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§1. Introduction.

The purpose of this paper is to characterize the alternating groups of
degrees twelve, thirteen, fourteen and fifteen by the structure of the centralizer
of an element of order 2 contained in the center of their Sylow 2-subgroups.
Let A, be the alternating group of degree n. Let 4 denote the element of
order 2 in A, (n=12) which has a cycle decomposition (1, 2)(3, 4)(5, 6)(7, 8)
O, 10011, 12). We regard A,C A,,C A,,C A,; via the natural imbedding.
Put ﬁlchlz(@):CAm(@)’ ﬁZ:-CAM(&) and ﬁs:CAw(&)- The characterization
of A, A, A, and A,; is given by the following theorem.

THEOREM. Let G, be a finite group with the following two properties:

) G; has no subgroup of index 2, and

(2) G; contains an involution a which is contained in the center of a Sylow
2-subgroup of G, such that the centralizer Cga) ts isomorphic to ﬁi.

Then (1) G,= A, or Ay, or

(i) G, has precisely four conjugacy classes of involutions
and
(i) G,= A,
(v) Gs= A

REMARK. The third case of G, is non-empty. For example the group
PSp,(2), the projective symplectic group of six variables over the field of 2 ele-
ments, satisfies our conditions (1), (2) and has precisely four conjugacy classes
of involutions. We will study this case in a subsequent paper.

In the course of our proof we show that a group G; with properties (1)
and (2) posesses precisely three or four conjugacy classes of involutions and
determines the structure of the centralizers of involutions which are not con-
jugate to a. The identification of G; with the alternating group is then
accomplished by using a theorem of Kondo [11] which is a generalization of
Wong’s theorem [147] on A,

The author is greatly indebted to Dr. T. Kondo who suggested and super-
vised this research.
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We shall use the following notations which are fairly standard:

Gl
O¥G), (resp. G'(2)

0.(6)
2.(P)

Z(G)
(X,
Zy,

H<G
HAG
HSG
Lx, v]
x~yin G
celg(%)
An’ Sn,
GL(n, q)

PGL(n, q)
SL(n, q)

PSL(n, q)
GF(qg)

the commutator subgroup of a group G.

the smallest normal subgroup N of G such that G/N
is a (resp. abelian) 2-group.

the maximal normal subgroup of odd order of G.

the subgroup of a p-group P generated by the ele-
ments of order p.

the center of a group G.

the group generated by the elements x, y, ---.

a cyclic group of order n.

H is a proper subgroup of G.

H is a normal subgroup of G.

H is isomorphic to a subgroup of G.
xlylxy = x Y (x)r

an element x is conjugate to vy in G.

a conjugate class in a group G containing x.

the alternating (symmetric) group of degree n.

the general linear group of degree n over the field of
g elements.

GL(n, 9/ Z(GL(n, g)).

the group of n X n matrices of determinant 1 over the
field of ¢ elements.

SL(n, )/ Z(GL(n, @) N\ SL(n, ¢).

the finite field of g elements.

A

§2. Some properties of

A

1:.
The group H, is generated by the following elements:

= (1’ 2)(3') 4)
=, 26, 6)
#,=0, 6)(7, 8

I
I

=9, 10)(11, 12) #3=(5, 7)(6, 8)
1, 32, 4) 8’ =(7, 9)8, 10)

©, 11)10, 12)

)

7t

=@, 54 6) 73

>

2=, 2)(9, 10) & = R, 7,75
Put i=(9, 10)(13, 14) and $=(13, 14, 15). Thus we have H,=<H, 1> and H,
:(ﬁl, 1, $)>. In the isomorphism from H, onto Cg(a) let the images of #,, f,
Ry [, Ry R, O, 7S, 6/, %5, 4, D be my, p, wy, p/, Ty, wl, 0, T, 0/, wh, A, v respectively.
Then one has a =nw,m;. Put H,=Cg(a) for i=1,2,3. Hence H, =<z, u, ,,

U,y , 0, T, o/, nhy, Hy=<_H,, ) and H,=<{H,, 4, v); also we have Avi~'=yp~!

and [H,, v]=1. The group M=<{y, p’, 7, ™, ™y, Ay is an elementary abelian
group of order 2° and is normal in H,. The group {x{, o, n}, 0/, @) is isomor-
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phic to a symmetric group of degree six and satisfies the following relations:

Tf=0*=nm

2:0/2___7r§2:1’

(rio)* = (om)* = (wia")' = 'z = 1,

(vimp)* = (wjo ) = (wimy = (00') = (omp)* = (i = 1.

The actions of the elements x{, ¢, 7}, 6/, 75 on M by conjugation are given by the

following table.

M ] o T} a’ T}

T, T, 7 T, T T

7 Z2 7, p, Z ¢

T, T, YT T, T, J777%4 . \71‘; o
¢ YTy ¢ I B Iz wns

T, Ty o T, T, a YU LT, T, 7
2 2 2 2 ! A, an,

Put o’ =minin;, p=rnio, &= (ain))’(wimy)” and 7= (z{rs)’. Thus &=p’=7*=1
and the following relations of actions of &, p, ¢ by conjugation are satisfied.

3 P T
Ty o Jazi Ty
14
¢ pe T K
Ty Tty U7ty Ty
/ / /
e j2 Py s
s Ty s Ty
A J727 A A
/ I4 ! -1 /
(%1 Ty o710 Ty
4 7 ! -1 7
7} 7} oThp !
T4 Ty 4 4
T Erg? T (T, T4 T

Let D; be a Sylow 2-subgroup of G; contained in H;, We may assume that
D, =<m,, i, 7wy, 75, Ty, 77:/5> {7, s )u/> and D,= D3 - <7t1: Ty, Ty, Ty Ty T5) <T: s ,u/>
{A». Moreover, Z(D,) ={mx,, w3y, D;= {7y, 3, 7y, wjms, 1> and (D;) ={m,m,).
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The group {7, g, /> is a dihedral group of order 8 with center {(x). Put
S={(x,, n|, &, 7}, w5, 7}>. Then S is an elementary abelian normal subgroup of
order 2° in D; and Ng,(S)=D(&), Nu,(S)=Dx&), Nu,(S)=Dx(§, v). There
are ten conjugacy classes of involutions of H, and they are as follows:

T, ] T My | T4 s o oy QT aa’ a’
3 6 3 12 | 12 | 1 E 6 12 | 4 4
Table 1.

The first and second entries in the column give respectively, representative
of the class and the cardinality of the intersection of the class and S. This
implies that every involution of D, is conjugate to an element of S in H,. In
H, and H,, we have a’~aa’ and some involution is not conjugate to an ele-
ment of S.

§ 3. Conjugacy classes of involutions of G,.

In this section we determine the fusion of the conjugate classes of involu-
tions in G;. By Kondo’s theorem it is sufficient to determine them in G,.

LEMMA 1. The involution « is conjugate in G, to an element of D, distinct
from a.

PROOF. Assume that the element « is not conjugate to an involution of
D, distinct from « in G,. Then by the theorem of Glauberman [4] we have
a € Z(G, mod 0,(G,)) and so G, > {(a>0,(G,). It follows from Frattini argument
that G, = C4,(2)0,(G,). H,>O¥H,) implies that G, > 0%G,). This contradicts
our assumption.

Since every conjugate class of involution of H, intersects S non-trivially
Lemma 1 implies that the involution « is conjugate in G, to an element of S
distinct from a.

LEMMA 2. The group S is the only elementary abelian subgroup of order
2° in D,. If two elements of S are conjugate in G, they are conjugate in Ng(S).

PROOF. Since Cy(r) = w7y, win}, ws, 1y, Cs(tt) =L 7y, Ty 75, why and Cs(p)
={m,, m,, 7y, why the first part is obvious. Since S is weakly closed in D, with
respect to G, and Z(S)=S the result follows from Burnside’s argument.

LEMMA 3. Ng,(D)=D,.

PrOOF. Z(D,)=(zmm,, n;y implies that C4,(Z(D))=<D,, p>. It follows from
o & Ng (D)) that Cq(Z(DD))N\ Ng,(D))=D,. On the other hand Z(D,)=Z, X Z,
yields Ng,(Z(D)=Ce,(Z(D)) or Ng(Z(D))=<w)Cs(Z(D,)) where @ acts on
Z(D,) as an element of order 3. If Ng,(D,)> D, then N4 (D,)=<w)D,. Since
(D’Y ={m,m,y is a characteristic subgroup of D,, w centralizes =,z,. This con-
tradicts the choice of the element w. Therefore we get N4 (D)) =D,.
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LEMMA 4. w7, # 7y, mm,# a and wy+ a, consequently G, has at least three
conjugacy classes of involutions.

PrROOF. Since Z(D,)=<{mm,, 7wy, the result follows from Lemma 3 and
Burnside’s argument.

DEFINITION. n(a)=(Ng,(S): Cg (@) N Ng,(S)). Note by Lemma 2 that n(a)
is the number of elements of S which are conjugate in G, to a.

LEmMA 5. (i) nla)=7, 15 or 27.

(i) a~ar| or a~xi.

PROOF. Put = N;,(S)/S and N=RN/0,(N). In the following sequence of
natural epimorphisms Ng,(S)—R—%, put p— g— j, @ — @' — j', v —7—7 and
g§—>E—E N is isomorphic to a subgroup of the full linear group GL(6, 2).
Representing f, g’ on the vector space S over the finite field GF(2) we get in
terms of the besis nf{, 7z, n}, w,mh, i, wymh:

0 1 | 1 0

Direct computations show that |Cy(@)|=2% 2%.3 or 2°.3% and O,(MNCa(f, &)
=1. Since £ and then i~ @'~ g’ in N, Brauer and Wielandt’s theorem
[13] implies that [0, ()| =|C(@) N0, M)|® and so |0, R)|=1 or 3* because of
NS GL(6, 2). Since {7, 4, 'y is a dihedral group with center {(j), Cz(g) is 2/-
closed by a transfer theorem and [, 0,(Cz(2)]C O, ®). This implies that
|0, (C5(#)|=1, 3 or 3% and then |Cz(a)|=2% 2°.3 or 2*.3% Since Cz(g) has
an abelian 2-complement we may now apply a theorem of Gorenstein and
Walter [5]. If ft=(z, i, o’ then & € 0,(M) and so (&) < (&, #')¢Ey = A, which
is impossible. Thus %t is not a 2-group and we get Nt = PGL(2, ¢), PSL(2, q) or
A,. Noting that ¢ +1 divides |C5(%)] and that |[%t| divides |GL(6, 2)| we have
the following table which is selfexplanatory.

) IR |0, (M) | [9t] n(a)
B 1 93,3 1
PGL(2, 3) 2.3
38 95 . 38 3
1 2.3.5 5
PGL(2, 5) 2.3.5
3 28.31.5 3.5




678 H. YaMmAKI

1 28.3.7 7
PSLE,TY | 20-3.7

3 2.3¢.7 3.7

1 20.3%.5 3.5
PSL2,9) | 2.3%.5 -

3? 28.3.5 3t.5

1 28.32.5.7 3.5.7 |

A, 2.32.5.7 . - | ‘
33 22.3.5.7 3*.5.7 \

Since 1 < n(a)<|S|—1=63 by Lemma 1, we have n(a)=5, 7, 15 or 27. Assume
that n(a)=5. We have a~a’ or a~aa’ by Table I. If a~a’, then there
exists an element x of order 5 in Ng(S) and x permutes cyclically a, a’'m,7,,
a'n,m, o, a'mr,. Put X=<a’, r,, m,, m,y. It follows from |X|=2* that x is
fixed-point-free on X. Since n,~m,~ T, T, T~ Ty, A ~ o' T~ /T,
~a't, and a~a’ ~al'nm,~al' T, ~ o', we must have r, ~xm,w, which is
impossible by Similarly we can treat the case a~aa’. Thus we
have proved that n(a)=7, 15 or 27. and Table I imply that

n(@)="7=1+6.
15=1+46--4-14 or
27 = 14-6-+-4+4412.

In any cases 6 appears in the direct summand of n(a). Therefore we get
a~arn] or a~x| by Table I. The proof is complete.

LEMMA 6. =&, % an] or ©, + xi.

PrOOF. It is m,~x, and an/~an} in H,. Assume by way of contradic-
tion that my~ari~ni Put W=S{z, up=Cplany). It is Z(W)=<mr,, m,, 75
<tD,. Let D be a Sylow 2-subgroup of G, with Wc Dc Cs(ans). Put
N=<(D,, D). Then NP> S, Z(W) and it follows from &rn,f'=mx, & Z(W) that
CZWYY\N=W. Since N/W is isomorphic to a subgroup of GL(3, 2) and is
not a 2-group, we have |N|=2°.3 (cf. Dickson [2]). && N and Ng(S)
=D& imply that a & Z(N). Thus we have (N:Cgla)\N)=3. On the
other hand, the conjugacy classes of involutions in D, which contain at most
two elements are cclp,(a), cclp (mmy), cclp,(ns), cclp(ns) and cclp,(an;).  Since
a»mm, and a » wy, (N:Cqla) \N)=3 forces to be a~m; or a~an;. Hence
a~mn] or a~qan]. This is impossible because of Lemma 4.

LEMMA 7. We may assume that =, +# ani.

Proor. If we replace #}, o, n}, ¢/, n} with ar{, ac, an}, ac’/, ar} in this
order the same relations hold in H,. The result follows from Lemma 6.

LEMMA 8. a~ani and w,~ 7.

PrOOF. By Lemma 5 we have a~an{ or a~m={. Since zn/~xj, assume
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by way of contradiction that a~mxj. Put W=S{z, > =Cp,(x). It is Z(W)
={m,7,, T, miy and W’/ =(m,, 7, mimsy. Similarly as in Lemma 6, define the
group N. Thus we have |[N|=2°-3 and (NV: Cs{a) "N)=3. Hence a~r; or
a~ar} in N by the same reason as in Lemma 6. {(z,z,>= W' ~Z(W) implies
that =, 7, Z(N). If a®=nr} for some x& N, then 7?=r,n,m;~ar{ which is
impossible by Lemma 7. If a®=arn} for some x € N, then a ~nj~ arj by our
assumption. In other words n(a)=146-+6-+ --- by Table I. This contradicts
Lemma 5. Therefore a » n; and then a ~an by Table I. Since a ~ amj and
W=z, py =Cp,(ar}), define N as above. It is NP> Z(W) and |N|=2°.3.
Let x be an element of order 3 in N. «a & Z(N) implies that [«, x]+# 1. Since
[x, ZOWYJC Z(W) and Z(W) contains exactly three elements «, amj T 7,73
which are conjugate to a, we may assume that «®=amn; It follows from
a® =nr, w7y that o - nf*=an} - 7 =m,7,7, and so w¥=m, It is n,~r, and
w{~mr; in H,. This proves our lemma.

There exist precisely three subgroups S{gu, /), S<z, #y and S{rp’) of
order 2% containing S in D,. The center and the commutator subgroups of
these groups are as follows:

Z(S<py ) = (S, D) =Ly, 0y o)
Z(Sz, @)= m\my, s, w3y, (S{z, ) =<7, Wy, WWs)
Z(S<e ') =Lmymy, oy, (S{tp)) =<my, Ty, 75, WM

Hence S{y, ¢’> is the only nilpotent subgroup of class 2 in these groups and
so D, is not generated by nilpotent subgroup of class 2 of order 2% containing
S. We use this fact for the proof of the next lemma.

LEMMA 9. () If S<(zd* S{), then mm,~m i and a~a’ ~aa’.

(1) If S{(z)~S{y>, then m ~=mi{xj and we may assume that m,w,~ aa’,
T, ~ ATy~ .

PrOOF. (i) Put W=S{up’> =Cp,(x{). The group W is of order 2" and
ZWY=_x,, m,, Ty, 7y, W/ = (m,, w,». Let D be a group of order 2% with WcD
CCqn)) and ZID)=Z, X Z, X Z,. Since S{t) »S{¢y and pp’~p we may
assume that D is a nilpotent group of class 2. Put N=<(W{u), D>. Then
N> S, Z(W), W and N(S)N\H,=D (&) implies that C;,(Z(W)NN=W. The
group N/W is isomorphic to a subgroup of GL(4,2) and so (N: W) divides
22.3°.5-7. If N is a 2-group, N must be a Sylow 2-subgroup of G,. Since
W<{uy and D are nilpotent subgroups of class 2 it follows from the remark
before this Lemma that N is not a 2-group. Hence [&, W/« W’ implies that
a & Z(N). If there exists an element x of order 5 or 7 in N— W, x centralizes
W’. Since the action of x on Z(W) is completely reducible there exists x-
invariant subgroup K, such that Z(W)= W' x K,. [x, K,]=1 yields [x, Z(W)]
=1. This is impossible because of C;,(Z(W))\N=W. Therefore 3 divides
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IN|. Let y be an element of order 3 in N—W. [y, W]C W’ and =, # 7,7,
imply that [y, W/]=1. Since [y, Z(W)] =1, twelve involutions in Z(W)—W’
are divided into four associated classes by y. On the other hand since 7, ~ 7}
N T, O~ ATy~ T Ty, T~ Tty ~ ,mhny ~ mym,ny and n,m, ~m,wy by Lemma
8 we must have m,m,~mn} by Lemma 4 Assume that n(a)=7. It follows
from |Ng,(S)|=2°-3.7 that £~y in Ng,(S). Since C4(€)=<a, a’> we have
{a, a’y ~{x,, w3y = W = Cg(y). This contradicts Hence n(a)+ 7 and
so Lemma 5 implies that n(a)=15 or 27. In both cases 4 appears twice in
the direct summand of n(a) by Table . Thus we get a ~a’ ~aa’ by Table L.

(i) Itis (8{)) = Lm 7y, wims), (S<,U>>/ ={m,, T,y and Z(S<ﬂ>): {7y Toy Ty T,
Z(S<t)) =<7 7y, miTh, 4, why. Since m, o w7, by (S<TDY ~(S{y) im-
plies that 7, ~ 7z} and so (Ng(S): Ce(m) N\ Ng(S) =21 by Table I. Assume
that n(a)=15. Thus |Ng(S)|=2°-32.5 and (Ng,(S): Cg () N N, (S)) =45,
(Ngy(S) : Cgy(mimy) N Ng,(S)) =3 by using Table I and examining the possibilities
of the orbits of =, and n,z,. Moreover we have a ~a’~aa’ by Table I. Let
x be an element in Ng,(S) with a®=a’. (Such element x exists by Lemma 2.)
It follows from =z¢=a’(zx,7,)® that znf{=a’'nmx, a'm,w, Or a’mzm, because of
(N (S): Cg (mmy) N\ N (S))=3. This is impossible because a ~ a'mxw,~ a’'n,m,
~a'mg~a’. Therefore n(a)+15 and so n(a)=7 or 27 by Lemma 5. If
n(a)=27, then |Ng(S)|=2°-3* and 21 = (Ng(S): Coy(m) N Ngy(S)=3" or 3%
This is impossible because of Table I and Lemma 8 Thus n(a)=7 and
|Ng,(S)|=2°-3-7. This implies that (Ng(S): Cg(m) N\ Ne(S)=21 and
WNi(S): Co(mm) N\ Ny (SN =3, 7 or 21. Since Z(S{¢p)~Z(S{zr)) we have
T, Ty~ aa’ or mm,~a’ and w7~ arnim, by the following table which is selfex-
planatory.

Z(S<py ~ Z(8¢z7)
T, Ty
T 4
2
Tq ~ 4T
T4 T}
v 4 T T TTHTTS &
_ S ’
a a |
ar ~ an;
T TC,70h Ty TTaTy
_
T, T, T T,
Ty - aa’
T Ty ) a'm,

T, 70Ty

J S
T4 a’
P 54 L a'mm,

T, 7375
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In the table the first and third column give respectively, the involutions in
Z(S<{¢ty) and in Z(S{z)). Similarly as in Lemma 7 we may assume that =7,
~aa’ and therefore a’ ~ n,ni~ nin, ~ar|ri. The proof is complete.

REMARK. By Lemma 5 if n(a)="7 then Ng(S)/S= PSL(2, 7). In the case
(ii) the fusion of the conjugacy classes of involutions are completely deter-
mined.

LEMMA 10. If S{z) # S{p) then a~ arir} and w,x,~ 7|7}

PrROOF. Put W=Cp(a")=S{). It is Z(W)={mx,, nin}, 7y, wjy and W’
={m,m,, wimwsy. Let D be a group of order 2® with WC D C Cg,(a’) and Z(D)
=7, X Zyx Z,, Put N={W<{y), D). By the same way as Lemma 9 N is a
{2, 3}-group and a & Z(N). Assume that N is a 2-group. N must be a Sylow
2-subgroup of G,. D and W<{u) are the only two maximal subgroups of N
with center Z, X Z, X Z, and containing S. Thus they are conjugate to S{g, p'>
or S{z, uy in G,. Since Z(S{y, p>)={z,, m,, sy and Z(S{z, p>)=Z(W{))
={m7,, Ty, Wy, D must be conjugate to S{g, ¢’>. On the other hand since
a & Z(D) and a’ € Z(D), we have Z(D)=/{a/', m,r,, mi7}>, {a’, wimh, wsy, {&’, 7,7,
mimimsy or {a’, T T, Timimsy. Because {a) is weakly closed in Z(S{g, ¢’)) with
respect to G,, this contradicts Lemma 9. Hence N is not a 2-group and N
contains an element x of order 3. If [x, W']=1, [x, Z(W)]+#1 implies that
twelve involutions in Z(W)— W’ are divided into four associated classes by x.
Since my~mi~myry and a ~a’ ~aa’ ~anh~a'wy~ @' T T, ~ TLTLTS, QT T AT T,
we must have a ~arz). If [x, W= W’ then Z(N)~ W' =1 and so Z(W<{u))
= {m,m,y X Z(N) because of Z(D)=Z,x Z, X Z,. It follows from « ¢ Z(N) that
Z(N)={r,, ;> or {m,m,x}, ;> and then [x, 7,]=1 in both cases. Therefore
we get (mm,my)* = (m,7,)"n, = mizim, Or m,m,mimhw,, that is, a ~w{wiwy Or amms.
armit~mnimir, in H, implies that a~anmjrj. Thus we have proved that
a~ arn{rj. Then we must have n(a)=27 and | N4,(S)|=2°- 3* because n(a)=15
or 27 by Lemma 9 (i) and Lemma 5. Since 15 < (Ny(S): Cy,(m;3m5) N Ni(S))
divides 3%, we get (N, (S): Cg,(7m,7,) N\ Ng, (S))=3% by table I and so m,m,~mims.
The lemma is proved.

By preceding lemmas and by a theorem of Kondo [12] we get the follow-
ing lemma for groups G,, G, and G, with properties (1), (2) of our theorem.

LEMMA 11. The group G; possesses precisely three or four conjugacy classes
of involutions. If notation is chosen suitably, the possibilities for the fusion of
involutions of G, are

Case | T, ~ T

T Ty ™ T g~ T{Th

a~an|~ariti~aa’ ~a’

Case Il 7, ~7z|~rxix}

T T, ~aa’
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a~ amy

T Ty~ anmi~ o’

Case lll #,~7w{~2
T Ty~ T Ty~ Ty~ ATty ~ AT]
o~ Qi ~ an{mi~ aa’ ~a’ ~ ATy ~ AT, Th ~ AT{T .

REMARK 1. The Case I and II are occupied only in G, and the Case Il
only in G,, G,.

REMARK 2. In Kondo’s notations [12], A, g, g’ correspond to A; 4,4, 4:4;
respectively and =z, =}, w,, n}, m, w} are the same as his notations.

In the following we study the Case I and the Case III

DEFINITION. We call the representatives n,, m,7,, &, canonical representa-
tives of the conjugacy classes of involutions.

Since the extension of D, over S splits, the extension of N;,(S) over S
splits by a theorem of Gaschiits [3]. Let K; be a complement of S in N, (S).
Denote by P; a Sylow 3-subgroup of K;, by <%, j f/;T*=p*=p*=1, T4a't
= jp’, Tji= ity a Sylow 2-subgroup of K, and by <%, 4, fi/d X {1; 2=1) a
Sylow 2-subgroup of K, and K,. It follows from the structure of H; that we
may assume &e P; for i=1,2,3, ve P, and {g, g/, & ¥y = S,. Now we deter-
mine the structure of Ng,(S) and we prove the existence of the complement
K; which contains {g, ¢/, &, ©).

LEMMA 12. There exist elements x,, x,, x, of order 3 in K, with the fol-
lowing properties :

X e CKi(<7fzr Ty, Ty, W), A= 7], w{"t =m 7],
X, & CK7;(<77:1’ Ty, Ty T3p), T§2 = Ty, W2 =T,m5,
X € CKi(<7r1r T{, Tqy T5)), TE8 = T3, T8 = T,Try.

Moreover we may assume that the complement K; is the following groups:

Kl - <-x1! xz: X3><‘Ll, /,C/, S, T>
K2 = <x1) xzy X3><‘U, ,u/: E’ T, 2>
Ky = u)<x;, Xy X<t v, & 7, .

PROOF. Since |Cg, ()| =2°-3% |Cgy(ms)|=2*.3% |Cg,(ns)|=2*-3% and
| Consms) M Nay(S) =20+ 3, | Coy(mamy) M Nao(S)| = 20+ 3, | Coy (mame)  Nay(S)| =
21 . 3* we have (Cg,(w;) : Cg,({m,, m5»))=0 (mod. 3). On the other hand (Cg(x;):
Cr (g, w3))) = | CClompnr (o) | <|cClywnem:)| =9 implies that |Cx ({7, 7)) = 0
(mod. 3). Let x, be an element of order powers of 3 in Cy,(7,, 73)). We may
assume that x, acts on S as an element of order 3. Thus using Lemma 11,
the following table implies that x, € Cg,({m,, 74, 75, 7).
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In the table the first, second and third column give respectively, zf1, (,m})™
and the canonical representatives of ccly,((wsms)™).
Since CCZN(S)ﬂG,;(ﬂl)—CdN(S)r‘lGi(”l)f\<7'[2’ Ty Ty Wiy ={m, 7w, T}, we get

[x, {zy, 7] <z, > and we may assume that zfi =z
we have elements x,, x, of order powers of 3 with desired properties.

TPl = 1, 7).

Similarly
Repre-

senting K; on the vector space S over GF(2) we get in terms of the basis r,,

P / /.
iy oy Moy Tgy T3

,,,,,,,, L3S S
Xy —— 0 1 O 0
,,,,,,,,,,,,, oL
0 0 10
0 1
1 0 0 0
L R R
no— 0 L0
____________ BN
0 0 0 1
11

10 4 o
O 1
Xo——1 0 01
,,,,,,,,,,,,, 11y
o o 1O
i 0 1]
o 10
RN R
E—1 0 0 L0
10 4 o
01 _
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Therefore the following relations hold modulo Cg;,(S) N K.
TX T =Xy fxg=x74 [Fxp=x7Y [px,g=2x3' pg'x,=2xp,
TXy=X3T, fiXsg = Xsff, /X3 = X351, XX = XXy, XX, = XXy,
XpXy = XgXyy EX,ET1 =X, EXETN =1y, lelej’ ;JCZ:JCZ)N.,

A A =x3Y, AWA=v7l, VX, =Xy, VX=XV, VX;= XV,

=

3 — 48 — 438 —
I=x3=x3=1.

Since S is a selfcentralizing subgroup in G, and G, these relations hold in G,
and G,. Since Cg(S)=S X {v) these relations hold in G; modulo <{v). But we
can prove that these relations hold in G, except &x,&6-*=x, and &x,&'=1x,.
[S,v]=1 implies that Avi=v"' in G,. Assume that x,x,=x,x,"% 1x1=1x."
Ix,i = xpi for 014, 7, k<2 It is xx,0% = (1) = (x,x,0%) = x,x,0"~* and
SO XX, = X, X,y ¥ =1x,x,v% Thus we have =0 and then xx,=x,x,. Similarly
we have x;x;=x,x; and Xx,x,= x,x,. Assume that x{=y™ for m=0,1, 2. I
m+ 0, then it is Q,x») =<, [F {x D] <x,> and [4, 2,Kx>)]=1. Hence
L4, x,]=1 by a theorem of Huppert[9]. This is impossible. Thus m =0 and
x3=1. Similarly we have x}=x3=1 and so the group {x,, x,, x,; v)> iS an
elementary abelian group of order 3% Since the action of 1 on {x,, x,, X, >
is completely reducible, it follows from ivi=y-! that [1, {(x,, x,>]=1 and ix,i
=x3' in G,. Assume that jgx,g=x' for [=0,1,2. It is x fix7'= gxWx!
=gxi®'. [gx7% v ]=1 implies that [=0. Similarly we can prove #x,7 = x,,
gxg=x1, g'x g = X7 gXf=X50, BXy = Xofi, TXy= X,T, fiXy = Xofl, i Xy =X51
in G, Therefore the structure of N;,(S) is almost determined except the
action of & on {x, x,, x,, v> in G, Since K,N\H,=S, and so Ea&~'= jij’,
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EpprEt =g, TET =&Y, TH'T = g’ it is easily verified that the complement of
S in Ny,(S) is conjugate to one of the following groups.

{to s & 75

{1 & Ta)

pmimy, p'mmy & Tal)
{pumm,, p'm,m,, &, Taa’).

If 7=r7aqa, then za = (za)**>% = 712273 . o/ and §O 7T7'%»% = rqq’ which is im-
possible by Lemma 11. Similarly we have 7+ ra’ and 7+ raa’. Therefore
we may assume that ¥=7r, g=ypg and g’=g’. This proves that K,=<{x,, x,, x,>
py p'y & 7y [A4, <y, ¢/, vH]=1 implies that A=2, Am,m,, Ams or Aa. On the
other hand it is Ax,A =x;' and 1=[4, x,]1=[4, x,]. Hence we must have i=2.
This implies that K, = {x,, x,, x:0{pt, ¢/, & 7, Ay and K, = d{x,, x,, 2,04y, ', &,
7, A>. The proof is complete.

Throughout the present paper the meanings of x,, X, X, in this lemma will
be preserved.

§4. The structure of the group C; (7)) and Cg(n,7,).

LEMMA 13. Cg, () = (my, m) X F){p) where Fy = Ag or Ay, Fy= A,y, Fy= Ay,
and F{py=S; or Sy, Folp) =S, Folp) = S,,. Moveover [x,, F,]1=1.

ProOOF. Put ®;=Cg,(r;) and ©; = Cg,(ws)/<{m;>. In the epimorphism ,—G,
put a—a, n,—7, T, T, T, p—f, Y G, 7, -2, 0=,
x,— %, X,—X,, and v—5. Let T; be a Sylow 2-subgroup of &,. Then T,=
(@, T, 7y 7o 4 iy 1, Ty and T, =T, =(T, ). It is T{={%,, 7, 7|7}, £, Z(T))
={@, 7ty, Z(Ty)y=Z(T;)=<a, #, §> and C(&)ﬂ®1 =T, By, C(@)N ®2 =<T,, p,
C(@ N G;=<{T; p, ). By Lemma 11 N(Z(T )N G;=CZ(T) NG, and so N(T,)
N®;=T,. Thus it follows from a transfer theorem that &,/842) = T,/<T;~\T4;
g€ ;). Since G{2)> 7%, %, p, and G2 DT, we have <T.N\T¥; g€ ®,>D
{#yy Ty, Ty oy I, Ty for 1=1,2,3. Every element of T} is conjugate to 7, 7,7,
or fiziz, in ®/(2). Since (@a(7;)* = 7,7, every element of order 4 in T,—(7,, #,,
7, &, fi, Ty is not conjugate to 77 in @; by Lemma 11. By the following
table and Lemma 11, we get

<T1f\T{g; gE ®{>:<7_{1J ﬁzx ﬁir ﬁé; ﬁ, ‘Z:> v

In the table x is some element of &, =Cg4,(w;). The first, second, third and
fourth column give respectively, =¥, (r,7,)% «a” and (&,7,)".
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Let u be an element of order 3 with z¥ =4, A*=Ar; and p/* =y’ (see Kondo
[12]. Let y be an element of order 2 in H, with =¥ =g/, ny = p/x,x, and
=y A, Itis () =i On the other hand (z)»**'=p'n, and for
some element w € H,, (¢/'x))” = my, [w, p’2]=1. Therefore we have [(z )V 'J¥
=2 and [yuy™’, m,]=1. Thus #,~ @2 in G, and &, Hence similar argu-
ment shows that

(TiNTE; 8€ 85y =<y, & &, &, i1, 7, I'Ay  for j=2,3.
This implies that (&;: ®)2)=4 for i=1,2,3. It is B)(2)> X, %, p and then
focal group of T; N\ ®}(2) in G/(2) contains {7, %,, 7, &, &, 7. Because {7}, #f/,

fA’2> is an abelian group, Higman’s theorem implies that O¥®,)= Gi(2).
Moreover we have

Ca@) N @{(2) =@y, By, T, Tp, 2T, 0)
C(@) N 84(2) = (@) N G{(2), 72
C@N G2 =C@NBy2),v).

We establish the isomorphism from C(&) N ®42) onto C,,,((1, 2)3, DG, 6)(7, 8)
by mapping the generators @&, %,, fi, @%,%h, T, B, &}, @'2, 0 of C(@ N &42) onto
the generators (1, 2)(3, )5, 6)(7, 8), {, 23, 4, @, 25, 6), A, 3)H2, HG, 7)
®, 8), A, 5E, NC 6, 8, d, 3, 5E 4, 6, d, 32, 4, 1, 2)13, 19),
(13, 14, 15) of Cyy, (@, 2)@3, H)(5, 6)(7, 8)) in this order and then verifying
that the same relations are satisfied by both systems of generators. Hence
the result of Kondo implies that §4(2) = A,,. Similarly we get §42)= A,
®{(2) = A; or A, by a theorem of Held [7] A Sylow 2-subgroup of &{(2)
is {mgpy X<my, ), my, why 1, ©» and that of &42), GL2) is {msy X<my, 7}, Ty, T Yy T
p'A>. Thus it follows from Gaschiitz’s theorem that &}(2) = {(mw;» X K; where
K, = Agsor Ay, K,= A, and K, = A,,. Since K;>rm, m,, 7w} X, X, p and m,
* p'Any, a Sylow 2-subgroup of K, is (=, m,, @i, m}, 1, ©» and that of K,, K; is
Ty Toy Why Thy s T, /A,

We shall consider now K;(up'>=X. Assume that C(K;)=<yup’) is of
order 2 for some ye K,;. It isl={[mx, yup'l=[mm, y]=[y pp'land y*=1
Since 1= [p”z”é, ypp'l= [p"z"g, y] we have y e {m,x, - (p)ﬂ1ﬁ£> and then y=mm,
which is impossible because =jV## =r,z},. It follows Cx(K;)=1 and K,{pp">
=S, or S, K{up'y=S,, KLpp>=S,,. G,>K,; implies that &;=(Cg,(K)
X Kp){pp'>. Assume that 75 = capp’ where c € Cg,(K;) and a = K;. By Lemma
12 we have [a, x,]1="[a, r,1=[a, n{1=[qa, n,]=1 which is impossible because
K,=A; or A,, K,= A,, and K,= A,;. Thus we have n},=ac. Since [a, {m,, 7},
wy iy 1=1 and a®*=[aqa, x,]=[a, x,]=1, it follows from the structure of K;
that a=1 and so n;=c < Cq,(K;). |Cg,(K;)|=4 implies that Cg,(K;) = {7, 7).
By the conjugation in H, we get C4,(7w,) = (m,, #{>XF){ > where F, = A, or
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Ay Fo= Ay Fo= A, and Fu> =S, or S, F,{p)=S,, F{pp=S,. Since
Lxy, {my, a1 <y, 7y and  Cg(Kmy, w7)) =<7y, ©) X F;, we have Cx, Fi1CFu
The element x, is of order 3 and so x, induces an inner automorphism on F.
Because [x, p’'1=1 and {m,, n}, 7, w;> is a self-centralizing subgroup of F,
and F, we get [x, F,]=[x, F,J=1 [4v]+1 and [4 x,J=1 imply that
[x, F,]=1. The proof is complete.

Lemma 14, (Dickson The symmetric group S, is generated by [—1 ele-
ments z, z,, -+, 2,-, satisfying the following relations:

2= =2 = (22 =@z =1
A=i=l-1,, 15 <ksl-1).
The alternating group A, is generated by [—2 elements y,, y,, -+, ¥;-, satisfying
the following relations:
N=x= - =3 =0Yu) =) =1
A=i=2l-3, 1=s5<k=sl-2).

DEFINITION. We call a set of such generators of S, a set of canonical
generators of S, and that of A; a set of canonical generators of A;.

The group F, contains x,, Xy, v, Ty, Ty, g/, A and mwy~ ppt/ ~ pp'mo~ ppr A
Since x, is a non-central involution of a Sylow 2-subgroup of F,, 7, is a pro-
duct of two transpositions in F,{z). The elements ,, pps/, (up)*s, pp'ms, pe'2,
(pp’2)” normalize (x,>. It follows from the structure of F,= A, that there
exist two elements J, and {, which are conjugate to =, such that

V1= Xy, Yo =Ty V3= 0y Yya= ppty ¥s= ('),
Vo= pp' Ty, Y2="Cs Vo= ppt'A, Yo = (upt' 2"
is a set of canonical generators of F,. Similarly we can find d,, {,, 0;, C,, 00,
¢; and then the groups F,, F,, F, are given as follows:
Fy={%,, 5, 0y, ppt/, ('), pp/'my) Or
{ Xy Ty Of) ne (ﬂ#/>x3r pup' s, >
Fy= X 5, Opr !, (p')™, peft/ms, Loy 12" 25
Fy={ Xy, Ty, Os, prpt!, (upe)"s, prp' o, Cop prpt A, (up/ 2”5
LEMMA 15, Coy(m) A Co(ms) = {((my iy X Gty T X B>}y, where
B, = A, or A, B,= A,, By= A, and Bup"> =S, or S5, B,{pup’> = Ss, Bolppp'> =S
PrOOF. The result follows from Lemma 13. ”
LemMma 16. [p, BJ=1.

PROOF. Since [y, Cp(m,)]C Cpx,) and B, is a characteristic subgroup of
Cp,(my), we have [, B1C B, Itis Ng(By)=<{up'>(B; X Cs,(By)). Assume that
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p=pp'bc where be B, and c¢=Cq(B). 1t is [m, b]=1, x}=x5' and then

b & Cp,({7y, m5») N Np,(Kx3»). This contradicts the structure of B;, Thus we

have p=bc and [b, {(m,, 7}, x;)]=1 implies that b=1 and so y=c< Cg,(B)).
By Lemmas 15 and 16 we have

CGi(nl) f\ CGi(ﬂZ) = (<7t11 71-21 ‘L!><7Ti, ﬂé> X Bz)<‘aﬂ/> .
The group B; contains r, and x,. Since [{;, 7,1 =[{; 7,1 =[{; ni{]=1 and

[¢,m]=+1, {; is a transposition of B;{up’> and then {;up’ = B; for j=2, 3
and =2, 3. The same situation holds for {{. Therefore

V1= Xy Yo =T3 V3= ppt'ls Yy=2, Y5 =~
is a set of canonical generators of B,. The group B,, B,, and B; are as fol-
lows.
By={xy, > or {xy, my pp'll)
By =< xy, wa, ppt'Coy 4
By =<y, my, 1/l 4, 275
LEMMA 17. Let z be an element of order 2 in S{up’, 2).
() If my~miz in Cy(m,m,), then z=r,x} or miw,.
() If mi~miz in Cg(mim,), then z=mni, xim,mh, wimh, pp'n], pp' wim, pp' Ty,
ML T, (e AT, OF ppt! ATIT .
PROOF. Since r,=r,m,x,~xjr,7,2 Or wjm 7w, ~wim,m,z in Cy(mym,) for the
case (i) or (ii) respectively, the following table yields our results by Lemma 11.

y . , e
z T, T2 |
’ | o -
T T, T,
mm, | T, T,
T } T, | Ty
’ ’ ‘ ’
T, | T,y T, 7,
1ot I ’
T} T\ TT,7h T, 7,
pp'm | pp' T, i Ty
/ot / |
U TTC, | npm, ! Ty
Lol ? ’ |
P TT 1 ppa : T, Ty
pUp T, T, i JI70% 3 v |
DR . |
’ | ’ |
(e A | Ly AT T 1 Ty Ty !
— ' i
YL ATIT, | pny' AT, T\ T,
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a «
o T T a -
ar a
ATT, T, o 7 ;
qa o .

In the table the first, second and third column give respectively, the involution
z in S{pp’, 2> with w, ~ rn{z, the involution z{z,7,z and the canonical repre-

sentative of cclg,(nim,m,z2).

LEMMA 18

Put X, = ccloaminpng(m) for i=1,2,3.

Then

=X, Sy, s > =X NS, /s 2> = {7y, oy, Py, YTy, LTS}

PROOF.

XSy, p'>

For every element h e Gg,(7,7,) we have n} =t m,7, and then the
following table implies our result.

P w7, |
T, T, Ty
T, T, pio)
i T, T, T T,
/2! T, TToTTh T,y
T, T, T Ty
T, T} T, T4 Ty
Ty a a
TTTh anl o
4 T 7,7 a
# : pmy 2 |
i - - PR S ‘
| M7y UTy T |
Ty Py Ty
1 UTT Ty )2 T
| I - PR SR — S —
\ ’
| y7; wnm, T,
i, ‘, S —
/ /
pn, | 7% | T T,
/ J W |
7% ! ©a | T\,
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73 0% YTLT, p

pe i LY T Ty ﬁ

', pem | mmo

pp'm, 23244 o 777””77171'; o
{v 4 ;xp’n;r; - )u/,t/ﬂ'lﬂf;” . | TyT,
| | ;?ﬁ - AT, T, ] a ) :

N j?rzgr ] 2;”77 N *ai -

w2 pamm | omm
- VMJTZ - /,!‘LJ;Zﬂlﬂz 4 T T, -

la;/{nli 7“' o 7,;;/;?7@ ; T,

pp' Az, 17 B w‘/:‘L;’:{nl T, T, -

In the table the first, second and third column give respectively, the involution
in S<gu, ¢/, 2> which is conjugate to =,, the product of the element in the first
column and r,7,, and the canonical representative of cclg (n} m,7,).

LEMMA 19. Cg (7 7)) D> {pt, 71, 7,

PROOF. Since 7, # 7f in Cg(m,7,) by Lemma 18, it is well known that
(n®,w}> is a dihedral group with non-trivial center for all x & C4(m,7,) (cf.
Brauer and Fowler [11). Put {a(x)> = Z({=n¥, z;»). It follows from the struc-
ture of {z¥, n}> that nf~ria(x) or n{~=mia(x). It is 1="[a(x), n{]="L[a(x), m;7,]
and by Lemma 13 we have

Coi(m) N Co(m,m,) = {7y, 1D X (K7y ) X Bo)pepe' 5

Since S{up’> is a Sylow 2-subgroup of Cg (7)) N Ce(mm;) and S{up’, 4> is a
Sylow 2-subgroup of Cg,(n}) N\ Cg,(m,m,) for i=2,3, there exists an element
b(x)e B, with a(x)*® e S{up’y for i=1 or a(x)®e S{up’, 2> for 1=2,3.
{re?, YD = (77 )@, 7)) implies that (zF)*® ~ w{a(x)*® or n{~ wja(x)*®. Assume
that (72)*® ~ zja(x)**®. By Lemma 17 we have a(x)**®=unz,z{ or zjm,. [b(x),
{7}, wiw,> ] =1 implies that a(x)=m,x{ or zmix,. By our assumption (xf)’*
=mrja(x)=m, or 7, for some y(x) <xnf, ny. It is 1=[y(x), a(x)]="{[yx), 7,7,]
and then 1=1[x?%, m,n}]=[yX), m,x{]. Since {x,, n{> and {r,, 7}) are normal in
Co(mim) N\ Cq,(mym,) we get nfe{m, n}) or nfec{m, m3). This implies that
n¥=m, or i¥f =m, by Lemma 18. Assume that z{~ z{a(x)**®. By Lemma 17
a(xX)® =7, wm,Th, TITE, LT, P TIT,, pp TIT, pp T, Ty, pp AT O pp Amiw,
and hence if a(x)*® £, then a(x)*®~m,z, or @ in G,. Since (z¥)'® = r%a(x)
for some y(x) € (¥, n}y, it is 1 =[x¥, (@] =[xF, (xF)"*]. Since S*y, p'>”
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is a Sylow 2-subgroup of Cg,(n#) N\ Cq,(7F) and S*y, p/, D* is a Sylow 2-sub-
group of Cg,(n¥) N\ Cq,(n§) for i=2, 3, there exists an element 5(x) € Bf with
(27 @@ = Sy, w'>* or S #p, ', A%, By Lemma 18, [(z? V@@ ey, 1), w)°%
[6(x), {gt, my, w1 =1 implies that [5(x), (z¥)**]=1 and then (z%)**® is one of
the following elements:

nt, nf, u°, (#7?1)x» (#71'2>xr (!“Tln'z)x-

On the other hand since a(x)=x?(x?)!*, we get a(x)=m,m, or a(x)~mx, If
a(x) =mzm, then a(x)*® =gz,x, which is impossible. Thus a(x)~=z, and so
a(x)’®=gx. [b(x), x;]=1 yields a(x)==,. This implies that [z%, 7,]=1. In
both cases we proved that [z%, n,]=1 for all x € Cy,(x,7,) and therefore zf
€ Co(m) N Cq,(m,). Again by Lemma 18 we get zf =y, n,, m,). Since p~m,
ATy~ T~ YT T, ~ pT, in Co(mym,) we get {u, my, m,) < Cg,(m,7w,). The proof
is complete.

LEMMA 20. [p, Bl=I[r, Bl=1.

PROOF. Since Cg,({yt, 7y, mop) = (K, w1, 7oy X B){up’y, B, is a characteristic
subgroup of C4,({y, x, m,»). Hence [p, B,]C B; and [z, BJJC B,. Since p’=1
we may assume that p=bc where b B, and c € C/(B,). p*=Db%*=1 implies
that V*=c*=1. Itis my=nf=n} ny=rnf=r and 1=21°=2". Thus we get
be Cp,({my, wh)) or b & Cy,({7,, 7}, A)). Since b*=1, it follows from the structure
of B; that b=1 and so p=ce Cy,(B;). Similarly we get ¢  Cg,(By).

LEMMA 21. Comimy) =ty 71y wop<wi, 7hy T, p) X Bpp’>.

PROOF. Since 7, ~m,~ p~ pit, ~ U, ~ pm,mt, # 7,7, in Gy, (N, ({pty Ty, o)
Co; (K, 7y mop)) divides 2°.3. It follows from the structure of H; that N,
7y, o) =<, why 7, pYCo,({pty 7y, mo»).  Since Ly, my, m,» < Cg,(7,), the result
follows from Lemmas 16 and 20.

§5. Final steps.

We are now in a position to apply Kondo’s theorem [11]. By Lemmas [3,
21 and our assumption we get three isomorphisms

0,: Cgyla)=Cyy (@)
0,: Cgy(mimy) = Cy(#,75)
0s: Cgy(my) =2 Cyy 2y
defined as follows:
w,— 1, 2)3, 4) i, — (1, 3)(2, 4)
r,— (5, 6)(7, 8 my — (5, 7)(6, 8)
ry — (9, 10)(11, 12) nh— (9, 11)(10, 12)
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p— (1, 2)5, 6) c— (3, 5, 6)
o —— (1, 29, 10) o —— (7, 9)(8, 10)
x, —— (5, 7, 6) X, —— (9, 11, 10)
3, — (5, 6)(8, 9) ¢ —— (5, 6)(12, 13)
A —— (9, 10)(13, 14) vy —— (13, 14, 15).

Put ¢/ =(up'n,)’. Then ¢” is of order 2 and ¢” € Cg,(@).

LEMMA 22. We may assume that o’ = o’

PROOF. Since (M, rf, n}, 7> C Cg,(m,) and o” € Cg,(x,) it is easily verified
that the action of ¢” on M by conjugation is the same as that of ¢’ and
(mjo")? = (xw}o")® = (¢/n})*=1. On the other hand since (z[0)’ = (on})’ =1, [o”, ]
=[o, #'1=1 implies that [, 0”]=1. Thus (x|, 0, 7}, 0", wy)=Ss; and these
elements form a set of canonical generators of S,. Hence we may assume
that ¢/ =o".

LEMMA 23. 6,(c)=0,(0").

PROOF. The result follows from Lemma 22.

Therefore we have proved that for all 1<4, j<3, ;,=60; on Cgla)N
Cio(my7,), Cay(@) M Cay(my) and Cgy(m,m,) N Cey(y). Thus the above correspondence
satisfies the condition of a theorem of Kondo [11]. This implies that G, is
isomorphic to A,,. Similarly G, is isomorphic to A,, or A,, and G, is isomor-
phic to A,,. The proof of our theorem is completed.

Osaka University
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