J. Math. Soc. Japan
Vol. 20, No: 4, 1968

On finite groups with a 2-Sylow subgroup isomorphic
to that of the symmetric group of degree 4n

By Takeshi KONDO

(Received April 9, 1968)

§0. Introduction.

Let G be a finite group with a 2-Sylow subgroup isomorphic to that of
the symmetric group of degree 4n. The purpose of the present paper is to
make some remarks on the fusion of involutions of G, which are useful for
the investigations of certain finite simple groups, especially the alternating
group of degree 4n-12 or 4n-+3 and the orthogonal commutator groups
25n15(8, @) ("= —emod 4 and ¢ = +3 mod 8)".

The main results are A and B in §7. We note that
the Thompson subgroup of a 2-Sylow subgroup of G plays the important role
in the discussions in § 2~§6. These can be regarded as a generalization of a
part of [6] Moreover, as an application of A, the author has ob-
tained a characterization of the alternating groups of degrees 4n+42 and 4n-3
in terms of the centralizer of an involution (1, 2) (3, 4) --- (4n—1, 4n). This
will be published in a subsequent paper. Also H. Yamaki has treated
such characterizations of 2, (m=12, 13, 14 and 15), though, for m =12 and
13, A can not be applied and an additional condition is necessary on
account of the existence of the finite simple group Sp.(2).

Notations and Terminology.

J(XD The Thompson subgroup of a group X (cf. [8])?

Z(X) the center of a group X

X’ the commutator subgroup of X

XY a wreath product of a group X by a permutation group Y
x~yin X  x is conjugate to y in a group X

y.r x—lyx

X:y—z =z

[x, v] xlyTlxy

1) For the notations of orthogonal groups, see [T] and [10] Note that if g+
= —emod 4, 2,,1,(¢, ¢) has the trivial center.

2) Recently, the slightly different definition of J(X) from that of [8] is used, but
for groups treated in the present paper, both definitions are the same.
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B a group generated by --- subject to the relations :--..
S, the symmetric group of degree n

€A, the alternating group of degree n

Z, a cyclic group of order n.

Let X be a group isomorphic to &, X is generated by /—1 elements
X1, Xy, +++, X;-; subject to the relations;
xi= e =ah =)' =0x*=1 (1£4,j, k<1-1 and [j—k[> 1.
We call an ordered set of such generators of X a set of canonical generators
of X.

§1. The symmetric groups and the orthogonal groups.

(1.1) Let G be a finite group satisfying the following conditions :

(1) G has a subgroup N, which is isomorphic to a wreath product of a
dihedral group of ovder 8 by the symmetric group of degree n, and

(i) a 2-Sylow subgroup of N is that of G.
Then N has a set of generators A, =w;, 7 and o; 1<k<n and 1<i=<n-—1)
subject to the following relations:

Z%IE’%Z(lkm’c)4=1 ﬂk:(zkn’;c)zy
o Ak 7k ps <An mpp]=1  (kR#h),
*
Gi= =0, =(0,0) =000 =1 (=i j, k=n—1, [j—k|>1D),
A=Ay, TPt =mlyy and [0y, ) =[o, mi1=1 (k#1,1+1).
Put
J=L X X e X ], Je=<{ 46 7%y,
S=85, XS, X - XS, Sk =< Tx Tk »
M=M xM,x - M, My ={my, 44>,
P:<01! Ty **+ 0n—1> ’
Ap =TTy *** Ty s
and

H= CG(an) .

Then J is normal in N. N is a semidirect product of P and J, and is a sub-
group of H. [ is a direct product of n copies J, (1 <k=<n) of a dihedral
group of order 8 S and M are elementary abelian subgroups of order 2**. P
is isomorphic to the symmetric group of degree n.

In this section, we shall give some examples which may be useful for the

3) Cf. [2; p. 287].



Finite groups with a 2-Sylow subgroup 697

understanding of the discussions in §2~8§7.
(1.2) Examples.
(i) The Symmetric Groups: G=&,,. Let m, w;, 4, and o, be involutions
in &,, as follows:
7, = (4k—3, 4k—2)(4k—1, 4k),
mh = (4k—3, 4k—1)(4k—2, 4k),
A= (4k—3, 4k—2),
and

0, = (4i—3, 4i+1D)@4i—2, 4i+2)@di—1, 4i+3)(di, 4i+4).

Then these involutions satisfy the conditions (x).

(ii) The Alternating Group: G =N, (r=2o0r 3). Put 2, =4k—3, 4k—-2)
(4n+1, 4n--2) and let «,, n; and o; be the same as (i). Then these involutions
satisfy the conditions ().

(iii) The Orthogonal Group: G =0,,(¢’,q) where ¢"=¢' mod4 and ¢= +3

mod 8. Let Zznx% be the underlying quadratic form of the orthogonal group

i=1
0,.(¢’, 9).8'By I, we denote the k X £ unit matrix. Put
[2(16'1)
Tp= ( _.[2
[Z(n—k)
[2(76—1) 1
ae( e ] o= Y
Iz(n~k)
Loe-1> 1
A= ( 4 V= ( l)
Iz(n—k)
o, =1, X Py,

where P, denotes the n X n permutation matrix corresponding to the permuta-
tion (i, 1+1) and I, X P; denotes the Kronecker product of marices.

(iv) The Orthogonal Commutator Groups: G = Q,,..(¢, q), where ¢"'= —¢
mod4 and ¢g=+3mod8. Let a be a nonsquare element of the finite field of

2n
q elements and Y x?+x},.,+ax3,., be the underlying quadratic form of the
=1
group £2,,..(¢,q). There is an injective isomorphism of 0,,(¢, ¢) with the
2n
quadratic form Y} x? into the group £,,.,(¢, ¢) (cf. [10, p. 4197). In the present
=1

case, let m,, 7, 4, and o; be the image by this isomorphism of the correspond-
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ing elements in 0,,(¢’, ).

(v) The Wreath Products: G=212,?S,,.
group of order 2** with a set {x,, x,, --
isomorphic to &,, with {y,, z,, y,, -
of Y.

Let X, be an elementary abelian
-, X,,} of generators and Y, be a group
, Zn-1» Yo} as a set of canonical generators
Define the action on X, of Y, as follows;

Xy =2y, (x5 ¥1=1

XS = Xyppy, [ X5 2;]=1

A<i<n, j+2i—1, 2i)
A=<i<n—1, j=+2, 2i+1).

Construct a semidirect product G = X, -Y,. Then G is isomorphic to a wreath
product Z,?2 S
Put

2n*

Ay = Xgi-1,
Y g
Tfi _y‘b )
Ty = Xgi-1%Xa5 »

0= (YY) -
Then these involutions satisfy the conditions (x).

REMARK. In §5, we shall use the following fact: the representatives of
conjugacy classes of involutions of X,-Y, are m} - Ty -+ Tpay (O < RFHIZ 1)
and @ - T Mgy - Tpaady, O=Zk+I<n—-1) (cf. W. Specht [7]). This can be
proved directly without difficulties. ‘

(1.3) In the above examples, we can verify the following statements with-
out difficulty. The verifications are left to the reader.

(i) A 2-Sylow subgroup of N is that of G,

(if) J is generated by all abelian subgroups of N of order 2?* and so, it
is the Thompson subgroup of a 2-Sylow subgroup of G,

(iii) «, is an involution in the center of a 2-Sylow subgroup of G,

(iv) every element of N,(S) induces a permutation on the set {r}, =|r,,
Ty, Wy, -+, Th, TaT,} Which consists of members in a basis of S, and so does
one of N,(M) on the set {1, A,7,, Ay ATs, =+, Any AxT0,}, and

(v) the structure of the normalizers of S and M are given in the follow-
ing table;

| | NuS)CuS) | NalM/Calll) | NoSYCHS) | NotM)/ColM) |
e zie | e cne. | e

T =y S =
A 5| eun S
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§ 2. Elementary abelian subgroups of G.

(2.1) Throughout the rest of the present paper, G denotes a finite group
satisfying the conditions (i) and (ii) in (1.1). Also all notations introduced in
(1.1) will be preserved in the same meanings as there.

We note that J is the Thompson subgroup of a 2-Sylow subgroup of G,
all elementary abelian subgroups of order 22" of J are normal in J, and, S and
M are normal in N.

J, S and M play the important roles in the discussions in §2~§6.

(2.2) LEMMA. Let D be a group isomorphic to a dirvect product of n copies
D, A1<i<n) of a dihedral group of order 2™" (mz=2). Put Z(D;)=/<z;).
Define Auty(D)=1{0 € Aut(D)|zf =z, (1 £ 1 < n)}, where Aut(D) denotes the
automorphism group of D. Then we have (i) every element of Aut(D) induces a
permutation on the set {zy, z,, -, z,} and (i) Auty(D) is a 2-group.

PROOF. Let a, and b; be generators of D, subject to the relations:
aE=0=(@b)"=1 1<1<n). Put ¢;=a;b;, From a theorem of Remak-
Schmidt [5, p. 1307, it follows that, for ¢ = Aut (D), there exists an element r
of &, such that Dy and D.,, are centrally isomorphic. This implies that
(@650 = aoyu; and (bl =b.uj, where s;=t, mod 2 and wu,, uj< Z(D). Then
we get zf =z, Dy taking the product of both equalities and doing its 2™-1-
powers. This proves (i). By counting all the possible choices of s;, #,, u; and
u}, we see that Auty,(D) is a 2-group.

(2.3) LEMMA. Ng(J)=NCs(]).

ProoOF. Put Ny,={o& No(D|rf=n; 1 =:1=n)}. Then we have N,2/C(]).
From (2.2), it follows that Ng(J)= PN, PN\ N,=1 and N,/JCs(]) is a 2-group.
By the assumption (1.1: (ii)), we must have N,=JC4(J). Hence we get
No(J)= NCe(])-

(24) LEMMA. NgS)N\N(M)2 Ng().

PrOOF. This is obvious, because S and M are normal in N and Ng(J)
= NCo(J) by (2.3).

(25) LEMMA. S and M are weakly closed in a 2-Sylow subgroup of G with
respect to G.

Proor. Let D be a 2-Sylow subgroup of N. Suppose that S*C D for
some x = G. Then we have S”<J. Hence we get Ny(S)D/, /*' and we can
find an element y of N4 (S) such that J¥=]""'. Since N4S)2 N, J) by (24),
we get Ns(S)>yx and so S=S"*"=S% Thus we have proved that S is weakly
closed in D with respect to (. Similarly we can prove that M is weakly
closed in D.

(2.6) LEMMA. If any two elements of S (resp. M) are conjugate in G, they
are conjugate in NgS) (resp. Ng(M)). If X ts a 2-subgroup of G containing S
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(resp. M), X normalizes S (resp. M).
Proor. This is an immediate consequence of (2.5).

§ 3. General remarks on the fusion of involutions of G.
(3.1) DEerFINITION. We define some elements of G as follows;
O = T 7y - T A=5k<n)

Ty = TR " T gy *** Ty
O<k+i=n)

Z/C,l = Ay Ayt ApTlpaq = Tha
Top = WS o T gy Tk (O RHI=n—1).

We note that z; /’s(resp. 4;,’s) are representatives of the orbits of elements in
S (resp. M) under the action on S (resp. M) of N.

Throughout the present paper, we shall assume n>2. The special case
n=2 was treated in [6].

(3.2) LEMMA. Any two elements of «,, a,, -+, a, are not conjugate in G.

Proor. By the definition of N and (2.3), any two of «,’s are not conjugate
in Ng(J). On the other hand, if two elements of Z(J) are conjugate in G,
they are conjugate in Ng(J) since J is weakly closed in a 2-Sylow subgroup
of G. From this, our lemma follows.

(3.3) For convenience, we shall introduce the following definition. If an
involution x of G is conjugate to an involution of Z(J), we say that x is of
positive length. Then it follows from the structure of N that x is conjugate
to one of ay, ay, -+, a,. If x~a, in G, we say that x is of length k. Note
that, in Z(/), there is exactly one element of length n, namely «,. Further
we introduce some notations frequently used in subsequent lemmas.

Assume that 7, , is of positive length. Put

l—jlc,l: CJ<7TIC,Z):SI X e X S[c X]}c—l-l Xoeee ><]77,~

Then we have Z(ﬁ,ﬂ,l):S1 K Sy X e XS X Ty, =+ 5 Ty and Uﬁ,l:<zk+l, e, T
Denote by P, , a 2-Sylow subgroup of Cg(m;,;) with ﬁk,LCP,C,ICCG(rr,C,L). Since
m,, is of positive length, P,, contains a subgroup conjugate to /, which is the
Thompson subgroup J(P.;) of P,, Since [—],M is generated by elementary
abelian subgroups of order 2*®, we have U-,MC](P,C,[). Put Uy, =<J, J(P:)>-
Then we have

@D ZUJ(Pr,)) D Ty Thrss 5 Ty

(1) ZWUkp) D Tprrs > Ty and

(iil) U, normalizes lj,w, Z([_j,c,l), U;,, and all elementary abelian subgroups

of U,, of order 2%

In fact, since / normalizes all elementary abelian subgroups of J of order 22»
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and J\J(Py) 2 U,y Uy, normalizes all such subgroups of U, Since Uy, is
generated by elementary abelian subgroups of order 22, we get Uk,l[>l7,c,l
and so Uy, > Z(U,,), U}, because Z(U,,) and U+, are characteristic subgroups
of U,, This proves (iii). (i) follows from the fact that Z(J(P:.)=J(Ps.)’
and U}, C J(Pi,). Then (ii) is obvious. Similarly, under the assumption that
A, is of positive length, we define the followings:

Vk,z - CJ(Zk,Z)’ _

L,,=a 2-Sylow subgroup of Cs(4;,) with V., S L; ;S Cs(4s,,),

Vlc,l =<, ](Lk,l)>'

Then we have
D Z(JLe,) 2 Ayr Trars =+ 5 Tons
1) Z(Vip) @ Tprss =+ Ty and
(iii)’ Vi, normalizes V,C,L, Z( Vk,,) and all elementary abelian subgroups of
V,, of order 2°.
Finally, under the assumption that z,, is of positive length, we construct the
followings:

Wk,l - CJ(Tk,L);

T:,=a 2-Sylow subgroup of Cg(z;,;) with Wk,; ST, C Colrr,n),

Wk,l =<, .](T]c,L)>'

Then we have
@ ZUJT %)) D Ay Tirrs s Tnmps
(D" Z(Wi,) D Tirrs =+ s Tnmys and
(iil)” W, normalizes W,, Z(W,,), Wi, and all elementary abelian sub-
groups of i, , of order 2.

(34) LEMMA. () mpy~a, in G1=0 or k+i=mn, (ii) 4, ~a, in GI=0
or k4+l=n and (iil) v, ~a, in GI=0 or k+l=n—1L

Proor. Suppose that z7,;~a, in G. Then we can construct P, as in
3.3). By 3.3; (1)), we have Z(J(Py.) = Tk ey =5 Ty, Assume by way of
contradiction that /=1 and n>k+4[ Then, since r,,~r, 7,7, in G and
T T Ty € Z(J(Py)), Z(J(Py,)) has two elements of length n, which is
impossible because Z(J/) has only one element of length n. This proves (i).
Similarly, by using L., and T, in (3.3), we obtain (ii) and (iii).

(3.5) LEMMA. () ay~m,,in Gea,~m,-, in G and (ii) a;~2,, in G&
™~ Ay -y i G.

PROOF. Suppose that a,~=x,, in G. We can construct P,, as in (3.3).
Then we have Z(J(P, ) =<x}, @y, ---, @, ). Since there are exactly n elements
of length 1 in Z(j(P,,) which must be ={, =, ---, 7,, we get a,~n=ix, -7,
=T, 4-; iIn G. Conversely, if a,~m,,-, in G, we have Z(J(P,,-,))={n], m,, -,
7.y where P, , is a group constructed for «,,, as in (3.3). Then we get
=741 (W, Wy)~a, in G because =7, ,., is of length n and ny’s 2k <n)



702 T. Konpo

are of length 1. This proves (i). Similarly, we can prove (ii) by using L,,
and L,,., constructed for 2,, and 4, ,-, as in (3.3).

(3.6) LEMMA. We may assume o, *wi and a,+* 24, in G without loss of
generality. (Therefore we shall assume a,» i and a,* A, in G throughout the
rest of this paper.)

Proor. This follows from (3.2) and (3.5), by interchanging x,’s (resp. 4;’s)
by a,m,’s (resp. a,4;’s) if necessary.

(3.7 LeEmMMA. (i) If =f is of positwve length, we have w{~m, and T ;~a,.,.
(i) If 2, is of positive length, we have A, ~m, and A;;~ 0yy.

PROOF. Suppose that m{~a, in G. We have Z(J(P, )= {x{, ,, ==, T, by
(3.3; (). By (3.6), we have n> k. If k>1, by taking suitable n—Fk elements
of s (2<s<n), for example 7wy, -+, Tp (Tpy -+~ T,)7w{ Would be of length n.
This is impossible since m{myy, -+ T ~(T{Tpay -+ T Ty in N and Z(J(P, ) has
only one element of length n. Thus we have shown that, if z{ is of positive
length, #{ must be of length 1 and so n{~=z, in G. Since Z(](Plfo)):<7r{, Ty,
-, m, and =n{ is of length 1, x{r, --- x;,, must be of length [+1. This proves
(i). Similarly we can prove (ii).

(3.8) LEMMA. (1) n{»# 7 in G Ng(S)=Ny(S), where H=_C4a,). (i) 4,
Ay in G2 Neg(M) = Nuy(M).

PROOF. We shall prove (i). Similarly we can work in the case (ii). It is
sufficient to see that «, is not conjugate in G to any element of S other than
a,, and so, by (3.4; (1)) it suffices to see a, * 7 and a, * 74, In G Lk <n).
We shall show this by induction on k. Since n{# =z, in G by our assumption,
it follows from (3.5; (i)) that «, # 7, ,-, in G. This implies that our assertion
is true for k=1. Suppose by the inductive hypothesis that, if 1<h <k, we
have m,,,# a, and 7y, * @, in G. Firstly, we shall show that =, ,_, + «, in
G. Assume by way of contradiction that =, ,~a, in G. Then, since
Z(J(Pi-1)) @ Tyt Tigirs =+ » T A0A 7~ a, in G, we have m,,~a, in G.
We know by (3.3; (iii)) that U,,-; normalizes Z([jk,n_,c): {rl, @y -y T, Ty, Ty,
-+, w,y. From the inductive hypothesis, (3.4; (i)) and 7, ,~ @, in G, it follows
that the totality of elements in Z([-/",c,n_,c) of length n is as follows:

a, and 7y, %,

where x ranges over all elements of (z, ---,r,>. Denote by X the group
generated by them. Then we have X ={m, T4 - Tp, T}, Ty =+, 7Ty and
X<QUygn-r The totality of elements in X of length 1 is

Ty Mgy v, Tp if k<n—1
and
Ty, Mgy *ov s Ty if k=n—1.

Since X<QUy, -, W€ have Uy, D> <7, 7wy, -+, T3y OF {7, 7y, -+, T,» according to
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whether 2 <n—1 or k=n—1. In the second cass, we have [Uy -, 7,7, - 7, )
=1. In the former case, we have [Uj,_; 7, - 7, ]=1 and so [Ug s a,]=1
because Z(Uj y-1) D Tpsys = » T, DY (3.3 (i1)). Thus, in any case, we get Z(Uj ,-)
S a, Then we have a,<c Z(J(P;,-:), which is impossible since a,, 7, &
& Z(J(Py,-1)) and they are of length n. Hence we have proved that «, # 7,
in G. Secondly assume that a,~m,, in G. We have Z(U, o) ={x}, 7}, ---, 7},
7, T, o+, w,> and the totality of elements in Z([?,C,O) of length n is «, and
7x,0%, Where x ranges over all elements of {r,, z,, ---, m;»>. If we denote by V
the group generated by them, we have Y = {m,, Ty - T, Ty, Ty, -++, Ty and
Uk,oD> Y by (3.3; (iii)). By the same argument as above, we get Z(U;,) = «,
and so a, € Z(J(Py,)), which is impossible because a,, 7;, = Z(J(Fy,)) and they
are of length n. Hence we have proved that «,+* 7, in G. This completes
the proof of our lemma.

§4. The case Ny S)> Ny(S).

(4.1) In this section, we shall assume Ng(S)> Ny(S). Then, by (3.8), we
have nj~x, in G. Further, we note that, if we work with M and A’s 1<k
<n) in place of S and #,’s (1 =k < n) respectively, we can obtain the corre-
sponding results for M under the assumption N (M) > Ny(M).

(4.2) LEMMA. We have two possibilities Case I or Case II for the fusion
in G of elements of S according to whether a,~mnin} or a,~mnix) More pre-
cisely, we have

Case I (i) my,~age in G, and

(i1) there exist n elements B, (1 =< s=mn) of Ng(S) of odd order such
that Bs: ny—mi—wms and [ g, me ] =1[fs mil=1 for s+t, or

Case I1 (1) 7op-11~ Mo~ Qpey 10 G and

(i1 there exist n elements B, (1 =s=n)of Ng(S) of odd order such
that By: my—ni—merh and [ B, m,1=1[8s mmil=1 for s+t.

PROOF. Since we have zn{~=m, in G, we can construct [71,0, P, ,and U,,
for an element n{=m,, as in (3.3). For simplicity, we write [71,0:17, P ,=P
and U, ,=U. Then, by (i) and (iii)) of (3.3), we know that Z2(0Y=<x,, 7>
X {m,, =+, w,> and U normalizes Z(U). Since Z(U)=2{rm,, -, 7>, and, w,, 7
and r,z] are only elements of length 1 of Z(0)—<xy, -+, o), We get Up<x, T
Further, since Z(U) 2 (%, -+, >, Z(J(P)) ==}, &y, .-+, 7,y and J(P) is conjugate
in U to J, we have n{~ =, in U. Therefore we have U/Cy({x{, #,>)=&,. This
implies that there is an element 8 of U of odd order such that 8: 7z, —x{—xm x|
By (3.3; (iii)) we know that § normalizes all elementary subgroups of U of
order 2°#, in particular S=5, X -+ X S, and S; X M, X -+ X My_; X Spg X Mpsy X -+
X M, Hence B normalizes their intersection ( Z({]), z}>. Since 8 normalizes
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Z(0) by (3.3; (iii)) and is of odd order, B must centralize an element of
(), 73> —2Z(0), and so one of =}, wix, m,x, and x,m,7, because B cen-
tralizes <{r,, 7y, -+, @,y and =, —x{—mn]. Suppose that [§, n;x{]=1. Then
we get n/f=n,m, which is impossible because n}~r, and #}x, ~ zwiw,~ 7,7,
by (3.7; (i)). Hence we get [B, min{]+# 1. Similarly we have [, mpm,ni]+ 1.
Hence we get [, n;]=1 or [B, njx,]=1. Firstly suppose that [8, n;]=1.
Then we have B:rpr, >rini—n,r,wl. Since wyx{~=xir} in N and w7, ~ «a,
by (3.7; (1)), we get miri~ a,. Secondly suppose that [3, n;7,]=1. Then we
have =i =n,mx]. Hence we get B:r,—nim, x| —rin]. Since ny~aj~m, by
the assumption Ng(S) > Ny(S) and (3.8), we get rni{zri~a,. From these facts it
follows that we have [ 8, n;,1=1or [§, n;x,]=1 according to whether a,~mx;
or a,~mirs. This implies that, if z{zj~«, in G, we must have [, =;]=1 for
any | 2=<1<n), and if n{z,~ a,, we must have [, zjz,]=1 for any [ 2<I=n).

Case I. Suppose that a,~=wixi. If, for every [ (1 <1< n), we start with
n; in place of z{ in the above discussions, we can find an element 8, of Ng(S)
of odd order such that B,:m,—=n,—mmr, and [8, 7] =[B, 7 1=1 for k+#1
Then we have 8183 --- Bi : mp,,— s, Thus we get the first case in our lemma.

Case 1I. Suppose that a,~nxiz, in G. If we start with =] in place of zf
in the above discussions, we can find an element 8, of Ny (S) of odd order
such that 8,: 7, —m;—mm; and [§;, m,] =[f;, mpm]=1 for k=1 If s is even
(I1=<s<mn), we have B, 7, — 7 Tiftsyy - W5y, SiNCE 7, ,~ (T 7)) -+ (TTY Ty -+
Tggy B1; mmi—m, and [ By, mpw, =1 2=k <s). If sisodd (1<s=<n), we have
Bl my,— T Ty s Wy +or Tsgy ™~ Tsoy ey SiNCE B wf—m, and np— 7] 2Zks).
From these it follows that we have z;,~ ay,, ., O .y, 4, according to whether
s is even or odd. This yields the second case in our lemma.

(4.3) REMARK. (i) If we choose S as in §1, the first case in (4.2) occurs
when G=©&,,, W,,., or A,,.,, and the second case in (4.2) does when G = 2,,..,
(e, q). (i) If we take M in §1 as “S” in this section, then only the second
case occurs in both “orthogonal ” and “symmetric” cases.

(4.4) LEMMA. Every element of Ny(S) induces a permutation on the set
{n{, iz, -+, wh, whr,}, which consists of members of a basis of S.

ProoFr. Firstly suppose that we have case I for the fusion in G of ele-
ments of S. By (4.2), it is sufficient to see that n}» x, in Ny(S) 1Lk, [ < n).
If 7*=m, for some x € Ny(S), we would have (n} a,)* = m,a,, Wwhich is impos-
sible because n,a,~ a, and m,a,~a,_, in G. Secondly, suppose that we have
case II. By (4.2), it is sufficient to see that nj » r, and r} » njz,, in Ngy(S)
1=k, I, m<n). In the same way as case I, “r,~x, in N,(S)” is impossible.
If nj¥=mn;, for some x & Ny(S), we would have (a,rx})*=nrjr,a, Which is
impossible because a,r;~a, and w7,a,~7,, ,~a,, in G. This completes
the proof of our lem ma.
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(4.5) LeMMA.
Z,08, for case I

—

@ Nu(S)/Cu(S) =

&, for case II,
and

. 8,06, for case [
(ii) [6(S)/Ce(S) =

G for case II.

Proor. Case I. Firstly we shall determine the structure of N;(5)/Cg(S).
We note that, if we have case I, every element of Ny(S) induces a permuta-
tion on the set {x,, 7, ---, n,} of n elements by (4.2). Put Il ={=}, iz, ---,
rh, whw,) and I,={rn,, m,m,} A1<k=<n). Suppose that IT;II,+ ¢, where
x e Ny(S) and ¢ denotes the empty set. Then we have nj==n}" or (m;m,)" if
rie i1, and znjr,=n? or (mpm,)” if mjm, e lli1l,, For example, if
r,==F, we must have rn,==f. In fact, if nf==x, (h+[), we would have
() =njm, and so (a7} 7w,)* = mjm,a,, which is impossible because a7} 7, ~a,
and 7jz,a, ~a,_, if h+1. Thus we get IIf=1I,. Also in any other cases,
we get [Ig=11, if I~ Il,+ ¢. This implies that Ny(S)/C,(S) is an impri-
mitive permutation group on the set /7 with [/,’s (1 <k <n) as a class of sets
of imprimitivity. On the other hand, N is a subgroup of N,(S) and N Cy(S)
= S. Further, from the structure of N, it follows that NC4,(S)/Cy(S) is the
maximal imprimitive group on the set /I with /I;’s 1<k<n) as a class of
sets of imprimitivity. Hence we have N, (S)= NCyx(S). This implies that
Nuy(S)/Cpy(S)=Z,? S,. Denote by % the image of an element x by the can-
onical homomorphism of Ng4S) onto Ng(S)/Ca(S). Let B, 1 =k=<n) be n ele-
ments defined in (4.2). Then from the action on S of §,, 4, and o< P, it fol-
lows that ff= 37", (A Bl =[Bw Bil=1 (k+1), and Bf =B, Remark that,
in the right hand side of the last equality, ¢ is identified with an element of
@&, (cf. (1.1)). This implies that Ng(S)/Cq(S) contains a subgroup isomorphic
to ©,?9,. On the other hand, since S has 3" elements conjugate in Ng(S) to
a, by case I in (4.2) and (2.6), we have [Ng(S): Ny(S)]=3" This yields that
we must have Ng(S)/Ce(S) =&, S,.

Case IlI. Let 8, (1=k=n) be n elements defined in (4.2: case II). Put
0r = B Brsrfrdry 1 =k<n—1). Then from the action on S of 1, 1<k<n)
and §, 1< k=<n-—1), it follows that N,(S)=d, and the set {,, 61, A5, ***, On-y,
1,} is a set of canonical generators of &,, (for this terminology, see the intro-
duction). Then, by (4.4), we must have Ny(S)/Cy(S)=&,,. Further, from the
action on S of B4, it follows that the set {5,4,, A, 03, *** » Ap_1s On-1, A5} 1S @
set of canonical generators of &,,,,. Since S has 2n+1 elements conjugate in
Ng(S) to «, by (4.2: case II) and (2.6), we have [Ng(S): Ny(S)]=2n-+1. This
yields that Ngi(S)/Cs(S)=&,,,,. This completes the proof of (4.5).
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(4.6) In the rest of the present paper, we shall consider the following
conditions for S and M:

(I every element of Ny(S) induces a permutation on the set {x}, wim,, -

Ty TpTy},
(A) every element of Nyg(M) induces a permutation on the set {A,, ,xy, -
Ay AnTln}-

If Ng(S)> Ny(S) (resp. Ng(M) > Ny(M)), S (resp. M) satisfies the conditions
(II) (resp. (A)) by (4.4). For all examples in §1, S and M satisfy the condi-
tions (/1) and (A1) respectively. Furthermore we note that

(A implies A, » A, 1n G, and

(D) implies n]+ wiz, in G.
In fact, if 4, ~ A7, in G, (2.6) and (A) yield that NgzM)> Ny(M). Hence by
(4.2), we have A,~a, and A,7,~ «a, which is impossible if A, ~ A,7,, because
a,# a, in G. Quite similarly the second statement follows.

4.7) LEMMA. Assume that Ng(S) > Ny(S) and the condition (A). Then we
have one of the followings :

Case ! [Bw Ad=1 for any pair {k, 1} (k£1), or

Case I’ [, A )=1 for any pair {k, I} (k+1),
according to whether mwid,~ A, 07 wA,~A,.

Proor. By (4.2), we know that B,:n,—n,—7nim, and [B;, 7, 1=1 (k=)
in both cases of (4.2). By the proof of (4.2), B, normalizes all elementary
abelian subgroups of Cy/(z}) of order 22" in particular {zx}, > X M, X II S; and

iFk,l

{mh, my X M, X TI M,;. Hence j, normalizes their intersection Y, = Z(J) X<z, 2.
FEk,L

2

s

Then B, must centralize an element of Y,—Z(J) X {x}) because S, normalizes
Z(]) x <z} y and is of odd order. Therefore §8, centralizes one of 4, 4,7}, 77 A,
and 74, since [B;, m,]=1 (k=+[). Suppose that [ An;]=1. Then, from
Qs = (Amh)Pe = ABrr,m),, we get APk = Az, which is impossible as remarked in
(4.6) because A4;~ 4, and A~ A, in G, Secondly suppose that [8i, i med]
=1. Then we get Zl — A,y Which is impossible by the same reason as above.
Thus we have [, 4,1=1 or [Bi A 1=1. If (B, 4, 1=1, we must have A7}
=(A47,)Pe, and so wd,~m A, because A,w,~ Az, and A,w,~Axw, in N. If
(B Al =1, we must have 2, =(4,7;)°k, and so A, ~=jl, in G. Therefore, if
A, ~mA, in G, we must have [, 4,]=1 for any pair {&, [} (k=]1), and if
mjA,~ A, we must have [, 4,7;,]1=1 for any pair {k, [} (R+10). The proof is
complete.

(4.8) LEMMA. Assume that Ng(M)> Nyg(M) and (II). Then we have one
of the followings:

Case 1”7 [yw mi)=1 for any pair {k, I} (kR==1), or

Case 11”7 [y mimel=1 for any pair {k, 1} (k+#1)
according to whether wjd,~ wix, or wd,~mni.  Here y,’s A=k =n) arve the ele-
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ments constructed for M in place of S in (4.2) (cf. (4.1)).

(4.9) LemMA. Assume that Ng(S) > Ny(S) and Ng(M) > Ny(M). Then we
have [ B, 4,1=1 and [y mi]=1 (R =1).

Proor. By (4.4) S and M satisfy the assumptions of (4.7) and (4.8) respec-
tively. Furthermore we know that n{~A,~a, and znir,~md,~a, in G by
(4.2). Therefore by (4.7) and (4.8), it is sufficient to see that #{l, ~a, Put

F={n}, m,) X {2y w,» and X=NgF)/CxF).

We shall determine the structure of X. Firstly we note that, from (4.7) and
(4.8), we have Ny (F)= B, r. for any cases of the lemmas. Take a 2-Sylow
subgroup D of Ng(F") containing /. (Note that j>F.) Then we have D[P J
and so D C Ng(J)N\Ng(F). Since Ng(J)= N-Cq(]), it follows from the struc-
ture of N that D.Cs(F)=<4, nt> - Cx(F). This implies that the four group
(2, > is a 2-Sylow subgroup of X. From the action of 1, and A,7; on F, we
see that 2, and 2,7, are not conjugate in X. Therefore X has a normal 2-
complement, and so [X|=4-3* (0<a<2) by the structure of GL(4, 2) because
X can be regarded as a subgroup of GL(4, 2)= A, Since Ny(F)—Co(F) = By, 70
we get Ng(F)= {2, nth, By, 72 - Ca(F). This yields that [N (F) N Celex,): Co(F)]
=4 and so [NgF): Ng(F)N\Cgla)]=9. Namely, a, has nine conjugates in
Ng(F). Since my, 7}, mi7,, A, 7, and A,m, are of length 1 by (4.2), we must have
midy~a, in Ng(F). This completes the proof of our lemma.

(4.10) LEMMA. Assume that Ng(S) > Ny(S) and (A). Without loss of gen-
erality, we may assume that [, 4,1=1 (k+10).

Proor. If NgM)> Ny(M), our lemma follows from (4.9). Assume that
Ng(M)= Ny(M) and we have case II’ in (4.7), namely [, 47,]=1 for any
pair {k, [} (k=+1[). Then we have [f,, 4a,]=1, because [, m,]=1 (k= h).
We can replace 1/s by Aa,’s (1 <1< n) from the structure of N. (Note that,
since Ny M)=Ngxz(M) and so A,«a, * a,, this replacement does not conflict with
that of (3.6) and does not destroy the condition (4).) Thus we may assume
that [, 4,]1=1 by the suitable choice of notations.

(4.11) LEMMA. Assume that Ng(M) > Ny(M) and (II). Then without loss
of gemerality, we may assume that [y, nj]l=1 (k+1I).

(4.12) Summarizing the results of this section, we obtain the following
theorem.

THEOREM. (1) Assume that NgS)> Ng(S) and M satisfies the condition
(A). Then we have one of the followings:

Case I (i) there exist n elements B; (1 <s=n) of Ng(S) such that

(i-1) Bs is of odd order,
(1—2) ﬁs:”s_’ﬂ'é_"ngﬂs;

(1—3) [ABS’ T = [;Bs, 71'2:] = [ﬁs: Zt] =1 (S + t),
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and
(i) No(S)/Ca(S)=&,2 &, and Nu(S)/Cu(S)=2,2€,,
or
Case II (i) there exist n element B, (1 =s=n) of NuS) such that
(i-1) Bs is of odd order,

(1"2) 188 LT ﬂg - 7Z'§TC$,

(i-3) [Bs rd=[Bs mmi] =[P 41=1 (s # 1),
and
(i) Ng(S)/Co(S)=@,,1y and Ny(S)/Cu(S) = &,
(2) Assume that Ng(M) > Ny(M) and S satisfies the condition ({/I). Then
we have one of the followings:
Case I (i) there exist n elements y; of Ng(M) such that
(-1) ys is of odd order,
(1_2) Vst Tg— Xs"""zsﬂ's:
(i-3) Lrs ml=[re Ad=[rs ml=1 (s £1),
(i) Ne(M)/Ce(M) =&, S, and Ny(M)/Cx(M)=Z,2©,,

or
Case Il (i) there exist n elements y; (1 =s=n) of Ng(M) such that

(i-1) 75 is of odd order,
(i-2) Vst Ty As— AT,

(1‘3) [T&: 77:L:| - [Tsr 'zan's] = [Ts; 71'2] =1 (S * t);
and
(i) No(M)/Ce(M) = &ppsy and Np(M)/Cp(M) = &,,,.
@) If Ng(S)> Ny(S) and No(M) > Ny(M), S and M satisfy (II) and (A)
respectively, and so (1) and (2) hold.

§5. The fusion under the additional assumption to M.

(5.1) In the rest of the present paper, besides the fundamental assumption
to G in (1.1), we shall assume that

) Na(M)/Cx(M)=&,,
and

(i) M satisfies the condition (A) in (4.6).
We remark that, if Ny(M) < Ng(M), (ii) is an immediate consequence of (4.4)
applied to M in place of S and we must have case Il for the fusion in G of
M, and Ny(M)/Ce(M)=&,,,, by (4.5). If we choose M asin §1, all examples
in § 1 satisfy the conditions (i) and (ii).
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Since M is self-centralizing normal subgroup of a 2-Sylow subgroup of H,
we have Cy(M)=M X F and |F|=odd. Put W= N,(M)/F and, for a subset
X of W= Ny(M), denote by X the image of X by the canonical homomorphism
from W onto W.

LEMMA. There exists a complement K of W over M and n—1 involutions
5, 1<i<n—1) of K such that {7, &}, -,y %,} is a set of canonical genera-
tors of K.

ProOF. By a theorem of Gaschiitz [3], there is a complement Kof W
over M. Then the above assumptions (i) and (ii) to M yield that there are
2n—1 involutions {7,, Zi, 7 - » Zn-1» ¥} Of K such that

7,’;’_@:_17—?1; [/Tj’ yi]:[ijﬁj’ yljzl (]il)
Qi) = Agars [Ap 2 =[Apfr 21=1  (J#i+1 k+#1).

From the action of # on M, we see that 7,=z/ mod M. Now we claim that
y;,=# for any 1 1<i1<n) or j,=wa, for any i 1=<i<n). In fact as is
easily seen from (1.2; (v)), N,={Fu &y 4 (F;F)|1Zi<n, 1Zj<n—1) is
conjugate in W to N and the cardinality of the orbit containing j; under the
action on (¥, #;|1<i<n> of N, is 2n. Considering the orbit under the action
on S of N (cf. (21)) and using the fact that 7= % mod M, it follows that
y, =7, or ®a, (1<i<n). Since ¥, ¥, ---,y, are conjugate in I, we must
have J,=#, for any 1 (1<i<n) or j,=#a, (1 <i<n). If we have the former
case, our lemma holds, while if we have the latter case, the subgroup {3, a,,
2@y o+ B @y, 5, has the required properties.

(5.2) LEMMA. The representatives of conjugacy classes of involutions of
Ny(M) are 7, (0 <k+1=n) and 7., (0= k+I=n—1), where 7,s are elements
defined in (3.1).

PrRoor. We note that two involutions x, y of W are conjugate in W if
and only if ¥ and j are conjugate in W because F is of odd order. Then our
lemma follows from Lemma in (5.1) and Remark in (1.2; (V).

(56.3) LEMMA. If G has no normal subgroup of index 2, every involution
of G must be conjugate in G to an element of S.

ProoF. It is sufficient to see that every involution of N,(M) fuses to an
element of S, because Ny(M) contains a 2-Sylow subgroup of G. From the
structure of Ny(M), it follows that there is a subgroup K, of N,(M) of index
2 such that K, contains S but does not contain z,,’s. By (5.2), every involu-
tion of K, must be conjugate in Ny(M) to an element of S. Further, since G
has no normal subgroup of index 2, a lemma of J. G. Thompson yields that
7y, 1S conjugate to an element of K;, and so one of S. This completes the
proof of our lemma.

(5.4) LeEMMA. Assume that Ng(M)> Ny(M) and S satisfies the condition
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(1) in (4.6). Then we have t,,~m; s, in G.
. ! .
PROOF. Let 7, be as in (4.11). Then we have ;% ==, 7, Since n,7,
NTC}.‘,,HJ il’l N, we get TIC,ZNTCIC,H‘I in G.

§6. The degenerate case N;(S)—= Ny(S).

(6.1) In this section, we shall assume the conditions (i) and (ii) in (5.1)
for M.

(6.2) LEMMA. Assume that Ny(M)= Ng(M) and Nz(S)= Ng(S). Then we
have G = HO(G), where O(G) denotes the largest normal subgroup of G of odd
order. In particular, G is not simple.

PrROOF. We shall show that «, is not conjugate in G to any element of
H other than «,. By (5.2), we know that the representatives of conjugacy
classes of involutions in H are z,, (0<k+I=n) and 7, 0=k4+I=<n-1).
Then, by the assumption Ng(S)= Ny(S), we have 7, ,* «,. Hence, by (3.4:
(iii)) it is sufficient to see that c;,» a, and 7 ,_,_;* a, in G. We shall prove
this by induction on k. By (3.6) and the assumption Ny(M)= N.,(M), we have
To,0? &, and 7., % a, in G. This implies that our assertion is true for k=0.
Assume by the inductive hypothesis that, if 0 < h <k, 7, 0% «, and 7,5 * a,
in G. Suppose by way of contradiction that 7z, , ,~a, in G. Then we can
construct ka-kk, Tin-1-x and W, ,_,_, for an element 7, ,; as in (3.3). Put
Wk_n_l_kz w, Ten-1-x=T and W, ,_,_,=W. Then we have Z(W)=35, X S, %
coo XS X Lgqgs 0 s Tpery X LTy Any. From the assumption of our lemma, induc-
tive hypothesis and (3.4; (iii)), it follows that the totality of elements in Z(W¥)
of length n is a, and 7,,.,-zx, where x is an arbitrary element in (=, 7,
o, Ty X (myy. (Remark that, if z,,,,~a, in G, we have 7;,,* a, in G.
Otherwise, Z(J(W;,)) would have two elements ¢, ,-,-, and 7;, of length n.)
Denote by X the group generated by «, and 7, ,-;x’s. Then we have
X =LTpn-1-1r Ty Tgy =+ Ty Moy *** Tpmyy Tpp.  Since W Z(W) by (3.3: (iii)"), we
get W X. The totality of elements in X of length 1 is {z, @, -, 7y 7,}
or {=,, m,, -+, m,} according to whether k< n—2 or k=n—2. In the second
case, Wp<rm,, my, -, 7,y and so [W,a,]=1. In the former case, we have
W > <ry, 7ty o+, Ty w,> and so [ W, a,1=1, because [W, myyy - 7,n 1=1 by (3.3:
@ii)"). Then Z(J(T)) has two elements 7, ,.,., and «, of length n, which is
impossible. Thus we have proved that a, ¢ 74,-,-x in G. Secondly suppose
that a,~ 7y, in G. We have Z(W, ) =S, X -+ X Sg X {Tgp1s =+ » Ty ) X {Tps App
and the totality of elements in Z(ch,o) of length n is a, and 7,,x, where x
is an arbitrary element in {x,, ---, 7> X {x,>. If we denote by Y the group
generated by them, we have Y =<z, 7y, =+, Tp Tpy *** Tyoyy Tpp. By the same
argument as above, we get Z(W; ) 2 a, and so a,< Z(J(Ty,)), which is im-
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possible because a,, 7, Z(J(T},)) and they are of length n. Thus we have
proved that «, is not conjugate in G to any element of H other than a,.
Then our lemma follows from Glauberman’s theorem and Frattini argument.

(6.3) LEMMA. Assume that H has a normal subgroup of index 2 and S
satisfies the condition (II) in (4.6). Then if NgS)= Ny(S), G has a normal
subgroup of index 2.

PrOOF. If Ny M)= Ny(M), our lemma follows from (6.2). Assume that
Ng(M)>Ng(M). Put D, = MP{zn{r}, nix}, -+, wim,y and then we have N = D (zx).
Then N contains a 2-Sylow subgroup of G by (1.1; (ii)) and [N: D,;]=2. From
(5.2) and (5.4) it follows that every involution of D, is conjugate in G to an
element SN\ D,. If G has no normal subgroup of index 2, a lemma of Thomp-
son yields that z must fuse to an element of D; and so one of S~ D,. Since
m{ is not conjugate in Nz(S) to any element of S\ D, by the assumption of
our lemma, (2.6) yields that N4(S) < Ng(S). This is a contradiction.

(6.4) THEOREM. Assume that M satisfies the conditions (i) and (i) in (5.1),
and, S and H satisfy the same assumptions as (6.3). If G has no normal sub-
group of index 2, the followings hold;

(B Nu(S)<Ne(S) and Nuy(M) < Ne(M),
(ii) G has exactly n classes of involutions with the representatives a,, a,,
e, by, and

(iii) G has two possibilities for the fusion of involutions.

Proor. By (6.3), we have Ny(S)< Ng(S). Then (4.2) yields that each
element of S must be conjugate in G to one of «, @, -+, @, From (5.3) it
follows that A, must fuse in G to one of ay’'s 1<k=<n) and so A, ~a, in G
by (3.7). By (3.5) and (2.6), we have Ny(M) < Ng(M). Then (5.3), (4.2) and
(4.5) yield that G has exactly n classes of involutions and two possibilities for
the fusion of involutions.

§7. Applications.

(7.1) The Alternating Case. Let a, be an involution of A,,., (r=2 or 3)
which has a cycle decomposition

and A, wj, m, H, S and M be as in (1.2: (ii)). Let G be a finite group satisfy-
ing the following conditions:
(i) G has no normal subgroup of index 2, and
(1i) G contains an involution &, in the center of a 2-Sylow subgroup of G
whose centralizer H is isomorphic to H.
For simplicity, we identify elements and subgroups of H with the correspond-
ing ones of H. Then we have the following
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THEOREM A. G has exactly n classes of involutions with the representatives
Ay, Uy, -+, e More precisely, there exist elements B, and ys 1=<s=n) of odd
order with the following properties ;

(1) Bs€ Ny(S) and ys= No(M),
(i) st w—mi—mmg and 0By w1 =0Ps w1 =1[Ps A]1= 1 (s#t), and
(i) 75 7= A= A7y [rs 7l =[rs 74 1=1 (s#1) and
[remil=1A<Ls, t<n and s+1).
In particular, we have

(Av) T~ Agr

) 22s-1,t"‘" 'zzs,tN Xstts and

(VD) Tou~ Aspprns
where my,, A, and ty, are involutions defined in (3.1).

PRrROOF. G satisfies all assumptions of Theorem (6.4) (cf. (1.3)). Hence G
has exactly n classes of involutions. Further we have Ny(S) < Ng(S). Since
Ny(S)/Cux(S)= 7,2 S, (cf. (1.3)), we must have case I for the fusion in G of S
by (4.5). Then our theorem follows from (4.2), (4.10), (4.11) and (5.4).

(7.2) The Orthogonal Case. Let £,,.5(¢c, @) (¢"'=—emod4 and ¢g= +3
mod 8) be the orthogonal commutator group with the underlying quadratic

2n
form > x?+x2%,.,+axi, ., where a is a nonsquare element of the finite field of
=1

g elements. Put a, = <~IZ" I>’ where [,=the k X k unit matrix. Then «,
2

is an involution in the center of 2-Sylow subgroup of £2,...(c,q). By H we
denote the centralizer in £2,,.,(s, ¢) of a, Let A, w;, 7%, S and M be as in
1.2: (iv)) and (1.1).
Let G be a finite group satisfying the following conditions;
(i) G has no normal subgroup of index 2, and
(1) G contains an involution @&, in the center of a 2-Sylow subgroup of G
whose centralizer H is isomorphic to H.
We identify elements and subgroups of H with the corresponding elements of
H. Then we have the following
THEOREM B. G has exactly n classes of involutions with representatives
ay, @y, -+, . More precisely, there exist elements By and ys A<s=<n) of odd
ovder such that
(i) Bs= NxS) and ys= No(M),
(i) Bs:ms—mi—mml, [Bs m]=[Bs msmil=1 and [B;, 4 1=1
As, t<n, s+£1), and
(i) 75: o A—Ths, 70 ol =01s A l=1 and [y, 7;]=1
s, t<n, s+t
In particular, we have

(V) Togmy 0™ Tos,e ™~ sy
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) 223—1,c’\’22s,t~0‘s+t: and

(Vi) Tos—1,6™ Tos,t ™ Agppyye
PrROOF. G satisfies all assumptions of Theorem (6.4) (cf. (1.3)). Hence G

has n classes of involutions with the representatives «,, ---, a,. Further we
have Ny(S) < Ng(S) and Ny(M) < Ng(M). Since Ny(S)/Cux(S)= Nyg(M)/Cx(M)
=&,, (cf. (1.3)), we must have case II for the fusion in G of S and M by
(4.5). Then our theorem follows from (4.2), (4.11) and (5.4).

College of General Education,
University of Tokyo
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