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\S 1. Introduction.

Doubly transitive permutation groups of degree $n$ and order $2(n-1)n$ were
determined by N. Ito ([4]).

The object of this paper is to prove the following result.
THEOREM. Let $\Omega$ be the set of symbols 1, 2, $\cdot$ .. , $n$ . Let $\mathfrak{G}$ be a doubly

transitive group on $\Omega$ of order $4(n-1)n$ not containing a regular normal sub-
group and let A be the stabilizer of the set of symbols 1 and 2. Assume that
$ff\cap G^{-1}ffG=1$ or ge for every element $G$ of G. Then we have the following
results;

(I) If ge is a cyclic group, then $\mathfrak{G}$ is isomorphic to either $PGL(2,5)$ or
$PSL(2,9)$ .

(II) If $K$ is an elementary abelian group, then $\mathfrak{G}$ is isomorphic to $PSL(2,7)$ .
We use the standard notation. $C_{x}\mathfrak{F}$ denotes the centralizer of a subset

$\mathfrak{T}$ in a group $\mathfrak{X}$ and Nee $\mathfrak{T}$ stands for the normalizer of $\mathfrak{T}$ in $\mathfrak{X}$ . We denote
the number of elements in $\mathfrak{T}$ by $|\mathfrak{T}|$ .

\S 2. Proof of Theorem, (I).

1. Let $\mathfrak{H}$ be the stabilizer of the symbol 1. se is of order 4 and it is
generated by a permutation $K$ whose cyclic structure has the form (1) (2) $\cdots$ .
Since $\mathfrak{G}$ is doubly transitive on $\Omega$ , it contains an involution $I$ with the cyclic
structure (12) $\cdots$ . We may assume that $I$ is conjugate to $K^{2}$ . Then we have
the following decomposition of $\mathfrak{G}$ ;

$\mathfrak{G}=\mathfrak{H}+\mathfrak{H}I\mathfrak{H}$ .

Since $I$ is contained in $N_{\mathfrak{G}}$ ff, it induces an automorphism of ff and (i) $\langle I\rangle\beta\S$ is
an abelian 2-group of type $(2, 2^{2})$ or (ii) $\langle I\rangle t\S$ is dihedral of order 8. If an
element $H^{\prime}IH$ of a coset $\mathfrak{H}IH$ of $\mathfrak{H}$ is an involution, then $IHH^{\prime}I=(HH^{\prime})^{-1}$ is
ucontained in ff. Hence, in case (i) the coset $\mathfrak{H}IH$ contains just two involutions,
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namely $H^{-1}IH$ and $H^{-1}K^{2}IH$, and, in case (ii), it contains just four involutions,

namely $H^{-1}IH,$ $H^{- 1}KIH,$ $H^{- 1}K^{2}IH$ and $H^{-I}K^{3}IH$. Let $g(2)$ and $h(2)$ denote the
numbers of involutions in $\mathfrak{G}$ and $\mathfrak{H}$ , respectively. Then the following equality
is obtained;

(2.1) $g(2)=h(2)+\alpha(n-1)$ ,

where $\alpha=2$ and 4 for cases (i) and (ii), respectively.
2. Let $R$ keep $i(i\geqq 2)$ symbols of $\Omega$ , say 1, 2, $\cdot$ .. , $i$ , unchanged. It is

trivial by the assumption of St that $K$ has no transposition in its cyclic decom-
position and that $N_{\mathfrak{G}}$ St $=C_{\mathfrak{G}}K^{2}$ . Put $s^{\alpha}=\{1,2, \cdots , i\}$ . Then, by a theorem of
Witt ([6], Th. 9.4), $N_{\mathfrak{G}}$ R/\mbox{\boldmath $\xi$}\S can be considered as a doubly transitive permuta-
tion group on 5. Since every permutation of $N_{\mathfrak{G}}ff/f8$ distinct from f\S leaves
by the definition of \mbox{\boldmath $\beta$}\S at most one symbol of $ s\circ$ fixed, $N_{\mathfrak{G}}ff/ff$ is a complete
Frobenius group on $s^{\circ}$ Therefore $i$ equals to a power of a prime number,
say $p^{m}$ , and the orders of $N_{\mathfrak{G}}f$? and $\mathfrak{H}\cap N_{\mathfrak{G}}ff$ are equal to $4i(i-1)$ and $4(i-1)$ ,
respectively. Hence there exist $(n-1)n/(i-1)i$ involutions in $\mathfrak{G}$ each of which
is conjugate to $K^{2}$ .

At first, let us assume that $n$ is odd. Let $h^{*}(2)$ be the number of involu-
tions in $\mathfrak{H}$ leaving only the symbol 1 fixed. Then from (2.1) and the above
argument the following equality is obtained;

(2.2) $h^{*}(2)n+(n-1)n/(i-1)i=(n-1)/(i-1)+h^{*}(2)+\alpha(n-1)$ .
Since $i$ is less than $n$ , it follows from (2.2) that $ h^{*}(2)<\alpha$ . If $h^{*}(2)=1$ , then
there exists no group satisfying the conditions of the theorem. In fact, let $J$

be the involution in $\mathfrak{H}$ leaving only the symbol 1 fixed. By [2, Cor. 1, p. 414],
$J$ is contained in $Z^{*}(\mathfrak{G})$ , where $Z^{*}(\mathfrak{G})$ is the subgroup of $\mathfrak{G}$ containing the core
of $\mathfrak{G},$ $K(\mathfrak{G})$ , for which $Z^{*}(\mathfrak{G})/K(\mathfrak{G})=Z(\mathfrak{G}/K(\mathfrak{G}))$ . If $K(\mathfrak{G})\neq 1$ , then by the
theorem of Feit-Thompson $K(\mathfrak{G})$ is solvable ([1]). Hence $\mathfrak{G}$ contains a regular
normal subgroup ([6, Th. 11.5]). We have $K(\mathfrak{G})=1$ and $J$ is an element of
$Z(\mathfrak{G})$ . Hence $Z(\mathfrak{G})\neq 1$ . But $\mathfrak{G}$ must also contain a regular normal subgroup.
Hence we may assume $h^{*}(2)\neq 1$ . Thus there are three cases; (A) $\alpha-h^{*}(2)=1$ ,
(B) $\alpha-h^{*}(2)=2$ and (C) $\alpha-h^{*}(2)=4$ .

The following equalities are obtained from (2.2) for cases (A), (B) and (C),
respectively.

(A) $n=i^{2}=p^{zm}$ ($p$ ; odd),

(B) $n=i(2i-1)=p^{m}(2p^{m}-1)$ ($p$ : odd)

and

(C) $n=i(4i-3)=p^{m}(4p^{n\iota}-3)$ ($p$ ; odd).

Next let us assume that $n$ is even. Let $g^{*}(2)$ be the number of involutions
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in $\mathfrak{G}$ leaving no symbol of $\Omega$ fixed. Then corresponding to (2.2) the following
equality is obtained from (1);

(2.3) $g^{*}(2)+(n-1)n/(i-1)i=(n-1)/(i-1)+\alpha(n-1)$ .

Let $J$ be an involution in $\mathfrak{G}$ leaving no symbol of $\Omega$ fixed. Let $C_{\mathfrak{G}}J$ be the
centralizer of $J$ in G. Assume that the order of $C_{c/}J$ is divisible by a prime
factor $q$ of $n-1$ . Then Cas $J$ contains a permutation $Q$ of order $q$ . Since $q$ is
odd, $Q$ must leave just one symbol of $\Omega$ fixed. This shows that $Q$ cannot be
commutative with $J$. Hence $g^{*}(2)$ is a multiple of $n-1$ . It follows from (2.3)

that $g^{*}(2)<\alpha(n-1)$ . Thus there are four cases; (D) $a-g^{*}(2)/(n-1)=1,$ $(E)$

$\alpha-g^{*}(2)/(n-1)=2,$ $(F)\alpha-g^{*}(2)/(n-1)=3$ and (G) $\alpha-g^{*}(2)/(n-1)=4$ .
The following equalities are obtained from (2.3) for cases (D), (E), (F) and

(G), respectively;

(D) $n=i^{2}=2^{2m}$ ,

(E) $n=i(2i-1)=2^{zn}(2^{m+1}-1)$ ,

(F) $n=i(3i-2)=2^{m+1}(3\cdot 2^{m-1}-1)$

and

(G) $n=i(4i-3)=2^{m}(2^{rn+2}-3)$ .
3. Let us assume that $n$ is odd. Let 8 be a Sylow $p$-subgroup of $N_{\mathfrak{G}}$ ff.

Then, since $N_{\mathfrak{G}}ff/ti$ is a complete Frobenius group of degree $p^{m}$ and ge is
cyclic, $\mathfrak{P}$ is elementary abelian and normal in $N_{\mathfrak{G}}$ R.

4. Case (A). Let $\mathfrak{M}$ be a subgroup of $\mathfrak{G}$ such that its Sylow 2-subgroup
9’ is conjugate to subgroup of P. Then, since ff is cyclic, $ff^{\prime}$ has a normal
2-complement in $\mathfrak{M}$ . By this fact it can be proved in the same way of Case
(A) in [4] that there exists no group satisfying the conditions of the theorem
in Case (A) (see [4], p. 411).

5. Case (B) and (C) ($p\neq 3$ for Case $(C)$). $\mathfrak{P}$ is also a Sylow p-subgroup
of $\mathfrak{G}$ in these cases. Let the orders of $N_{\mathfrak{G}}\mathfrak{P}$ and $C_{\mathfrak{G}}\mathfrak{P}$ be $4(p^{m}-1)p^{m}x$ and
$4p^{m}y$ , respectively. If $x=1$ , then from Sylow’s theorem it should hold that
$(2p^{m}-1)(2p^{m}+1)\equiv 1(mod p)$ and $(4l^{m}-3)(4p^{m}+1)\equiv 1(mod p)$ for Cases (B) and
(C), respectively, which, since $p$ is odd, is a contradiction. Thus $x$ is greater
than one. If $y=1$ , then ge would be normal in $N_{\mathfrak{G}}\mathfrak{P}$ and this would imply
that $x=1$ . Thus $y$ is greater than one. If $y$ is even, then let $\mathfrak{S}$ be a Sylow
2-subgroup of $c_{\mathfrak{G}}\mathfrak{P}$ . Since the order of $\mathfrak{S}$ must be greater than four, $\mathfrak{S}$ leaves
just one symbol of $\Omega$ fixed. Hence $\mathfrak{S}$ cannot be contained in $c_{\mathfrak{G}}\mathfrak{P}$ . Thus $y$

is odd and $y$ is a factor of $2p^{m}-1$ and $4p^{m}-3$ for Cases (B) and (C), respec-
tively. $\mathfrak{P}$ has a normal complement $\mathfrak{A}$ in $c_{\mathfrak{G}}\mathfrak{P}$ and, since ff is cyclic, $\mathfrak{X}$ has
also a normal complement $\mathfrak{B}$ in $c_{\mathfrak{G}}\mathfrak{P}$ . Let $\mathfrak{Y}$ be the intersection of $\mathfrak{A}$ and $\mathfrak{B}$ .

$\mathfrak{Y}$ is a normal Hall subgroup of $c_{\mathfrak{G}}\mathfrak{P}$ of order $y$ . Then $\mathfrak{Y}$ is normal even in
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$N_{\mathfrak{G}}\mathfrak{P}$ .
Let $\mathfrak{V}$ be a Sylow $p$ -complement of $N_{\mathfrak{G}}li$ of order $4(p^{m}-1)$ . Then $\mathfrak{V}$ is

contained in $N_{\mathfrak{G}}\mathfrak{Y}$ . Since $y$ is a factor of $n$ , any permutation $(\neq 1)$ of $\mathfrak{Y}$ does
not leave any symbol of $\Omega$ fixed. On the other hand every element $(\neq 1)$ of
$\mathfrak{V}$ leaves a symbol of $\Omega$ fixed. Therefore every permutation $(\neq 1)$ of $\mathfrak{V}$ is not
commutative with any permutation $(\neq 1)$ of $\mathfrak{Y}$ . This implies that $y$ is not
less than $4p^{m}-3$ . Thus there exists no group satisfying the conditions of the
theorem in Case (B). In Case (C) $y$ is equal to $4p^{m}-3$ . All permutations $(\neq 1)$

of $\mathfrak{Y}$ are conjugate under $\mathfrak{V}$ . Therefore $4p^{m}-3$ must be equal to a power of
a prime, say $q^{\iota}$ , and $\mathfrak{Y}$ must be an elementary abelian q-group. It is easily
seen that $C_{\mathfrak{G}}\mathfrak{Y}=\mathfrak{P}\mathfrak{Y}$ . Hence $N_{\mathfrak{G}}\mathfrak{Y}$ is contained in $N_{\mathfrak{G}}\mathfrak{P}$ and therefore we obtain
that $N_{\mathfrak{G}}$ Vj $=N_{\mathfrak{G}}\mathfrak{P}$ . It can be easily seen that the set of involutions in $N_{\mathfrak{G}}\mathfrak{P}$

each of which is conjugate to $K^{2}$ in $N_{\mathfrak{G}}\mathfrak{P}$ is equal to the set of involutions in
$c_{\mathfrak{G}}\mathfrak{P}$ each of which is conjugate to $K^{2}$ in $c_{\mathfrak{G}}\mathfrak{P}$ . It is trivial that the inter-
section of $N_{\mathfrak{G}}$ A and $c_{\mathfrak{G}}\mathfrak{P}$ is equal to $ff\mathfrak{P}$ . Therefore we obtain that the index
of $f?\mathfrak{P}$ in $c_{\mathfrak{G}}\mathfrak{P}$ is equal to the index of $N_{\mathfrak{G}}ff$ in $N_{\mathfrak{G}}ffC_{\mathfrak{G}}\mathfrak{P}$ . Thus $N_{\mathfrak{G}}\mathfrak{P}$ is equal
to $N_{\mathfrak{G}}ffC_{\mathfrak{G}}\mathfrak{P}$ and therefore the index of $N_{\mathfrak{G}}\mathfrak{P}$ in $\mathfrak{G}$ is equal to $4p^{m}+1$ . Then
we must have that $4p^{m}+1\equiv 4(mod q)$ , which contradicts the theorem of Sylow.
Thus there exists no group satisfying the conditions of the theorem in Case
(C).

6. Case (C) for $p=3$ . At first we shall prove that the order of $c_{\mathfrak{G}}\mathfrak{P}$ is
equal to 4. $3^{m+1}y$ , wherey is a factor of 4. $3^{m- 1}-1$ . ff is contained in $c_{\mathfrak{G}}\mathfrak{P}$ . If
the order of $c_{\mathfrak{G}}\mathfrak{P}$ is equal to 4. $3^{m}$ , then $N_{\mathfrak{G}}\mathfrak{P}$ is contained in $N_{\mathfrak{G}}ff$ . On the
other hand the order of $N_{\mathfrak{G}}\mathfrak{P}$ is divisible by $3^{m+1}$ . Thus the order of $c_{\mathfrak{G}}\mathfrak{P}$ is
greater than 4. $3^{m}$ . Assume that the order of $c_{\mathfrak{G}}\mathfrak{P}$ is equal to 4. $3^{m}\cdot y^{\prime}$ , where

$y^{\prime}$ is not divisible by 3 and it is a factor of 4. $3^{m-}‘-1$ . Likewise in 5 there
exists a normal subgroup $\mathfrak{Y}^{\prime}$ of $c_{\mathfrak{G}}\mathfrak{P}$ of order $y^{\prime}$ and it is normal even in $N_{\mathfrak{G}}\mathfrak{P}$ .
Let $\mathfrak{V}$ be a Sylow 3-complement of $N_{\mathfrak{G}}\mathfrak{Y}$ of order $4(3^{m}-1)$ . Since every per-
mutation $(\neq 1)$ of $\mathfrak{Y}^{\prime}$ leaves no symbol of $\Omega$ fixed and it is not commutative
with any permutation $(\neq 1)$ leaving a symbol of $\Omega$ fixed, every permutation
$(\neq 1)$ of $\mathfrak{Y}^{\prime}$ is not commutative with any permutation $(\neq 1)$ of $\mathfrak{V}$ . Hence $y^{\prime}$ is
no less than 4 $\cdot 3^{m}-3$ . This is a contradiction. Thus the order of $c_{\mathfrak{G}}\mathfrak{P}$ is equal
to $4\cdot 3^{m+1}y$ . Let $\mathfrak{P}^{\prime}$ be a Sylow 3-subgroup of $c_{\mathfrak{G}}\mathfrak{P}$ of order $3^{m+1}$ . Since $\mathfrak{P}$ is
contained in $C_{\mathfrak{G}}(\mathfrak{P}^{\prime}),$ $\mathfrak{P}^{\prime}$ is abelian.

Let us assume $y>1$ . Let $\mathfrak{A}$ be a normal 2-complement in $c_{\mathfrak{G}}\mathfrak{P}$ . It is
trivial that $c_{\mathfrak{G}}\mathfrak{P}^{\prime}$ is contained in $\mathfrak{A}$ . An element of $(\mathfrak{A}\cap N_{\mathfrak{G}}\mathfrak{P}^{\prime})/C_{\mathfrak{G}}\mathfrak{P}^{\prime}$ induces
trivial automorphism of $\mathfrak{P}$ and $\mathfrak{P}^{\prime}/\mathfrak{P}$ . Therefore $(\mathfrak{A}\cap N_{\mathfrak{G}}\mathfrak{P}^{\prime})/c_{\mathfrak{G}}\mathfrak{P}^{\prime}$ must be 3-
group. Thus we have $\mathfrak{A}\cap N_{\mathfrak{G}}\mathfrak{P}^{\prime}=c_{\mathfrak{G}}\mathfrak{P}^{\prime}$ . By the splitting theorem of Burnside

$\mathfrak{P}^{\prime}$ has a normal complement $\mathfrak{Y}$ in $\mathfrak{A}$ . Since $\mathfrak{Y}$ is a Hall subgroup of $c_{\mathfrak{G}}\mathfrak{P}$ it
is normal in $N_{\mathfrak{G}}\mathfrak{P}$ . Since every permutation $(\neq 1)$ of $\mathfrak{Y}$ is not commutative
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with any permutation $(\neq 1)$ of $\mathfrak{V},$

$y$ is no less than 4. $3^{m}-3$ . This is a con-
tradiction. Therefore $y$ must be equal to 1 and then $c_{\mathfrak{G}}\mathfrak{P}$ is equal to $\mathfrak{P}^{\prime}ff$ .

The order of the group of automorphisms of $\mathfrak{P}^{\prime}/\mathfrak{P}$ is equal to 2. There-
fore $K^{2}$ must induce the trivial automorphism of $\mathfrak{P}^{\prime}/\mathfrak{P}$ . Since $K$ is contained
in $c_{\mathfrak{G}}\mathfrak{P}K^{2}$ is commutative with every element of $\mathfrak{P}^{\prime}$ . By the assumption of
theorem $\mathfrak{P}^{\prime}$ must be contained in NG\mbox{\boldmath $\beta$}\S . Since $\mathfrak{P}$ is a Sylow 3-subgroup of
$N_{\mathfrak{G}}ff$ , this is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in
Case (C) for $p=3$ .

7. Case (D). It can be proved in the same way as in Case (C) in [4]

that there exists no group satisfying the conditions of the theorem in Case
$\langle D)$ .

8. Case (E), (F) and (G). Let $\mathfrak{S}$ be a Sylow 2-subgroup of $N_{\mathfrak{G}}ff$ . Since
$ N_{\mathfrak{G}}ff/f\partial$ is a complete Frobenius group on $s^{\alpha},$ $\mathfrak{S}$ is normal in $N_{\mathfrak{G}}f8$ . Therefore
$C_{\mathfrak{G}}ff$ contains $\mathfrak{S}$ or is contained in S.

In the case $\alpha=4,$ $I$ is not contained in $C_{\mathfrak{G}}ff$ . Thus $\mathfrak{S}$ contains $C_{\mathfrak{G}}ff$ . Since
the index of $\mathfrak{S}$ in $N_{\mathfrak{G}}ff$ is equal to $2^{m}-1$ , we have $m=1$ . Therefore it can
be easily seen that $\mathfrak{G}$ is isomorphic to $PGL(2,5)$ in Case (E) for $\alpha=4$ and
that $\mathfrak{G}$ is isomorphic to $PSL(2,9)$ in Case (G). In Case (F), since $n-i=6$ and
$n-i$ must be divisible by 4, there exists no group satisfying the conditions of
the theorem.

Next we shall consider Case (E) for $\alpha=2$ . Let $\mathfrak{V}$ be a Sylow 2-comple-
ment of $N_{\mathfrak{G}}ff$ of order $2^{m}-1$ . Since all the elements $(\neq 1)$ of $\mathfrak{S}/ff$ are conjugate
under $\mathfrak{V}ff/ff$ , every permutation $(\not\in\ell i)$ of $\mathfrak{S}$ can be represented uniquely in
the form $V^{-1}IV,$ $V^{-1}IVK,$ $V^{-1}IVK^{2}$ or $V^{-1}IVK^{S}$ , where $V$ is any permutation
of $\mathfrak{V}$ . Thus $S^{2}=K^{2}$ for any permutation $S$ of order 4 in S. Since $I$ is con-
tained in $C_{\mathfrak{G}}ff,$ $K$ is contained $C_{\mathfrak{G}}I$. Let $\mathfrak{S}^{\prime}$ be a Sylow 2-subgroup of $C_{\mathfrak{G}}I$.
Then, since $C_{\mathfrak{G}}I$ is conjugate to $C_{\mathfrak{G}}K^{2}=N_{\mathfrak{G}}ff,$

$\mathfrak{S}^{\prime}$ contains $K$. Thus we must
have $K^{2}=I$. This is a contradiction.

\S 3. Proof of Theorem, (II).

1. Let $\mathfrak{H}$, St and $I$ be as in \S 2. Then in this case St is elementary abelian
and it is generated by two involutions, say $K_{1},$ $K_{2}$ , leaving the symbols 1, 2
fixed. We may assume that $I$ is conjugate to a permutation of ff. Then we
have the following decomposition of $\mathfrak{G}$ ;

$\mathfrak{G}=\mathfrak{H}+\mathfrak{H}I\mathfrak{H}$ .
Since $I$ is contained in $N_{\mathfrak{G}}ff,$ $(i)\langle I\rangle\ell i$ is an abelian 2-group of type (2, 2, 2) or
(ii) $\langle I\rangle$ ff is dihedral of order 8. If an element $H^{\prime}IH$ of a coset $\mathfrak{H}IH$ of $\mathfrak{H}$ is
an involution, then $IHH^{\prime}I=(HH^{\prime})^{-1}$ is contained in ff. Hence, in case (i), the
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coset $\mathfrak{H}IH$ contains just four involutions namely $H^{-1}IH,$ $H^{-1}K_{1}IH,$ $H^{-1}K_{2}IH$ and
$H^{-1}K_{1}K_{2}IH$ and, in case (ii), it contains just two involutions, namely $H^{-1}IH$

and $H^{-1}K_{1}K_{2}IH,$ $H^{- 1}K_{2}IH$ or $H^{-1}K_{1}IH$. Let $g(2),$ $g^{*}(2),$ $h(2)$ and $h^{*}(2)$ be as in
\S 2. Then the following equality is obtained;

\langle 3.1) $g(2)=h(2)+a(n-1)$ ,

where $\alpha=4$ and 2 for cases (i) and (ii), respectively.
2. Let $s^{\alpha}$ be as in \S 2. Then $N_{\mathfrak{G}}R/ff$ can be considered as a complete Fro-

benius group on $\Im$ and $i$ equals a power of a prime number, say $p^{m}$ , and the
orders of $N_{\mathfrak{G}}ff$ and $N_{\mathfrak{G}}ff\cap \mathfrak{H}$ are equal to $4i(i-1)$ and $4(i-1)$ , respectively.
Hence, since A has just three involutions, there exist $3(n-1)n/(i-1)i$ involu-
tions in $\mathfrak{G}$ each of which is conjugate to an involution in ff.

At first, let us assume that $n$ is odd. Then from (3.1) the following equality
is obtained;

(3.2) $h^{*}(2)n+3(n-1)n/(i-1)i=3(n-1)/(i-1)+h^{*}(2)+a(n-1)$ .
It follows from (3.2) that $h^{*}(2)<a$ . Likewisa. in \S 2.2 we may assume $h^{*}(2)$

$\neq 1$ . Thus there are three cases; (A) $a-h^{*}(2)=1,$ $(B)a-h^{*}(2)=2$ and (C)
$\alpha-h^{*}(2)=4$ . The following equalities are obtained from (3.2) for cases (A),
\langle $B$) and (C), respectively;

(A) $n=-3-i(i+2)1=\frac{1}{3}p^{m}(p^{m}+2)$ ($p$ : odd),

(B) $n=\frac{1}{3}i(2i+1)=\frac{1}{3}p^{m}(2p^{m}+1)$ ($p$ : odd)

and

(C) $n=\frac{1}{3}i(4i-1)=\frac{1}{3}p^{m}(4p^{m}-1)$ ($p$ ; odd).

Next let us assume that $n$ is even. Corresponding to (2.2) the following
equality is obtained from (3.1);

\langle 3.3) $g^{*}(2)+3(n-1)n/(i-1)i=3(n-1)/(i-1)+a(n-1)$ .
Likewise in \S 2 $g^{*}(2)$ is multiple of $n-1$ . It follows from (3.3) that $g^{*}(2)$

$<\alpha(n-1)$ . Thus there are four cases; (D) $a-g^{*}(2)/(n-1)=3$ , (E) $a-g^{*}(2)/$

\langle$n-1$ ) $=1,$ $(F)\alpha-g^{*}(2)/(n-1)=2$ and (G) $a-g^{*}(2)/(n-1)=4$ .
The following equalities are obtained from (3.3) for cases (D), (E), (F) and

\langle $G$), respectively;

(D) $n=i^{2}=2^{2m}$ ,

(E) $n=\frac{1}{3}i(i+2)=\frac{1}{3}2^{m+1}(2^{m-1}+1)$ ,
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(F) $n=\frac{1}{3}i(2i+1)=_{3}^{1}--2^{m}(2^{m+1}+1)$

and

(G) $n=\frac{1}{3}i(4i-1)=\frac{1}{3}2^{m}(2^{m+2}-1)$ .

3. Let us assume that $n$ is odd. Let $\mathfrak{P}$ be a Sylow $p$ -subgroup of $N_{\mathfrak{G}}R$

and let $\mathfrak{V}$ be the subgroup of $N_{\mathfrak{G}}ff$ consisting of permutations leaving the
symbol 1 fixed. Then the order of $\mathfrak{V}$ is equal to $4(p^{m}-1)$ . Since $N_{\mathfrak{G}}ff/ff$ is a
complete Frobenius group of degree $p^{m},$ $\mathfrak{P}$ is elementary abelian of order $p^{\gamma n}$

and $\mathfrak{P}\otimes$ is normal in $N_{\mathfrak{G}}ff$ . Since $C_{\mathfrak{G}}ff$ is normal in $N_{\mathfrak{G}}ff,$ $C_{\mathfrak{G}}R$ contains $\mathfrak{P}ff$ or
$\mathfrak{P}ff$ is greater than $C_{\mathfrak{G}}ff$ . It is trivial that the index of $C_{\mathfrak{G}}ff$ in $N_{\mathfrak{G}}ff$ is a factor
of 6. If $\mathfrak{P}ff$ is greater than $C_{\mathfrak{G}}ff$ , we must have $p=3$ and $m=1$ .

4. Cases (A), (B) and (C). At first let us assume $p=3$ . Since the order of
$N_{\mathfrak{G}}R$ is equal to 4. $3^{m}(3^{m}-1)$ , the order of $\mathfrak{G}$ is divisible by $3^{m}$ . But in Cases
(A) and (C) it is not divisible by $3^{m}$ . In Case (B) $m$ must be equal to 1 and
it can be easily checked that $\mathfrak{G}$ is isomorphic to $PSL(2,7)$ as a permutation
group of degree 7. Hence it will be assumed hereafter that $p$ is greater than
3 and therefore $\mathfrak{P}ff$ is contained in $C_{\mathfrak{G}}\Omega_{\iota}$ .

It is trivial that $\mathfrak{P}$ is normal in $\mathfrak{P}f?$ . Therefore $\mathfrak{P}$ is normal even in $N_{\mathfrak{G}}ff$ .
Let the orders of $N_{\mathfrak{G}}\mathfrak{P}$ and $c_{\mathfrak{G}}\mathfrak{P}$ be $4(p^{m}-1)p^{m}x$ and $4p^{m}y$ , respectively. If

$x=1$ , from Sylow’s theorem it should hold that $-9-(p^{m}+2)1(p^{m}+3)\equiv 1(mod p)$ ,

$\frac{1}{9}(2p^{m}+1)(2p^{m}+3)\equiv 1(mod p)$ and $-9^{-}1(4p^{m}-1)(4p^{m}+3)\equiv 1(mod p)$ for Cases

(A), (B) and (C), respectively, which, since $p$ is greater than 3, is a contradic-
tion. Thus $x$ is greater than 1. If $y=1$ , then Ji would be normal in $N_{\mathfrak{G}}\mathfrak{P}$ and
this would imply that $x=1$ . Thus $y$ is greater than 1. Since $y$ is a factor
of $n$ , we have $N_{\mathfrak{G}}ff\cap C_{\mathfrak{G}}\mathfrak{P}=C_{\mathfrak{G}}ff\cap C_{\mathfrak{G}}\mathfrak{P}=f\S \mathfrak{P}$ . Therefore $c_{\mathfrak{G}}\mathfrak{P}$ contains a normal
subgroup $\mathfrak{Y}$ of order $y$ . $\mathfrak{Y}$ is normal even in $N_{\mathfrak{G}}\mathfrak{P}$ .

Let us consider the subgroup $\mathfrak{Y}\mathfrak{V}$ . Since $\mathfrak{Y}$ is subgroup of $c_{\mathfrak{G}}\mathfrak{P}$ any per-
mutation $(\neq 1)$ of $\mathfrak{Y}$ does not leave any symbol of $\Omega$ fixed. Therefore every
permutation $(\neq 1)$ of $\mathfrak{V}$ is not commutative with any permutation $(\neq 1)$ of $\mathfrak{Y}$ .
This imply that $y$ is not less than 4. $p^{m}-3$ . But $y$ is a factor of $\frac{1}{3}(p^{m}+2)$ ,

$\frac{1}{3}(2p^{m}+1)$ and $-3-(4p^{m}-1)1$ for Cases (A), (B) and (C), respectively, which is a

contradiction.
5. Let us assume that $n$ is even. Since $n$ is integer, we may assume

that $m$ is even for Cases (E), (F) and (G). Let (i5 be a Sylow 2-group of $N_{\mathfrak{G}}ff$

of order $2^{m+2}$ and let $\mathfrak{V}$ be a Sylow 2-complement of $N_{\mathfrak{G}}ff\cap \mathfrak{H}$ of order $2^{m}-1$ .
Then $\mathfrak{S}/ff$ is elementary abelian. Likewise in \S 2, 8 every permutation $(\not\in ff)$

of $\mathfrak{S}$ can be represented uniquely in the form $V^{-1}IV,$ $V^{-1}IVK_{1},$ $V^{-1}IVK_{2}$ or
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$V^{-1}IVK_{1}K_{2}$ , where $V$ is any permutation of $\mathfrak{V}$ . Then if $I$ is contained in
$C_{\mathfrak{G}}ff$ , every permutation $(\neq 1)$ of $\mathfrak{S}$ is an involution and therefore $\mathfrak{S}$ is ele-
mentary abelian and it is contained in $C_{\mathfrak{G}}ff$ . Let $\beta$ be the number of involu-
tions of $\mathfrak{S}$ leaving just $i$ symbols of $\Omega$ fixed. It is clear that every permuta-

tion $(\in\in ff)$ is conjugate under $\mathfrak{V}$ to $I,$ $IK_{1},$ $IK_{2}$ or $IK_{1}K_{2}$ . Thus $\beta$ is equal to
\langle $2^{m}-1$) $+3,2(2^{m}-1)+3,3(2^{m}-1)+3$ or $4(2^{m}-1)+3$ .

Now let us assume that $\mathfrak{S}$ is greater than $C_{\mathfrak{G}}ff$ . Then we have $m=2$ and
the orders of $N_{\mathfrak{G}}ff,$ $C_{\mathfrak{G}}ff$ and $\mathfrak{S}$ are 16. 3, 8 and 16, respectively. It is easily
seen that the number of involutions of $\mathfrak{S}$ is equal to 9. But there exists no
non-abelian group of order 16 satisfying the above condition. Hence it will
be assumed that $\mathfrak{S}$ is contained in $C_{\mathfrak{G}}ff$ . Let us consider the order of $N_{\mathfrak{G}}\mathfrak{S}$ . If
$G^{-1}\mathfrak{S}G$ contains ge for some $G\in \mathfrak{G}$ , then $G\in N_{\mathfrak{G}}(\mathfrak{S})$ . In fact, since $\mathfrak{S}$ is ele-
mentary abelian and normal in $N_{\mathfrak{G}}ff,$ $G^{-1}\mathfrak{S}G$ is contained in $N_{\mathfrak{G}}ff$ and $G\in N_{\mathfrak{G}}(C\propto)$ .
Let $\gamma$ be the number of subgroups of $\mathfrak{S}$ each of which is conjugate to ff in
$\mathfrak{G}$ . Then we have

$[\mathfrak{G}:N_{\mathfrak{G}}(ff)]=\gamma[\mathfrak{G}:N_{\mathfrak{G}}(\mathfrak{S})]$ .
On the other hand, since $ff\cap G^{-1}l?G=1$ for every $G\not\in N_{\mathfrak{G}}ff,$ $ 3\gamma$ is equal to $\beta$ .
Hence we have the following equality;

\langle 3.4) $|\mathfrak{G}|/|N_{\mathfrak{G}}\mathfrak{S}|=3|\mathfrak{G}|/\beta|N_{\mathfrak{G}}ff|$ .

6. Case (D). Since $ 3|\mathfrak{G}|/\beta|N_{\mathfrak{G}}ff|=3\cdot 2^{m}(2^{m}+1)/\beta$ is integer, we have $\beta=6$

for $m=2,3\cdot 2^{m}$ or 15 for $m=2$ . If $m=2$ and $\beta=6$ , then $\mathfrak{H}\cap N_{\mathfrak{G}}\mathfrak{S}=ff\mathfrak{V}$ . If
$m=2$ and $\beta=15$ , then $|\mathfrak{H}|=4\cdot 3\cdot 5$ and $|N_{\mathfrak{G}}\mathfrak{S}|=16\cdot 3\cdot 5$ . Since $\mathfrak{H}\cap N_{\mathfrak{G}}\mathfrak{S}$ con-
tains 9, $|\mathfrak{H}\cap N_{\mathfrak{G}}\mathfrak{S}|=4\cdot 3\cdot 5$ . Hence $\mathfrak{H}$ is contained in $N_{\mathfrak{G}}\mathfrak{S}$ and the index of
$\mathfrak{H}$ in $N_{\mathfrak{G}}\mathfrak{S}$ is equal to 4. Let $\mathfrak{W}$ be a Sylow 5-group of $\mathfrak{H}$ . Then, since $N_{\mathfrak{G}}\mathfrak{W}$

is contained in $\mathfrak{H}$ , by Sylow’s theorem the index of $N_{\mathfrak{C}}\mathfrak{W}$ in $\mathfrak{H}$ is equal to 1
or 6. Therefore the index of $N_{\mathfrak{G}}\mathfrak{W}$ in $N_{\mathfrak{G}}\mathfrak{S}$ must be equal to 4 or 24. This
is a contradiction. Next if $\beta=3\cdot 2^{m}$ , then $|N_{\mathfrak{G}}\mathfrak{S}|$ is equal to $2^{2m+2}(2^{m}-1)$ from
(3.4). Hence $\mathfrak{H}\cap N_{\mathfrak{G}}\mathfrak{S}=R\mathfrak{V}$ . In any case we may assume that $\mathfrak{H}\cap N_{\mathfrak{G}}\mathfrak{S}=ff\mathfrak{V}$ .

Since $N_{\mathfrak{G}}ff/ff$ is a complete Frobenius group of degree $2^{m}$ , all the Sylow
subgroups of $\mathfrak{V}$ are cyclic. Let $l$ be the least prime factor of the order of $\mathfrak{V}$ .
Let $\mathfrak{L}$ be a Sylow l-subgroup of $\mathfrak{V}$ . Then $\mathfrak{L}$ is cyclic and clearly leaves only
the symbol 1 fixed. Hence $N_{\mathfrak{G}}\mathfrak{L}$ is contained in $\mathfrak{H}$ We shall show that $N_{\mathfrak{G}}\mathfrak{L}$

$=C_{\mathfrak{G}}\mathfrak{L}$ . We shall assume that $l=3$ . Let $x$ be the index of $N_{\mathfrak{G}}\mathfrak{L}\cap N_{\mathfrak{G}}\mathfrak{S}$ in $ff\mathfrak{V}$ .
If $x$ is divisible by 4, then the order of $N_{\mathfrak{G}}\mathfrak{L}$ is odd. Since the index of $C_{\mathfrak{G}}\mathfrak{L}$

in $N_{(\mathfrak{g}}\mathfrak{L}$ is equal to 1 or 2, we have $N_{\mathfrak{G}}\mathfrak{L}=C_{\mathfrak{G}}\mathfrak{L}$ . If $x$ is even and not divisible
by 4 or if $x$ is odd, then the order of $N_{\mathfrak{G}}\mathfrak{L}\cap R\mathfrak{V}$ is even. Let $\tau$ be an involu-
tion in $N_{\mathfrak{G}}\mathfrak{L}\cap ff\mathfrak{V}$ . Then $\tau$ is a permutation in ff. Since $\tau \mathfrak{L}\tau=\mathfrak{L}$ and ge $\mathfrak{V}$ is
a $s^{a}.mi$-direct product, $\mathfrak{L}$ is contained in $ C_{\mathfrak{G}}\tau$ . Since $N_{\mathfrak{G}}R$ contains $ C_{\mathfrak{G}}\tau$ , the
index of $C_{\mathfrak{G}}ff$ in $ C_{\mathfrak{G}}\tau$ is equal to 1 or 2. On the other hand, since $\mathfrak{S}$ is a
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Sylow 2-subgroup of $N_{\mathfrak{G}}ff$ and $C_{\mathfrak{G}}ff$ contains $\mathfrak{S}$ , the index of $C_{\mathfrak{G}}ff$ in $N_{\mathfrak{G}}ff$ is
equal to 1 or 3. Hence $C_{\mathfrak{G}}\tau=C_{\mathfrak{G}}ff$ . Thus $\mathfrak{L}$ is contained in $C_{\mathfrak{G}}R$ and, therefore,
$N_{\mathfrak{G}}ff=C_{\mathfrak{G}}ff$ . If $l\neq 3$ , then $N_{\mathfrak{G}}ff=C_{\mathfrak{G}}ff$ . If $N_{\mathfrak{G}}ff=C_{\mathfrak{G}}ff$ , then $C_{\mathfrak{G}}\mathfrak{L}$ contains R.
Using Sylow’s theorem, we obtain that $N_{\mathfrak{G}}\mathfrak{L}=C_{\mathfrak{G}}\mathfrak{L}(N_{\mathfrak{G}}ff\cap N_{\mathfrak{G}}\mathfrak{L})=C_{\mathfrak{G}}\mathfrak{L}(ff\mathfrak{V}\cap N_{\mathfrak{G}}\mathfrak{L})$ .
Then it is easily seen that $N_{\mathfrak{G}}\mathfrak{L}=C_{\mathfrak{G}}\mathfrak{L}$ .

In any case we have that $N_{\mathfrak{G}}\mathfrak{L}=C_{\mathfrak{G}}\mathfrak{L}$ . By the splitting theorem of Burn-
side $\mathfrak{G}$ has the normal l-complement. Continuing in the similar way, it can
be shown that $\mathfrak{G}$ has the normal subgroup $\mathfrak{A}$ , which is a complement of $\mathfrak{V}$ .
Since the order of $\mathfrak{H}\cap \mathfrak{A}$ is equal to $4(2^{m}+1)$ , se has a normal complement $\mathfrak{B}$

of order $2^{m}+1$ in $\mathfrak{H}\cap \mathfrak{A}$ . $\mathfrak{H}\cap \mathfrak{A}=ff\mathfrak{B}$ . Let $\tau$ be an involution of ff. Since
$C_{\mathfrak{G}}\tau=C_{\mathfrak{G}}ff$ and the order of $\mathfrak{B}$ is relatively prime to the order of $N_{\mathfrak{G}}ff$ , it is clear
that every permutation $(\neq 1)$ of $\mathfrak{B}$ and, hence, $\tau$ induces a fixed-point-free
automorphism of B. Thus $\mathfrak{B}$ has three fixed-point-free-automorphisms of order
two. But, since the order of $\mathfrak{B}$ is odd, this is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in
Case (D).

7. Case (E). From (3.4) we have the following equality;

$|\mathfrak{G}|/|N_{\mathfrak{G}}\mathfrak{S}|=2(2^{m-1}+1)(2^{m}+3)/3\beta$ .
Since the order of a Sylow 2-subgroup of $\mathfrak{G}$ is equal to $2^{m+3},$ $\beta$ must be even,
but not divisible by 4. Hence we have that $\beta=2(2^{m- 1}+1)$ . Therefore the
index of $N_{\mathfrak{G}}\mathfrak{S}$ in $\mathfrak{G}$ is equal to $(2^{m}+3)/3$ . But this is not integer. This is a
contradiction.

Thus there exists no group satisfying the conditions of the theorem in
Case (E).

8. Case (F). In this case $\mathfrak{S}$ is also a Sylow 2-group of $\mathfrak{G}$ . Every involu-
tion of $\mathfrak{S}$ leaving $i$ symbols of $\Omega$ fixed is conjugate to an involution of ff.
Since $\mathfrak{S}$ is elementary abelian, it is conjugate already in $N_{\mathfrak{G}}\mathfrak{S}$ . If the index
of $C_{\mathfrak{G}}ff$ in $N_{\mathfrak{G}}ff$ is equal to 3, then the index of $C_{\mathfrak{G}}ff$ in $N_{\mathfrak{G}}\mathfrak{S}$ is equal to $\beta$ . If
$N_{\mathfrak{G}}R=C_{\mathfrak{G}}ff$ , then the index of $C_{\mathfrak{G}}ff$ in $N_{\mathfrak{G}}\mathfrak{S}$ is equal to $\beta/3$ . On the other
hand, since $\mathfrak{S}$ is a Sylow 2-group of $\mathfrak{G}$ and $g^{*}(2)\neq 0,$ $\beta$ must be equal to
$2^{m+1}+1$ . Therefore the order of $N_{\mathfrak{G}}\mathfrak{S}$ is equal to $2^{m+2}(2^{m}-1)(2^{m+1}+1)/3$ . Hence
the index of $N_{\mathfrak{G}}\mathfrak{S}$ in $\mathfrak{G}$ is equal to $(2^{m+1}+3)/3$ , which is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in
Case (F).

9. Case (G). Since $g^{*}(2)=0$ , we have $\beta=2^{m+2}-1$ . Therefore likewise in
Case (G) it is easily seen that the order of $N_{\mathfrak{G}}\mathfrak{S}$ is equal to $2^{m+2}(2^{m}-1)(2^{m+2}-1)/3$ .
Hence the index of $N_{\mathfrak{G}}\mathfrak{S}$ in $\mathfrak{G}$ is equal to $(2^{m+2}+3)/3$ , which is a contradiction.

Thus there exists no group satisfying the conditions or the theorem in
Case (G).
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