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\S 1. Introduction.

The inertia group $I(M)$ of an oriented closed smooth manifold $M$ is defined
to be the subgroup of $\Theta_{n}$ consisting of those homotopy spheres $\tilde{S}$ which satisfy
the condition $M\# S=M$, where $\Theta_{n}$ is the group of homotopy n-spheres. This
group $I(M)$ is one of the diffeomorphy invariants of $M$.

The inertia groups of manifolds have been studied by I. Tamura [14],

C. T. C. Wall [18], S. P. Novikov [10], W. Browder [1] and A. Kosinski [6].

The following problems have been proposed by them as important ones:
(I) Is it combinatorially (or topologically) invariant ?
(II) Does it depend on more than the tangential homotopy equivalence

class at the manifold ? (W. Browder cf. [7])

(III) Is it contained in $\Theta(\partial\pi)$ , if we restrict the manifold within $\pi$ -mani-
folds ? (S. P. Novikov [10])

In this paper the following facts will be proved which answer the problems
above.

The inertia group of $S^{3}\times S^{14}$ is not combinatorially (therefore not topologi-
cally) invariant and depends on more than the tangential homotopy equivalence
class of $S^{3}\times S^{14}$ .

For $\tilde{S}^{14}\neq S^{14},$ $I(S^{3}\times\tilde{S}^{14})$ contains a homotopy sphere $\tilde{S}^{17}$ which does not be-
long to $\Theta_{17}(\partial\pi)$ .

The author wishes to express his hearty thanks to Professor I. Tamura
for suggesting the viewpoint of this research and for showing the attitude of
mind in mathematics and also to Mr. H. Sato, Mr. M. Kato and Mr. T. Akiba
for many invaluable discussions.

\S 2. Notations and results.

In this paper all the manifolds are compact connected smooth oriented
manifolds and the diffeomorphisms are orientation preserving. We write
$M_{1}=M_{2}$ for manifolds $M_{1},$ $M_{2}$ , if there is an orientation preserving diffeomor-
phism $f:M_{1}\rightarrow M_{2}$ .

Let $\Theta_{q}$ be the group of homotopy q-spheres and $\Gamma_{q}$ the pseudo-isotopy
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group of diffeomorphism of $S^{q-1}$ . It is well known that $\Theta_{q}$ and $\Gamma_{q}$ are equi-
valent $(q\neq 3)$ (Smale [12]). A subgroup of q-dimensional homotopy spheres
which bound parallelizable manifolds is denoted by $\Theta_{q}(\partial\pi)$ .

The inertia group of a closed differentiable manifold $M^{n}$ is defined to be
the group $\{\tilde{S}\in\Theta_{n}|M^{n}\#\tilde{S}=M^{n}\}$ which is denoted by $I(M)$ .

Now we shall define pairings $K_{1},$ $K_{2}$ : for $0<p<q$ :
$K_{1}$ : $\pi_{p}(SO_{q+1})\times\Gamma_{q+1}\rightarrow\Gamma_{p+q+1}$ ,

$K_{2}$ : $\pi_{p}(SO_{q+1})\times\pi_{q}(SO_{p+1})\rightarrow\Gamma_{p+q+1}$ .
Let $h\in\pi_{p}(SO_{q+1}),$ $r\in\Gamma_{q+1}=\pi_{0}(diffS^{q})/\pi_{0}(diffD^{q+1})$ . (In the following we wilk
use the same symbol for an element of a group as its representative.) We
define the diffeomorphism

$F:S^{p}\times S^{q}\rightarrow S^{p}\times S^{q}$ by $F(x, y)=(x,$ $rh(x)r^{-1}(y))$ .

Attaching two manifolds, $W_{1}=D^{p+1}\times S^{q}$ and $W_{2}=S^{p}\times D^{q+1}$ , by the diffeomor-
phism $F:S^{p}\times S^{q}\rightarrow S^{p}\times S^{q}$ , we have a manifold

$\Sigma=D^{p+1}\times S^{q}\bigcup_{F}S^{p}\times D^{q+1}$ .
Making use of the Mayer-Vietoris exact sequence, it is easy to see that the
manifold $\Sigma$ is a homotopy sphere for $p<q$ . We assume that the orientation
of the manifold $A\bigcup_{f}B$ compatible with the first part $A$ , is given. The pairing

$K_{1}$ is defined by $ K_{1}(h, r)=\Sigma$ .
We shall now prove that this does not depend on the choice of represent-

atives.
Let $h^{\prime}\in\pi_{p}(SO_{q+1})$ be other representative and $H:S^{p}\times I\rightarrow SO_{q+1}$ be a homo-

topy between $h$ and $h^{\prime}$ . We write $H(x, t)$ as $h_{t}(x)$ . Let $r^{\prime}\in\Gamma_{q+1}$ be other re-
presentative and $R:S^{q}\times I\rightarrow S^{q}\times I$ be a pseudo isotopy between $r$ and $r^{\prime}$ . Let
$p_{1}$ : $S^{q}\times I\rightarrow S^{q}$ and $p:S^{q}\times I\rightarrow I$ be the projections to the first and to the second
respectively.

We now define the diffeomorphism $G:S^{p}\times S^{q}\times I\rightarrow S^{p}\times S^{q}\times I$ by $G(x,$ $y,$ $ t\rangle$

$=(x,$ $R(h_{t}(x)p_{1}R^{-1}(y, t),$ $p_{2}R^{-1}(y, t)))$ .
Attaching two manifold $D^{p+1}\times S^{q}\times I$ and $S^{p}\times D^{q+1}\times I$ by the diffeomorphism

$G:S^{p}\times S^{q}\times I\rightarrow S^{p}\times S^{q}\times I$, we have a manifold $X=D^{p+1}\times S^{q}\times I\bigcup_{G}S^{p}\times D^{q+1}\times I$.
The boundary $\partial X$ is composed of the disjoint sum $\Sigma$ and $-\Sigma$ ’ where $\Sigma^{\prime}$ is a
homotopy sphere made from $h^{\gamma}$ and $r^{\prime}$ .

Making use of the Mayer-Vietoris exact sequence, it is easy to see that
inclusions $i:\Sigma\rightarrow X$ and $i^{\prime}$ : $\Sigma’\rightarrow X$ give the homotopy equivalences. Therefore
$\Sigma$ is diffeomorphic to $\Sigma^{\prime}$ by the h-cobordism theorem. Since $\Theta_{n}=\Gamma_{n}(n\neq 3)$ ,
$\Sigma$ and $\Sigma$ ’ are the same element of $\Gamma_{p+q+1}$ .
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Next we define the pairing $K_{2}$ . Let $h_{1}\in\pi_{p}(SO_{q+1}),$ $h_{2}\in\pi_{q}(SO_{p+1})$ . We con-
sider two bundles $(B_{1}, S^{p+1}, D^{q+1}, p_{1})$ and $(B_{2}, S^{q+1}, D^{p+1}, p_{2})$ with characteristic
maps $h_{1}$ and $h_{2}$ respectively. We can write $B_{1}=D_{+}^{p+1}\times D^{q+1}\bigcup_{h_{1}}D_{-}^{p+1}\times D^{q+1}$ and

$B_{2}=D_{+}^{q+1}\times D^{p+1}\bigcup_{h_{2}}D_{-}^{q+1}\times D^{p+1}$ where $D_{\pm}^{p+1}\times D^{q+1}=p_{1}^{-1}(D_{\pm}^{p+1})$ and $D_{f}^{q+1}\chi D^{p+1}=$

$p_{2}^{-1}(D_{\pm}^{q+1})$ . The plumbing manifold of $B_{1}$ and $B_{2}$ is defined to be the oriented
differentiable $(p+q+2)$-manifold obtained as a quotient space of $B_{1}\cup B_{2}$ by
identifying $p_{1}^{-1}(D^{\underline{p}+1})=D^{\underline{p}+1}\times D^{q+1}$ and $p_{2}^{-1}(D_{+}^{q+1})=D_{+}^{q+1}\times D^{p+1}$ by the relation
$(x, y)=(y, x)(x\in D^{\underline{p}+1}=D^{p+1}, y\in D^{q+1}=D_{+}^{q+1})$ and is denoted by $B_{1^{}}^{}B_{2}$ .

The boundary $\partial(B_{1^{}}^{}B_{2})$ can be seen as follows. Let $f$ : $S_{\dashv}^{p}\times S^{q}\rightarrow S^{\underline{q}}\times S^{J\rangle}$

be the diffeomorphism defined by $f(x, y)=(h_{1}(x)y,$ $h_{2}(h_{1}(x)y)x)$ . Attaching two

manifold $D_{+}^{p+1}\times S^{q}$ and $D_{-}^{q+1}\times S^{p}$ by the diffeomorphism $f:S_{+}^{p}\times S^{q}\rightarrow S_{-}^{q}\times S^{p}$ , we
have $D_{+}^{p+1}\times S^{q}\bigcup_{f}D_{-}^{q+1}\times S^{p}=\partial(B_{1^{}}^{}B_{2})$ . Therefore $\partial(B_{1^{}}^{}B_{2})$ is a homotopy

sphere by the same argument of the pairing $K_{1}$ . The pairing $K_{2}$ is defined
by $K_{2}(h_{1}, h_{2})=\partial(B_{1^{}}^{}B_{2})$ and one can easily prove that it is well-defined like
$K_{1}$ . $\Gamma_{p.q}^{\prime}$ denotes the subgroup of $\Gamma_{p+q-1}$ generated by the image of the pairing
$K_{2}$ : $\pi_{p-1}(SO_{q})\times\pi_{q-1}(SO_{p})\rightarrow\Gamma_{p+q-1}$ . $\Gamma_{p.q}^{\prime\prime}$ denotes the subgroup of $\Gamma_{p,q}^{\prime}$ generated
by the image of the restricted pairing $K_{2}^{\prime}$ : $\pi_{p-1}(SO_{q})\times s\pi_{q-1}(SO_{p-1})\rightarrow\Gamma_{p+q-1}$

where $s$ is a natural map $s:\pi_{q-1}(SO_{p-1})\rightarrow\pi_{q-1}(SO_{p})$ .
Then the following theorems will be proved.
THEOREM A. Let $M^{m}$ be the simply connected $\pi$ -manifold with $H_{i}(M^{m})=0$

for $i\neq 0,$ $p,$ $q,$ $p+q=m$ . Then $I(M^{m})\subset\Gamma_{p+1.q}^{\prime}$ for $p<q-1,$ $q<2p$ .
THEOREM B. There exists a manifold $M^{m}$ such that $\Gamma_{p+1q}^{\prime\prime}=I(M^{m})$ for

$p<q,$ $p+q=m$ .
THEOREM C. $K_{1}(\pi_{p}(SO_{q+1}),\tilde{S}^{q+1})=I(S^{p}\times\tilde{S}^{q+1})$ , for $p\neq q,$ $p+q\geqq 4$ .
COROLLARY 1. Let $\tilde{S}^{14}\neq S^{14}$ . Then $I(S^{3}\times\tilde{S}^{14})$ contains $S^{17}$ which does not

belong to $\Theta_{17}(\partial\pi)$ .
COROLLARY 2. Let $\tilde{S}^{10}$ be the generator of the 3-component of $\Theta_{10}\cong Z_{2}\oplus Z_{3}$ .

Then $I(S^{3}\times\tilde{S}^{10})$ is equal to $\Theta_{13}$ .
COROLLARY 3. $I(S^{p}\times S^{q})=0$ for $p+q\geqq 5$ therefore $I(S^{3}\times S^{14})\neq I(S^{3}\times\tilde{S}^{14})$

and $I(S^{3}\times S^{10})\neq I(S’ \times\tilde{S}^{10})$ . These show that the inertia group is neither $PL$

homeomorphism invariant nor tangential homotopy equivalence invariant and
that the conjecture of Novikov is negative.

COROLLARY 4. If $\tilde{S}^{q}$ is embeddable in $M^{p+q}$ with trivial normal bundle,

then $I(M)$ contains $K_{1}(\pi_{p}(SO_{q}),\tilde{S}^{q})$ . (Cf. Theorem of Munkres in [7].)

REMARK. Smooth structures on $S^{p}\times S^{q}$ are completely classified by com-
bining Theorem $C$ and the Novikov’s work [10].
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\S 3. A lemma.

In this section we assume $p<q$ . Let $c_{1}$ be the zero cross section of the
bundle $(B_{2}, S^{q+1}, D^{p+1}, p_{2})$ . If the characteristic map $h_{2}$ of $B_{2}$ is contained in
Image $s$ where $s:\pi_{q}(SO_{p})\rightarrow\pi_{q}(SO_{p+1})$ , then we can write $B_{2}=B_{2}^{\prime}\oplus 0_{1}$ where $0_{1}$

denotes the trivial l-disk bundle and $B_{2}^{\prime}$ is $D^{p}$ bundle over $S^{q+1}$ with the
characteristic map $h_{2}^{\prime}\in\pi_{p}(SO_{q})$ such that $sh_{2}^{\prime}=h_{2}$ . The trivial l-disk bundle
$0_{1}$ can be written as $0_{1}=S^{q+1}\times I[-1,1]$ . Let c\’i be the zero cross section of

1
$B_{2}^{\prime}$ and $c_{2}$ the cross section of $B_{a}$ which is written as $c\{\oplus-$-using the above
expression.

In $B_{2}$ , we take two tubular neighborhoods $T_{1}$ and $T_{2}$ of $c_{1}$ and $c_{2}$ respec-
tively such that $T_{1}\cap T_{2}=\phi,$ $T_{1}\subset IntB_{2},$ $T_{2}\subset IntB_{2}$ and $T_{1}\cap D_{+}^{q+1}\times D^{p+1}$

$=D_{+}^{q+1}\times U_{\epsilon},$ $T_{2}\cap D_{+}^{q+1}\times D^{p+1}=D_{+}^{q+1}\times U_{\text{\’{e}}}^{\prime}$ where $D_{+}^{q+1}\times D^{p+1}$ denotes the first part

of $B_{2}$ and U. and $U_{\epsilon}^{\prime}$ are $\epsilon$ neighborhoods of $0\times 0$ and $0\times\frac{1}{2}$ in $D^{p}\times I[-1,1]$

$=D^{p+1}$ respectively.
Since $c_{2}$ is diffeotopic to $c_{1},$ $T_{1}$ and $T_{2}$ are diffeomorphic to $B_{2}$ . Let

$X=B_{1^{}}^{}B_{2}$ . We connect $\partial T_{1}$ and $\partial X$ by an imbedding 1: $I[0,1]\rightarrow X$ such that
l(lnt $I$) $\cap T_{1}=\phi,$ $l(I)\cap T_{2}=\phi,$ $l(IntI)\cap\partial X=\phi,$ $l(I)\cap T_{1}=l(0),$ $l(I)\cap\partial X=l(1)$

and $l(I)$ is contained in (Int $D_{-}^{q+1}$ ) $\times D^{p+1}$ . We take a tubular neighborhood $T$ of
1(I) in $X-$ Int $T_{1}-T_{2}$ , which is clearly diffeomorphic to $I\times D^{p+q+1}$ . Let $T$ ’

$=T_{1}\cup T$. Let $Y$ denote $X-$ (Int $ T_{1}^{\prime}\cup l(1)\times$ Int $D^{p+q+1}$).
LEMMA. $Y$ is diffeomorphic to $T_{2}$ for $\dim Y\geqq 6$ .
PROOF. In case where $p>1$ . According to Smale [10], if the natural

inclusion $c:T_{2}\rightarrow Y$ induces a homotopy equivalence and $\pi_{1}$ ( $Y$–Int $T_{2}$) $=\pi_{1}(\partial T_{2})$

$=\pi_{1}(\partial Y)=\{1\}$ , then $T_{2}$ is diffeomorphic to $Y$. It is easy to see that $\pi_{1}$( $Y-$ Int $T_{2}$)
$=\pi_{1}(\partial T_{2})=\pi_{1}(\partial Y)=\{1\}$ . Firstly we prove that $\zeta$ : $T_{2}\rightarrow Y$ induces an isomor-

phism of homology groups. We put $ Y^{\prime}=\partial T_{1}^{\prime}-(l(1)\times$ Int $D$).
We shall examine the next commutative diagram.

$\partial_{*}$

$-H_{i+1}(Y\downarrow\approx’ Y^{\prime})\rightarrow H_{i}(Y^{\prime})\rightarrow H_{i}(Y)H_{i}(Y,Y^{\prime})0\downarrow\supset\downarrow\overline{0}1\approx\rightarrow$

$(*)$

$-H_{i+1}(X, T_{1}^{\prime})\rightarrow H_{i}(T_{1}^{\prime})\rightarrow H_{i}(X)-H_{i}(X, T_{1}^{\prime})\rightarrow$

where $H_{i}(Y, Y^{\prime})$ is isomorphic to $H_{i}(X, T_{1}^{\prime})$ by the excision isomorphism.
$1\leqq i\leqq q$ : It is easy to see that $H_{i}(Y)\approx 0$ from the diagram $(*)$ .
$i=q+1$ : In the diagram $(*)$ , putting $i=q+1$ , the isomorphisms $H_{q+1}(Y^{\prime})$

$\approx H_{q+1}(T\{)\approx Z$ and $H_{q}(Y^{\prime})\approx H_{q}(T_{1}^{\prime})\approx 0$ hold. Hence we obtain the isomorphisms
$H_{q+1}(Y)\approx H_{q+1}(X)\approx Z$ by the five lemma. The composition $c^{\prime}\circ c$ of the natural
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maps $H_{q+1}(T_{2})\rightarrow^{f}H_{q+1}(Y)^{e}\rightarrow^{\prime}H_{q+1}(X)$ is an isomorphism and $C^{\prime}$ is an isomorphism
from the above. Consequently $f$ is an isomorphism.

$q+2\leqq i$ : The isomorphisms $H_{i}(Y)\approx H_{i}(X)\approx 0$ are easily deduced from
the diagram $(*)$ likewise. On the other hand $H_{i}(T_{2})$ is $z$ero except for $i=0$ ,
$q+1$ . Thus we can conclude that the natural inclusion $c:T_{2}\rightarrow Y$ induces the
isomorphism of homology groups. Hence the natural inclusion $c^{\prime\prime}$ : $\partial T_{2}\rightarrow$

$Y-$ Int $T_{2}$ induces the isomorphism of homology groups by the excision isomor-
phism i. e. ”’ gives a homotopy equivalence. Making use of the Poincar\’e-
Lefschetz duality theorem, the natural inclusion $c^{\prime\prime\prime}$ ; $\partial Y\rightarrow Y-$ Int $T_{2}$ induces the
isomorphism of homology groups $i$ . $e$ . $\zeta^{\prime\prime\prime}$ gives a homotopy equivalence (see

J. H. C. Whitehead [19]). Hence ( $Y-$ Int $T_{2},$ $\partial T_{2},$ $\partial Y$ ) is an h-cobordism and $T_{2}$

is diffeomorphic to $Y$ .
In case where $p=1$ :

Since $\pi_{q}(SO_{z})=0$ for $q\geqq 2$ , one has $T_{2}=S^{q+1}\times D^{2}$ . Since $\pi_{1}(X)=\{1\}$ and

$Y=X-(IntT_{1}^{\prime}\cup l(1)\times IntD^{q+2})$ , any element of $\pi_{1}(Y)$ is homotopic into
$\partial T\{-1(1)\times$ Int $D^{q+2}$ by the Van Kampen’s theorem. As the generator of
$\pi_{1}(\partial T_{1}^{\prime}-l(1)\times IntD^{q+2})\cong\pi_{1}(\partial T_{1}^{\prime}-IntD^{q+2})\cong\pi_{1}(S^{q+1}\times S^{1}-IntD^{q+2})\cong Z$, one can

take a fibre $*\times S^{1}$ of $\partial T_{1}^{\prime}$ . But this is homotopic to $\partial D^{2}\times 0$ when we write
$B_{1}$ as $D^{2}\times D^{q+1}\cup D^{2}\times D^{q+1}$ and homotopic to zero in $Y$. On the other hand,
one has $\pi_{1}(\partial T_{2})=\pi_{1}(S^{q+1}\times S^{1})\cong Z$ and $\pi_{1}(\partial Y)=\pi_{1}(\partial T_{1}^{\prime}\#\partial X)\cong Z$. Since the
generator of $\pi_{1}(\partial Y)$ is homotopic to the generator of $\pi_{1}(\partial T_{2})$ in ( $Y$–Int $T_{2}$) and
$\pi_{1}(Y)=\{1\}$ we obtain $\pi_{1}$( $Y$–Int $T_{2}$) $\cong Z$. Apparently inclusions of universal
coverings $\partial T\sim_{2}\rightarrow\overline{Y-IntT_{2}}$ and $\partial Y\sim\rightarrow\overline{Y-IntT}_{2}$ induce homology isomorphisms.
Thus inclusions $\partial T_{2}$ $\rightarrow Y$–Int $T_{2}$ and $\partial Y\rightarrow Y$–Int $T_{2}$ are homotopy equivalences
(see J. H. C. Whitehead [19]). When $\pi_{1}\cong Z$, Whitehead group is trivial and
s-cobordism theorem (M. Kervaire [4]) implies that $Y$–Int $T_{2}=\partial T_{2}\times I$. Con-
sequentely $Y$ is diffeomorphic to $T_{2}$ . This completes the proof of Lemma.

\S 4. Proof of Theorems.

(a) PROOF OF THEOREM A. Firstly we shall prove this theorem when $M^{m}$

bounds a $\pi$-manifold $W^{m+1}$ which is $[\frac{m+1}{2}]$ -connected. If $\tilde{S}\in I(M)$ , there

exists a diffeomorphism $f:M^{m}$–Int $D^{m}\rightarrow M^{m}-$ Int $D^{m}$ such that $f|\partial D^{m}\in\Gamma_{m}$

represents $\tilde{S}$ (see I. Tamura [13]). (Here we identified $\Gamma_{m}$ and $\Theta_{m}$ by the
theorem of Smale.) Using this diffeomorphism $f$, we construct a manifold
$W\bigcup_{f}W$ which is denoted by $X$. Clearly the boundary $\partial X$ is diffeomorphic to

$\tilde{S}$. One has easily $\pi_{1}(X)=\{1\}$ by the Van Kampen’s theorem. Making use of
the Mayer-Vietoris exact $sequence\rightarrow H_{i}$($M-$ Int $D$) $\rightarrow H_{i}(W)\oplus H_{i}(W)\rightarrow H_{i}(X)\rightarrow$
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$H_{i-1}$ ($M-$ Int $D$) $\rightarrow$ and the Poincar\’e-Lefschetz duality theorem, $ H_{i}(W)\cong$

$H^{m+1- i}(W, M)$ , it is easy to see that

$H_{i}(X)\approx\left\{\begin{array}{l}Z i=0\\Z\oplus\cdots\oplus Z i=p+1,q\\0 otherwise.\end{array}\right.$

Let $a_{1}^{\prime},$ $\cdots$ , $a_{k}^{\prime}\in H_{p}(M)$ and $b_{1}^{\prime},$ $\cdots$ , $b_{k}^{\prime}\in H_{q}(M)$ (for some k) be bases whose inter-
section numbers are $a_{i}^{\prime}\circ b_{j}^{\prime}=\delta_{ij}$ . Let $f_{i}^{\prime}$ : $S^{p}\rightarrow M,$ $i=1,$ $\cdots$ , $k$ be the mapping
such that $[f_{i}^{\prime}(S^{p})]=a_{i}^{\prime}$ where $[f_{i}^{\prime}(S^{p})]$ denotes the homology class represented
by $f_{i}^{f}(S^{p})$ . By Whitney’s imbedding Theorem [20], we may suppose that $f_{i}^{\prime}$

($i=1,$ $\cdots$ , k) are imbeddings and $f_{i}^{\prime}(S^{p})\cap f_{j}^{\prime}(S^{p})=\phi i\neq j$ . Let $i:$ $M$–Int $D\rightarrow W$

be a natural inclusion map. Since $i_{*}[f_{i}^{\prime}(S^{p})]=0$ and $i_{*}f_{*}[f_{i}^{\prime}(S^{p})]=0$ , we can
extend $f_{i}^{\prime}$ and $f\circ f_{i}^{\prime}$ to $f_{i}^{+}:$ $D_{+}^{p+1}\rightarrow W$ and $f_{i}^{-}:$ $D^{p+1}\rightarrow W$. These give an imbed-
ding $f_{i}$ : $\tilde{S}^{p+1}\rightarrow X$ such that $[f_{i}(\tilde{S}^{p+1})]=a_{i}$ , where $a_{i}$ is a generator of $H_{p+1}(X)$

such that $\partial_{*}a_{i}=a_{i}^{\prime}$ where $\partial_{*}$ is a boundary homomorphism of Mayer-Vietoris
exact sequence:

$\partial_{*}$

$\rightarrow H_{p+1}(W)\oplus H_{p+1}(W)00llll\rightarrow H_{p+1}(X)\rightarrow$

$H_{p}$($M$–Int $D$)
$\approx\rightarrow H_{p}0^{(W)\oplus H_{p}}0^{(W)\rightarrow}l111$

Here we may assume that $\tilde{S}^{p+1}$ is a natural sphere and $ f_{i}(S^{p+1})\cap f_{j}(S^{p+1})=\phi$

$i\neq j$ . Let $N(f_{i})$ be a tubular neighborhood of $f_{i}(S^{p+1})$ in Int $X(i=1,$ $\cdots$ , $ k\rangle$

such that $N(f_{i})\cap N(f_{j})=\phi i\neq j$ . $N(f_{i})$ is a $D^{q}$-bundle over $S^{p+1}$ ; $(N(f_{i}),$ $S^{p+1}$ ,
$D^{q},\overline{p}_{i})$ . Let $\hat{X}=N(f_{1})\mathfrak{h}\cdots \mathfrak{h}N(f_{k})\subset$ Int $X$ be a boundary connected sum of
$N(f_{1}),$ $\cdots$ , $N(f_{k})$ in Int $X$. According to Smale [12], we have a handlebody
decomposition as follows:

$ X=(N(f_{1})\mathfrak{h}\cdots$ ta $N(f_{k}))\cup D_{1}^{q}\times D_{1}^{p+1}\cup\cdots\cup D_{k}^{q}\times D8^{+1}$

and that we can suppose that the handle $D_{i}^{q}\times D_{\iota}^{p+1}$ represents the homology
class $b_{i}$ ($i=1,$ $\cdots$ , k) where $b_{i}$ denotes the image of $b_{i}^{\prime}$ by the natural isomor-
phism $H_{q}(M)\rightarrow H_{q}(X)$ . Thus the homotopy type of $X$ is given by $ X\simeq S_{1}^{p+1}\vee$

$\approx$

... $\vee S_{k}^{p+1}\cup e_{1}^{q}\cup\cdots\cup e_{k}^{q}$ . Since each $e_{i}^{q}$ attaches to equators of $S_{1}^{p+J}\vee\cdots\vee S_{k}^{p+1}$ ,
$X$ has the homotopy type $X\simeq S_{1}^{p+1}\vee\cdots\vee S_{k}^{p+1}\vee S_{1}^{q}\vee\cdots\vee S_{k}^{q}$ . According to

I. Tamura [15], $X$ can be written as $(N(f_{1})_{\vee}^{}N(g_{1}))\#\cdots$ ta $(N(f_{k})_{\vee}^{}N(g_{k}))$ .
(Where $g_{i}$ is an imbedding of the homology generator $b_{i}.$) Since we can write
$\partial(N(f_{i})_{\vee}^{}N(g_{i}))=K_{2}(h_{1}^{i}, h_{2}^{i})$ where $h_{1}^{i}\in\pi_{p}(SO_{q}),$ $h_{2}^{i}\in\pi_{q-1}(SO_{p+1})$ are characteristic

maps of the bundles $N(f_{i})$ and $N(g_{i})$ respectively, $I(M^{m})\subset\Gamma_{p+1.q}^{\prime}$ . Thus Theo-

rem A is proved when $M^{m}$ bounds a $\pi$ -manifold $W^{m+1}$ which is $[\underline{m}2\underline{+1}]$ -con-
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nected.
Secondly we shall prove that the general case is reduced to the case above.

One has easily that $I(M)=I(M\# S)$ and $I(M)+I(M^{f})\subset I(M\# M^{\prime})$ , therefore if
one proves that $M\#S$ or $M\# M\#^{S}$ bounds a $\pi$ -manifold $W$ which is
$[\frac{m+1}{2}]$ -connected, the proof of Theorem A is complete. If $m\neq 8k+6$, there

exists a homotopy sphere $\tilde{S}$ such that $M\# S$ is a boundary of a $\pi$ -manifold $W$ .
(Cf. E. H. Brown and F. P. Peterson [2].)

If $m=8k+6$ there exists a homotopy sphere such that $M\#^{S}$ or $M\# M\#^{S}$

is a boundary of a $\pi$ -manifold $W$.
At first we will kill the fundamental group of W. $H_{i}(W^{m+1})$ for

$i\leqq[\underline{m}2\underline{+1}]-1$ can be killed by surgeries inductively.

Case $m+1=2n+1$ . Since $H_{n}(\partial W)\approx H_{n+1}(\partial W)\approx 0,$ $H_{n}(W)$ can be killed (see

C. T. C. Wall [17]).

Case $m+1=4n$ , there exists a $\pi$ -manifold $W^{\prime}$ such that index $7V^{\prime}=$ -index
$W$ and $\partial W^{\prime}$ is a homotopy sphere and that $H_{i}(W^{\prime})=0$ for $1\leqq i\leqq 2n-1$ . Since
$H_{2n}(\partial(W\mathfrak{h}W^{\prime}))\approx H_{2n-1}(\partial(W\# W^{\prime}))\approx 0$ and index $W\# W=0$ , we can kill

$H_{2n}$( $W$ in $W^{\prime}$) completely by surgeries (see J. Milnor [9]).

Case $m+1=4n+2$ . $H_{2n+1}$( $W$ ta $W$) can be killed, since $ H_{2n+1}(\partial$ ( $W$ ta $W$) $)$ .
$=H_{2n+1}(M\# M)\approx O,$ $ H_{2n}(\partial$( $W$ in $W$)$)=H_{2n}(M\# M)\approx O$ and Arf invariant of $W\mathfrak{h}W$

is zero. Consequently $M\# S$ or M#M# $S$ for some $\tilde{S}^{m}$ bounds a $\pi$ -manifold
$W^{m+1}$ which is $[\underline{m}2\underline{+1}]$ -connected. Thus Theorem A is completely proved.

(b) PROOF OF THEOREM B. Let $\alpha_{i}=K_{2}(h_{1}^{i}, sh_{2}^{j})\in\Gamma_{p+1.q}^{\prime\prime}$ for $h_{i}^{?}\in\pi_{p}(SO_{q})$

$h_{2}^{i}\in\pi_{q- 1}(SO_{p})i=1,$ $\cdots$ , $k$ such that $\{\alpha_{i}(i=1, \cdots , k)\}$ generate $\Gamma_{p+1.q}^{\prime\prime}$ . Let $(B_{i}$ ,
$S^{p+1},$ $D^{q},$ $p_{i}$) and $(B_{i}^{\prime}, S^{q}, D^{p+1}, p_{i}^{\prime})$ be disk bundles over spheres with charac-
teristic maps $h_{1}^{i},$ $sh_{2}^{i}$ respectively. We denote $B_{i^{}}^{}B_{t}^{\prime}$ by $X_{i}$ . By Lemma in \S 3
$X_{i}$ can be written as $T_{i}\bigcup_{p_{i}}T_{i}$ where $T_{i}$ is a disk bundle over sphere with

characteristic map $sh_{2}^{i}$ and $F_{i}$ is an orientation reversing diffeomorphism
F. : $\partial T_{i}-$ Int $D\rightarrow\partial T_{i}-$ Int $D$ . Since there is an orientation reversing diffeomor-
phism $R:T_{i}\rightarrow-T_{i}$ using a cross section,

$\alpha_{i}=\partial X_{i}=\partial(T_{i}\bigcup_{F_{i}}T_{i})=\partial(T_{i}\bigcup_{F_{i}R}-T_{i})$ .
Hence $I(\partial T_{i})$ contains $\alpha_{i}$ . Thus if we take $\partial T_{1}\#\cdots\#\partial T_{k}$ as $M,$ $ I(M)=I(\partial T_{1}\#$

... $\#\partial T_{k}$) $\supset I(\partial T_{1})+\cdots+I(\partial T_{k})=\Gamma_{p+1,q}^{\prime\prime}$ . Next we shall prove that reversed inclu-
sion $I(M)\subset\Gamma_{p+1.q}^{\prime\prime}$ holds. For any element $\alpha\in I(M)$ , there is a diffeomorphism
$F:M-$ Int $D\rightarrow M-$ Int $D$ , such that $F|\partial D\in\Gamma_{p\dashv q}$ represents $\alpha$ . We put $T=T_{1}\mathfrak{h}$

... ta $T_{k}$ . Then we construct a manifold $X$ such that $X=T\bigcup_{F}T$ where $F$ is the

above map. Since $H_{i}(T)$ is clearly zero for $i\leqq[\frac{m+1}{2}],$
$X=T\bigcup_{F}T$ can be

written as $X=(B_{1^{}}^{}T_{1})\eta\cdots q(B_{k\vee}^{}T_{k})$ by the analogous method in the proof
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of Theorem $A$ , where $B_{i}$ is a disk bundle over sphere with some characteristic
map $h_{1^{i}}^{\prime}\in\pi_{p}(SO_{q})i=1,$ $\cdots$ , $k$ . Hence $\alpha=\partial X$ is contained in $\Gamma_{p^{\prime}+1.q}^{J}$ . Thus
$I(M)=\Gamma_{p+1.q}^{\prime\prime}$ .

(c) PROOF OF THEOREM C. When $p>q$ , we have $S^{p}\times S^{q+1}=S^{p}\times S^{q+1}$ .
(See W. C. Hsiang and J. Levine and R. H. Szczarba [3].) From the proof of
Corollary 3 in the later, we have $I(S^{p}\times S^{q+1})=I(S^{p}\times S^{q+1})=\{0\}$ . On the other

hand $K_{1}(\pi_{p}(SO_{q+1}),$ $S^{q+1})$ is contained in $I(S^{p}\times\tilde{S}^{q+1})$ by Lemma. Therefore

Theorem $C$ trivially holds when $p\geq q$ . Now we may assume $p<q$ . First we
shall prove that $I(S^{p}\times S^{q+1})$ contains $K_{1}(\pi_{p}(SO_{q+1}),$ $S^{q+1})$ . Let $\alpha=K_{1}(h, S^{q+1})$

$\in K_{1}(\pi_{p}(SO_{q+1}),$ $S^{q+1})$ . We now construct two disk bundles, $B_{1},$ $B_{2}$ as follows.

Let $(B_{1}, S^{p-\vdash 1}, D^{q+1}, p_{1})$ be a disk bundle with a characteristic map $h$ , and $(B_{2}$ ,
$\tilde{S}^{q+1},$ $D^{p+1},$ $p_{2}$) be the trivial bundle over a homotopy sphere $S^{q+1}$ . On the other
hand the pairing $K_{1}$ can be interpreted as follows. Let $r\in\Gamma_{q+1}$ be a corre-
sponding element of $S^{q+1}\in\Theta_{q+1}$ . One defines the diffeomorphism $F^{\prime}$ : $S^{p}\times S^{q}$

$\rightarrow S^{p}\times S^{q}$ by $F^{\prime}(x, y)=(x,$ $rh(x)y)$ . Attaching two manifolds $W_{1}=D^{p+1}\times S^{q}$ and

$W_{2}=S^{p}\times D^{q+1}$ by the diffeomorphism $F^{\prime}$ : $S^{p}\times S^{q}\rightarrow S^{p}\times S^{q}$ , we have a homo-
topy sphere $\Sigma^{\prime}=D^{p+1}\times S^{q}\bigcup_{F}S^{p}\times D^{q+1}$ for $p<q$ . Then $\Sigma^{\prime}$ is diffeomorphic to

$\Sigma$ by the diffeomorphism $f:D^{p+1}\times S^{q}\bigcup_{F}S^{p}\times D^{q+1}\rightarrow D^{p+1}\times S^{q}\bigcup_{F}S^{p}\times D^{q+1}$ defined
by

$f=id\times r^{-1}$ on $D^{p+1}\times S^{q}$

and
$f=id\times id$ on $S^{p}\times D^{q+1}$ .

It is easy to see that $f$ is a diffeomorphism between $\Sigma$ and $\Sigma^{\gamma}$ . Let $G_{1}$ be a

diffeomorphism $G_{1}$ : $S^{p}\times D^{q+1}\rightarrow S^{p}\times D^{q+1}$ defined by $G_{1}(x, y)=(x,$ $h(x)y)$ . Let

$B_{1}=D_{+}^{p+1}\times D^{q+1}\bigcup_{G_{1}}D_{-}^{p+1}\times D^{q+1}$ . Let $G_{2}$ be a diffeomorphism $G_{2}$ : $S^{q}\times D^{p+1}$

$\rightarrow S^{q}\times D^{p+1}$ defined by $G_{2}(x, y)=(r(x),$ $y)$ . Let $B_{2}=D_{+}^{q+1}\times D^{p+1}\bigcup_{G_{2}}D^{\underline{q}+1}\times D^{p+1}$ .
We define $B_{1\vee}^{O}B_{2}$ to be the oriented differentiable $(p+q+2)$-manifold obtained
as a quotient space of $B_{1}\cup B_{2}$ by identifying $D_{-}^{p+1}\times D^{q+1}$ of $B_{1}$ and $D_{+}^{q+1}\times D^{p+1}$

of $B_{2}$ in such a way that $(x, y)=(y, x)(x\in D^{\underline{p}+1}=D^{p+1}, y\in D^{q+1}=D_{+}^{q+1})$ . Let
$G_{1}^{\prime}=G_{1}|S^{p}\times S^{q}$ and $G_{2}^{\prime}=G_{2}|S^{q}\times S^{p}$ . Using a diffeomorphism $R:S^{p}\times S^{q}\rightarrow S^{q}\times S^{p}$

defined by $R(x, y)=(y, x)$ , we define $G_{2}^{\prime\prime}=R^{-1}G_{2}^{\prime}R$ . Then we have $F^{\prime}=G_{2}^{\prime\prime}G_{1}^{\prime}$

and $\partial(B_{1\vee}^{O}B_{2})=D_{+}^{p+1}\chi S^{q}$
$\bigcup_{\prime\prime\prime,G_{2}G_{1}}D^{\underline{q}+1}\times S^{p}=D_{+}^{p+1}\chi S^{q}\bigcup_{F^{\prime}}D^{\underline{q}+1}\chi S^{p}=\Sigma’=\Sigma$

. Thus $\alpha$

can be written as $\partial(B_{1\vee}^{O}B_{2})$ . Considering a trivial $S^{p}$ bundle over $S^{q+1}$ in place
of $S^{p}$ bundle over $S^{q+1}$ of Lemma, quite analogously, one has that $B_{1\vee}^{O}B_{2}$ is
diffeomorphic to $B_{2}\bigcup_{H}B_{2}$ where $H$ is a diffeomorphism $H:\partial B_{2}-IntD\rightarrow\partial B_{2}-IntD$ .
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Therefore $\alpha=\partial(B_{1\vee}^{O}B_{2})=\partial(B_{2}\bigcup_{H}B_{2})$ implies that the inertia group of $\partial B_{2}=$

$s^{p}\times S^{q+1}$ contains $\alpha$ . Conversely for any element $\alpha\in I(S^{P}xS^{q+1})$ , there is a
diffeomorphism $H:s^{p}\times S^{q+1}$ –Int $D\rightarrow S^{p}\times S^{q+1}$ –Int $D$ such that $H|\partial D\in\Gamma_{p+q+1}$

represents $\alpha$ . Using this diffeomorphism we construct a manifold $D^{p+1}\times S^{q+1}$

$\bigcup_{H}D^{p+1}\times S^{q+1}$ which is denoted by $X$. Clearly $\partial X=\alpha$ and like the proof of

Theorem $A$ , we can prove that $X$ can be written as $B_{1\vee}^{O}(S^{q+1}\times D^{p+1})$ where $B_{\iota}$

is a disk bundle over sphere with some characteristic map $h\in\pi_{p}(SO_{q+1})$ . This
implies $\alpha=K_{1}(h, S^{q+1})$ and completes the proof of Theorem C.

\S 5. Proof of Corollaries.

(a) PROOF OF COROLLARY 1.
Since the pairing $K_{1}$ is equal to that of Novikov (see [11] p. 235), next

diagram commutes up to sign.

$\pi_{p}(SO)\times\Gamma_{q+1}\rightarrow\Gamma_{p+q+1}J_{p}\times^{q+}\omega^{1}\downarrow\downarrow\omega$

$K_{1}$

$G_{p}\times G_{q+1}/{\rm Im} J_{q+1}G_{p+q+1}/{\rm Im} J_{p\prec q+1}\overline{C}$

where $G_{i}$ is the stable homotopy group $G_{i}=\pi_{i\dashv\cdot k}(S^{k})$ and $\omega\dot{i}S$ the Kervaire-
Milnor map [5] and $J_{p}$ denotes the Hopf-Whitehead homomorphism and $C$ is
the composition.

The Kervaire-Milnor braid

shows that $\omega(S^{14})$ (where $S^{14}\neq S^{14}$) is rc or $\kappa+\sigma^{2}$ (in Toda’s notation) since
$\phi(\sigma^{2})\neq 0$ (see Levine [8]). But according to Toda’s tables [16], $\nu\circ(\kappa+\sigma^{2})$
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$=\nu\circ$ rc 40 (mod ${\rm Im} J$). Hence $I(S^{3}\times S^{14})=K_{1}(\pi_{3}(SO),$ $S^{14})$ is not contained in
$\Theta_{17}(\partial\pi)$ . This makes the proof complete.

(b) PROOF OF COROLLARY 2. Analogously, for the generator $S^{10}$ of the

three component of $\Theta_{10}=Z_{2}\oplus Z_{3},$ $K_{1}(\pi_{3}(SO),$ $S^{10})=\Theta_{13}$ (cf. S. P. Novikov [11]

and A. Kosinski [6]). So by Theorem $C$ , we have that $I(S^{3}xS^{10})$ is equal to
the whole group $\Theta_{13}$ .

(c) PROOF OF COROLLARY 3. Let $S^{p+q}\in I(S^{p}\times S^{q})$ . Then there is a diffeo-
morphism $f:S^{p}\times S^{q}-$ Int $D\rightarrow S^{p}\times S^{q}-$ Int $D$ such that $f|\partial D\in\Gamma_{p+q}$ represents
$S^{p+q}$ . We now construct a manifold $D^{p+1}\chi S^{q}\bigcup_{f}S^{p}\times D^{q+1}$ which is denoted by

X. If $p<q$ , the homology groups of $X$ are zero except for dimension zero.
On the other hand $\pi_{1}(\partial X)=\pi_{1}(S^{p+q})=\{1\}$ . Hence $X$ is diffeomorphic to a disk
and $S^{p+q}=\partial X$ is a natural sphere. This implies that $I(S^{p}\times S^{q})=0$ for $p<q$ .
Making use of Kosinski’s Theorem [6], and Wall’s [18], $I(S^{p}\times S^{p})=0$ is ob-
tained for $2p\geqq 6$ . Therefore $I(S^{3}\times S^{14})\neq I(S^{3}\times S^{14})$ and $I(S^{3}\times S^{10})\neq I(S^{3}\times\tilde{S}^{10})$ .
These show that the inertia group is neither $PL$ homeomorphism invariant nor
tangential homotopy equivalence invariant. Since $I(S^{3}\times S^{14})$ is not contained
in $\Theta_{17}(\partial\pi)$ , the conjecture of Novikov is negative.

(d) PROOF OF COROLLARY 4. This is obtained as an easy application of
Theorem C.

Osaka University
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