On doubly transitive permutation groups of degree n and order $4(n-1) n^{*}$

By Hiroshi Kimura

(Received May 27, 1968)

§ 1. Introduction.

Doubly transitive permutation groups of degree n and order $2(n-1) n$ were determined by N. Ito ([4]).

The object of this paper is to prove the following result.
Theorem. Let Ω be the set of symbols $1,2, \cdots, n$. Let $\$$ \& be a doubly transitive group on Ω of order $4(n-1) n$ not containing a regular normal subgroup and let Ω be the stabilizer of the set of symbols 1 and 2 . Assume that $\mathscr{R} \cap G^{-1} \Re G=1$ or Ω for every element G of \mathbb{B}. Then we have the following results;
(I) If \mathfrak{R} is a cyclic group, then \mathbb{S} is isomorphic to either $\operatorname{PGL}(2,5)$ or PSL (2, 9).
(II) If K is an elementary abelian group, then © is isomorphic to $\operatorname{PSL}(2,7)$. We use the standard notation. $C_{\neq \mathfrak{I}}$ denotes the centralizer of a subset \mathfrak{I} in a group \mathfrak{X} and $N_{\mathfrak{X}} \mathfrak{I}$ stands for the normalizer of \mathfrak{I} in \mathfrak{X}. We denote the number of elements in \mathfrak{T} by $|\mathfrak{T}|$.

§ 2. Proof of Theorem, (I).

1. Let \mathfrak{K} be the stabilizer of the symbol $1 . ~ \Omega$ is of order 4 and it is generated by a permutation K whose cyclic structure has the form (1) (2) \cdots. Since $(\mathbb{G}$ is doubly transitive on Ω, it contains an involution I with the cyclic structure (12) \cdots. We may assume that I is conjugate to K^{2}. Then we have the following decomposition of $(\mathbb{F}$;

$$
\mathfrak{B}=\mathfrak{S}+\mathfrak{I} I \mathfrak{I} .
$$

Since I is contained in $N_{ब} \Omega$, it induces an automorphism of Ω and (i) $\langle I\rangle \Omega$ is an abelian 2 -group of type ($2,2^{2}$) or (ii) $\langle I\rangle \Re$ is dihedral of order 8 . If an element $H^{\prime} I H$ of a coset $\mathscr{I} I H$ of $\mathscr{~}$ is an involution, then $I H H^{\prime} I=\left(H H^{\prime}\right)^{-1}$ is contained in Ω. Hence, in case (i) the coset $\mathfrak{\nwarrow} I H$ contains just two involutions,
namely $H^{-1} I H$ and $H^{-1} K^{2} I H$, and, in case (ii), it contains just four involutions, namely $H^{-1} I H, H^{-1} K I H, H^{-1} K^{2} I H$ and $H^{-1} K^{3} I H$. Let $g(2)$ and $h(2)$ denote the numbers of involutions in \mathfrak{B} and \mathfrak{F}, respectively. Then the following equality is obtained;

$$
\begin{equation*}
g(2)=h(2)+\alpha(n-1), \tag{2.1}
\end{equation*}
$$

where $\alpha=2$ and 4 for cases (i) and (ii), respectively.
2. Let Ω keep $i(i \geqq 2)$ symbols of Ω, say $1,2, \cdots, i$, unchanged. It is trivial by the assumption of Ω that K has no transposition in its cyclic decomposition and that $N_{\mathscr{\Theta}} \mathscr{R}=C_{\mathscr{\Theta}} K^{2}$. Put $\mathfrak{F}=\{1,2, \cdots, i\}$. Then, by a theorem of Witt ([6], Th. 9.4), $N_{\Phi} \Omega / \mathscr{R}$ can be considered as a doubly transitive permutation group on \mathfrak{F}. Since every permutation of $N_{\infty} \mathscr{R} / \mathscr{R}$ distinct from Ω leaves by the definition of Ω at most one symbol of \mathfrak{F} fixed, $N_{\mathscr{G}} \mathscr{R} / \Omega$ is a complete Frobenius group on $\mathfrak{\Im}$. Therefore i equals to a power of a prime number, say p^{m}, and the orders of $N_{\circlearrowleft} \mathscr{R}$ and $\mathfrak{S} \cap N_{\circlearrowleft} \mathscr{R}$ are equal to $4 i(i-1)$ and $4(i-1)$, respectively. Hence there exist $(n-1) n /(i-1) i$ involutions in \mathscr{E} each of which is conjugate to K^{2}.

At first, let us assume that n is odd. Let $h^{*}(2)$ be the number of involutions in $\$ 2$ leaving only the symbol 1 fixed. Then from (2.1) and the above argument the following equality is obtained;

$$
\begin{equation*}
h^{*}(2) n+(n-1) n /(i-1) i=(n-1) /(i-1)+h^{*}(2)+\alpha(n-1) \tag{2.2}
\end{equation*}
$$

Since i is less than n, it follows from (2.2) that $h^{*}(2)<\alpha$. If $h^{*}(2)=1$, then there exists no group satisfying the conditions of the theorem. In fact, let J be the involution in \mathscr{J}^{2} leaving only the symbol 1 fixed. By [2, Cor. 1, p. 414], J is contained in $Z^{*}\left(\mathbb{(B)}\right.$, where $Z^{*}(\mathbb{(B)}$) is the subgroup of \mathbb{G} containing the core of $(\mathbb{B}, K(\mathbb{B})$, for which $Z *(\mathbb{\$}) / K(\mathbb{B})=Z(\mathbb{B} / K(\mathbb{B}))$. If $K(\mathbb{B}) \neq 1$, then by the theorem of Feit-Thompson $K(\mathbb{B})$ is solvable ([1]). Hence (B contains a regular normal subgroup ($[6$, Th. 11.5]). We have $K(\mathbb{B})=1$ and J is an element of $Z(\mathbb{B})$. Hence $Z(\mathbb{B}) \neq 1$. But \mathbb{B} must also contain a regular normal subgroup. Hence we may assume $h^{*}(2) \neq 1$. Thus there are three cases; (A) $\alpha-h^{*}(2)=1$, (B) $\alpha-h^{*}(2)=2$ and (C) $\alpha-h^{*}(2)=4$.

The following equalities are obtained from (2.2) for cases (A), (B) and (C), respectively.
(A) $n=i^{2}=p^{2 m} \quad(p:$ odd) ,
(B) $\quad n=i(2 i-1)=p^{m}\left(2 p^{m}-1\right) \quad(p:$ odd $)$
and
(C) $\quad n=i(4 i-3)=p^{m}\left(4 p^{m}-3\right) \quad(p:$ odd).

Next let us assume that n is even. Let $g *(2)$ be the number of involutions
in \mathfrak{G} leaving no symbol of Ω fixed. Then corresponding to (2.2) the following equality is obtained from (1);

$$
\begin{equation*}
g *(2)+(n-1) n /(i-1) i=(n-1) /(i-1)+\alpha(n-1) . \tag{2.3}
\end{equation*}
$$

Let J be an involution in \mathscr{S} leaving no symbol of Ω fixed. Let $C_{\circledR} J$ be the centralizer of J in \mathfrak{G}. Assume that the order of $C_{\mathbb{E}} J$ is divisible by a prime factor q of $n-1$. Then $C_{\mathbb{G}} J$ contains a permutation Q of order q. Since q is odd, Q must leave just one symbol of Ω fixed. This shows that Q cannot be commutative with J. Hence $g^{*}(2)$ is a multiple of $n-1$. It follows from (2.3) that $g *(2)<\alpha(n-1)$. Thus there are four cases; (D) $\alpha-g^{*}(2) /(n-1)=1$, (E) $\alpha-g^{*}(2) /(n-1)=2$, (F) $\alpha-g^{*}(2) /(n-1)=3$ and (G) $\alpha-g^{*}(2) /(n-1)=4$.

The following equalities are obtained from (2.3) for cases (D), (E), (F) and (G), respectively ;
(D) $n=i^{2}=2^{2 m}$,
(E) $\quad n=i(2 i-1)=2^{m}\left(2^{m+1}-1\right)$,
(F) $\quad n=i(3 i-2)=2^{m+1}\left(3 \cdot 2^{m-1}-1\right)$
and
(G) $\quad n=i(4 i-3)=2^{m}\left(2^{m+2}-3\right)$.
3. Let us assume that n is odd. Let \mathfrak{F} be a Sylow p-subgroup of $N_{\mathbb{B}} \Re$. Then, since $N_{\mathbb{B}} \mathscr{R} / \Omega$ is a complete Frobenius group of degree p^{m} and \Re is cyclic, \mathfrak{P} is elementary abelian and normal in $N_{\otimes} \Omega$.
4. Case (A). Let \mathfrak{M} be a subgroup of $\mathbb{C S}$ such that its Sylow 2 -subgroup Ω^{\prime} is conjugate to subgroup of Ω. Then, since Ω is cyclic, \Re^{\prime} has a normal 2 -complement in \mathfrak{M}. By this fact it can be proved in the same way of Case (A) in [4] that there exists no group satisfying the conditions of the theorem in Case (A) (see [4], p. 411).
5. Case (B) and (C) ($p \neq 3$ for Case (C)). \mathfrak{B} is also a Sylow p-subgroup of \mathscr{B} in these cases. Let the orders of $N_{\circledast} \mathfrak{B}$ and $C_{\circledast} \mathfrak{F}$ be $4\left(p^{m}-1\right) p^{m} x$ and $4 p^{m} y$, respectively. If $x=1$, then from Sylow's theorem it should hold that $\left(2 p^{m}-1\right)\left(2 p^{m}+1\right) \equiv 1(\bmod p)$ and $\left(4 p^{m}-3\right)\left(4 p^{m}+1\right) \equiv 1(\bmod p)$ for Cases (B) and (C), respectively, which, since p is odd, is a contradiction. Thus x is greater than one. If $y=1$, then \Re would be normal in $N_{\Theta} \Re$, and this would imply that $x=1$. Thus y is greater than one. If y is even, then let \mathbb{S} be a Sylow 2 -subgroup of $C_{\circlearrowleft} \Re$. Since the order of \subseteq must be greater than four, \subseteq leaves just one symbol of Ω fixed. Hence \subseteq cannot be contained in $C_{\S} \Re$. Thus y is odd and y is a factor of $2 p^{m}-1$ and $4 p^{m}-3$ for Cases (B) and (C), respectively. \mathfrak{F} has a normal complement \mathfrak{R} in $C_{\circledast} \mathfrak{F}$ and, since Ω is cyclic, Ω has also a normal complement \mathfrak{B} in $C_{\oiint} \mathfrak{B}$. Let \mathfrak{Y} be the intersection of \mathfrak{A} and \mathfrak{B}. \mathfrak{Y} is a normal Hall subgroup of $C_{\circledast} \mathfrak{F}$ of order y. Then \mathfrak{Y} is normal even in
$N_{8} \mathfrak{B}$.
Let \mathfrak{F} be a Sylow p-complement of $N_{\mathscr{B}} \Re$ of order $4\left(p^{m}-1\right)$. Then \mathfrak{F} is contained in $N_{\Theta} \mathfrak{Y}$. Since y is a factor of n, any permutation $(\neq 1)$ of \mathfrak{Y} does not leave any symbol of Ω fixed. On the other hand every element ($\neq 1$) of \mathfrak{B} leaves a symbol of Ω fixed. Therefore every permutation $(\neq 1)$ of \mathfrak{B} is not commutative with any permutation $(\neq 1)$ of \mathfrak{y}. This implies that y is not less than $4 p^{m}-3$. Thus there exists no group satisfying the conditions of the theorem in Case (B). In Case (C) y is equal to $4 p^{m}-3$. All permutations $(\neq 1)$ of \mathfrak{V} are conjugate under \mathfrak{V}. Therefore $4 p^{m}-3$ must be equal to a power of a prime, say q^{l}, and ϑ must be an elementary abelian q-group. It is easily seen that $C_{\Theta} \mathfrak{y}=\mathfrak{F} \mathfrak{V}$. Hence $N_{\Theta} \mathfrak{Y}$ is contained in $N_{\Theta} \mathfrak{B}$ and therefore we obtain that $N_{\otimes} \mathfrak{Y}=N_{\otimes} \mathfrak{B}$. It can be easily seen that the set of involutions in $N_{\circledast} \mathfrak{B}$ each of which is conjugate to K^{2} in $N_{内} \Re$ is equal to the set of involutions in $C_{\otimes} \mathfrak{F}$ each of which is conjugate to K^{2} in $C_{\otimes} \mathfrak{B}$. It is trivial that the intersection of $N_{\circlearrowleft} \Omega$ and $C_{\mathscr{G}} \mathfrak{B}$ is equal to $\Re \mathfrak{R}$. Therefore we obtain that the index of $\Re \mathscr{R}$ in $C_{\mathbb{G}} \mathfrak{B}$ is equal to the index of $N_{\mathbb{G}} \mathscr{R}$ in $N_{\mathbb{G}} \mathscr{R} C_{\mathscr{G}} \mathfrak{\beta}$. Thus $N_{\mathbb{G}} \Re$ is equal to $N_{\mathscr{G}} \mathscr{A} C_{G} \mathfrak{B}$ and therefore the index of $N_{\mathscr{G}} \mathfrak{B}$ in \mathscr{S} is equal to $4 p^{m}+1$. Then we must have that $4 p^{m}+1 \equiv 4(\bmod q)$, which contradicts the theorem of Sylow. Thus there exists no group satisfying the conditions of the theorem in Case (C).
6. Case (C) for $p=3$. At first we shall prove that the order of $C_{\mathbb{G}} \mathfrak{F}$ is equal to $4 \cdot 3^{m+1} y$, where y is a factor of $4 \cdot 3^{m-1}-1 . ~ \Omega$ is contained in $C_{\Theta} \Re$. If the order of $C_{\mathbb{G}} \mathfrak{B}$ is equal to $4 \cdot 3^{m}$, then $N_{\mathbb{G}} \mathfrak{B}$ is contained in $N_{\mathbb{B}} \Re$. On the other hand the order of $N_{\circledast} \mathfrak{B}$ is divisible by 3^{m+1}. Thus the order of $C_{\mathbb{B}} \mathfrak{B}$ is greater than $4 \cdot 3^{m}$. Assume that the order of $C_{\mathbb{G}} \mathfrak{B}$ is equal to $4 \cdot 3^{m} \cdot y^{\prime}$, where y^{\prime} is not divisible by 3 and it is a factor of $4 \cdot 3^{m-1}-1$. Likewise in 5 there exists a normal subgroup \mathfrak{Y}^{\prime} of $C_{\&} \Re$ of order y^{\prime} and it is normal even in $N_{\circledast} \Re$. Let \mathfrak{F} be a Sylow 3 -complement of $N_{\mathbb{G}} \mathfrak{Y}$ of order $4\left(3^{m}-1\right)$. Since every permutation ($\neq 1$) of \mathfrak{Y}^{\prime} leaves no symbol of Ω fixed and it is not commutative with any permutation ($\neq 1$) leaving a symbol of Ω fixed, every permutation $(\neq 1)$ of \mathfrak{Y}^{\prime} is not commutative with any permutation $(\neq 1)$ of \mathfrak{B}. Hence y^{\prime} is no less than $4 \cdot 3^{m}-3$. This is a contradiction. Thus the order of $C_{\mathbb{G}} \mathfrak{B}$ is equal to $4 \cdot 3^{m+1} y$. Let \mathfrak{B}^{\prime} be a Sylow 3-subgroup of $C_{\mathbb{B}} \mathfrak{B}$ of order 3^{m+1}. Since \mathfrak{P} is contained in $C_{\mathbb{B}}\left(\Re^{\prime}\right)$, \mathfrak{B}^{\prime} is abelian.

Let us assume $y>1$. Let \mathfrak{A} be a normal 2 -complement in $C_{\mathscr{G}} \mathfrak{F}$. It is trivial that $C_{\mathbb{G}} \mathfrak{B}^{\prime}$ is contained in \mathfrak{A}. An element of $\left(\mathfrak{H} \cap N_{\mathbb{B}} \mathfrak{B}^{\prime}\right) / C_{\mathbb{B}} \mathfrak{B}^{\prime}$ induces trivial automorphism of \mathfrak{B} and $\mathfrak{B}^{\prime} / \mathfrak{B}$. Therefore $\left(\mathfrak{H} \cap N_{\Theta_{G}} \mathfrak{B}^{\prime}\right) / C_{\mathscr{G}} \mathfrak{B}^{\prime}$ must be 3 group. Thus we have $\mathfrak{A} \cap N_{\mathbb{B}} \mathfrak{B}^{\prime}=C_{\mathbb{G}} \mathfrak{B}^{\prime}$. By the splitting theorem of Burnside \mathfrak{F}^{\prime} has a normal complement \mathfrak{Y} in \mathfrak{A}. Since \mathfrak{Y} is a Hall subgroup of $C_{\mathbb{G}} \mathfrak{P}$, it is normal in $N_{\circlearrowleft} \mathfrak{F}$. Since every permutation $(\neq 1)$ of \mathfrak{Y} is not commutative
with any permutation $(\neq 1)$ of \mathfrak{F}, y is no less than $4 \cdot 3^{m}-3$. This is a contradiction. Therefore y must be equal to 1 and then $C_{\mathbb{B}} \mathfrak{P}$ is equal to $\mathfrak{F}^{\prime} \mathfrak{R}$.

The order of the group of automorphisms of $\mathfrak{B}^{\prime} / \mathfrak{B}$ is equal to 2 . Therefore K^{2} must induce the trivial automorphism of $\mathfrak{B}^{\prime} / \Re$. Since K is contained in $C_{\mathscr{G}} \mathfrak{B}, \mathrm{K}^{2}$ is commutative with every element of \mathfrak{B}^{\prime}. By the assumption of theorem \mathfrak{B}^{\prime} must be contained in $N_{\mathbb{G}} \mathfrak{R}$. Since \mathfrak{B} is a Sylow 3-subgroup of $N_{8} \mathscr{R}$, this is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in Case (C) for $p=3$.
7. Case (D). It can be proved in the same way as in Case (C) in [4] that there exists no group satisfying the conditions of the theorem in Case (D).
8. Case (E), (F) and (G). Let © be a Sylow 2 -subgroup of $N_{\mathbb{G}} \AA$. Since $N_{\odot} \mathscr{R} / \mathbb{R}$ is a complete Frobenius group on \mathfrak{I}, \subseteq is normal in $N_{\mathscr{G}} \Omega$. Therefore $C_{\mathbb{G}} \mathscr{R}$ contains \mathfrak{S} or is contained in \mathbb{S}.

In the case $\alpha=4, I$ is not contained in $C_{\varnothing \Omega} \Omega$. Thus \subseteq contains $C_{\sigma} \Re$. Since the index of \mathbb{S} in $N_{\circlearrowleft} \mathscr{R}$ is equal to $2^{m}-1$, we have $m=1$. Therefore it can be easily seen that (G) is isomorphic to $P G L(2,5)$ in Case (E) for $\alpha=4$ and that \mathscr{G} is isomorphic to $\operatorname{PSL}(2,9)$ in Case (G). In Case (F), since $n-i=6$ and $n-i$ must be divisible by 4 , there exists no group satisfying the conditions of the theorem.

Next we shall consider Case (E) for $\alpha=2$. Let \mathfrak{F} be a Sylow 2-complement of $N_{\circlearrowleft} \Re$ of order $2^{m}-1$. Since all the elements $(\neq 1)$ of \subseteq / \Re are conjugate under $\mathfrak{B R} / \mathscr{R}$, every permutation ($\in \mathscr{R}$) of \subseteq can be represented uniquely in the form $V^{-1} I V, V^{-1} I V K, V^{-1} I V K^{2}$ or $V^{-1} I V K^{3}$, where V is any permutation of \mathfrak{B}. Thus $S^{2}=K^{2}$ for any permutation S of order 4 in S. Since I is contained in $C_{\mathbb{G}} \Omega, K$ is contained $C_{\mathbb{G}} I$. Let \mathbb{S}^{\prime} be a Sylow 2 -subgroup of $C_{\mathbb{G}} I$. Then, since $C_{\Phi} I$ is conjugate to $C_{\Theta} K^{2}=N_{\Theta} \Omega$, \mathbb{S}^{\prime} contains K. Thus we must have $K^{2}=I$. This is a contradiction.

§ 3. Proof of Theorem, (II).

1. Let \mathscr{J}, Ω and I be as in $\S 2$. Then in this case Ω is elementary abelian and it is generated by two involutions, say K_{1}, K_{2}, leaving the symbols 1,2 fixed. We may assume that I is conjugate to a permutation of Ω. Then we have the following decomposition of \mathfrak{G};

$$
\mathfrak{G}=\mathfrak{I}+51 夕 .
$$

Since I is contained in $N_{\odot} \mathscr{R}$, (i) $\langle I\rangle \Omega$ is an abelian 2-group of type (2,2,2) or (ii) $\langle I\rangle \Omega$ is dihedral of order 8 . If an element $H^{\prime} I H$ of a coset $\mathscr{J} I H$ of \mathscr{I} is an involution, then $I H H^{\prime} I=\left(H H^{\prime}\right)^{-1}$ is contained in \AA. Hence, in case (i), the
coset $\mathfrak{g} I H$ contains just feur involutions namely $H^{-1} I H, H^{-1} K_{1} I H, H^{-1} K_{2} I H$ and $H^{-1} K_{1} K_{2} I H$ and, in case (ii), it contains just two involutions, namely $H^{-1} I H$ and $H^{-1} K_{1} K_{2} I H, H^{-1} K_{2} I H$ or $H^{-1} K_{1} I H$. Let $g(2), g^{*}(2), h(2)$ and $h^{*}(2)$ be as in §2. Then the following equality is obtained;

$$
\begin{equation*}
g(2)=h(2)+\alpha(n-1), \tag{3.1}
\end{equation*}
$$

where $\alpha=4$ and 2 for cases (i) and (ii), respectively.
2. Let \Im be as in $\S 2$. Then $N_{\odot} \Re / \AA$ can be considered as a complete Frobenius group on \Im and i equals a power of a prime number, say p^{m}, and the orders of $N_{\circlearrowleft} \Omega$ and $N_{\circlearrowleft} \Omega \cap \mathscr{J}$ are equal to $4 i(i-1)$ and $4(i-1)$, respectively. Hence, since Ω has just three involutions, there exist $3(n-1) n /(i-1) i$ involutions in \mathbb{B} each of which is conjugate to an involution in \mathbb{R}.

At first, let us assume that n is odd. Then from (3.1) the following equality is obtained;

$$
\begin{equation*}
h^{*}(2) n+3(n-1) n /(i-1) i=3(n-1) /(i-1)+h^{*}(2)+\alpha(n-1) . \tag{3.2}
\end{equation*}
$$

It follows from (3.2) that $h^{*}(2)<\alpha$. Likewise in $\S 2.2$ we may assume $h^{*}(2)$ $\neq 1$. Thus there are three cases; (A) $\alpha-h^{*}(2)=1$, (B) $\alpha-h^{*}(2)=2$ and (C) $\alpha-h^{*}(2)=4$. The following equalities are obtained from (3.2) for cases (A), (B) and (C), respectively ;
(A) $n=\frac{1}{3} i(i+2)=\frac{1}{3} p^{m}\left(p^{m}+2\right) \quad(p:$ odd $)$,
(B) $n=\frac{1}{3} i(2 i+1)=\frac{1}{3} p^{m}\left(2 p^{m}+1\right) \quad$ (p : odd)
and
(C) $\quad n=\frac{1}{3} i(4 i-1)=\frac{1}{3} p^{m}\left(4 p^{m}-1\right) \quad$ (p : odd).

Next let us assume that n is even. Corresponding to (2.2) the following equality is obtained from (3.1);

$$
\begin{equation*}
g *(2)+3(n-1) n /(i-1) i=3(n-1) /(i-1)+\alpha(n-1) . \tag{3.3}
\end{equation*}
$$

Likewise in $\S 2 g^{*}(2)$ is multiple of $n-1$. It follows from (3.3) that $g^{*}(2)$ $<\alpha(n-1)$. Thus there are four cases; (D) $\alpha-g^{*}(2) /(n-1)=3$, (E) $\alpha-g^{*}(2) /$ $(n-1)=1$, (F) $\alpha-g^{*}(2) /(n-1)=2$ and (G) $\alpha-g^{*}(2) /(n-1)=4$.

The following equalities are obtained from (3.3) for cases (D), (E), (F) and (G), respectively ;
(D) $n=i^{2}=2^{2 m}$,
(E) $\quad n=\frac{1}{3} i(i+2)=\frac{1}{3} 2^{m+1}\left(2^{m-1}+1\right)$,
(F) $\quad n=\frac{1}{3} i(2 i+1)=\frac{1}{3} 2^{m}\left(2^{m+1}+1\right)$
and
(G) $\quad n=\frac{1}{3} i(4 i-1)=\frac{1}{3} 2^{m}\left(2^{m+2}-1\right)$.
3. Let us assume that n is odd. Let \mathfrak{F} be a Sylow p-subgroup of $N_{\mathbb{B}} \mathscr{R}$ and let \mathfrak{B} be the subgroup of $N_{\mathcal{G}} \mathfrak{R}$ consisting of permutations leaving the symbol 1 fixed. Then the order of \mathfrak{B} is equal to $4\left(p^{m}-1\right)$. Since $N_{\mathscr{B}} \mathscr{R} / \Omega$ is a complete Frobenius group of degree p^{m}, \mathfrak{F} is elementary abelian of order p^{m} and $\mathfrak{P} \mathscr{R}$ is normal in $N_{G} \mathbb{R}$. Since $C_{G} \Omega$ is normal in $N_{\mathbb{G}} \mathbb{R}, C_{\mathbb{G}} \mathbb{R}$ contains $\mathfrak{P} \Omega$ or $\mathfrak{F} \mathscr{R}$ is greater than $C_{\mathbb{G}} \Omega$. It is trivial that the index of $C_{G} \mathbb{R}$ in $N_{\mathbb{G}} \mathbb{R}$ is a factor of 6 . If $\mathfrak{R} \mathscr{R}$ is greater than $C_{\mathscr{\infty}} \mathfrak{R}$, we must have $p=3$ and $m=1$.
4. Cases (A), (B) and (C). At first let us assume $p=3$. Since the order of $N_{\Theta} \Re$ is equal to $4 \cdot 3^{m}\left(3^{m}-1\right)$, the order of \nsubseteq is divisible by 3^{m}. But in Cases (A) and (C) it is not divisible by 3^{m}. In Case (B) m must be equal to 1 and it can be easily checked that \mathbb{B} is isomorphic to $\operatorname{PSL}(2,7)$ as a permutation group of degree 7. Hence it will be assumed hereafter that p is greater than 3 and therefore $\mathfrak{B} \mathfrak{R}$ is contained in $C_{囚} \mathfrak{R}$.

It is trivial that \mathfrak{B} is normal in $\mathfrak{B} \Omega$. Therefore \mathfrak{B} is normal even in $N_{\mathbb{R}} \Omega$. Let the orders of $N_{\circlearrowleft} \mathfrak{B}$ and $C_{\circlearrowleft} \mathfrak{F}$ be $4\left(p^{m}-1\right) p^{m} x$ and $4 p^{m} y$, respectively. If $x=1$, from Sylow's theorem it should hold that $\frac{1}{9}-\left(p^{m}+2\right)\left(p^{m}+3\right) \equiv 1(\bmod p)$, $\frac{1}{9}\left(2 p^{m}+1\right)\left(2 p^{m}+3\right) \equiv 1(\bmod p)$ and $\frac{1}{9}\left(4 p^{m}-1\right)\left(4 p^{m}+3\right) \equiv 1(\bmod p)$ for Cases (A), (B) and (C), respectively, which, since p is greater than 3 , is a contradiction. Thus x is greater than 1. If $y=1$, then \mathfrak{K} would be normal in $N_{\mathscr{G}} \mathfrak{F}$, and this would imply that $x=1$. Thus y is greater than 1 . Since y is a factor
 subgroup \mathfrak{Y} of order y. \mathfrak{Y} is normal even in $N_{\mathbb{G}} \mathfrak{F}$.

Let us consider the subgroup $\mathfrak{Y B}$. Since \mathfrak{Y} is subgroup of $C_{\mathscr{B}} \mathfrak{F}$, any permutation ($\neq 1$) of \mathfrak{Y} does not leave any symbol of Ω fixed. Therefore every permutation $(\neq 1)$ of \mathfrak{B} is not commutative with any permutation ($\neq 1$) of \mathfrak{Y}. This imply that y is not less than $4 \cdot p^{m}-3$. But y is a factor of $\frac{1}{3}\left(p^{m}+2\right)$, $\frac{1}{3}\left(2 p^{m}+1\right)$ and $\frac{1}{3}\left(4 p^{m}-1\right)$ for Cases (A), (B) and (C), respectively, which is a contradiction.
5. Let us assume that n is even. Since n is integer, we may assume that m is even for Cases (E), (F) and (G). Let © be a Sylow 2-group of $N_{\mathbb{G}} \mathfrak{R}$ of order 2^{m+2} and let \mathfrak{B} be a Sylow 2 -complement of $N_{\mathscr{G}} \mathfrak{R} \cap \mathfrak{K}$ of order $2^{m}-1$. Then \subseteq / Ω is elementary abelian. Likewise in $\S 2$, 8 every permutation ($€ \mathscr{R}$) of \subseteq can be represented uniquely in the form $V^{-1} I V, V^{-1} I V K_{1}, V^{-1} I V K_{2}$ or
$V^{-1} I V K_{1} K_{2}$, where V is any permutation of \mathfrak{B}. Then if I is contained in $C_{\mathbb{G}} \mathbb{R}$, every permutation $(\neq 1)$ of \subseteq is an involution and therefore \mathbb{S} is elementary abelian and it is contained in $C_{\mathbb{G}} \mathfrak{R}$. Let β be the number of involutions of $\mathbb{\Im}$ leaving just i symbols of Ω fixed. It is clear that every permutation ($£ \mathfrak{R}$) is conjugate under \mathfrak{B} to $I, I K_{1}, I K_{2}$ or $I K_{1} K_{2}$. Thus β is equal to $\left(2^{m}-1\right)+3,2\left(2^{m}-1\right)+3,3\left(2^{m}-1\right)+3$ or $4\left(2^{m}-1\right)+3$.

Now let us assume that \subseteq is greater than $C_{\mathbb{B}} \Omega$. Then we have $m=2$ and the orders of $N_{G} \mathfrak{R}, C_{G} \mathfrak{R}$ and \mathbb{S} are $16 \cdot 3,8$ and 16 , respectively. It is easily seen that the number of involutions of \subseteq is equal to 9 . But there exists no non-abelian group of order 16 satisfying the above condition. Hence it will be assumed that \mathbb{S} is contained in $C_{\mathbb{G}} \mathfrak{\Omega}$. Let us consider the order of $N_{\mathbb{G}} \mathbb{S}$. If $G^{-1} \mathbb{S} G$ contains \Re for some $G \in \mathscr{E}$, then $G \in N_{\mathbb{O}}(\mathbb{S})$. In fact, since \mathbb{S} is elementary abelian and normal in $N_{\mathbb{G}} \mathscr{R}, G^{-1} \subseteq G$ is contained in $N_{\mathbb{G}} \mathscr{R}$ and $G \in N_{\mathbb{\Theta}}(\mathbb{C})$. Let γ be the number of subgroups of \mathbb{S} each of which is conjugate to \mathbb{R} in \mathfrak{B}. Then we have

$$
\left[\left(\mathscr{S}: N_{\mathbb{G}}(\mathbb{R})\right]=r\left[\left(\mathbb{B}: N_{\circlearrowleft}(\mathbb{S})\right] .\right.\right.
$$

On the other hand, since $\mathscr{R} \cap G^{-1} \mathscr{R} G=1$ for every $G \notin N_{G} \mathscr{R}, 3 \gamma$ is equal to β. Hence we have the following equality;

$$
\begin{equation*}
\mid\left(\mathbb{S}\left|/\left|N_{\Theta} \subseteq\right|=3\right| \mathscr{G}|/ \beta| N_{\circlearrowleft} \Omega \mid .\right. \tag{3.4}
\end{equation*}
$$

6. Case (D). Since $3|\mathbb{G}| / \beta\left|N_{\Theta} \Re\right|=3 \cdot 2^{m}\left(2^{m}+1\right) / \beta$ is integer, we have $\beta=6$ for $m=2,3 \cdot 2^{m}$ or 15 for $m=2$. If $m=2$ and $\beta=6$, then $\oiint \cap N_{\mathcal{B}} \subseteq=\mathscr{P B}$. If $m=2$ and $\beta=15$, then $|\mathfrak{J}|=4 \cdot 3 \cdot 5$ and $\left|N_{\Theta} ভ\right|=16 \cdot 3 \cdot 5$. Since $\mathfrak{~} \cap N_{\Theta} \subseteq$ contains $\mathfrak{R},\left|\mathfrak{S} \cap N_{\Theta} \subseteq\right|=4 \cdot 3 \cdot 5$. Hence $\mathscr{S}_{\mathcal{S}}$ is contained in $N_{\Theta} \subseteq$ and the index of \mathfrak{F} in $N_{\mathscr{G}} \subseteq$ is equal to 4 . Let \mathfrak{W} be a Sylow 5 -group of $\mathfrak{\mathscr { L }}$. Then, since $N_{\mathbb{G}} \mathfrak{W}$ is contained in \mathfrak{F}, by Sylow's theorem the index of $N_{\mathbb{E}} \mathfrak{W}$ in $\mathfrak{~}$ is equal to 1 or 6. Therefore the index of $N_{\Theta} \mathfrak{B}$ in $N_{\Theta} \subseteq$ must be equal to 4 or 24 . This is a contradiction. Next if $\beta=3 \cdot 2^{m}$, then $\left|N_{\Theta} ভ\right|$ is equal to $2^{2 m+2}\left(2^{m}-1\right)$ from (3.4). Hence $\mathfrak{S} \cap N_{\mathbb{\Theta}} \subseteq=\Re \mathfrak{R}$. In any case we may assume that $\mathfrak{g} \cap N_{\mathbb{\Theta}} \subseteq=\Re \mathfrak{R}$.

Since $N_{\mathscr{B}} \mathscr{R} / \Omega$ is a complete Frobenius group of degree 2^{m}, all the Sylow subgroups of \mathfrak{B} are cyclic. Let l be the least prime factor of the order of \mathfrak{B}. Let \mathfrak{Z} be a Sylow l-subgroup of \mathfrak{B}. Then \mathfrak{Z} is cyclic and clearly leaves only the symbol 1 fixed. Hence $N_{\mathbb{G}} \mathbb{Z}$ is contained in \mathfrak{g}. We shall show that $N_{\mathbb{O}} \mathfrak{R}$ $=C_{G} \mathfrak{R}$. We shall assume that $l=3$. Let x be the index of $N_{\mathbb{G}} \mathscr{R} \cap N_{\mathbb{G}} \subseteq$ in $\Omega \mathfrak{R}$. If x is divisible by 4 , then the order of $N_{\mathscr{G}} \mathscr{L}$ is odd. Since the index of $C_{\mathscr{B}} \mathfrak{R}$ in $N_{\circlearrowleft} \mathcal{L}$ is equal to 1 or 2 , we have $N_{\triangle} \mathfrak{R}=C_{\odot} \mathscr{R}$. If x is even and not divisible by 4 or if x is odd, then the order of $N_{\mathscr{G}} \mathscr{Q} \cap \mathfrak{P} \mathfrak{B}$ is even. Let τ be an involution in $N_{\circlearrowleft} \mathscr{Q} \cap \mathscr{R B}$. Then τ is a permutation in \mathscr{R}. Since $\tau \Omega \tau=\Omega$ and $\mathscr{R} \mathfrak{B}$ is a semi-direct product, \mathfrak{Z} is contained in $C_{\mathbb{\Theta}} \tau$. Since $N_{\mathbb{\Theta}} \mathscr{R}$ contains $C_{\mathbb{B}} \tau$, the index of $C_{\mathscr{\odot}} \mathbb{R}$ in $C_{\mathscr{\odot}} \tau$ is equal to 1 or 2 . On the other hand, since \mathbb{S} is a

Sylow 2-subgroup of $N_{\mathscr{G}} \Omega$ and $C_{\mathbb{G}} \Omega$ contains \mathbb{S}, the index of $C_{\mathscr{G}} \Omega$ in $N_{\mathscr{G}} \Omega$ is equal to 1 or 3 . Hence $C_{ब} \tau=C_{\Omega} \Omega$. Thus \mathfrak{R} is contained in $C_{\Omega} \Omega$ and, therefore,

 Then it is easily seen that $N_{\triangle} \mathbb{R}=C_{\mathbb{G}} \mathbb{Z}$.

In any case we have that $N_{\mathscr{B}} \mathfrak{Z}=C_{\mathscr{B}} \mathfrak{Z}$. By the splitting theorem of Burnside \mathscr{G} has the normal l-complement. Continuing in the similar way, it can be shown that \mathfrak{G} has the normal subgroup \mathfrak{A}, which is a complement of \mathfrak{B}. Since the order of $\mathscr{F} \cap \mathfrak{H}$ is equal to $4\left(2^{m}+1\right), \mathfrak{R}$ has a normal complement \mathfrak{B} of order $2^{m}+1$ in $\mathfrak{S} \cap \mathfrak{A}$. $\mathfrak{K} \cap \mathfrak{U}=\mathfrak{R} \mathfrak{B}$. Let τ be an involution of \mathfrak{R}. Since $C_{\mathscr{G}} \tau=C_{\mathscr{B}} \Omega$ and the order of \mathfrak{B} is relatively prime to the order of $N_{\mathbb{G}} \mathscr{R}$, it is clear that every permutation $(\neq 1)$ of \mathfrak{B} and, hence, τ induces a fixed-point-free automorphism of \mathfrak{B}. Thus \mathfrak{B} has three fixed-point-free-automorphisms of order two. But, since the order of \mathfrak{B} is odd, this is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in Case (D).
7. Case (E). From (3.4) we have the following equality;

$$
|\mathscr{C}| /\left|N_{\Xi} \subseteq\right|=2\left(2^{m-1}+1\right)\left(2^{m}+3\right) / 3 \beta .
$$

Since the order of a Sylow 2 -subgroup of $\mathfrak{C B}$ is equal to $2^{m+3}, \beta$ must be even, but not divisible by 4. Hence we have that $\beta=2\left(2^{m-1}+1\right)$. Therefore the index of $N_{\circlearrowleft} \subseteq$ in \mathscr{G} is equal to $\left(2^{m}+3\right) / 3$. But this is not integer. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in Case (E).
8. Case (F). In this case © is also a Sylow 2-group of \mathfrak{B}. Every involution of \mathbb{S} leaving i symbols of Ω fixed is conjugate to an involution of Ω. Since \mathfrak{S} is elementary abelian, it is conjugate already in $N_{\Omega} \subseteq$. If the index of $C_{\Phi} \Omega$ in $N_{\Theta} \Omega$ is equal to 3 , then the index of $C_{\mathbb{\Omega}} \Omega$ in $N_{\Theta} \subseteq$ is equal to β. If $N_{\mathbb{G}} \mathscr{R}=C_{\mathscr{G}} \mathscr{R}$, then the index of $C_{\mathscr{G}} \mathfrak{R}$ in $N_{\Phi} \subseteq$ is equal to $\beta / 3$. On the other hand, since \mathbb{S} is a Sylow 2 -group of \mathscr{E} and $g^{*}(2) \neq 0, \beta$ must be equal to $2^{m+1}+1$. Therefore the order of $N_{\Phi} \subseteq$ is equal to $2^{m+2}\left(2^{m}-1\right)\left(2^{m+1}+1\right) / 3$. Hence the index of $N_{\Phi} \subseteq$ in $\left(\mathbb{S}\right.$ is equal to $\left(2^{m+1}+3\right) / 3$, which is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in Case (F).
9. Case (G). Since $g^{*}(2)=0$, we have $\beta=2^{m+2}-1$. Therefore likewise in Case (G) it is easily seen that the order of $N_{\Theta} \subseteq$ is equal to $2^{m+2}\left(2^{m}-1\right)\left(2^{m+2}-1\right) / 3$. Hence the index of $N_{\mathbb{\Theta}} \subseteq$ in \mathscr{S} is equal to $\left(2^{m+2}+3\right) / 3$, which is a contradiction.

Thus there exists no group satisfying the conditions or the theorem in Case (G).

References

[1] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029.
[2] G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403420.
[3] N. Ito, Remarks on factorizable groups, Acta Sci. Math. Szeged, 14 (1951), 83-84.
[4] N. Ito, On doubly transitive groups of degree n and order $2(n-1) n$, Nagoya Math. J., 27 (1966), 409-417.
[5] W. R. Scott, Group theory, Prentic-Hall, 1964.
[6] H. Wielandt, Permutation groups, Academic Press, 1964.

