On doubly transitive permutation groups of degree n and order $4(n-1)n^*$

By Hiroshi KIMURA

(Received May 27, 1968)

§1. Introduction.

Doubly transitive permutation groups of degree n and order 2(n-1)n were determined by N. Ito ([4]).

The object of this paper is to prove the following result.

THEOREM. Let Ω be the set of symbols $1, 2, \dots, n$. Let \mathfrak{G} be a doubly transitive group on Ω of order 4(n-1)n not containing a regular normal subgroup and let \mathfrak{R} be the stabilizer of the set of symbols 1 and 2. Assume that $\mathfrak{R} \cap G^{-1}\mathfrak{R}G = 1$ or \mathfrak{R} for every element G of \mathfrak{G} . Then we have the following results;

(1) If \Re is a cyclic group, then \circledast is isomorphic to either PGL(2, 5) or PSL(2, 9).

(II) If K is an elementary abelian group, then \mathfrak{G} is isomorphic to PSL (2, 7).

We use the standard notation. $C_{\mathfrak{X}}\mathfrak{T}$ denotes the centralizer of a subset \mathfrak{T} in a group \mathfrak{X} and $N_{\mathfrak{X}}\mathfrak{T}$ stands for the normalizer of \mathfrak{T} in \mathfrak{X} . We denote the number of elements in \mathfrak{T} by $|\mathfrak{T}|$.

§2. Proof of Theorem, (I).

1. Let \mathfrak{F} be the stabilizer of the symbol 1. \mathfrak{R} is of order 4 and it is generated by a permutation K whose cyclic structure has the form (1) (2) Since \mathfrak{G} is doubly transitive on Ω , it contains an involution I with the cyclic structure (1 2) We may assume that I is conjugate to K^2 . Then we have the following decomposition of \mathfrak{G} ;

$$\mathfrak{G} = \mathfrak{H} + \mathfrak{H} \mathfrak{H}$$
.

Since I is contained in N_{\otimes} R, it induces an automorphism of R and (i) $\langle I \rangle$ R is an abelian 2-group of type (2, 2²) or (ii) $\langle I \rangle$ R is dihedral of order 8. If an element H'IH of a coset $\mathfrak{H}IH$ of \mathfrak{H} is an involution, then $IHH'I = (HH')^{-1}$ is contained in R. Hence, in case (i) the coset $\mathfrak{H}IH$ contains just two involutions, namely $H^{-1}IH$ and $H^{-1}K^2IH$, and, in case (ii), it contains just four involutions, namely $H^{-1}IH$, $H^{-1}KIH$, $H^{-1}K^2IH$ and $H^{-1}K^3IH$. Let g(2) and h(2) denote the numbers of involutions in \mathfrak{G} and \mathfrak{H} , respectively. Then the following equality is obtained;

(2.1)
$$g(2) = h(2) + \alpha(n-1)$$
,

where $\alpha = 2$ and 4 for cases (i) and (ii), respectively.

2. Let \Re keep i $(i \ge 2)$ symbols of Ω , say $1, 2, \dots, i$, unchanged. It is trivial by the assumption of \Re that K has no transposition in its cyclic decomposition and that $N_{\circledast} \Re = C_{\circledast} K^2$. Put $\Im = \{1, 2, \dots, i\}$. Then, by a theorem of Witt ([6], Th. 9.4), $N_{\circledast} \Re / \Re$ can be considered as a doubly transitive permutation group on \Im . Since every permutation of $N_{\circledast} \Re / \Re$ distinct from \Re leaves by the definition of \Re at most one symbol of \Im fixed, $N_{\circledast} \Re / \Re$ is a complete Frobenius group on \Im . Therefore i equals to a power of a prime number, say p^m , and the orders of $N_{\circledast} \Re$ and $\mathfrak{H} \cap N_{\circledast} \Re$ are equal to 4i(i-1) and 4(i-1), respectively. Hence there exist (n-1)n/(i-1)i involutions in \mathfrak{G} each of which is conjugate to K^2 .

At first, let us assume that n is odd. Let $h^*(2)$ be the number of involutions in \mathfrak{F} leaving only the symbol 1 fixed. Then from (2.1) and the above argument the following equality is obtained;

(2.2)
$$h^{*}(2)n + (n-1)n/(i-1)i = (n-1)/(i-1) + h^{*}(2) + \alpha(n-1).$$

Since *i* is less than *n*, it follows from (2.2) that $h^*(2) < \alpha$. If $h^*(2) = 1$, then there exists no group satisfying the conditions of the theorem. In fact, let *J* be the involution in \mathfrak{H} leaving only the symbol 1 fixed. By [2, Cor. 1, p. 414], *J* is contained in $Z^*(\mathfrak{G})$, where $Z^*(\mathfrak{G})$ is the subgroup of \mathfrak{G} containing the core of \mathfrak{G} , $K(\mathfrak{G})$, for which $Z^*(\mathfrak{G})/K(\mathfrak{G}) = Z(\mathfrak{G}/K(\mathfrak{G}))$. If $K(\mathfrak{G}) \neq 1$, then by the theorem of Feit-Thompson $K(\mathfrak{G})$ is solvable ([1]). Hence \mathfrak{G} contains a regular normal subgroup ([6, Th. 11.5]). We have $K(\mathfrak{G}) = 1$ and *J* is an element of $Z(\mathfrak{G})$. Hence $Z(\mathfrak{G}) \neq 1$. But \mathfrak{G} must also contain a regular normal subgroup. Hence we may assume $h^*(2) \neq 1$. Thus there are three cases; (A) $\alpha - h^*(2) = 1$, (B) $\alpha - h^*(2) = 2$ and (C) $\alpha - h^*(2) = 4$.

The following equalities are obtained from (2.2) for cases (A), (B) and (C), respectively.

(A)
$$n = i^2 = p^{2m}$$
 (*p*: odd),

(B)
$$n = i(2i-1) = p^m(2p^m-1)$$
 (p: odd)

and

(C)
$$n = i(4i-3) = p^m(4p^m-3)$$
 (p: odd).

Next let us assume that n is even. Let $g^{*}(2)$ be the number of involutions

in leaving no symbol of Ω fixed. Then corresponding to (2.2) the following equality is obtained from (1);

(2.3)
$$g^{*}(2) + (n-1)n/(i-1)i = (n-1)/(i-1) + \alpha(n-1).$$

Let J be an involution in \mathfrak{G} leaving no symbol of Ω fixed. Let $C_{\mathfrak{G}}J$ be the centralizer of J in \mathfrak{G} . Assume that the order of $C_{\mathfrak{G}}J$ is divisible by a prime factor q of n-1. Then $C_{\mathfrak{G}}J$ contains a permutation Q of order q. Since q is odd, Q must leave just one symbol of Ω fixed. This shows that Q cannot be commutative with J. Hence $g^*(2)$ is a multiple of n-1. It follows from (2.3) that $g^*(2) < \alpha(n-1)$. Thus there are four cases; (D) $\alpha - g^*(2)/(n-1) = 1$, (E) $\alpha - g^*(2)/(n-1) = 2$, (F) $\alpha - g^*(2)/(n-1) = 3$ and (G) $\alpha - g^*(2)/(n-1) = 4$.

The following equalities are obtained from (2.3) for cases (D), (E), (F) and (G), respectively;

- (D) $n = i^2 = 2^{2m}$,
- (E) $n=i(2i-1)=2^m(2^{m+1}-1)$,

(F)
$$n = i(3i-2) = 2^{m+1}(3 \cdot 2^{m-1}-1)$$

and

(G)
$$n = i(4i-3) = 2^m(2^{m+2}-3)$$
.

3. Let us assume that *n* is odd. Let \mathfrak{P} be a Sylow *p*-subgroup of $N_{\mathfrak{G}}\mathfrak{R}$. Then, since $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ is a complete Frobenius group of degree p^m and \mathfrak{R} is cyclic, \mathfrak{P} is elementary abelian and normal in $N_{\mathfrak{G}}\mathfrak{R}$.

4. Case (A). Let \mathfrak{M} be a subgroup of \mathfrak{G} such that its Sylow 2-subgroup \mathfrak{R}' is conjugate to subgroup of \mathfrak{R} . Then, since \mathfrak{R} is cyclic, \mathfrak{R}' has a normal 2-complement in \mathfrak{M} . By this fact it can be proved in the same way of Case (A) in [4] that there exists no group satisfying the conditions of the theorem in Case (A) (see [4], p. 411).

5. Case (B) and (C) $(p \neq 3$ for Case (C)). \mathfrak{P} is also a Sylow *p*-subgroup of \mathfrak{G} in these cases. Let the orders of $N_{\mathfrak{G}}\mathfrak{P}$ and $C_{\mathfrak{G}}\mathfrak{P}$ be $4(p^m-1)p^mx$ and $4p^my$, respectively. If x=1, then from Sylow's theorem it should hold that $(2p^m-1)(2p^m+1)\equiv 1 \pmod{p}$ and $(4p^m-3)(4p^m+1)\equiv 1 \pmod{p}$ for Cases (B) and (C), respectively, which, since *p* is odd, is a contradiction. Thus *x* is greater than one. If y=1, then \mathfrak{R} would be normal in $N_{\mathfrak{G}}\mathfrak{P}$, and this would imply that x=1. Thus *y* is greater than one. If *y* is even, then let \mathfrak{S} be a Sylow 2-subgroup of $C_{\mathfrak{G}}\mathfrak{P}$. Since the order of \mathfrak{S} must be greater than four, \mathfrak{S} leaves just one symbol of \mathfrak{Q} fixed. Hence \mathfrak{S} cannot be contained in $C_{\mathfrak{G}}\mathfrak{P}$. Thus *y* is odd and *y* is a factor of $2p^m-1$ and $4p^m-3$ for Cases (B) and (C), respectively. \mathfrak{P} has a normal complement \mathfrak{A} in $C_{\mathfrak{G}}\mathfrak{P}$ and, since \mathfrak{R} is cyclic, \mathfrak{R} has also a normal complement \mathfrak{B} in $C_{\mathfrak{G}}\mathfrak{P}$ of order *y*. Then \mathfrak{P} is normal even in $N_{\mathfrak{G}}\mathfrak{P}.$

Let \mathfrak{B} be a Sylow p-complement of $N_{\mathfrak{G}}\mathfrak{R}$ of order $4(p^m-1)$. Then \mathfrak{B} is contained in $N_{\mathfrak{G}}$?). Since y is a factor of n, any permutation ($\neq 1$) of ?) does not leave any symbol of Ω fixed. On the other hand every element ($\neq 1$) of \mathfrak{B} leaves a symbol of \mathfrak{Q} fixed. Therefore every permutation ($\neq 1$) of \mathfrak{B} is not commutative with any permutation $(\neq 1)$ of \mathfrak{Y} . This implies that y is not less than $4p^m-3$. Thus there exists no group satisfying the conditions of the theorem in Case (B). In Case (C) y is equal to $4p^m-3$. All permutations ($\neq 1$) of \mathfrak{Y} are conjugate under \mathfrak{Y} . Therefore $4p^m-3$ must be equal to a power of a prime, say q^{l} , and \mathfrak{Y} must be an elementary abelian q-group. It is easily seen that $C_{\mathfrak{G}}\mathfrak{Y} = \mathfrak{P}\mathfrak{Y}$. Hence $N_{\mathfrak{G}}\mathfrak{Y}$ is contained in $N_{\mathfrak{G}}\mathfrak{P}$ and therefore we obtain that $N_{\mathfrak{G}}\mathfrak{Y} = N_{\mathfrak{G}}\mathfrak{X}$. It can be easily seen that the set of involutions in $N_{\mathfrak{G}}\mathfrak{P}$ each of which is conjugate to K^2 in $N_{\mathfrak{G}}\mathfrak{P}$ is equal to the set of involutions in $C_{\otimes}\mathfrak{P}$ each of which is conjugate to K^2 in $C_{\otimes}\mathfrak{P}$. It is trivial that the intersection of $N_{\mathfrak{g}}\mathfrak{R}$ and $C_{\mathfrak{g}}\mathfrak{P}$ is equal to $\mathfrak{R}\mathfrak{P}$. Therefore we obtain that the index of $\Re \mathfrak{P}$ in $C_{\mathfrak{G}}\mathfrak{P}$ is equal to the index of $N_{\mathfrak{G}}\mathfrak{R}$ in $N_{\mathfrak{G}}\mathfrak{R}C_{\mathfrak{G}}\mathfrak{P}$. Thus $N_{\mathfrak{G}}\mathfrak{P}$ is equal to $N_{\mathfrak{G}} \Re C_{\mathfrak{G}} \mathfrak{P}$ and therefore the index of $N_{\mathfrak{G}} \mathfrak{P}$ in \mathfrak{G} is equal to $4p^m+1$. Then we must have that $4p^m + 1 \equiv 4 \pmod{q}$, which contradicts the theorem of Sylow. Thus there exists no group satisfying the conditions of the theorem in Case (C).

6. Case (C) for p=3. At first we shall prove that the order of $C_{\mathfrak{G}}\mathfrak{P}$ is equal to $4 \cdot 3^{m+1}y$, where y is a factor of $4 \cdot 3^{m-1}-1$. \mathfrak{R} is contained in $C_{\mathfrak{G}}\mathfrak{P}$. If the order of $C_{\mathfrak{G}}\mathfrak{P}$ is equal to $4 \cdot 3^m$, then $N_{\mathfrak{G}}\mathfrak{P}$ is contained in $N_{\mathfrak{G}}\mathfrak{P}$. On the other hand the order of $N_{\mathfrak{G}}\mathfrak{P}$ is divisible by 3^{m+1} . Thus the order of $C_{\mathfrak{G}}\mathfrak{P}$ is greater than $4 \cdot 3^m$. Assume that the order of $C_{\mathfrak{G}}\mathfrak{P}$ is equal to $4 \cdot 3^m \cdot y'$, where y' is not divisible by 3 and it is a factor of $4 \cdot 3^{m-1}-1$. Likewise in 5 there exists a normal subgroup \mathfrak{Y}' of $C_{\mathfrak{G}}\mathfrak{P}$ of order y' and it is normal even in $N_{\mathfrak{G}}\mathfrak{P}$. Let \mathfrak{V} be a Sylow 3-complement of $N_{\mathfrak{G}}\mathfrak{Y}$ of order $4(3^m-1)$. Since every permutation ($\neq 1$) of \mathfrak{Y}' leaves no symbol of Ω fixed and it is not commutative with any permutation ($\neq 1$) leaving a symbol of Ω fixed, every permutation ($\neq 1$) of \mathfrak{Y}' is not commutative with any permutation ($\neq 1$) of \mathfrak{V} . Hence y' is no less than $4 \cdot 3^m - 3$. This is a contradiction. Thus the order of $C_{\mathfrak{G}}\mathfrak{P}$ is equal to $4 \cdot 3^{m+1}y$. Let \mathfrak{P}' be a Sylow 3-subgroup of $C_{\mathfrak{G}}\mathfrak{P}$ of order 3^{m+1} . Since \mathfrak{P} is contained in $C_{\mathfrak{G}}(\mathfrak{P}')$, \mathfrak{P}' is abelian.

Let us assume y > 1. Let \mathfrak{A} be a normal 2-complement in $C_{\mathfrak{G}}\mathfrak{P}$. It is trivial that $C_{\mathfrak{G}}\mathfrak{P}'$ is contained in \mathfrak{A} . An element of $(\mathfrak{A} \cap N_{\mathfrak{G}}\mathfrak{P}')/C_{\mathfrak{G}}\mathfrak{P}'$ induces trivial automorphism of \mathfrak{P} and $\mathfrak{P}'/\mathfrak{P}$. Therefore $(\mathfrak{A} \cap N_{\mathfrak{G}}\mathfrak{P}')/C_{\mathfrak{G}}\mathfrak{P}'$ must be 3group. Thus we have $\mathfrak{A} \cap N_{\mathfrak{G}}\mathfrak{P}' = C_{\mathfrak{G}}\mathfrak{P}'$. By the splitting theorem of Burnside \mathfrak{P}' has a normal complement \mathfrak{P} in \mathfrak{A} . Since \mathfrak{P} is a Hall subgroup of $C_{\mathfrak{G}}\mathfrak{P}$, it is normal in $N_{\mathfrak{G}}\mathfrak{P}$. Since every permutation $(\neq 1)$ of \mathfrak{P} is not commutative with any permutation $(\neq 1)$ of \mathfrak{B} , y is no less than $4 \cdot 3^m - 3$. This is a contradiction. Therefore y must be equal to 1 and then $C_{\mathfrak{B}}\mathfrak{B}$ is equal to $\mathfrak{P}'\mathfrak{R}$.

The order of the group of automorphisms of $\mathfrak{P}'/\mathfrak{P}$ is equal to 2. Therefore K^2 must induce the trivial automorphism of $\mathfrak{P}'/\mathfrak{P}$. Since K is contained in $C_{\mathfrak{G}}\mathfrak{P}$, K^2 is commutative with every element of \mathfrak{P}' . By the assumption of theorem \mathfrak{P}' must be contained in $N_{\mathfrak{G}}\mathfrak{R}$. Since \mathfrak{P} is a Sylow 3-subgroup of $N_{\mathfrak{G}}\mathfrak{R}$, this is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in Case (C) for p=3.

7. Case (D). It can be proved in the same way as in Case (C) in [4] that there exists no group satisfying the conditions of the theorem in Case (D).

8. Case (E), (F) and (G). Let \mathfrak{S} be a Sylow 2-subgroup of $N_{\mathfrak{G}}\mathfrak{R}$. Since $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ is a complete Frobenius group on $\mathfrak{Z}, \mathfrak{S}$ is normal in $N_{\mathfrak{G}}\mathfrak{R}$. Therefore $C_{\mathfrak{G}}\mathfrak{R}$ contains \mathfrak{S} or is contained in \mathfrak{S} .

In the case $\alpha = 4$, *I* is not contained in $C_{\otimes} \Re$. Thus \otimes contains $C_{\otimes} \Re$. Since the index of \otimes in $N_{\otimes} \Re$ is equal to $2^m - 1$, we have m = 1. Therefore it can be easily seen that \otimes is isomorphic to PGL(2, 5) in Case (E) for $\alpha = 4$ and that \otimes is isomorphic to PSL(2, 9) in Case (G). In Case (F), since n-i=6 and n-i must be divisible by 4, there exists no group satisfying the conditions of the theorem.

Next we shall consider Case (E) for $\alpha = 2$. Let \mathfrak{V} be a Sylow 2-complement of $N_{\mathfrak{G}}\mathfrak{R}$ of order $2^m - 1$. Since all the elements ($\neq 1$) of $\mathfrak{S}/\mathfrak{R}$ are conjugate under $\mathfrak{V}\mathfrak{R}/\mathfrak{R}$, every permutation ($\oplus \mathfrak{R}$) of \mathfrak{S} can be represented uniquely in the form $V^{-1}IV$, $V^{-1}IVK$, $V^{-1}IVK^2$ or $V^{-1}IVK^3$, where V is any permutation of \mathfrak{V} . Thus $S^2 = K^2$ for any permutation S of order 4 in \mathfrak{S} . Since I is contained in $C_{\mathfrak{G}}\mathfrak{R}$, K is contained $C_{\mathfrak{G}}I$. Let \mathfrak{S}' be a Sylow 2-subgroup of $C_{\mathfrak{G}}I$. Then, since $C_{\mathfrak{G}}I$ is conjugate to $C_{\mathfrak{G}}K^2 = N_{\mathfrak{G}}\mathfrak{R}$, \mathfrak{S}' contains K. Thus we must have $K^2 = I$. This is a contradiction.

§ 3. Proof of Theorem, (II).

1. Let \mathfrak{H} , \mathfrak{R} and I be as in § 2. Then in this case \mathfrak{R} is elementary abelian and it is generated by two involutions, say K_1 , K_2 , leaving the symbols 1, 2 fixed. We may assume that I is conjugate to a permutation of \mathfrak{R} . Then we have the following decomposition of \mathfrak{B} ;

 $\mathfrak{G} = \mathfrak{H} + \mathfrak{H} \mathfrak{H}.$

Since I is contained in $N_{\mathfrak{G}}\mathfrak{R}$, (i) $\langle I \rangle \mathfrak{R}$ is an abelian 2-group of type (2, 2, 2) or (ii) $\langle I \rangle \mathfrak{R}$ is dihedral of order 8. If an element H'IH of a coset $\mathfrak{H}IH$ of \mathfrak{H} is an involution, then $IHH'I = (HH')^{-1}$ is contained in \mathfrak{R} . Hence, in case (i), the coset $\Im IH$ contains just four involutions namely $H^{-1}IH$, $H^{-1}K_1IH$, $H^{-1}K_2IH$ and $H^{-1}K_1K_2IH$ and, in case (ii), it contains just two involutions, namely $H^{-1}IH$ and $H^{-1}K_1K_2IH$, $H^{-1}K_2IH$ or $H^{-1}K_1IH$. Let g(2), $g^*(2)$, h(2) and $h^*(2)$ be as in § 2. Then the following equality is obtained;

(3.1)
$$g(2) = h(2) + \alpha(n-1)$$
,

where $\alpha = 4$ and 2 for cases (i) and (ii), respectively.

2. Let \mathfrak{F} be as in §2. Then $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ can be considered as a complete Frobenius group on \mathfrak{F} and i equals a power of a prime number, say p^m , and the orders of $N_{\mathfrak{G}}\mathfrak{R}$ and $N_{\mathfrak{G}}\mathfrak{R} \cap \mathfrak{F}$ are equal to 4i(i-1) and 4(i-1), respectively. Hence, since \mathfrak{R} has just three involutions, there exist 3(n-1)n/(i-1)i involutions in \mathfrak{G} each of which is conjugate to an involution in \mathfrak{R} .

At first, let us assume that n is odd. Then from (3.1) the following equality is obtained;

(3.2)
$$h^{*}(2)n+3(n-1)n/(i-1)i=3(n-1)/(i-1)+h^{*}(2)+\alpha(n-1).$$

It follows from (3.2) that $h^*(2) < \alpha$. Likewise in § 2.2 we may assume $h^*(2) \neq 1$. Thus there are three cases; (A) $\alpha - h^*(2) = 1$, (B) $\alpha - h^*(2) = 2$ and (C) $\alpha - h^*(2) = 4$. The following equalities are obtained from (3.2) for cases (A), (B) and (C), respectively;

(A)
$$n = \frac{1}{3}i(i+2) = \frac{1}{3}p^m(p^m+2)$$
 (p: odd),
(B) $n = \frac{1}{3}i(2i+1) = \frac{1}{3}p^m(2p^m+1)$ (p: odd)

and

(C)
$$n = \frac{1}{3}i(4i-1) = \frac{1}{3}p^m(4p^m-1)$$
 (p: odd).

Next let us assume that n is even. Corresponding to (2.2) the following equality is obtained from (3.1);

(3.3)
$$g^{*}(2) + 3(n-1)n/(i-1)i = 3(n-1)/(i-1) + \alpha(n-1)$$
.

Likewise in §2 $g^{*}(2)$ is multiple of n-1. It follows from (3.3) that $g^{*}(2) < \alpha(n-1)$. Thus there are four cases; (D) $\alpha - g^{*}(2)/(n-1) = 3$, (E) $\alpha - g^{*}(2)/(n-1) = 1$, (F) $\alpha - g^{*}(2)/(n-1) = 2$ and (G) $\alpha - g^{*}(2)/(n-1) = 4$.

The following equalities are obtained from (3.3) for cases (D), (E), (F) and (G), respectively;

- (D) $n = i^2 = 2^{2m}$,
- (E) $n = \frac{1}{3}i(i+2) = \frac{1}{3}2^{m+1}(2^{m-1}+1)$,

H. KIMURA

and

(F)

(G)
$$n = \frac{1}{3}i(4i-1) = \frac{1}{3}2^m(2^{m+2}-1).$$

 $n = \frac{1}{3}i(2i+1) = \frac{1}{3}2^{m}(2^{m+1}+1)$

3. Let us assume that n is odd. Let \mathfrak{P} be a Sylow p-subgroup of $N_{\mathfrak{G}}\mathfrak{R}$ and let \mathfrak{V} be the subgroup of $N_{\mathfrak{G}}\mathfrak{R}$ consisting of permutations leaving the symbol 1 fixed. Then the order of \mathfrak{V} is equal to $4(p^m-1)$. Since $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ is a complete Frobenius group of degree p^m , \mathfrak{P} is elementary abelian of order p^m and $\mathfrak{P}\mathfrak{R}$ is normal in $N_{\mathfrak{G}}\mathfrak{R}$. Since $C_{\mathfrak{G}}\mathfrak{R}$ is normal in $N_{\mathfrak{G}}\mathfrak{R}$, $C_{\mathfrak{G}}\mathfrak{R}$ contains $\mathfrak{P}\mathfrak{R}$ or $\mathfrak{P}\mathfrak{R}$ is greater than $C_{\mathfrak{G}}\mathfrak{R}$. It is trivial that the index of $C_{\mathfrak{G}}\mathfrak{R}$ in $N_{\mathfrak{G}}\mathfrak{R}$ is a factor of 6. If $\mathfrak{P}\mathfrak{R}$ is greater than $C_{\mathfrak{G}}\mathfrak{R}$, we must have p=3 and m=1.

4. Cases (A), (B) and (C). At first let us assume p=3. Since the order of $N_{\mathfrak{GR}}$ is equal to $4 \cdot 3^m(3^m-1)$, the order of \mathfrak{G} is divisible by 3^m . But in Cases (A) and (C) it is not divisible by 3^m . In Case (B) m must be equal to 1 and it can be easily checked that \mathfrak{G} is isomorphic to PSL(2,7) as a permutation group of degree 7. Hence it will be assumed hereafter that p is greater than 3 and therefore \mathfrak{PR} is contained in $C_{\mathfrak{GR}}$.

It is trivial that \mathfrak{P} is normal in \mathfrak{PR} . Therefore \mathfrak{P} is normal even in $N_{\mathfrak{G}}\mathfrak{R}$. Let the orders of $N_{\mathfrak{G}}\mathfrak{P}$ and $C_{\mathfrak{G}}\mathfrak{P}$ be $4(p^m-1)p^mx$ and $4p^my$, respectively. If x=1, from Sylow's theorem it should hold that $\frac{1}{9}(p^m+2)(p^m+3)\equiv 1 \pmod{p}$, $\frac{1}{9}(2p^m+1)(2p^m+3)\equiv 1 \pmod{p}$ and $\frac{1}{9}(4p^m-1)(4p^m+3)\equiv 1 \pmod{p}$ for Cases (A), (B) and (C), respectively, which, since p is greater than 3, is a contradiction. Thus x is greater than 1. If y=1, then \mathfrak{R} would be normal in $N_{\mathfrak{G}}\mathfrak{P}$, and this would imply that x=1. Thus y is greater than 1. Since y is a factor of n, we have $N_{\mathfrak{G}}\mathfrak{R} \cap C_{\mathfrak{G}}\mathfrak{P} = C_{\mathfrak{G}}\mathfrak{R} \cap C_{\mathfrak{G}}\mathfrak{P} = \mathfrak{R}\mathfrak{P}$. Therefore $C_{\mathfrak{G}}\mathfrak{P}$ contains a normal subgroup \mathfrak{P} of order y. \mathfrak{P} is normal even in $N_{\mathfrak{G}}\mathfrak{P}$.

Let us consider the subgroup \mathfrak{YS} . Since \mathfrak{Y} is subgroup of $C_{\mathfrak{S}}\mathfrak{P}$, any permutation $(\neq 1)$ of \mathfrak{Y} does not leave any symbol of Ω fixed. Therefore every permutation $(\neq 1)$ of \mathfrak{V} is not commutative with any permutation $(\neq 1)$ of \mathfrak{Y} . This imply that y is not less than $4 \cdot p^m - 3$. But y is a factor of $\frac{1}{3}(p^m+2)$, $\frac{1}{3}(2p^m+1)$ and $\frac{1}{3}(4p^m-1)$ for Cases (A), (B) and (C), respectively, which is a contradiction.

5. Let us assume that *n* is even. Since *n* is integer, we may assume that *m* is even for Cases (E), (F) and (G). Let \mathfrak{S} be a Sylow 2-group of $N_{\mathfrak{G}}\mathfrak{R}$ of order 2^{m+2} and let \mathfrak{V} be a Sylow 2-complement of $N_{\mathfrak{G}}\mathfrak{R} \cap \mathfrak{H}$ of order 2^m-1 . Then $\mathfrak{S}/\mathfrak{R}$ is elementary abelian. Likewise in § 2, 8 every permutation ($\oplus \mathfrak{R}$) of \mathfrak{S} can be represented uniquely in the form $V^{-1}IVK_1$, $V^{-1}IVK_2$ or

 $\mathbf{240}$

 $V^{-1}IVK_1K_2$, where V is any permutation of \mathfrak{V} . Then if I is contained in $C_{\mathfrak{G}}\mathfrak{R}$, every permutation $(\neq 1)$ of \mathfrak{S} is an involution and therefore \mathfrak{S} is elementary abelian and it is contained in $C_{\mathfrak{G}}\mathfrak{R}$. Let β be the number of involutions of \mathfrak{S} leaving just *i* symbols of Ω fixed. It is clear that every permutation $(\oplus \mathfrak{R})$ is conjugate under \mathfrak{V} to I, IK_1 , IK_2 or IK_1K_2 . Thus β is equal to $(2^m-1)+3$, $2(2^m-1)+3$, $3(2^m-1)+3$ or $4(2^m-1)+3$.

Now let us assume that \mathfrak{S} is greater than $C_{\mathfrak{G}}\mathfrak{R}$. Then we have m = 2 and the orders of $N_{\mathfrak{G}}\mathfrak{R}$, $C_{\mathfrak{G}}\mathfrak{R}$ and \mathfrak{S} are $16 \cdot 3$, 8 and 16, respectively. It is easily seen that the number of involutions of \mathfrak{S} is equal to 9. But there exists no non-abelian group of order 16 satisfying the above condition. Hence it will be assumed that \mathfrak{S} is contained in $C_{\mathfrak{G}}\mathfrak{R}$. Let us consider the order of $N_{\mathfrak{G}}\mathfrak{S}$. If $G^{-1}\mathfrak{S}G$ contains \mathfrak{R} for some $G \in \mathfrak{G}$, then $G \in N_{\mathfrak{G}}(\mathfrak{S})$. In fact, since \mathfrak{S} is elementary abelian and normal in $N_{\mathfrak{G}}\mathfrak{R}$, $G^{-1}\mathfrak{S}G$ is contained in $N_{\mathfrak{G}}\mathfrak{R}$ and $G \in N_{\mathfrak{G}}(\mathfrak{S})$. Let γ be the number of subgroups of \mathfrak{S} each of which is conjugate to \mathfrak{R} in \mathfrak{G} . Then we have

$$[\mathfrak{G}: N_{\mathfrak{G}}(\mathfrak{R})] = \gamma [\mathfrak{G}: N_{\mathfrak{G}}(\mathfrak{S})].$$

On the other hand, since $\Re \cap G^{-1} \Re G = 1$ for every $G \notin N_{\otimes} \Re$, 3γ is equal to β . Hence we have the following equality;

$$|\mathfrak{G}|/|N_{\mathfrak{G}}\mathfrak{S}| = 3|\mathfrak{G}|/\beta|N_{\mathfrak{G}}\mathfrak{R}|.$$

6. Case (D). Since $3|\mathfrak{G}|/\beta|N_{\mathfrak{G}}\mathfrak{R}|=3\cdot 2^m(2^m+1)/\beta$ is integer, we have $\beta=6$ for $m=2, 3\cdot 2^m$ or 15 for m=2. If m=2 and $\beta=6$, then $\mathfrak{H}\cap N_{\mathfrak{G}}\mathfrak{S}=\mathfrak{R}\mathfrak{B}$. If m=2 and $\beta=15$, then $|\mathfrak{F}|=4\cdot 3\cdot 5$ and $|N_{\mathfrak{G}}\mathfrak{S}|=16\cdot 3\cdot 5$. Since $\mathfrak{H}\cap N_{\mathfrak{G}}\mathfrak{S}$ contains \mathfrak{R} , $|\mathfrak{H}\cap N_{\mathfrak{G}}\mathfrak{S}|=4\cdot 3\cdot 5$. Hence \mathfrak{H} is contained in $N_{\mathfrak{G}}\mathfrak{S}$ and the index of \mathfrak{H} in $N_{\mathfrak{G}}\mathfrak{S}$ is equal to 4. Let \mathfrak{W} be a Sylow 5-group of \mathfrak{H} . Then, since $N_{\mathfrak{G}}\mathfrak{W}$ is contained in \mathfrak{H} , by Sylow's theorem the index of $N_{\mathfrak{G}}\mathfrak{W}$ in \mathfrak{H} is equal to 1 or 6. Therefore the index of $N_{\mathfrak{G}}\mathfrak{W}$ in $N_{\mathfrak{G}}\mathfrak{S}$ must be equal to 4 or 24. This is a contradiction. Next if $\beta=3\cdot 2^m$, then $|N_{\mathfrak{G}}\mathfrak{S}|$ is equal to $2^{2m+2}(2^m-1)$ from (3.4). Hence $\mathfrak{H}\cap N_{\mathfrak{G}}\mathfrak{S}=\mathfrak{R}\mathfrak{V}$. In any case we may assume that $\mathfrak{H}\cap N_{\mathfrak{G}}\mathfrak{S}=\mathfrak{R}\mathfrak{V}$.

Since $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ is a complete Frobenius group of degree 2^m , all the Sylow subgroups of \mathfrak{B} are cyclic. Let l be the least prime factor of the order of \mathfrak{B} . Let \mathfrak{L} be a Sylow l-subgroup of \mathfrak{B} . Then \mathfrak{L} is cyclic and clearly leaves only the symbol 1 fixed. Hence $N_{\mathfrak{G}}\mathfrak{L}$ is contained in \mathfrak{H} . We shall show that $N_{\mathfrak{G}}\mathfrak{L}$ $= C_{\mathfrak{G}}\mathfrak{L}$. We shall assume that l=3. Let x be the index of $N_{\mathfrak{G}}\mathfrak{L} \cap N_{\mathfrak{G}}\mathfrak{S}$ in $\mathfrak{R}\mathfrak{B}$. If x is divisible by 4, then the order of $N_{\mathfrak{G}}\mathfrak{L}$ is odd. Since the index of $C_{\mathfrak{G}}\mathfrak{L}$ in $N_{\mathfrak{G}}\mathfrak{L}$ is equal to 1 or 2, we have $N_{\mathfrak{G}}\mathfrak{L} = C_{\mathfrak{G}}\mathfrak{L}$. If x is even and not divisible by 4 or if x is odd, then the order of $N_{\mathfrak{G}}\mathfrak{L} \cap \mathfrak{R}\mathfrak{B}$ is even. Let τ be an involution in $N_{\mathfrak{G}}\mathfrak{L} \cap \mathfrak{R}\mathfrak{B}$. Then τ is a permutation in \mathfrak{R} . Since $\tau\mathfrak{L}\mathfrak{T} = \mathfrak{L}$ and $\mathfrak{R}\mathfrak{B}$ is a semi-direct product, \mathfrak{L} is contained in $C_{\mathfrak{G}}\tau$. Since $N_{\mathfrak{G}}\mathfrak{R}$ contains $C_{\mathfrak{G}}\tau$, the index of $C_{\mathfrak{G}}\mathfrak{R}$ in $C_{\mathfrak{G}}\tau$ is equal to 1 or 2. On the other hand, since \mathfrak{S} is a Sylow 2-subgroup of $N_{\mathfrak{G}}\mathfrak{R}$ and $C_{\mathfrak{G}}\mathfrak{R}$ contains \mathfrak{S} , the index of $C_{\mathfrak{G}}\mathfrak{R}$ in $N_{\mathfrak{G}}\mathfrak{R}$ is equal to 1 or 3. Hence $C_{\mathfrak{G}}\tau = C_{\mathfrak{G}}\mathfrak{R}$. Thus \mathfrak{L} is contained in $C_{\mathfrak{G}}\mathfrak{R}$ and, therefore, $N_{\mathfrak{G}}\mathfrak{R} = C_{\mathfrak{G}}\mathfrak{R}$. If $l \neq 3$, then $N_{\mathfrak{G}}\mathfrak{R} = C_{\mathfrak{G}}\mathfrak{R}$. If $N_{\mathfrak{G}}\mathfrak{R} = C_{\mathfrak{G}}\mathfrak{R}$, then $C_{\mathfrak{G}}\mathfrak{L}$ contains \mathfrak{R} . Using Sylow's theorem, we obtain that $N_{\mathfrak{G}}\mathfrak{L} = C_{\mathfrak{G}}\mathfrak{L}(N_{\mathfrak{G}}\mathfrak{R} \cap N_{\mathfrak{G}}\mathfrak{L}) = C_{\mathfrak{G}}\mathfrak{L}(\mathfrak{R}\mathfrak{B} \cap N_{\mathfrak{G}}\mathfrak{L})$. Then it is easily seen that $N_{\mathfrak{G}}\mathfrak{L} = C_{\mathfrak{G}}\mathfrak{L}$.

In any case we have that $N_{\mathfrak{G}}\mathfrak{Q} = C_{\mathfrak{G}}\mathfrak{Q}$. By the splitting theorem of Burnside \mathfrak{G} has the normal *l*-complement. Continuing in the similar way, it can be shown that \mathfrak{G} has the normal subgroup \mathfrak{A} , which is a complement of \mathfrak{B} . Since the order of $\mathfrak{H} \cap \mathfrak{A}$ is equal to $4(2^m+1)$, \mathfrak{R} has a normal complement \mathfrak{B} of order 2^m+1 in $\mathfrak{H} \cap \mathfrak{A}$. $\mathfrak{H} \cap \mathfrak{A} = \mathfrak{R}\mathfrak{B}$. Let τ be an involution of \mathfrak{R} . Since $C_{\mathfrak{G}}\tau = C_{\mathfrak{G}}\mathfrak{R}$ and the order of \mathfrak{B} is relatively prime to the order of $N_{\mathfrak{G}}\mathfrak{R}$, it is clear that every permutation $(\neq 1)$ of \mathfrak{B} and, hence, τ induces a fixed-point-free automorphism of \mathfrak{B} . Thus \mathfrak{B} has three fixed-point-free-automorphisms of order two. But, since the order of \mathfrak{B} is odd, this is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in Case (D).

7. Case (E). From (3.4) we have the following equality;

$$|\mathfrak{G}|/|N_{\mathfrak{G}}\mathfrak{S}| = 2(2^{m-1}+1)(2^m+3)/3\beta$$
.

Since the order of a Sylow 2-subgroup of \mathfrak{G} is equal to 2^{m+3} , β must be even, but not divisible by 4. Hence we have that $\beta = 2(2^{m-1}+1)$. Therefore the index of $N_{\mathfrak{G}}\mathfrak{S}$ in \mathfrak{G} is equal to $(2^m+3)/3$. But this is not integer. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in Case (E).

8. Case (F). In this case \mathfrak{S} is also a Sylow 2-group of \mathfrak{G} . Every involution of \mathfrak{S} leaving *i* symbols of \mathcal{Q} fixed is conjugate to an involution of \mathfrak{R} . Since \mathfrak{S} is elementary abelian, it is conjugate already in $N_{\mathfrak{G}}\mathfrak{S}$. If the index of $C_{\mathfrak{G}}\mathfrak{R}$ in $N_{\mathfrak{G}}\mathfrak{S}$ is equal to 3, then the index of $C_{\mathfrak{G}}\mathfrak{R}$ in $N_{\mathfrak{G}}\mathfrak{S}$ is equal to β . If $N_{\mathfrak{G}}\mathfrak{R} = C_{\mathfrak{G}}\mathfrak{R}$, then the index of $C_{\mathfrak{G}}\mathfrak{R}$ in $N_{\mathfrak{G}}\mathfrak{S}$ is equal to β . If hand, since \mathfrak{S} is a Sylow 2-group of \mathfrak{G} and $g^*(2) \neq 0$, β must be equal to $2^{m+1}+1$. Therefore the order of $N_{\mathfrak{G}}\mathfrak{S}$ is equal to $2^{m+2}(2^m-1)(2^{m+1}+1)/3$. Hence the index of $N_{\mathfrak{G}}\mathfrak{S}$ in \mathfrak{G} is equal to $(2^{m+1}+3)/3$, which is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in Case (F).

9. Case (G). Since $g^*(2) = 0$, we have $\beta = 2^{m+2} - 1$. Therefore likewise in Case (G) it is easily seen that the order of $N_{\mathfrak{G}}\mathfrak{S}$ is equal to $2^{m+2}(2^m-1)(2^{m+2}-1)/3$. Hence the index of $N_{\mathfrak{G}}\mathfrak{S}$ in \mathfrak{G} is equal to $(2^{m+2}+3)/3$, which is a contradiction.

Thus there exists no group satisfying the conditions or the theorem in Case (G).

Nagoya University

References

- [1] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029.
- [2] G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420.
- [3] N. Ito, Remarks on factorizable groups, Acta Sci. Math. Szeged, 14 (1951), 83-84.
- [4] N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417.
- [5] W.R. Scott, Group theory, Prentic-Hall, 1964.
- [6] H. Wielandt, Permutation groups, Academic Press, 1964.