set-theoretically interpreted in accordance with the set-theoretical inter-
pretations of “ implication ” and “ universal quantification “.

The interpretations of “ $A\rightarrow B$ “ and “ $(x)A(x)$ ” are defined as follows:
Let $\{\mathfrak{T}\}$ and $[\underline{\tau}]$ be a pair of topologies introduced to the same space $\omega$ whose
closure operations are denoted by “

$\{$ $\}$
” and “ $[]$ ‘’, respectively. Let us

further assume that $\{\mathfrak{T}\}$ is a finer topology of to than $[\underline{T}](\{a\}\subseteqq[a]$ for every
a) and that the topology pair $\{\mathfrak{T}\}$ and $[\mathfrak{T}]$ satisfy a certain condition called
“ logical “. (See (1.4).) Then, we define “ $a\rightarrow b$ “ and “

$(x)a(x)$ “ as follows:
$a\rightarrow b=[b-a]\cap b$ ,

$(x)a(x)=\{\bigcup_{x}a(x)\}$ ,
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where “ $b-a$ denotes the complementary set of the set $a$ with respect to the
set $b$ and “

$\mathfrak{F}=\mathfrak{G}$ ’ denotes that $\mathfrak{F}$ is defined by $\mathfrak{G}$ (or, $\mathfrak{F}$ stands for $\mathfrak{G}$).
There are a number of interpretations of logics. The following is a list

of popular interpretations:
(A) The truth-value interpretation of the classical logic as a two-valued

logic.
(B) Truth-value interpretations of intuitionistic logics as many-valued

logics.
(C) The set-theoretical interpretation of the classical logic by associating

with every proposition a subset of a fixed set.
(D) The topological interpretation of intuitionistic logics by associating

with every proposition a closed set of a topological space.
There is another interpretation of the proposition part of LO. Namely,
(E) The set-theoretical interpretation of the proposition part of LO by

associating every proposition with a subset of a fixed set and by defining $p\rightarrow q$

as denoting $0$ if $p\supseteqq q$ and as denoting $q$ otherwise.
These interpretations can be proved to be special cases of interpretations

which are introduced by the interpretation just defined of the logic LO.
A sufficient condition has been given in my paper [5] and H. Ono [7] for

every evaluation to be an interpretation of the logic $LO^{1)}$ . $ln$ Section (1), 1
will describe exactly what we need for a pair of topologies $\{\mathfrak{T}\}$ and $[\mathfrak{T}]$ of
the same space $\omega$ to interpret the primitive logic LO set-theoretically in $\omega$ by
our general method, and I will prove that our interpretation satisfies the
condition for being an interpretation of the primitive logic LO. In Section (2),
our topological interpretation of the primitive logic LO is shown to be so
general that it covers all the popular interpretations (A), (B), (C), (D) and (E)

with respect to the logical constants ‘ implication ” and ” universal quanti-
fcation “.

By applying the reduction of my papers [3] and [4] for our interpretation,
we would have set-theoretical interpretations of the classical logic and the
intuitionistic logic. I will discuss the matter in Section (3). The reduction of
my papers [3] and [4] relies mostly on the S-closure operation defined by

$(A)^{S}\equiv(A\rightarrow S)\rightarrow S$

for a proposition $S$ , or on the T-closure operation defined by

$(A)_{T}\equiv(x)((A\rightarrow T(x))\rightarrow T(x))$

for a predicate $T$. In the same section, I will also interpret these operations

1) H. Ono pointed out that the condition (E8) in [5] should be replaced by the
condition $(E8)^{*}$ given in his paper [7] (to appear).
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set-theoretically, and I will clarify the intrinsic meanings of these operations
as well as of logical constants introduced in connection with them.

\S 1. General aspect of set-theoretical interpretations of the primitive logic.

1.1. The primitive logic LO.
I have introduced in my papers [2] and [3] the primitive logic LO, which

can be regarded as the simplest possible intuitionistic predicate logic but which
is powerful enough to faithfully embed in it most of formal theories standing
$on_{A}various$ logics. The primitive logic LO has a pair of logical constants $‘‘\rightarrow$

(implication) and $()$ (universal quantification) and it is characterized by the
following inference rules:

(F) $\mathfrak{A}$ is deducible from $\mathfrak{A}$ .
(I) $\mathfrak{A}$ is deducible from $\mathfrak{B}$ and $\mathfrak{B}\rightarrow \mathfrak{A}$ .
$(I^{*})$ $\mathfrak{A}\rightarrow \mathfrak{B}$ is deducible from the fact that $\mathfrak{B}$ is deducible from $\mathfrak{A}$ .
(U) $\mathfrak{A}(t)$ is deducible from $(x)\mathfrak{A}(x)$ .
$(U^{*})$ $(x)\mathfrak{A}(x)$ is deducible from the fact that $\mathfrak{A}(t)$ is deducible for any variable

$t$ whatever.

1.2. Interpretation of LO.
Let $D$ be a domain of objects and $W$ be a family of objects containing the

designated object $0$ . The direct product of $nD’ s$ is denoted by $D^{n}$ . Any
mapping from $D^{n}$ into $W$ is called a $(D^{n}, W)$-matrix and denoted in the form
$p(x_{1}, \cdots , x_{n})$ . Then,

1) Any $(D^{n}, W)$ -matrix of the form $p(x_{1}, \cdots , x_{n})$ can be regarded as a
special case of $(D^{n+k}, W)$ -matrix of the form $q(x_{1}, \cdots , x_{n}, z_{1}, \cdot.. , z_{k})$ .

2) Any $(D^{n+k}, W)$ -matrix of the form $p(x_{1}, \cdots , x_{n}, z_{1}, \cdots , z_{k})$ can be regarded
as a $(D^{n}, W)$ -matrix of the form $q(x_{1}, \cdots , x_{n})$ for any fixed sequence $z_{1},$

$\cdots$ , $z_{k}$ .
3) $p(x_{1}, x_{1}, \cdots , x_{n})$ can be regarded as a $(D^{n}, W)$ -matrix of the form

$q(x_{1}, \cdots x_{n})$ .
4) Any $(D^{n}, W)$ -matrix $p(\cdots , x, y, \cdots)$ can be regarded as a $(D^{n}, W)$ -matrix

of the form $q$ $(\cdots , y, x, )$ .
Evidently, any $(D^{n}, W)$-matrix represents an n-ary relation. To express

the whole class of relations in the primitive logic, we must further assume
that a pair of operations $‘‘\rightarrow$ and “

$()$ is defined for matrices such that
5) $p(x_{1}, \cdots , x_{n})\rightarrow q(z_{1}, \cdots , z_{k})$ can be regarded as a $(D^{n+k}, W)$ -matrix of the

form $r$ $(x_{1}, \cdots , x_{n}, z_{1}, \cdots , z_{k})$ .
6) $(x_{n})p(x_{1}, \cdots , x_{n})$ can be regarded as a $(D^{n-1}, W)$ -matrix of the form

$q(x_{1}, \cdots x_{n-1})$ .
Any system $(D, W)$ is called an interpretation of the primitive logic LO

if and only if any n-ary relation which is provable in LO is represented by a
$(D^{n}, W)$ -matrix being equal to $0$ .
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1.3. Sufficient condition for being an interpretation of LO.
According to my paper [5] and H. Ono [7], any system $(D, W)$ is an inter-

pretation of LO if it satisfies the following conditions:
(E1) $p\rightarrow p=0$ ,
(E2) $p\rightarrow 0=0$ ,
(E3) $0\rightarrow p=p$ ,
(E4) $p\rightarrow(p\rightarrow q)=p\rightarrow q$ ,
(E5) $p\rightarrow(q\rightarrow r)=q\rightarrow(p\rightarrow r)$ ,
(E6) $p\rightarrow q=0$ implies $(r\rightarrow p)\rightarrow(r\rightarrow q)=0$ ,
(E7) $(x)p(x)\rightarrow p(t)=0$ ,
$(E8)^{*}$ If $p\rightarrow(q\rightarrow r(t))=0$ for every variable $t$ whatever, then $p\rightarrow(q\rightarrow(x)r(x))$

$=0$ .
Namely, any matrix representing a provable proposition in LO can be

proved to be equal to $0$ in so far as the conditions $(E1)-(E8)^{*}$ hold.

1.4. Set-theoretical interpretations.
Any interpretation $(D, W)$ of LO is called set-theoretical if and only if $W$

is formed exclusively by subsets of a certain set $\omega$ and the logical combination
$p\rightarrow q$ as well as the logical operation $(x)p(x)$ for members $p,$ $q$ , and $p(t)$ (for
every $t$ which is a parameter running over $D$) of $W$ is defined so as to produce
a member of $W$. I will describe now a general method for constructing set-
theoretical interpretations of the primitive logic LO.

Let $\omega$ be a space having a pair of topologies $\{\mathfrak{T}\}$ and $[\mathfrak{T}]$ , whose closure
operations are denoted by $\{\}$ and ‘ $[]$ ” respectively. For these topologies,
we assume the following properties:

(T1) $p\subseteqq\{p\}\subseteqq[p]$ ,
(T2) $p\subseteqq q$ implies $\{p\}\subseteqq\{q\}$ as well as $[p]\subseteqq[q]$ ,
(T3) $\{\{p\}\}=\{p\}$ and $[[p]]=[p]$ ,

(T4) $[0]=0$ .
The following formulas are easily deducible from $(T1)-(T4)$ :
(F1) $\{0\}=0,$ $\{\omega\}=[\omega]=\omega$ ,
(F2) $\{[p]\}=[\{p\}]=[p]$ ,

(F3) $\{\{p\}\cap\{q\}\}=\{p\}\cap\{q\},$ $[[p]\cap[q]]=[p]\cap[q]$ .
For any subset $s$ of $\omega$ , we can introduce two operations “

$\{$ $\}^{s}$ and “
$[$ $]^{s}$

as follows:
DEFINITION 1.

$\{p\}^{s}=\{p\}\cap S,$ $[p]^{s}=[p]\cap S$ .

THEOREM 1. For any closed set $s$ with respect to the topology $\{\mathfrak{T}\}$ , the set
$\{p\}^{s}$ as well as the set $[p]^{s}$ is closed with respect to the same topology.

PROOF. Assume $s$ is closed with respect to $\{\mathfrak{T}\}$ . Then, according to (F2)
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and (F3),

$\{\{p\}^{s}\}=\{\{p\}\cap s\}=\{\{p\}\cap\{s\}\}=\{p\}\cap\{s\}=\{p\}\cap s=\{p\}^{s}$ ,

$\{[p]^{s}\}=\{[p]\cap s\}=\{\{[p]\}\cap\{s\}\}=\{[p]\}\cap\{s\}=[p]\cap S=[p]^{s}$ .
THEOREM 2. If $s\supseteqq t$ , then $\{\{p\}^{s}\}^{t}=\{p\}^{t}$ , and $[[p]^{s}]^{t}=[p]^{t}$ . If $s$ is closed

with respect to the topology $\{\mathfrak{T}\}$ (or $[\mathfrak{T}]$),

$\{\{p\}^{s}\}^{t}=\{p\}^{s\cap t}$ (or $[[p]^{s}]^{t}=[p]^{s\cap t}$).

PROOF. Assume $s\supseteqq t$ . Then, according to (T2),

$\{\{p\}^{s}\}^{t}=\{\{p\}\cap s\}\cap t\supseteqq\{p\}\cap S\cap t=\{p\}\cap t=\{p\}^{t}$

$([[p]^{s}]^{t}=[[p]\cap s]\cap t\supseteqq[p]\cap S\cap t=[p]\cap t=[p]^{t})$ .
On the other hand, according to (T3),

$\{\{p\}^{s}\}^{t}=\{\{p\}\cap s\}\cap t\subseteqq\{\{p\}\}\cap t=\{p\}\cap t=\{p\}^{t}$

$([[p]^{s}]^{t}=[[p]\cap s]\cap t\subseteqq[[p]]\cap t=[p]\cap t=[p]^{t})$ .
Next, assume that $s$ is closed with respect to $\{\mathfrak{T}\}$ (or $[\mathfrak{T}]$ ). Then, according

to (F3),

$\{\{p\}^{s}\}^{\iota}=\{\{p\}\cap s\}\cap t=\{\{p\}\cap\{s\}\}\cap t=\{p\}\cap\{s\}\cap t=\{p\}\cap S\cap t=\{p\}^{S\cap t}$

$([[p]^{s}]^{\zeta}=[[p]\cap s]\cap t=[[p]\cap[s]]\cap t=[p]\cap[s]\cap t=[p]\cap s\cap t=[p]^{s\cap t})$ .
THEOREM 3. For any set $s$ ,
$(sT1)$ $p\cap S\subseteqq\{p\}^{s}\subseteqq[p]^{s}\subseteqq s$ ,
$(sT2)$ $p\subseteqq q$ implies $\{p\}^{s}\subseteqq\{q\}^{s}$ and $[p]^{s}\subseteqq[q]^{s}$ ,
$(sT3)$ $\{\{p\}^{s}\}^{s}=\{p\}^{s}$ and $[[p]^{s}]^{s}=[p]^{s}$ ,

$(sT4)$ $[0]^{s}=0$ .
PROOF. $(sT1),$ $(sT2)$ and $(sT4)$ are easily provable by (T1), (T2), (T4) and

(F3). $(sT3)$ is a special case of Theorem 2.
According to Theorem 3, we can see that the operations “

$\{$ $\}^{s}$ and “
$[$ $]^{s}$

induce topologies for the space $s$ , which will be denoted by “
$\{\mathfrak{T}\}^{s}$ and “

$[7\sim]^{s}$ ,
respectively.

DEFINITION 2.
$p\rightarrow q=[q-p]^{q}$ .

DEFINITION 3.
$(x)p(x)=\{\bigcup_{x}p(x)\}$ .

THEOREM 4. $p\rightarrow q$ is closed with respect to the topology $\{\mathfrak{T}\}$ if $q$ is so.
$(x)p(x)$ is closed with respect to the same topology.

PROOF. By Theorem 1 and (T3).

THEOREM 5. $p\rightarrow q=0$ if and only $ifp\supseteqq q$ .
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PROOF. At first, assume $p\rightarrow q=0$ . Then, by Theorem 3,

$0=p\rightarrow q=[q-p]^{q}\supseteqq(q-p)\cap q=q-p$ .
Hence, $p\supseteqq q$ . Next, conversely, assume $p\supseteqq q$ . Then, according to Theorem 3,

$p\rightarrow q=[q-p]^{q}=[0]^{q}=0$ .
THEOREM 6.

$p\rightarrow(q\rightarrow r)=[[r-q]^{r}\cap(r-p)]^{r}$ .
PROOF.

$p\rightarrow(q\rightarrow r)=[(q\rightarrow r)-p]^{q\rightarrow r}$

$=[[r-q]\cap r\cap(\omega-p)]\cap[r-q]\cap r$

$=[[r-q]\cap(r-p)]\cap r$ ,

because $[[r-q]\cap(r-p)]\subseteqq[[r-q]]=[r-q]$ according to (T2) and (T3).
THEOREM 7. $‘‘\rightarrow$ defined by Definition 2 and “

$()$ ” defined by Definition
3 satisfy $(E1)-(E4)$ , (E6) and (E7).

PROOF. According to Theorem 3,

$p\rightarrow p=[p-p]^{p}=[0]^{p}=0$ .
Hence, (E1) holds. Also according to Theorem 3,

$p\rightarrow 0=[0-p]^{0}=[0]^{0}=0$ .
Hence, (E2) holds. According to (T1),

$0\rightarrow p=[p-0]^{p}=[p]\cap p=p$ .
Hence, (E3) holds. According to (T1) and Theorem 6,

$P\rightarrow(P\rightarrow q)=[[q-P1^{q}\cap(q-P)]^{q}=[[q-P]\cap q\cap(q-P)]^{q}=[q-p]^{q}=P\rightarrow q$ .
Hence, (E4) holds.

To show (E6), let us assume $p\rightarrow q=0$ . Then, $p\supseteqq q$ holds according to
Theorem 5. Hence, according to (T2),

$r\rightarrow p=[p-r]^{p}=[p-r]\cap p\supseteqq[q-r]\cap q=[q-r]^{q}=r\rightarrow q$ .
Consequently, $(r\rightarrow p)\rightarrow(r\rightarrow q)=0$ holds by Theorem 5.
(E7) holds by Theorem 5, because

(x) $p(x)=\{\bigcup_{x}p(x)\}\supseteqq\bigcup_{x}p(x)\supseteqq p(t)$

by (T1).
We can not expect that (E5) holds in general even for closed sets with

respect to the topology $[\mathfrak{T}]$ . For example, let $\{\mathfrak{T}\}$ and $[_{\sim}\tau]$ be the same
topology of a plane $\omega$ whose closed sets are the totality of convex sets. Then,
$p\rightarrow(q\rightarrow r)$ is not always equal to $q\rightarrow(p\rightarrow r)$ even for closed sets for these
topologies satisfying $(E1)-(E4),$ $(E6)-(E8)$ as Figure 1 shows:
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Figure 1.

Dotted line: The boundary of $p\rightarrow(q\rightarrow r)$ ,

Wavy line: The bounoary of $q\rightarrow(p\rightarrow r)$ .

Any pair of topologies $(\{\mathfrak{T}\}, [\underline{\yen}])$ is called logical if and only if $‘‘\rightarrow’’$

defined by Definition 2 satisfies (E5) for every triple of closed sets $p,$ $q$ and $r$

with respect to the topology $\{\mathfrak{T}\}$ and $(E8)^{*}$ for every triple of closed sets $p$,
$q$ and $r(t)$ with respect to the same topology $\{\mathfrak{T}\}^{2)}$ .

According to Theorem 6, $(\{\mathfrak{T}\}, [\underline{7}])$ is logical if and only if

$[[r-p]^{r}\cap(r-q)]^{r}=[(r-p)\cap[r-q]^{r}]^{r}$

holds for every triple of closed sets $p,$ $q$ and $r$ with respect to the topology
$\{\mathfrak{T}\}$ and

$[[\{\bigcup_{x}r(x)\}-q]_{x}^{\{\cup r(x)\}}\cap(\{\bigcup_{x}r(x)\}-p)]_{x}^{\{\cup r(x)\}}=0$

holds for every triple of closed sets $p,$ $q$ and $r(t)$ satisfying

$[[r(t)-q]^{\gamma(t)}\cap(r(t)-p)]^{\gamma(t)}=0$

for any $t$ . Moreover, we can prove easily
THEOREM 8. Any pair of topologies $(\{\mathfrak{T}\}, [\underline{\tau}])$ is logical if
(T5) $[[r-p]\cap(r-q)]=[(r-p)\cap[r-q]]$

holds for every triple of closed sets $p,$ $q$ and $r$ with respect to the topology $\{\mathfrak{T}\}$

2) This notion “ logical ” is given by H. Ono [7] as an improvement of my original
definition. By virtue of his improvement, my original Theorems 8, 12 and 13 remained
literally true, and Theorem 9 remained true by some modifications given by him.
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and
(T6) $[\{U_{x}r(x)\}-q]\cap(\{Ur(x)\}-p)x=0$

holds for $e$ very triple of closed sets $p,$ $q$ and $r(t)$ satisfying

$[r(t)-q]\cap(r(t)-p)=0$

for any $t$ .

\S 2. Special cases.

In this section, I will show that the popular interpretations such as $(A)-(E)$

given in the introduction can be regarded as special cases of set-theoretical
interpretations given in the previous section.

At first, I will exhibit two extremal cases of logical pairs of topologies.
They are indeed extremal, but also pretty extensive in the sense that they
cover almost all $(A)-(E)$ . I will also give a theorem concerning compositions
and decompositions of logical pairs of topologies.

2.1. Extremal case I.
THEOREM 9. Let $\omega$ be a space having a topology $\{\mathfrak{T}\}$ and another rough

topology $[\underline{\tau}]$ which has only two closed sets $0$ and to. Then, (T5) holds. Further,
the topology pair $(\{\mathfrak{T}\}, [\underline{\tau}])$ is logical, if the class of all closed sets with respect
to $\{\mathfrak{T}\}$ is totally ordered by set inclusion. (Modified by H. Ono [7].)

PROOF. It is clear that $\{\mathfrak{T}\}$ and $[\underline{\tau}]$ satisfy the conditions $(T1)-(T4)$ .
For the topology $[_{\sim}\tau],$ $[[a]\cap b]$ as well as $[a\cap[b]]$ is $\omega$ unless $a$ or $b$ is $0$ .
Hence, $[[a]\cap b]=[a\cap[b]]$ . So, the former half holds. The latter half holds
too, because $r(t)$ must be always a subset of $p\cap q$ .

Now, take $\{\mathfrak{T}\}$ as the topology for which $tp$ } $=p$ holds for every subset
$p$ of $\omega$ . Then, we have the example interpretation (E) as a special case of
this extremal case. (Former half of Theorem 9.)

Next, take $\omega$ as $\{$ 1, $\cdot$ .. , $n\}$ , and $\{\mathfrak{T}\}$ as the topology, which has $\emptyset,$ $\{1\}$ , $\cdot$ .. ,
$\{$ 1, $\cdots$ , $n\}$ as the totality of its closed sets. Then, we have as a special case
of this extremal case, the set-theoretical interpretation of intuitionistic logics
as many-valued logics given by G\"odel [1], which can be regarded as the
representative case of the example interpretation (B). As the very special
case of this interpretation, where we take {1} as ru ( $i$ . $e$ . the case $n=1$), we
have the example interpretation (A) of the classical logic.

2.2. Extremal case II.
Another extremal case of logical pairs of topologies is the case where

$\{\mathfrak{T}\}$ and $[\mathfrak{T}]$ coincide and they satisfy the condition
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(T7) $[aUb]=[a]U[b]$ .
Before proving that such pairs are all logical, let us state a few theorems

for preparation.
THEOREM 10. (T7) implies $[a Ub]^{s}=[a]^{s}U[b]^{s}$ for any $s$ .
Now, I will call any set a neighborhood of $x$ with respect to the topology

$[\underline{\tau}]^{p}$ if and only if it is a set of the form $p-[t]^{p}$ containing $x$ in it. Then,
by making use of Theorem 10, we have

THEOREM 11. Assume $a\subseteqq p$ . Then, any $\chi$ is a member of $[a]^{p}$ if and only

if every neighborhood of $x$ with respect to the topology $[\mathfrak{T}]^{p}$ has at least one
member in common with $a$ .

THEOREM 12. Any pair $($[%], $[\underline{\tau}])$ of identical topologies $[\mathfrak{T}]$ is logical if
$[\underline{7}]$ satisfies the condition (T7). In this case, we can prove further

$[[p-q]\cap(p-r)]=[(p-q)\cap[p-r]]=[(p-q)\cap(p-r)]$

for any closed sets $p,$ $q$ and $r$ with respect to $[\underline{\tau}_{1}$ .
PROOF. It is enough to show

$[[p-q]\cap(p-r)]=[(p-q)\cap(p-r)]$

for any closed sets $p,$ $q$ and $r$ with respect to [ $\underline{7}J$ . I will prove at first

$[[p-q^{*}]^{p}\cap(p-r^{*})]^{p}=[(p-q^{*})\cap(p-r^{*})]^{p}$

for any closed set $p$ with respect to the topology $[\mathfrak{T}]$ and for any closed sets
$q^{*}$ and $r^{*}$ with respect to the topology $[\mathfrak{T}]^{p}$ .

Now, let $x$ be any member of $[[p-q^{*}]^{p}\cap(p-r^{*})]^{p}$ . Then, I will show
that any neighborhood $p-[h]^{p}$ of $x$ has at least one member in common with
$(p-q^{*})\cap(p-r^{*})$ .

Namely, according to Theorem 11, any neighborhood $p-[h]^{p}$ of $x$ has at
least one member, say $y$ , in common with $[p-q^{*}]^{p}\cap(p-r^{*})$ . Hence, by virtue
of Theorem 10 and by assumption

$y\in(p-[h]^{p})\cap(l-r^{*})=p-[h]^{p}Ur^{*}=p-[h]^{P}U[r^{*}]^{p}=p-[hUr^{*}]^{p}$ .
Also, $y$ is a member of $[p-q^{*}]^{p}$ .

According to Theorem 11, the neighborhood $p-[hUr^{*}]^{p}$ of the member
$y$ of $[p-q^{*}]^{p}$ has at least one member, say $z$ , in common with $p-q^{*}$ . By virtue
of Theorem 10 and by assumption,

$z\in(p-[hUr^{*}]^{p})\cap(p-q^{*})=p-[hUr^{*}]^{p}Uq^{*}$

$=p-[hUr^{*}]^{p}U[q^{*}]^{p}=p-[hUr^{*}Uq^{*}]^{p}$ .
Hence, by virtue of Theorem 3 and by assumption,

$z\in p-[hUr^{*}Uq^{*}]^{p}\subseteqq p-[q^{*}]^{p}=p-q^{*}$ ,

$z\in p-[hUr^{*}Uq^{*}]^{p}\subseteqq p-[r^{*}]^{p}=p-\gamma*$ .
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So, $2\in(p-q^{*})$ A $(p-r^{*})$ and $z\in p-[hUr^{*}Uq^{*}]^{p}\subseteqq z-[h]^{p}$ .
Thus, we have proved that any neighborhood $p-[h]^{p}$ of any member $x$ of

$[[p-q^{*}]^{p}\cap(p-r^{*})]^{p}$ has at least one member $z$ in common with $(p-q^{*})\cap(p-r^{*})$ .
So, according to Theorem 11, $x$ is a member of $[(p-q^{*})\cap(p-r^{*})]^{p}$ .

Accordingly,

$[[p-q^{*}]^{p}\cap(p-r^{*})]^{p}\subseteqq[(p-q^{*})\cap(p-r^{*})]^{p}$ .
On the other hand, according to Theorem 3,

$[[p-q^{*}]^{P}\cap(p-r^{*})]^{P}\supseteqq[(p-q^{*})\cap p\cap(p-r^{*})]^{P}=[(p-q^{*})\cap(p-r^{*})]^{P}$ .
Hence,

$[[p-q^{*}]^{p}\cap(p-r^{*})]^{p}=[(p-q^{*})\cap(l-r^{*})]^{p}$

holds for any closed set $p$ with respect to $[\underline{\tau}]$ and for any pair of closed sets
$q^{*}$ and $r^{*}$ with respect to $[\underline{7}]^{p}$ .

Now, by (T1), (F3), and assumption,

$[q\cap p]^{p}=[q\cap p]\cap p=[[q]\cap[p]]$ A $p=[q]\cap[p]\cap p=q\cap p$ .
So, $q\cap p$ is closed with respect to $[\mathfrak{T}]^{p}$ . Similarly, we can prove also that
$r\cap p$ is closed with respect to $[\mathfrak{T}]^{p}$ .

Now, by assumption and (T2),

$[[p-q]\cap(p-r)]\subseteqq[p]=p$ , $[(p-q)\cap(p-r)]\subseteqq[p]=p$ .
Hence, by taking $q\cap p$ and $\gamma\cap p$ in place of $q^{*}$ and $r^{*}$ , respectively,

$[[p-q]\cap(p-r)]=[[p-q]\cap p\cap(p-r)]\cap p=[[p-q]^{P}\cap(p-r)]^{P}$

$=[[p-q\cap p]^{P}\cap(p-r\cap p)]^{P}=[(p-q\cap p)\cap(p-r\cap p)]^{P}$

$=[(p-q)\cap(p-r)]\cap p=[(p-q)\cap(p-r)]$ .
Now, take $\{\mathfrak{T}\}$ and $[\underline{\mathfrak{T}}]$ as the same topology, for which $[p]=p$ holds for

every subset $p$ of $s$ . Then, we have the example interpretation (C) of the
classical logic as a special case of this extremal case. As the very special
case of this interpretation where $\omega=\{1\}$ , we have the example interpretation
(A) of the classical logic.

Next, take {%} and $[\mathfrak{T}]$ as any topologies equivalent to the same topology
of a space satisfying (T7). Then, we have the example interpretation (D) of
the intuitionistic logic as a special case of this extremal case.

2.3. Compositions and decompositions of logical pairs of topologies.
DEFINITION 4. Any pair $(\{\mathfrak{T}\}, [\underline{T}])$ of topologies $\{\mathfrak{T}\}$ and $[\underline{\mathfrak{T}}]$ of a space

$\omega$ is called “ decomposed ’ (into the class $\{\cdots , (\{\mathfrak{T}\}_{i}, [^{\zeta}\underline{\tau}]_{i}), \}$ of topologies
$\{\mathfrak{T}\}_{i}$ and $[\underline{T}]_{i}$ of the topological sub-spaces $\omega_{i}$ of $\omega$ having the closure opera-
tions “

$\{$ $\}_{i}$ and “
$[$ $]_{i}$ , respectively), if and only if the following conditions
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are satisfied:
1) $\omega=\sum_{i}\omega_{i}$ ,

2) $\{p\cap\omega_{i}\}_{i}=\{p\cap\omega_{i}\}$ and $[p\cap\omega_{i}]_{i}=[p\cap\omega_{i}]$ ,

3) $\{p\}=\sum_{;}\{p\cap\omega_{i}\}$ and $[p]=\sum_{i}[p\cap\omega_{i}]$ ,

where each expression of the form $\sum_{\dot{t}}s_{i}$ denotes the set of all members of $\omega$

each of which belongs to one and only one $s_{i}$ . In this case, the pair $(\{\mathfrak{T}\}, [\underline{\tau}])$

is called the composed pair of pairs $(\{\mathfrak{T}\}_{i}, [\mathfrak{T}]_{i})$ of topologies of the spaces $\omega_{i}$ .
This will be denoted shortly by

$(\{\mathfrak{T}\}, [c_{\zeta,\sim}])=\sum_{i}(\{\mathfrak{T}\}_{i}, [\underline{\yen}]_{i})$ .

THEOREM 13. Assume $(\{\mathfrak{T}\}, [^{\zeta}\underline{T}])=\sum_{\dot{t}}(\{\mathfrak{T}\}_{i}, [\underline{\yen}]_{i})$ . Then, $(\{\mathfrak{T}\}, [\mathfrak{T}])$ is logical

if and only if all pairs $(\{\mathfrak{T}\}_{i}, [\underline{\yen}]_{i})$ of topologies are logical.
PROOF. Throughout this proof, we assume $(\{\mathfrak{T}\}, [\mathfrak{T}])=\sum_{i}(\{\mathfrak{T}\}_{i}, [\mathfrak{T}]_{i})$ .
At first, let us further assume that $(\{\mathfrak{T}\}, [\underline{\Psi}])$ is logical. To prove in this

case that every pair of topologies of the form $(\{\mathfrak{T}\}_{i}, [_{\sim}\tau]_{i})$ is logical, take any
subsets $p,$ $q$ and $r$ of $\omega_{i}$ which are all closed with respect to the topology $\{\mathfrak{T}\}_{i}$ .
These sets are proved to be closed with respect to the topology $\{\mathfrak{T}\}$ as follows:

$s=\{s\}_{i}=\{S\cap\omega_{i}\}_{i}=\{S\cap\omega_{i}\}=\{s\}$ ,

where $s$ stands for any one of $p,$ $q$ or $r$ . Accordingly, by assumption, (T2),

and Theorem 6,

$[[p-q]^{p_{i}}\cap(p-r)]^{p_{i}}=[[(p-q)\cap\omega_{i}]_{i}\cap p\cap(p-r)\cap\omega_{i}]_{i}\cap p$

$=[[(p-q)\cap\omega_{i}]\cap p\cap(p-r)\cap\omega_{i}]\cap p$

$=[[p-q]^{p}\cap(p-r)]^{p}=[(p-q)\cap[p-r]^{p}]^{p}$

$=[(p-q)\cap[(p-r)\cap\omega_{i}]\cap p\cap\omega_{i}]\cap p$

$=[(p-q)\cap[(p-r)\cap\omega_{i}]_{i}\cap p\cap\omega_{i}]_{i}\cap p$

$=[(p-q)\cap[p-r]^{p_{i}}]^{p_{i}}$ .
Hence, $(\{\mathfrak{T}\}_{i}, [\mathfrak{T}]_{i})$ is logical according to Theorem 6.

Next, conversely, let us assume that the pairs $(\{\mathfrak{T}\}_{i}, [\mathfrak{T}]_{i})$ are all logical.
To show that the pair $(\{\mathfrak{T}\}, [\underline{\tau}])$ is logical, take any closed sets $p,$ $q$ and $r$

with respect to the topology $\{\mathfrak{T}\}$ . Then, $p\cap\omega_{i},$ $q\cap\omega_{i}$ , and $r\cap\omega_{i}$ are all
closed with respect to the topology $\{\mathfrak{T}\}_{i}$ . For, taking into account that $\{s\cap\omega_{i}\}$

$\subseteqq\omega_{i}$ for $s=p,$ $q,$ $r$ and that all $\omega_{i}’ s$ are mutually disjoint, we can compute as
follows:

$S\cap\omega_{i}=\{s\}\cap\omega_{i}=(\sum_{j}\{S\cap\omega_{j}\})\cap\omega_{i}=\{S\cap\omega_{i}\}\cap\omega_{i}=\{S\cap\omega_{i}\}=\{S\cap\omega_{i}\}_{i}$ .

Accordingly, we can further compute by making use of Theorem 6,
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$[[p-q]^{p}\cap(p-r)]^{p}=\sum_{i}[[p-q]\cap p\cap(p-r)\cap\omega_{i}]\cap p$

$=\sum_{i}[(\sum_{j}[(p-q)\cap\omega_{j}])\cap p\cap(p-r)\cap\omega_{i}]\cap p$

$=\sum_{\dot{t}}[[(p-q)\cap\omega_{i}]_{i}\cap p\cap(p-r)\cap\omega_{i}]_{i}\cap p$

$=\sum_{i}[[p\cap\omega_{i}-q\cap\omega_{i}]^{p_{b}}\cap(p\cap\omega_{i}-r\cap\omega_{i})]^{p_{i}}$

$=\sum_{i}[(p\cap\omega_{i}-q\cap\omega_{i})\cap[p\cap\omega_{i}-r\cap\omega_{i}]^{p_{i}}]^{p_{i}}$

$=\sum_{i}[(p-q)\cap\omega_{i}\cap\sum_{j}[(p-r)\cap\omega_{j}]_{j}\cap p]_{i}\cap p$

$=\sum_{i}[(p-q)\cap[p-r]\cap p\cap\omega_{i}]\cap p$

$=[(p-q)\cap[p-r]^{p}]^{p}$ .

REMARK. According to Theorem 13, we can construct many logical pairs
by composing various logical pairs each belonging to the extremal cases I
or II.

Pairs of topologies belonging to the extremal case I also satisfy the con-
dition (T7). Hence, pairs of topologies thus composed satisfy the same condition.
It would be natural to ask the following questions:

(A) Does every logical pair of topologies satisfy the condition (T7)?
(B) Is every logical pair of topologies satisfying the condition (T7) de-

composable into pairs of togologies each belonging $lo$ the extremal cases $I$

or II ?
In reality, I am conjecturing that every pair of topologies would be decom-

posable into pairs of topologies each belonging to the extremal cases I or II,
although the above questions are both quite open for me.

\S 3. Intrinsic meanings of two kinds of closure operations and logical
constants defined in the primitive logic LO.

According to my papers [3] and [4], the classical logic as well as the
intuitionistic logic has been proved to be reducible to the primitive logic LO
by defining S-closure operation “

$($ $)^{S}$ for a proposition symbol $S$ or T-closure
operation “

$($ $)_{T}$ for a predicate symbol $T$ and by defining logical constants
other than “ implication ” and “ universal quantification “ suitably in LO for a
certain class of propositions. In my paper [6], I have proved further that the
same device can be extended to any axiomatizable formal theory standing on
the classical logic or the intuitionistic logic by taking $S$ as a proposition in
general and by taking $T$ as a predicate in general. In the present section, I
will try to expose the intrinsic meanings of the S- and T-closure operations
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and logical constants defined in connection with them in interpreting these
operations and logical constants set-theoretically by logical pairs of topologies.

For any topology, there are a certain class $\Gamma$ of closed sets each of which
is equal to the closure of its open kernel and a certain class $\Omega$ of open sets
each of which is equal to the open kernel of its closure. Closed sets of the
class $\Gamma$ correspond one-to-one to open sets of the class $\Omega$ . Let us denote the
operation from any set to its open kernel by $K$ and the operation from any
set to its closure by C. Then, the sets of $l^{\urcorner}$ are characterized by the fact
that they are invariant with the operation CK $[x=CK(x)=C(K(x))]$ and the
sets of $\Omega$ are characterized by the fact that they are invariant with the
operation KC $[x=KC(x)=K(C(x))]$ .

If we apply the operation CK to any set, we have a set belonging to $\Gamma$ .
If we apply the operation KC to any set, we have a set belonging to $\Omega$ .
If we denote by $N$ the operation from any set to its complementary set
(complementary with respect to $\omega$), the operation $K$ is denoted by NCN.
Accordingly, we obtain sets of $\Gamma$ if we apply the operation CNCN to any
sets, and the sets of $\Gamma$ are characterized by the fact that they are invariant
with respect to the operation CNCN.

The set-theoretical interpretation of the S-closure operation “
$($ $)^{S}$ with

respect to a proposition $S$ is nothing but the operation CNCN with respect to

the topology $[\underline{T}]^{s}$ . The intrinsic meanings of the logical constants $\Lambda^{l}$ , $\vee^{\iota}$ , $-\epsilon$

,

and $(\exists)l$ can be exhibited easily in connection with the intrinsic meanings of
the operation CNCN with respect to the topology $[^{\underline{c_{\zeta}}}]^{s}$ .

However, the real features of the operation CNCN in the extremal cases
differ very much from each other as explained later.

The intrinsic meaning of the T-closure operation “
$($ $)_{T}$ and the logical

constants A , $\vee T$

$-T$
and $(\exists)T$ with respect to a predicate $T$, can be understood

in connection with the intrinsic meanings of the S-closure operation and the
logical constants $\wedge s$ , $\vee s$

$-s$ , and (E)s with respect to a proposition $S$ having a
parameter.

3.1. Closure operations and logical constants.
Corresponding to the S-closure $(\mathfrak{A})^{S}$ and T-closure $(\mathfrak{A})_{T}$ of a proposition $\mathfrak{A}$

with respect to a proposition $S$ and a predicate $T$, I define the s-closure $(p)^{s}$

and the t-closure $(p)_{t}$ of a subset $p$ of $\omega$ with respect to a subset $s$ of $\omega$ and
a subset $t(u)$ of $\omega$ having the parameter $u$ running over $D$ , respectively.

DEFINITION 5.
$(p)^{s}=(p\rightarrow s)\rightarrow s$ and $(p)_{t}=(u)(p^{t(u)})$ .

Any set $p$ is called s-closed with respect to the set $s$ if and only if $p$ is equal
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to $(p)^{s}$ . Any set $p$ is called t-closed with respect to the set $t(u)$ having a
parameter $u$ running over $D$ if and only if $p$ is equal to $(p)_{t}$ .

I introduce also some combinations and operations which correspond to
the logical constants and logical operations defined in LO.

DEFINITION 6.
$p$ A $q=(p\rightarrow(q\rightarrow s))\rightarrow s$ ,

$p^{s}q=(p\rightarrow s)\rightarrow((q\rightarrow s)\rightarrow s)$ ,

$s$

$-p=p\rightarrow s$ ,

$(\exists x)p(x)=(x)(p(x)\epsilon\rightarrow s)\rightarrow s$ ,

$p\bigwedge_{t}q=(u)(p^{t(}\wedge^{u)}q)$ ,

$pq=(u)(p^{t(}^{u)}q)t$

$-p=(u)(-p)tt(u)$

$(\exists x)p(x)=(u)((\exists x)p(x))tt(u)$

The following propositions can be proved easily in the primitive logic LO
(see my paper [3]).

$A\rightarrow(A)^{S}$ , $A\rightarrow(A)_{T}$ ,

$((A)^{S})^{S}\equiv(A)^{S}$ , $((A)_{T})_{T}\equiv(A)_{T}$ ,

$(A\rightarrow B)\rightarrow((A)^{S}\rightarrow(B)^{S})$ , $(A\rightarrow B)\rightarrow((A)_{T}\rightarrow(B)_{T})$ ,

$(S)^{S}\equiv S$ , $S\rightarrow(A)^{S}$ , $(x)T(x)\rightarrow(A)_{T}$ ,

$(x)((A(x))^{S}\rightarrow A(x))\rightarrow(((x)A(x))^{S}\rightarrow(x)A(x))$ ,

$(x)((A(x))_{T}\rightarrow A(x))\rightarrow(((x)A(x))_{T}\rightarrow(x)A(x))$ .

According to my paper [5] and H. Ono [7], any set-theoretical expression
corresponding to a provable proposition in LO is equal to $0$ if the conditions
$(E1)-(E8)^{*}$ are satisfied.

Now, let $(\{\mathfrak{T}\}, [\mathfrak{T}])$ be any logical pair of topologies. Then, according to
Theorem 7, the conditions $(E1)-(E8)^{*}$ are satisfied by closed sets with respect
to the topology $\{\mathfrak{T}\}$ for $‘‘\rightarrow$ and “

$()$ ’ defined by Definitions 2 and 3. Hence,
by virtue of Theorem 5, we can see that the following propositions hold for
closed sets with respect to the topology $\{\mathfrak{T}\}$ .

1) $p\supseteqq(p)^{s},$ $p\supseteqq(p)_{t}$ ,
2) $((p)^{s})^{s}=(p)^{s},$ $((p)_{t})_{t}=(p)_{t}$ ,

3) $p\supseteqq q$ implies $(p)^{s}\supseteqq(q)^{s}$ as well as $(p)_{t}\supseteqq(q)_{t}$ ,
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4) $(s)^{s}=s$ ,

5) $s\supseteqq(p)^{s},$ $(x)t(x)\supseteqq(p)_{t}$ ,
6) If $p(u)$ is s-closed for every $u$ and for a fixed set $s$ , then $(x)p(x)$ is

s-closed. If $p(u)$ is t-closed for every $u$ and for a fixed one-dimensional
matrix $t(u)$ , then $(x)p(x)$ is t-closed.

The following propositions are provable for any proposition $S$, for any
S-closed proposition $A,$ $B$ , and $C$ , and for any S-closed predicate $A(u)$ in the
sense that the proposition $A(u)$ is S-closed for every $u$ . (See my paper [3].)

$A\wedge sB\rightarrow A$ , $A\wedge Bs\rightarrow B$ , $(C\rightarrow A)\rightarrow((C\rightarrow B)\rightarrow(C\rightarrow A\wedge B))s$

$A\rightarrow A\vee sB$ , $B\rightarrow A\vee sB$ , $(A\rightarrow C)\rightarrow((B\rightarrow C)\rightarrow(ABs\rightarrow C))$ ,

$A(u)\rightarrow(\exists x)A(x)s$ $(x)(A(x)\rightarrow B)\rightarrow((\exists x)A(x)s\rightarrow B)$ ,

$ss$
$(A)^{S}\equiv--A$ .

Hence, according to my paper [5] and H. Ono [7], we can see by virtue
of Theorem 5, that the following propositions hold for any closed set $s$ with
respect to the topology $\{\mathfrak{T}\}$ , for any s-closed sets $p,$ $q$ , and $r$, and for any
s-closed set $p(u)$ having a parameter $u$ .

$s1)$ $p\wedge q\supseteqq p,$
$p\wedge q\supseteqq qs$

$s2)$ $\gamma\supseteqq p$ and $r\supseteqq q$ imply $r\supseteqq p\wedge^{\epsilon}q$ ,

$s3)$ $p\supseteqq pq*,$ $q\supseteqq pql$

$s4)$ $p\supseteqq r$ and $q\supseteqq r$ imply $p\vee^{s}q\supseteqq r$,

$s5)$ $p(u)\supseteqq(\exists x)p(x)s$

$s6)$ If $p(x)\supseteqq q$ for every $x$ , then $(\exists^{l}x)p(x)\supseteqq q$ ,
$ss$

$s7)$ $--p=p$.
Also, the following propositions are provable for any predicate $T$, for any
T-closed proposition $A,$ $B$ , and $C$ , and for any T-closed predicate $A(u)$ in the
sense that the proposition $A(u)$ is T-closed for every $u$ . (See my paper [3].)

$A\bigwedge_{T}B\rightarrow A$ , $A\bigwedge_{T}B\rightarrow B$ , $(C\rightarrow A)\rightarrow((C\rightarrow B)\rightarrow(C\rightarrow A\bigwedge_{T}B))$ ,

$A\rightarrow A\vee TB$ , $B\rightarrow A\vee TB$ , $(A\rightarrow C)\rightarrow((B\rightarrow C)\rightarrow(A\vee TB\rightarrow C))$ ,

$A(u)\rightarrow(\exists x)A(x)T$ $(x)(A(x)\rightarrow B)\rightarrow((\exists x)A(x)T\rightarrow B)$ .

Hence, according to my paper [5] and H. Ono [7], we can see by virtue
of Theorem 5, that the following propositions hold for any closed set $t(u)$ having
a parameter $u$ with respect to the topology $\{\mathfrak{T}\}$ , for any t-closed sets $p,$ $q$ , and
$r$ , and for any t-closed set $p(u)$ having a parameter $u$ .
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tl) $p\bigwedge_{t}q\supseteqq p,$ $p\bigwedge_{t}q\supseteqq q$ ,

$t2)$ $r\supseteqq p$ and $r\supseteqq q$ imply $r\supseteqq p\bigwedge_{t}q$ ,

$t3)$
$p\supseteqq p_{t}q,$ $q\supseteqq p_{t}q$ ,

$t4)$ $p\supseteqq r$ and $q\supseteqq r$ imply $p\bigvee_{t}q\supseteqq r$ ,

$t5)$ $p(u)\supseteqq(\exists_{t}x)p(x)$ ,

$t6)$ If $p(x)\supseteqq q$ for every $\chi$ , then $(\exists x)p(x)t\supseteqq q$ .
REMARK. Let $\Gamma^{s}$ be the class of s-closed sets for a set $s$ . Then, every

member of $\Gamma^{s}$ is closed with respect to the topology $[\mathfrak{T}]^{s}$ . $1$)$-6$) and $sl$)$-s7$)

show that $\Gamma^{s}$ forms a complemented complete lattice in which

$p^{l}\wedge q=pUq$ , $pq=p\cap qs$

$(x)p(x)=\bigcup_{x}p(x)$ , $(\exists x)p(x)=\bigcap_{x}p(x)s$

hold for the lattice operations $U,$ $\cap,$ $U$ , and $\cap in\Gamma^{s}$ .
Let $\Gamma_{t}$ be the class of t-closed sets for a set $t(u)$ having a parameter $u$ .

Then, $1$)$-6$) and $tl$)$-t6$) show that $\Gamma_{t}$ forms a complete lattice having the
maximum member $(x)t(x)$ in which

$p\bigwedge_{t}q=pUq$ , $p_{t}q=p\cap q$ ,

$(x)p(x)=\bigcup_{x}p(x)$ , $(\exists_{\iota}x)p(x)=\bigcap_{x}p(x)$

hold for the lattice operations V, $\cap,$ $U$ , and $\cap in\Gamma_{t}$ .

3.2. Closure operations and logical constants in the extremal case I.
Let us assume that $(\{\mathfrak{T}\}$ , [%]$)$ is a logical pair of topologies in the

extremal case I. Then, $(p)^{s}$ is $s$ for $p\supseteqq s$ , and $(p)^{s}$ is $0$ otherwise. Accordingly,
$\Gamma^{s}$ turns out to be a class formed by only two members $s$ and $0$ . The logical
constants satisfy

1) $p\wedge lq=0$ if $p=q=0$ , and $p\wedge sq=s$ otherwise,

2) $p\vee lq=s$ if $p=q=s$ , and $p\vee^{\epsilon}q=0$ otherwise,
$s$

3) $-p=0$ if $p=s$ , and $-p=s$ if $p=0$ ,

4) $(\exists x)p(x)=0$ if $p(u)$ is $0$ for every $u$ , and $(\exists x)p(x)*=s$ otherwise.
The intrinsic meaning of $(p)_{t}$ for a set $t(u)$ having a parameter $u$ depends

on how extensive the class of $t(u)s$ for various $u’ s$ is. For example, let $\{\Gamma\}$

be the class of closed sets with respect to the topology $\{\mathfrak{T}\}$ , and every member
of $\{\Gamma\}$ be expressible in the form $t(u)$ . Then, $\Gamma_{t}$ is nothing but $\{\Gamma\}$ .
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3.3. Closure operations and logical constants in the extremal case II.
Let us assume that $([\mathfrak{T}], [\mathfrak{T}])$ is a logical pair of topologies in the extremal

case II. Then, the s-closure operation $(p)^{s}$ for a closed set $p$ with respect
to $[\underline{\tau}]$ is something like shaving business which restricts $p$ to $s$ taking off all
hairs of $p$. Here, I call figuratively hairs the set of boundary points of $p$ lying
apart from the inner kernel of $p$.

Figure 2.

$\Gamma_{s}$ is formed by closed shaved bodies inside $s$ . If $p$ and $q$ are both s-closed

($i$ . $e$ . shaved), $p\wedge q$ is nothing but the set-theoretical union $pUq$, but $p\vee sq$ is
obtained by shaving again the set-theoretical intersection $p\cap q$ .

The intrinsic meaning of $(p)_{t}$ for a set $t(u)$ having a parameter $u$ depends
on how extensive the class of $t(u)s$ for various $u’ s$ is, in this extremal case
too. For example, let us assume that every closed set with respect to the
topology [%] can be expressed in the form $t(u)$ . Then, $\Gamma_{t}$ is nothing but the
whole class of closed sets with respect to the same topology [%].

Nagoya University
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