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In this paper we continue the study of complex hypersurfaces of complex
space forms ( $i$ . $e$ . K\"ahlerian manifolds of constant holomorphic sectional curva-
ture) begun in [8]. The main results are: the determination of the holonomy
groups of such hypersurfaces, a generalization of the main theorem of [8] on
Einstein hypersurfaces, the non-existence of a certain type of hypersurface in
the complex projective space, and some results concerning the curvature of
complex curves.

Let $\tilde{M}$ be a complex space form (which in general will not be complete)
of complex dimension $n+1$ and let $M$ be an immersed complex hypersurface
in $\tilde{M}$ . In \S 1 we show that the rank of the second fundamental form of $M$ is
intrinsic and that $M$ is rigid in $\tilde{M}$ , if the latter is simply connected and com-
plete. The local version of rigidity is contained as a special case in the work
of Calabi [1], but our method is more direct and more in the line of classical
differential geometry.

The holonomy group of $M$ (with respect to the induced K\"ahler metric) is
studied in \S 2. If the holomorphic sectional curvature $\tilde{c}$ of $\tilde{M}$ is negative, the
holonomy group is always $U(n)$ . In the case where $\tilde{c}>0(e. g.\tilde{M}=P^{n+1}(C))$ ,

the holonomy group of $M$ is either $U(n)$ or $SO(n)\times S^{1}(S^{1}$ denotes the circle
group), the latter case arising only when $M$ is locally holomorphically isometric
to the complex quadric $Q^{n}$ in $P^{n+1}(C)$ . When $\tilde{c}=0$ (i. e. when $\tilde{M}$ is flat), the
holonomy group of $M$ depends on the rank of the second fundamental form
and we obtain a result of Kerbrat [3] more directly.

In \S 3 we first obtain the following generalized local version of the clas-
sification theorem of [8]. If the Ricci tensor $S$ of $M$ is parallel $(i. e. \nabla S=0)$ ,

then $M$ is totally geodesic in $\tilde{M}$ or else $\tilde{c}>0$ and $M$ is locally a complex
quadric. To prove this we modify Theorem 2 [8] to show that $M$ is locally
symmetric when its Ricci tensor is parallel, and obtain the local classification
without using the list of irreducible Hermitian symmetric spaces. This local
version was proved by Chern [2] with the original assumption that $M$ is
Einstein, and Takahashi [9] has shown that $M$ is Einstein if its Ricci tensor
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is parallel. It is worth noting that when $c\sim\neq 0$ this latter result follows im-
mediately from Theorem 2 of \S 2. We conclude this section with a better
global version of the classification theorem of $[8]$–here the proof is made
considerably more elementary than the original one and simple-connectedness
of the hypersurfaces is no longer assumed in the case $\tilde{c}\leqq 0$ .

We show, in \S 4, that the rank of the second fundamental form cannot be
identically equal to 2 on a compact complex hypersurface in $P^{n+1}(C),$ $n\geqq 3$ .
In \S 5 we discuss the Gaussian mapping of a complex hypersurface $M$ in $C^{n+1}$

into $P^{n}(C)$ ; we find that its Jacobian is essentially the second fundamental
form and we show how the Gaussian mapping relates the K\"ahlerian connec-
tions of $M$ and $P^{n}(C)$ .

The study of complex curves in a 2-dimensional complex space form is
taken up in \S 6. First we take care of the case $n=1$ in Theorems 4 and 5.
We then obtain some characterizations of $P^{1}$ and $Q^{1}$ among closed nonsingular
complex curves in $P^{2}(C)$ by curvature conditions.

We shall use the same notation as in [8].

\S 1. Rigidity.

Let $M$ be a K\"ahler manifold of complex dimension $n$ and let $f$ be a
K\"ahlerian immersion ( $i$ . $e$ . a complex isometric immersion) of $M$ as a complex
hypersurface in a space $\tilde{M}$ of constant holomorphic curvature $ c\sim$ . For each
point $x_{0}\in M$ there is a neighborhood $U(x_{0})$ of $x_{0}$ in $M$ on which Gauss’ equa-
tion for the immersion $f$ may be written as

$R(X, Y)=\tilde{R}(X, Y)+D(X, Y)$

with

$\tilde{R}(X, Y)=\frac{c\sim}{4}\{X\wedge Y+JX\wedge JY+2g(X, JY)J\}$

and
$D(X, Y)=AX$ A $AY+JAX\wedge JAY$ ,

where $X\wedge Y$ denotes the skew-symmetric endomorphism which maps $Z$ upon
$g(Y, Z)X-g(X, Z)Y$, and $X,$ $Y,$ $Z$ are tangent vectors to $M$ (see Proposition 3
[8]). Whereas $A$ depends on the immersion $f$ and on a local choice of unit
vector field normal to $M$, the following lemma shows that its kernel does not.

LEMMA 1. At each point $x\in U(x_{0})$ we have

$KerA=$ { $X\in T_{x}(M)|D(X,$ $Y)=0$ for all $Y\in T_{x}(M)$ }

$=$ { $X\in T_{x}(M)|(R-\tilde{R})(X,$ $Y)=0$ for all $Y\in T_{x}(M)$ }.

PROOF. Clearly $Ker$ $A$ is contained in the subspace defined by $D$ . On the
other hand, if $X\not\in KerA$ then $D(X, JX)=-2AX\wedge JAX\neq 0$, and the first
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equality follows. The second equality follows immediately from Gauss’ equation.
REMARK. The (even) integer rank $A_{x}$ will be called the rank of $M$ at $x$

since Lemma 1 shows that it is intrinsic ( $i$ . $e$ . depends only on $M$ ). It is in
fact twice the type number in the sense of Allendoerfer.

Let $f,\overline{f}:M\rightarrow\tilde{M}$ be two K\"ahlerian immersions. For each $x_{0}\in M$ there is
a neighborhood $U(x_{0})$ of $x_{0}$ in $M$ on which we can choose of a unit normal
vector field $\xi$ (resp. $\overline{\xi}$) for the immersion $f$ (resp. $\overline{f}$), thereby giving rise to
tensor fields $A$ and $s$ (resp. $\overline{A}$ and s) on $U(x_{0})$ , as indicated in [8].

LEMMA 2. At each point $x\in U(x_{0})$

i) $A=0$ if and only if $\overline{A}=0$ ,

ii) if $A=\overline{A}\pm 0$ and $\nabla A=\nabla\overline{A}$ , then $s=\overline{s}$ .
PROOF. i) This follows from Lemma 1, since each of these conditions is

equivalent to $R=\tilde{R}$ on $T_{x}(M)$ .
ii) The equations of Codazzi for the two immersions yield

$(\overline{s}(X)-s(X))JAY=(\overline{s}(Y)-s(Y))JAX$ for $X,$ $Y\in T_{x}(M)$ .
If $X\not\in KerA$ , then we get, by setting $Y=JX,$ $(\overline{s}(X)-s(X))AX=(\overline{s}(JX)$

$-s(JX))JAX$. Since $AX(\neq 0)$ and $JAX$ are linearly independent, we conclude
that $\overline{s}(X)=s(X)$ . If $X\in KerA$ , then we choose $YeKer$ $A$ and get $(\overline{s}(X)$

$-s(X))JAY=0$ , that is, $\overline{s}(X)=s(X)$ .
LEMMA 3. Assuming $R\neq\tilde{R}$ (that is, $A\neq 0$) at some point of $M$, let $x_{0}$ be

a point where the rank of $M$ is maximal. There exists a neighborhood $U(x_{0})$

of $x_{0}$ on which we may choose unit normal vector fields $\xi$ and $\overline{\xi}$, with respect
to the immersions $f$ and $\overline{f}$, respectively, such that $A=\overline{A}$ and $s=\overline{s}$ on $U(x_{0})$ .

PROOF. On a neighborhood of $x_{0}$ on which the rank of $M$ is constant and
equal to $k$ , say, we choose unit normal vector fields $\xi$ and $\overline{\xi}$, with respect to
the immersions $f$ and $\overline{f}$, respectively. At each point $x$ of this neighborhood
we choose an orthonormal basis $\{e_{1}, \cdots , e_{n}, Je_{1}, \cdots , Je_{n}\}$ of $T_{x}(M)$ for which the
matrix of $A$ is of the form

$\left\{\begin{array}{lllllll}\lambda_{1} & & & & & & \\ & \text{\‘{A}}_{k} & & & & & \\ & & 0 & & & & \\ & & & 0 & & & \\ & & & & -\lambda_{1} & & \\ & & & & & -\lambda_{k}0 & \\ & & & & & & 0\end{array}\right\}$
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Now
$(R-\tilde{R})(e_{i}, Je_{i})=-2Ae_{i}\wedge JAe_{i}=-2\overline{A}e_{i}\wedge J\overline{A}e_{i}$

and the middle form of this identity being nonzero when $i\leqq k$ , we see that
$\overline{A}e_{i}$ is a linear combination of $Ae_{i}$ and $JAe_{i}$ , say

$\overline{A}e_{i}=\alpha_{i}Ae_{i}+\beta_{i}JAe_{i}$ .
It is then clear that $\alpha_{i}^{2}+\beta_{i}^{2}=1$ . From

$R(e_{i}, e_{j})-\tilde{R}(e_{i}, e_{j})=Ae_{i}\wedge Ae_{j}+JAe_{i}\Lambda JAe_{j}$

$=\overline{A}e_{i}\Lambda\overline{A}e_{j}+J\overline{A}e_{i}\Lambda J\overline{A}e_{j}$

we can easily deduce that $\alpha_{i}=\alpha_{j}=\alpha$ , say, and $\beta_{i}=\beta_{j}=\beta$ , say, for $1\leqq i,$ $j\leqq k$ .
However $KerA=Ker\overline{A}$, by virtue of Lemma 1, and therefore $\overline{A}=\alpha A+\beta JA$

with $\alpha^{2}+\beta^{2}=1$ at each point of a neighborhood of $x_{0}$ . By virtue of the
assumption on the rank of $M$ at $x_{0}$ we can find a differentiable vector field $X$

on a neighborhood of $x_{0}$ such that $AX\neq 0$ ; and, since $\alpha=\frac{g(\overline{A}X,AX)}{g(AX,AX)}$ , it

follows that $\alpha$ (and similarly $\beta$) is a differentiable function on a neighborhood
of $x_{0}$ . We may then define a differentiable function $\theta$ on a neighborhood $U(x_{0})$

of $x_{0}$ such that $\alpha=\cos\theta$ and $\beta=\sin\theta$ . Then $\xi^{\prime}=\cos\theta\xi+\sin\theta J\xi$ is a unit
normal vector field on $U(x_{0})$ with respect to the immersion $f$ and clearly $A^{\prime}=\overline{A}$ .
By Lemma 2, it follows that $s^{\prime}=\overline{s}$ also.

THEOREM 1. A connected Kahlerian hypersurface $M$ of complex dimension
$n\geqq 1$ of a simply connected complete complex space form $\tilde{M}$ is rigid in $\tilde{M}$ .

PROOF. If $R=\tilde{R}$ at every point of $M$, then $M$ has constant holomorphic
sectional curvature $ c\sim$ . Therefore, by Corollary 2 of [8, \S 3], $M$ is totally
geodesic in $\tilde{M}$ and thus is rigid. If $R\neq\tilde{R}$ at some point of $M$, let $x_{0}$ be a
point where the rank of $M$ is maximal. Let $f,\overline{f}:M\rightarrow\tilde{M}$ be two K\"ahlerian

immersions. By virtue of Lemma 3, there exists a neighborhood $U(x_{0})$ of $x_{0}$

and suitably chosen unit normal vector fields $\xi$ and $\overline{\xi}$ on $U(x_{0})$ with respect
to the immersions $f$ and $\overline{f}$ respectively such that $A=\overline{A}$ and $s=\overline{s}$ on $U(x_{0})$ .
We now resort to local coordinates to show that $f$ and $\overline{f}$ differ by a holomor-
phic motion $\phi$ of $\tilde{M}$ on $U(x_{0})$ , that is, $\overline{f}=\phi\circ f$ on $U(x_{0})$ ; and, by analyticity,
this will then hold on all of $M$. In fact, since the group of holomorphic
isometries of $\tilde{M}$ is transitive on the set of unitary frames, we may assume
without loss of generality that

$f(x_{0})=\overline{f}(x_{0})$ , $f_{*}(x_{0})=\overline{f}_{*}(x_{0})$ , $\xi(x_{0})=\overline{\xi}(x_{0})$ ,

where $f_{*}$ and $\overline{f}_{*}$ denote the differentials of $f$ and $\overline{f}$, respectively, and prove
that $f=\overline{f}$ in a neighborhood of $x_{0}$ . Let $(x^{1}, \cdots , x^{2n})$ be a system of local co-

\langle )$rdinates$ on $U(x_{0})$ and let $(u^{1}, \cdots , u^{2n+2})$ be a system of local coordinates on a
neighborhood of $f(x_{0})$ in $\tilde{M}$ derived from a system of complex coordinates.
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We agree on the following ranges for the indices:
$1\leqq i,$ $j,$ $k,$ $1\leqq 2n$ , $1\leqq p,$ $q,$ $r,$ $s\leqq 2n+2$ .

Our notation (in the summation convention) will be

$f^{p}(x)=u^{p}(f(x))$ , $f^{p_{i}}=\frac{\partial f^{p}}{\partial x^{i}}$ , $f_{ij}^{p}=\frac{\partial^{2}f^{p}}{\partial x^{i}\partial x^{j}}$ , etc. , $f_{*}(\frac{\partial}{\partial x^{i}})=f^{p_{i}}(\frac{\partial}{\partial u^{p}})$ ,

$\xi=\xi^{r}\frac{\partial}{\partial u^{r}}$ , $J\xi=(J\xi)^{r}\frac{\partial}{\partial u^{r}}$ , $\xi_{i^{r}}=\frac{\partial\xi^{r}}{\partial x^{i}}$ , $\xi_{ij}^{r}=\frac{\partial^{2}\xi^{r}}{\partial x^{i}\partial x^{j}}$ , etc. .

The corresponding notation for $\overline{f}$ is then self-explanatory. We also use

$h_{ij}=h(\frac{\partial}{\partial x^{i}},$ $\frac{\partial}{\partial x^{j}})$ , $k_{ij}=k(\frac{\partial}{\partial x^{i}},$ $\frac{\partial}{\partial x^{j}})$ ,

$A\frac{\partial}{\partial x^{i}}=a^{j_{i}}\frac{\partial}{\partial x^{j}}$ , $s(\frac{\partial}{\partial x^{i}})=s_{i}$ .

(Note that we have $A=\overline{A}$ and $s=\overline{s}$ so that we do not need the corresponding
notation for $\overline{f}$ here). The Christoffel symbols are denoted by $\Gamma_{jk}^{i}$ for $(x^{1}, \cdots , x^{2n})$

and by $\Gamma_{qr}^{p}$ for $(u^{1}, \cdots , u^{2n+2})$ . We note that $(J\xi)^{r}=-\xi^{r+n+1}$ and $(J\xi)^{r+n+1}=\xi^{\gamma}$

(indices are understood here modulo $2n+2$) because of the nature of the
coordinate system $(u^{1}, \cdots , u^{2n+2})$ . The equations

$\tilde{\nabla}_{f*(\frac{\partial}{\partial x^{i}})}f_{*}(\frac{\partial}{\partial x^{j}})=f_{*}[\nabla_{-,\partial x}\partial_{\tau^{-}}\frac{\partial}{\partial x^{j}}]+h[\frac{\partial}{\partial x^{i}},$
$\frac{\partial}{\partial x^{j}}]\xi+k[\frac{\partial}{\partial x^{i}},$ $\frac{\partial}{\partial x^{j}}]J\xi$ ,

$\tilde{\nabla}_{f*(\frac{\theta}{\partial x^{i}})}\xi=-f_{*}[A\frac{\partial}{\partial x^{i}}]+s[\frac{\partial}{\partial x^{i}}]J\xi$

for the immersion $f$ then yield

(I) $f_{ij}^{r}=-f_{i}^{p}f_{j}^{q}\Gamma_{pq}^{r}+f_{k}^{r}\Gamma_{\dot{\tau}j}^{k}+h_{ij}\xi^{\gamma}+k_{ij}(J\xi)^{r}$ ,

(II) $\xi_{i^{r}}=-f_{l}^{p}\xi^{q}\Gamma_{pq}^{r}-a_{i}^{j}f_{j^{r}}+s_{i}(J\xi)^{r}$ .
We denote the corresponding equations for the immersion $\overline{f}$ by (I) and (II).

At $x_{0}$ we have

(1) $f^{p}(x_{0})=\overline{f}^{p}(x_{0})$ , $f_{i}^{p}(x_{0})=\overline{f}_{i}^{p}(x_{0})$ , $\xi^{r}(x_{0})=\overline{\xi}^{r}(x_{0})$ , $(J\xi)^{r}(x_{0})=(J\overline{\xi})^{r}(x_{0})$ .
We wish to show that $f=\overline{f}$ in a neighborhood of $x_{0}$ ; since $f^{p}$ and $\overline{f}^{p}$ are real
analytic it suffices to prove

(2) $f_{ij}^{p}(x_{0})=\overline{f}_{i}^{p_{j}}(x_{0})$ ,

(4) $f_{ijk}^{p}(x_{0})=\overline{f}_{i}^{p_{jk}}(x_{0})$ ,

and so on for all higher-order derivatives at $x_{0}$ . (2) follows from (I), (I), (1)

and the equation $A=\overline{A}$ on $U(x_{0})$ , while
(3) $\xi_{i^{r}}(x_{0})=\overline{\xi}_{t^{r}}(x_{0})$

follows from (II), (II), (1) and the equations $A=\overline{A}$ and $s=\overline{s}$ on $U(x_{0})$ . Now



Differential geometry of complex hypersurfaces II 503

$f_{ijk}^{r}$ and $\overline{f}_{ijk}^{r}$ are obtained by differentiating (I) and (I) and we deduce (4) from
the equations (1), (2), (3) and the equation $A=\overline{A}$ on $U(x_{0})$ . In the same
manner $\xi_{ij}^{r}$ and $\overline{\xi}_{ij}^{r}$ are obtained by differentiating (II) and (II). Using the
previous equations together with the equations $A=\overline{A}$ and $s=S$ on $U(x_{0})$ , we
infer

(5) $\xi_{ij}^{r}(x_{0})=\overline{\xi}_{ij}^{r}(x_{0})$ .
We can then easily obtain

(6) $f_{i}^{p_{jkl}}(x_{0})=\overline{f}_{ijkl}^{p}(x_{0})$ .
The equalities for higher-order derivatives are obtained in the same fashion.
Thus $f=\overline{f}$ in a neighborhood of $x_{0}$ and this completes the proof.

\S 2. Holonomy.

In this section we study the restricted holonomy group $H$ of a complex
hypersurface $M$ in a space $\tilde{M}$ of constant holomorphic sectional curvature $ c\sim$ .
When the complex dimension $n$ of $M$ equals 1 it is clear that either $H=U(1)$

or $M$ is flat. In this latter case the results of \S 6 will show that $c\sim=0$ . It
will then be clear that Theorems 2 and 3 in this section are valid for $n=1$ .
We therefore assume $n\geqq 2$ in the following.

On a neighborhood $U(x_{0})$ of any point $x_{0}\in M$, the Riemannian and Ricci
curvature tensors of $M$ may be written as

(7) $R(X, Y)=\frac{\tilde{c}}{4}\{X\wedge Y+JX\wedge JY+2g(X, JY)J\}+AX\wedge AY+JAX\wedge JAY$ ,

(8) $S(X, Y)=\frac{(n+1)_{C}^{\sim}}{2}g(X, Y)-2g(A^{2}X, Y)$ ,

where $X,$ $Y\in T_{x}(M)$ and $x\in U(x_{0})[8]$ . We pick an orthonormal basis { $e_{1}$ , $\cdot$ .. ,
$e_{n},$ $Je_{1},$ $\cdots$ , $Je_{n}$ } of $T_{x_{0}}(M)$ with respect to which the matrix of $A$ is of the form

$\left\{\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{n} & & \\ & & -\lambda_{1} & \\ & & & -J1_{n}\end{array}\right\}$

where $\text{\‘{A}}_{1}\geqq\lambda_{2}\geqq\ldots\geqq\lambda_{n}\geqq 0$ . With respect to this basis the Lie algebra of the
group of unitary transformations of the tangent space $T_{x_{0}}(M)$ may be identified

with the Lie algebra of all block matrices of the form $[_{D}^{C}$ $-DC]$ , where $C$ and
$D$ are respectively skew-symmetric and symmetric $n\times n$ real matrices. The
holonomy algebra $\mathfrak{h}$ is thereby identified with a Lie subalgebra (also denoted
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$\mathfrak{h})$ of this matrix algebra. For the sake of brevity we frequently use the same
symbol to denote an endomorphism of $T_{x_{0}}(M)$ and its matrix with respect to
the above basis. We shall say that $M$ is nondegenerate when $J\in \mathfrak{h}$ and this
definition is independent of the point $x_{0}$ (see [4], where the notion of non-
degeneracy was defined to mean $J\in H$).

In this section all indices range from 1 to $n$ and we agree that $i\neq j$ . Let
$E_{j}^{i}$ denote the $n\times n$ matrix whose $(i, j)$ entry (i-th row, j-th column) is 1 and
whose $(j, i)$ entry is $-1$ , all other entries being zero. For $p\neq q$ as well as
$p=q$ , let $F_{q^{1?}}$ denote the $n\times n$ matrix whose $(p, q)$ and $(q, p)$ entries equal 1, all

other entries being zero. Setting $K_{j}^{i}=[_{0E^{0_{j^{i}}}}^{E_{j}^{i}}]$ and $S_{q^{p}}=[_{F_{q^{p}}0}^{0-F_{q}^{p}}]$ (including

$p=q)$ , the following identities are readily verified (assuming $i\neq j$ as agreed):

\langle 9) $\left\{\begin{array}{l}[K_{j}^{i},S_{k}^{i}]=-S_{k}^{j} (k\neq j),\\[K_{j}^{i},S_{j}^{i}]=2(S_{i}^{i}-S_{j}^{j}),\\[S_{j}^{i},S_{i}^{i}]=K_{j}^{i},\end{array}\right.$

where $[, ]$ denotes the usual bracket operation.
The holonomy algebra $\mathfrak{h}$ contains all curvature transformations of $T_{x_{0}}(M)$

and in particular the endomorphisms $R(e_{i}, e_{j}),$ $R(e_{i}, Je_{j})$ and $R(e_{i}, Je_{i})$ for all
$i,$ $j$ . Their matrices with respect to the above basis are respectively

$(\lambda_{i}\lambda_{j}+\frac{\tilde{c}}{4})K_{j^{i}}$ , $-(\lambda_{i}\lambda_{j}-\frac{c\sim}{4})S_{j}^{i}$ and $-\frac{c\sim}{2}J+2(\lambda_{i}^{2}-\frac{\tilde{c}}{4})S_{i}^{i}$ ,

as may be verified by using (7). In the proofs which follow we make repeated

use of the fact that these are elements of $\mathfrak{h}$ .
LEMMA 4. Let $c\sim>0$ .

i) $K_{\iota^{k}}\in \mathfrak{h}$ for all $k,$ $1(k\neq l)$ .
ii) If $S_{j}^{j}\in \mathfrak{h}$ for some $j$ , then $\mathfrak{h}=n(n)$ .

iii) If $S_{j^{i}}\in \mathfrak{h}$ and $\lambda_{i}\neq\lambda_{j}$ for some pair $(i, j)$ , then $\mathfrak{h}=\mathfrak{u}(n)$ .
PROOF. i) Since $\lambda_{k}\geqq 0$ for all $k$ and $\tilde{c}>0,$ $R(e_{k}, e_{\iota})\in \mathfrak{h}$ implies $K_{\iota^{k}}\in \mathfrak{h}$ for

every pair $(k, l)$ .
ii) For $k\neq j$ , we have $[K_{k}^{j}, S_{j}^{j}]=-S_{k}^{j}\in \mathfrak{h}$ using (i) and the assumption.

Thus $[K_{k}^{j}, S_{k}^{j}]=2(S_{j}^{j}-S_{k}^{k})\in \mathfrak{h}$ and hence $S_{k}^{k}\in \mathfrak{h}$ for all $k$ . In addition, $[K_{\iota^{k}}, S_{k}^{k}]$

$=-S_{\iota^{k}}\in \mathfrak{h}$ when $k\neq l$ . Since $K_{j^{i}}$ for all $i\neq j$ and $S_{q}^{p}$ for all $p,$ $q$ together span
$\iota\downarrow(n)$ , we have $\mathfrak{h}=u(n)$ .

iii) By (i) and by the assumption, we have $[K_{j}^{i}, S_{j}^{i}]=2(S_{i}^{;}-S_{j}^{j})\in \mathfrak{h}$ . Since

$R(e_{i}, Je_{i})-R(e_{j}, Je,)=-\frac{c\sim}{2}(S_{i}^{i}-S_{j}^{j})+2(\lambda_{i}^{2}S_{i}^{i}-\lambda_{j}^{2}S_{j}^{j})$

$=(2\lambda_{i}^{2}-\frac{\tilde{c}}{2})(S_{i}^{i}-S_{j}^{j})+2(\lambda_{i}^{2}-\text{\‘{A}}_{j}^{2})S_{j}^{j}$

belongs to $\mathfrak{h}$ , we infer that $(\lambda_{i}^{2}-\lambda_{j}^{2})S_{j}^{j}\in \mathfrak{h}$ and hence $S_{j}^{j}\in \mathfrak{h}$ since $\lambda_{i}\neq\lambda_{j}$ . By
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(ii), we have $\mathfrak{h}=n(n)$ .
THEOREM 2. Let $M$ be a complex hypersurface of complex dimension $n\geqq 1$

in a space $\tilde{M}$ of constant holomorphic curvature $\tilde{c}(\neq 0)$ and let $H$ be the
restricted holonomy group of $M$ (with respect to the induced Kahlerian structure).

Then
i) if $c\sim<0,$ $H$ is always isomorphic to $U(n)$ .

ii) if $c\sim>0,$ $H$ is isomorphic either to $U(n)$ or to $SO(n)\times S^{1}$ ,

where $S^{1}$ denotes the circle group, the second case arising only when $M$ is
locally holomorphically isometric to the complex quadric $Q^{n}$ in $P^{n+1}(C)$ .

PROOF. i) Since $c\sim<0$ , the Ricci tensor is negative definite according to
(8) and $M$ is therefore nondegenerate (see [4]; actually it was proved there

that $J\in H$ but the proof shows that $7\in \mathfrak{h}$). Since $R(e_{i}, Je_{j})=(\frac{c\sim}{4}-\lambda_{i}\lambda_{j})S_{j}^{i}\in \mathfrak{h}$

and since $\lambda_{k}\geqq 0$ for all $k$ and $c\sim<0$ , we have $S_{j^{i}}\in \mathfrak{h}$ for every pair $(i, j)$ . Since
$R(e_{i}, Je_{i})\in \mathfrak{h}$ and $J\in \mathfrak{h}$ , we have $S_{i}^{i}\in \mathfrak{h}$ . Thus $K_{j^{i}}=[S_{j}^{i}, S_{i}^{i}]\in \mathfrak{h}$ for all $i,$ $j$ .
Hence $\mathfrak{h}=\iota((n)$ .

ii) We first dispense with the case where $M$ is an Einstein manifold, in

which case $A^{2}=\lambda^{2}I$. Since $\sum_{r=1}^{n}R(e_{\gamma}, Je_{r})=-\rho J\in \mathfrak{h}$ , where $\rho$ is the Ricci curva-
ture of $M$, and since $\rho$ is nonzero in view of Proposition 9 [8], we deduce
that $J\in \mathfrak{h}$ . From the curvature transformations $R(e_{i}, e_{j}),$ $R(e_{i}, Je_{j})$ and $R(e_{i}, Je_{i})$

we conclude that all $K_{j}^{i}(i\neq j)$ and $S_{j^{i}}$ ($i=j$ included) are contained in $\mathfrak{h}$ , that
is, $H=U(n)$ , unless $\lambda^{2}=\tilde{c}/4$ (i. e. $\rho=nc\sim/2$). At any rate we know that $M$ is
locally symmetric so that the curvature transformations at any point $x_{0}$

generate the holonomy algebra $\mathfrak{h}$ . If $\lambda^{2}=c\sim/4$ , we readily see that $\mathfrak{h}$ is generated
by $J$ and by all $K_{j}^{i}$, that is $H=SO(n)\times S^{1}$ . On the other hand, the complex
quadric $Q^{n}=SO(n+2)/SO(n)\times SO(2)$ imbedded in $P^{n+1}(C)$ with holomorphic
curvature $\tilde{c}$ is Einstein and has holonomy group isomorphic to $SO(n)\times SO(2)$

(i. e. $SO(n)\times S^{1}$). Thus $\lambda^{2}=c\sim/4$ for $Q^{n}$ . Now if $\lambda^{2}=\tilde{c}/4$ for $M$, the same
argument as was used in Proposition 11 of [8] can be applied locally to show
that $M$ is locally holomorphically isometric to $Q^{n}$ . We have thus taken care
of Theorem 2 in the case where $M$ is Einstein (getting a more precise result
than Proposition 10 of [8]).

If $M$ is not an Einstein manifold we may assume that the characteristic
roots of $A^{2}$ at $x_{0}$ are not all equal. By (i) of Lemma 4 we know that $K_{\iota^{k}}\in \mathfrak{h}$

for all $k,$ $l$ . If $ 4\lambda_{i}^{2}=c\sim$ for some $i$ , then $R(e_{i}, Je_{i})=-\frac{c\sim}{2}J\in \mathfrak{h}$ . By the assumption

on $A^{2}$ at $x_{0}$ , we have $4\lambda_{j}^{2}\neq\tilde{c}$ for some $j$ and consequently $S_{j}^{j}\in \mathfrak{h}$ from $R(e_{j}, Je_{j})$

$=-\frac{\tilde{c}}{2}J+2(\lambda_{j}^{2}-\frac{\tilde{c}}{4})S_{j}^{j}\in \mathfrak{h}$ . By (ii) of Lemma 4 we conclude that $\mathfrak{h}=u(n)$ , that

is, $H=U(n)$ . We may therefore suppose $4\text{{\it \‘{A}}}_{i}^{2}\neq\tilde{c}$ for every $i$ . If $4\lambda_{1}^{2}<\tilde{c}$, then
$ 4\lambda_{1}\lambda_{n}<c\sim$ , since $\lambda_{1}>\lambda_{n}$ ; therefore $R(e_{1}, Je_{n})\in \mathfrak{h}$ implies $S_{n^{1}}\in \mathfrak{h}$ . By (iii) of Lemma
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4 we have $\mathfrak{h}=\mathfrak{u}(n)$ . Similarly, if $ 4\lambda_{n}^{2}>c\sim$ , we find $\mathfrak{h}=\iota((n)$ again. Thus we are
led to suppose

$\lambda_{1}^{2}\geqq\text{\‘{A}}_{2}^{2}\geqq\ldots\geqq\lambda_{m}^{2}>\frac{\tilde{c}}{4}>\lambda_{m+1}^{2}\geqq\ldots\geqq\lambda_{n^{2}}$ , $1\leqq m<n$ .

Taking the case $n\geqq 3$ , we see that if $m\geqq 2$ then $\lambda_{1}\lambda_{m}\geqq\lambda_{m}^{2}>\frac{\tilde{c}}{4}$ , so that
$S_{m}^{1}\in \mathfrak{h}$ ; however $[K_{n^{1}}, S_{m}^{1}]=-S_{m}^{n}\in \mathfrak{h}$ and $\lambda_{m}\neq\lambda_{n}$ . Thus $\mathfrak{h}=n(n)$ again, by (iii)

of Lemma 4. If $n\geqq 3$ and $m=1$ , then $\lambda_{2}\lambda_{n}\leqq\lambda_{2}^{2}<\frac{c\sim}{4}$ and $S_{n^{2}}\in \mathfrak{h}$ so that $[K_{1}^{2}, S_{n^{2}}]$

$=-S_{n^{1}}\in \mathfrak{h}$ . Thus $\mathfrak{h}=\downarrow\{(n)$ again. Finally, we suppose $n=2$ , in which case
$m=1$ . If $J\not\in \mathfrak{h}$ , then the Ricci tensor is singular everywhere [4], or what

amounts to the same thing, $A^{2}-\frac{3\tilde{c}}{4}$ $I$ is singular everywhere. Thus

$(\lambda_{1}^{2}-\frac{3_{C}^{\sim}}{4})(\lambda_{2}^{2}-\frac{3_{C}^{\sim}}{4})=0$ . Since $\grave{\text{{\it \‘{A}}}}_{2}^{2}<\frac{c\sim}{4},$ we must have $\lambda_{1}^{2}=\frac{3\tilde{c}}{4}$ . Since $\lambda_{1}\lambda_{2}$

$=\frac{\tilde{c}}{4}$, we have $\lambda_{2}^{2}=\frac{c\sim}{12}$ . We see then that $R(e_{1}, Je_{1})$ and $R(e_{2}, Je_{2})$ are linear

combinations of $S_{1}^{1}$ and $S_{2}^{2}$ , from which we can solve for $S_{1}^{I}$ and $S_{2}^{2}$ . Thus
$S_{1}^{1},$ $S_{2}^{2}\in \mathfrak{h}$ and hence $J=S_{1}^{1}+S_{2}^{2}\in \mathfrak{h}$ . We have thus shown $J\in \mathfrak{h}$ . Now $\lambda_{1}^{2}>\frac{\tilde{c}}{4}$

and $R(e_{1}, Je_{1})\in \mathfrak{h}$ imply $S_{1}^{1}\in \mathfrak{h}$ . By (ii) of Lemma 4 we have $\mathfrak{h}=n(2)$ . This
completes the proof of Theorem 2.

$CoROLLARY$ . Let $M$ be a complete complex hypersurface in $P^{n+1}(C)$ or in
$D^{n+1}$ . Then the largest connected group of affine transformations of $M$ (with
respect to the induced Kahlerian connection) preserves the complex structure.

PROOF. This follows from Theorem 2 and from Theorem 3 of [4].

The following theorem has been obtained by Kerbrat [3] using a different
method.

THEOREM 3. Let $M$ be a complex n-dimensional hypersurface in a flat
Kahler manifold M. If at some point the rank of $M$ equals $2n$ , then the restricted
holonomy group of $M$ is isomorphic to $U(n)$ .

PROOF. We may suppose that rank $A=2n$ at $x_{0}$ . An examination of the
curvature transformations reveals that $K_{j}^{i},$ $S_{j}^{i},$ $S_{i}^{i}\in \mathfrak{h}$ for all $i,$ $j$ . Thus $H$ is
isomorphic to $U(n)$ .

\S 3. Hypersurfaces with parallel Ricci tensor.

On a neighborhood $U(x_{0})$ of each point $x_{0}$ of a complex hypersurface $M$

in a space $\tilde{M}$ of constant holomorphic curvature $ c\sim$, Codazzi’s equation

$(\nabla_{X}A)Y-(\nabla_{Y}A)X-s(X)JAY+s(Y)JAX=0$

holds, where $X,$ $Y\in T_{x}(M)$ and $x$ is any point of $U(x_{0})$ . When the simpler
equation $(\nabla_{X}A)Y=s(X)JAY$ is valid on a neighborhood of every point in $M$



Differential geometry of complex hypersurfaces II 507

we say that Codazzi’s equation reduces. We have
LEMMA 5. The following conditions are equivalent on $M$ :

i) Codazzi’s equation reduces.
ii) The Ricci tensor of $M$ is parallel, that is $\nabla S=0$ .

iii) $M$ is locally symmetric.
REMARK. This result has been obtained independently by T. Takahashi

[9] using another method. In the case $c\sim\neq 0$ we know by Theorem 2 in \S 2
that either $M$ is locally $Q^{n}$ , which is Einstein, or the holonomy group of $M$ is
$U(n)$ . In the second case, $\nabla S=0$ implies that $M$ is Einstein because $M$ is
irreducible. Thus Lemma 5 generalizes Theorem 2 of [8] only in the case
$\tilde{c}=0$ . We shall, however, give a direct proof of $(ii)\rightarrow(i)$ .

PROOF. The proof of Theorem 2 [8] shows that (i) implies (iii). (iii)
implies (ii) trivially. We now show that (ii) implies (i). $\nabla S=0$ is equivalent
to $\nabla A^{2}=0$ and this in turn implies that the characteristic roots of $A^{2}$ together
with their multiplicities are constant on $M$. Consequently, if $A^{2}=0$ at one
point then $A^{2}$ vanishes identically and Codazzi’s equation reduces trivially.
Assuming that this is not the case, let $\lambda_{1},$ $\cdots$ , $\lambda_{r}$ be the distinct positive
characteristic roots of $A$ on $U(x_{0})$ . Consider the distributions on $U(x_{0})$ defined
by

$T_{i}^{+}(x)=\{X\in T_{x}(M)|AX=\lambda_{i}X\}$ ,

$T_{i}^{-}(x)=\{X\in T_{x}(M)|AX=-\lambda_{\dot{t}}X\}$ ,

$T_{i}(x)=T_{i^{+}}(x)\oplus T_{i^{-}}(x)$ ,

$T^{0}(x)=\{X\in T_{x}(M)|AX=0\}$ .
Clearly $J$ interchanges $T_{i^{+}}(x)$ and $T_{i}^{-}(x)$ . When $X$ is an arbitrary vector field
and $Y$ is a vector field in $T^{0}$ we deduce from

$0=(\nabla_{X}A^{2})(Y)=\nabla_{X}(A^{2}Y)-A^{2}(\nabla_{X}Y)=-A^{2}(\nabla_{X}Y)$

that $\nabla_{X}Y\in T^{0}$ . Hence $T^{0}$ is parallel. (A similar argument shows that each
$T_{i}$ is parallel.)

If $Y\in T^{0}$ , we have $(\nabla_{X}A)Y=\nabla_{X}(AY)-A\nabla_{X}Y=0$ . On the other hand, we
have $s(X)JAY=0$ so that $(\nabla_{X}A)Y=s(X)JAY$. By Codazzi’s equation we also
obtain $(\nabla_{Y}A)X=s(Y)JAX$ . In other words, the reduced Codazzi equation holds
when $X$ or $Y$ is in $T^{0}$ . Now $\nabla A^{2}=0$ being equivalent to $(\nabla_{X}A)A+A(\nabla_{X}A)=0$

(for all $X$ ), we see that $(\nabla_{X}A)T_{i^{+}}\subset T_{i}^{-}$ and $(\nabla_{X}A)T_{i^{-}}\subset T_{i}^{+}$ . By virtue of Codazzi’s
equation the reduced Codazzi equation holds for vector fields $X\in T_{i}$ and $Y\in T_{j}$

$(i\neq j)$ . We draw the same conclusion when $X\in T_{i^{+}}$ and $Y\in T_{i^{-}}$ , or vice versa.
Finally, if $X,$ $Y\in T_{i}^{+}$ (or $T_{i^{-}}$), then using $J(\nabla_{X}A)=-(\nabla_{X}A)J$ and $JY\in T_{i^{-}}$ we get

$(\nabla_{X}A)Y=-JJ(\nabla_{X}A)Y=J(\nabla_{X}A)JY=Js(X)JA(JY)=s(X)JAY$ .
In short, we have shown that the equation $(\nabla_{X}A)Y=s(X)JAY$ holds for all
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$X,$ $Y$.
THEOREM 4. Let $M$ be a complex hypersurface of complex dimension $n\geqq 1$

in a space $\tilde{M}$ of constant holomorphic curvature $ c\sim$ . If the Ricci tensor of $M$ is
parallel, then either $M$ is of constant holomorphic curvature $\tilde{c}$ and totally
geodesic in $\tilde{M}$ or $M$ is locally holomorphically isometric to the complex quadric
$Q^{n}$ in $P^{n+1}(C)$ , the latter case arising only when $c\sim>0$ .

PROOF. When $n=1$ the condition $\nabla S=0$ simply means that $M$ is of con-
stant curvature and the classification obtained in \S 6 will show that Theorem
4 is valid.

Assume $n\geqq 2$ . Let $c\sim\neq 0$ . In view of Lemma 5, $M$ is locally symmetric.
Consequently, each $\tau\in H$, considered as parallel displacement of $T_{x0}(M)$ along
a closed curve through $x_{0}$ , maps the curvature tensor $R_{x_{0}}$ at $x_{0}$ into $R_{x0}$ . Thus
if $M$ has restricted holonomy group $U(n)$ then, since $U(n)$ acts transitively on
the set of holomorphic planes at $x_{0}$ , we conclude that all holomorphic planes
at $x_{0}$ have the same sectional curvature; since $x_{0}$ is an arbitrary point, $M$ has
constant holomorphic sectional curvature and immerses totally geodesically in
$\tilde{M}$ (see Theorem 1 [8]). If the restricted holonomy group of $M$ is not $U(n)$ ,
$M$ is locally holomorphically isometric to $Q^{n}$ and $\tilde{c}>0$ , by virtue of Theorem 2.

Let $\tilde{c}=0$ . The roots of $A^{2}$ are constant in value and multiplicity on $M$,

since $\nabla A^{2}=0$ . Let us now suppose that $A^{2}\neq 0$ and choose a basis { $e_{1},$
$\cdots$ , $e_{n}$ ,

$ Je_{1}\ldots$ , $Je_{n}$ } of $T_{x0}(M)$ diagonalizing $A$ in the manner described in the previous
section. Using the computations of \S 2 and the fact that $\nabla R=0$ and $c\sim=0$,

we find
$0=(R(e_{i}, e_{j})R)(e_{i}, Je_{j})=[R(e_{i}, e_{j}), R(e_{i},Je_{j})]-R(R(e_{i}, e_{j})e_{i},$ $Je_{j}$) $-R(e_{i}, R(e_{i}, e_{j})Je_{j})$

$=-\lambda_{i}^{2}\lambda_{j}^{2}[K_{j}^{i}, S_{j}^{i}]+\lambda_{i}\lambda_{j}R(e_{j}, Je_{j})-\lambda_{i}\lambda_{j}R(e_{i}, Je_{j})$

$=-2\lambda_{i}^{2}\lambda_{j}^{2}(S_{i}^{i}-S_{j}^{j})+2\lambda_{i}\lambda_{j}^{3}S_{j}^{j}-2\lambda_{i}^{3}\lambda_{j}S_{i}^{i}$

$=-2\lambda_{i}^{2}\lambda_{j}(\lambda_{i}+\lambda_{j})S_{i}^{i}+2\lambda_{i}\lambda_{j}^{2}(\lambda_{i}+\lambda_{j})S_{j}^{j}$ .
Thus $\lambda_{i}\lambda_{j}=0$ or $\lambda_{i}+\lambda_{j}=0$ . Since $\lambda_{1}\geqq\lambda_{2}\geqq\ldots\geqq\lambda_{n}\geqq 0$ and $\lambda_{1}>0,$ $A^{2}$ has
precisely one nonzero characteristic root $\lambda_{1}^{2}$ and its multiplicity is 2. We confine
our attention to the distributions $T_{1}^{+},$ $T_{1}^{-},$ $T_{1}$ and $T^{0}$ on $U(x_{0})$ , as defined in
Lemma 5. We have already seen that $T_{1}$ and $T^{0}$ are parallel on $M$ and that
the reduced Codazzi equation holds by virtue of Lemma 5. Thus if $Z$ is an
arbitrary vector and $W$ is a unit vector field in $T_{1}^{+}$ , then

$s(Z)JAW=(\nabla_{Z}A)W=\nabla_{Z}(AW)-A\nabla_{Z}W=\lambda_{1}\nabla_{Z}W-A\nabla_{Z}W$ .
But since $T_{1}$ is parallel and (real) 2-dimensional and $W$ is a unit vector in
$T_{1}^{+}$ , we see that $\nabla_{Z}W\in T_{1^{-}}$ and $\text{\‘{A}}_{1}\nabla_{Z}W-A\nabla_{Z}W=2\lambda_{1}\nabla_{Z}W$. Therefore, the

1equation above reduces to $\lambda_{1}s(Z)JW=2\lambda_{1}\nabla_{Z}W$, that is, $\nabla_{Z}W=-2-s(Z)JW$. It

is an easy matter to verify that $R(X, Y)W=ds(X, Y)JW$, for arbitrary vectors
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$X,$ $Y$, so that $S(W, W)=R(W, JW, W, JW)=ds(JW, W)$ . By virtue of prop-
osition 4 [8], $S(W, W)=-2ds(JW, W)$ . Hence $0=S(W, W)=-2\lambda_{1}^{2}$ and this is
a contradiction. Therefore $A^{2}=0$ and $M$ is flat and totally geodesic in $\tilde{M}$.
This completes the proof of Theorem 4.

With a view to obtaining a global version of this theorem, we suppose
that $M$ is a complete complex hypersurface in $\tilde{M}$ with parallel Ricci tensor.
$f$ will denote the K\"ahlerian immersion of $M$ in $\tilde{M}$ . Let $\hat{M}$ be the universal
covering manifold of $M$ and let $\pi$ be the covering map. On $\hat{M}$ we take the
K\"ahlerian structure which makes $\pi$ a holomorphic isometric immersion; $\hat{M}$ is
then simply-connected and complete and its Ricci tensor is parallel. Moreover
$ f\circ\pi$ is a holomorphic isometric immersion of $\hat{M}$ in $\tilde{M}$ .

If $\tilde{M}=P^{n+1}(C)$ then, in view of Theorem 4, $\hat{M}$ is holomorphically isometric
either to $P^{n}(C)$ or to $Q^{n}$ and, by rigidity (Theorem 1), $\hat{M}$ immerses either onto
a projective hyperplane or onto a complex quadric in $P^{n+1}(C)$ . In either case
$f\circ\pi(\hat{M})$ is a simply-connected manifold and since $ f\circ\pi$ is a covering map (see
Theorem 4.6 in [5, p. 176]), it is one-to-one. Hence $\pi$ is one-to-one and therefore
$M$ is holomorphically isometric either to $P^{n}$ or to $Q^{n}$ . The same type of
argument can be applied when $\tilde{M}=D^{n+1}$ or $C^{n+1}$ (without assuming that $M$ is
simply connected). We thus obtain the following improved form of Theorem
3 of [8]:

THEOREM 5.
i) $P^{n}(C)$ and the complex quadric $Q^{n}$ are the only complete complex hyper-

surfaces in $P^{n+1}(C)$ which have parallel Ricci tensors1).

ii) $D^{n}$ (resp. $C^{n}$) is the only complete complex hypersurface in $D^{n+1}$ (resp.
$C^{n+1})$ which has parallel Ricci tensor.

\S 4. Hypersurfaces of rank 2 in $P^{n+1}(C)$ .
The main purpose of this section is to prove that in $P^{n+1}(C),$ $n\geqq 3$ , there

is no compact complex hypersurface $M$ which has rank 2 everywhere. We
must, however, develop a few preliminary results on the nullity space of a
curvature-type tensor field, which are generalized adaptations of some results
of Maltz [6].

In general, let $M$ be a Riemannian manifold with metric $g$ and let $D$ be
a tensor field of type $(1, 3)$ on $M$. We shall say that $D$ is curvature-type if
it satisfies the following conditions:

i) $D(X, Y)$ is a skew-symmetric transformation for any pair of vectors
$X$ and $Y$,

1) After the completion of our work we learned of a further generalization of (i)
by S. Kobayashi (Hypersurfaces of complex projective space with constant scalar
curvature, to appear).
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ii) $D(Y, X)=-D(X, Y)$ ,

iii) $\mathfrak{S}\{D(X, Y)Z\}=0$ ,

where $\mathfrak{S}$ is the cyclic sum taken over $X,$ $Y$ and $Z$,

iv) $\mathfrak{S}\{(\nabla_{X}D)(Y, Z)\}=0$ .
It is well known that the Riemannian curvature tensor field $R$ of $M$ satisfies
these conditions. We also note that (i), (ii) and (iii) imply

v) $g(D(X, Y)Z,$ $W$ ) $=g(D(Z, W)X,$ $Y$ ),

as is the case for $R$ (see [5], p. 198).

We define the nullity space $T_{x}^{0}$ of $D$ at each point $x\in M$ to be the subspace
{ $X|D(X,$ $Y)=0$ for all $Y\in T_{x}(M)$ } of $T_{x}(M)$ ; its dimension is called the index
of nullity of $D$ . Let $T_{x^{1}}$ be the orthogonal complement of $T_{x^{0}}$ . The following
lemmas can be proved in exactly the same way as those in [6].

LEMMA 6.
i) If $X\in T_{x^{0}}$, then $D(Y, Z)X=0$ for all $Y,$ $Z\in T_{x}(M)$ .

ii) $T_{x^{1}}$ coincides with the subspace spanned by all $D(X, Y)Z$, where $X,$ $Y,$ $Z$

$\in T_{x}(M)$ .
LEMMA 7. Assume that the index of nullity of a curvature-type tensor field

$D$ is constant on M. Then the distribution $T^{0}$ : $x\rightarrow T_{x^{0}}$ is involutive and totally
geodesic (that is, $\nabla_{X}T^{0}\subset T^{0}$ for any vector $X\in T^{0}$ so that any integral manifold
of $T^{0}$ is a totally geodesic submanifold of $M$).

We shall apply the foregoing lemma to the situation where $M$ is a complex
hypersurface in a space $\tilde{M}$ of constant holomorphic curvature $ c\sim$. The curvature
tensor $R$ of $M$ is given by Gauss’ equation

$R(X, Y)=\tilde{R}(X, Y)+D(X, Y)$ ,

the expressions for $\tilde{R}(X, Y)$ and $D(X, Y)$ being as in \S 1. Since both $R$ and
$\tilde{R}$ are curvature-type tensor fields on $M$, so is their difference $D$ . We know
(Lemma 1, \S 1) that the nullity space $T_{x^{0}}$ coincides with the kernel of $A$ at $x$.
Hence $\dim T_{x^{1}}$ equals the rank of $M$ at $x$ . Assume now that this is constant
on $M$. The distribution $T^{0}$ is integrable and totally geodesic by Lemma 7; it
is also invariant by the complex structure $J$, because $JA=-AJ$. If $M^{0}$ is a
maximal integral manifold of $T^{0}$ , we conclude that $M^{0}$ is a complex sub-
manifold of $M$ which is totally geodesic in $M$. The curvature tensor $R^{0}$ of $M^{0}$

(with respect to the metric induced from that of $M$) is given by $R^{0}(X, Y)$

$=R(X, Y)$ , where $X,$ $Y\in T_{x}(M^{0})$ , which is equal to $\tilde{R}(X, Y)$ , since $D(X, Y)=0$

for $X,$ $Y\in T_{x}(M^{0})=T_{x^{0}}$ . Thus

$R^{0}(X, Y)=\frac{\tilde{c}}{4}\{X\wedge Y+JX\wedge JY+2g(X, JY)J\}$ ,

which means that $M^{0}$ has constant holomorphic curvature $\tilde{c}$.
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Considering $M^{0}$ as a complex submanifold of $\tilde{M}$, we may establish the
formula

$\tilde{K}(X)=K^{0}(X)+2\sum_{i=1}^{k}\{g(A_{i}X, X)^{2}+g(JA_{i}X, X)^{2}\}$

(for a unit vector $X$ tangent to $M^{0}$) relating the sectional curvatures $\tilde{K}(X)$

and $K^{0}(X)$ in $\tilde{M}$ and $M^{0}$ , respectively, of the holomorphic plane generated by
X. In this formula $A_{1},$ $\cdots$ , $A_{k}$ are the second fundamental forms corresponding
to a choice of an orthonormal family of vector fields $\xi_{1},$ $\cdots$ , $\xi_{k}$ normal to $M^{0}$ ,

and $k$ is the complex codimension of $M^{0}$ in $\tilde{M}$ . This formula generalizes that
of Corollary 2 [8]. Since $\tilde{K}(X)=K^{0}(X)=c\sim$ in our case, it follows that each
$A_{i}$ is identically zero, which means that $M^{0}$ is totally geodesic in $\tilde{M}$ .

Let us now assume that $M$ is a complete complex hypersurface in $P^{n+1}(C)$ ,
$C^{n+1}$ or $D^{n+1}$ such that the rank of $M$ is everywhere equal to $2r$ . We show
that $M^{0}$ is then complete. Let $\gamma(s)$ be a geodesic in $M^{0}$ defined on $a<s<b$ .
Since $M$ is complete and $M^{0}$ is totally geodesic in $M,$ $\gamma(s)$ can be extended as
a geodesic $\gamma^{*}(s)$ in $M$, defined for all values of $s$ . Let $(x^{1}, \cdots , x^{2m}, x^{2m+1}, \cdots , x^{2n})$ ,

where $m=n-r$, be a system of local coordinates on $M$ with origin $\gamma^{*}(b)$ , such

that $\{\frac{\partial}{\partial x^{1}}$, $\cdot$ .. , $\frac{\partial}{\partial x^{2m}}\}$ is a local basis for $T^{0}$ . When $s$ is in a certain neigh-

borhood of $b$ , say $(b-\epsilon, b+\epsilon)$ , we may express $\gamma^{*}(s)$ by the set of equations
$x^{i}(\gamma^{*}(s))=f^{i}(s),$ $1\leqq i\leqq 2n$ . Since $\gamma^{*}(s)=\gamma(s)cM^{0}$ when $a<s<b$ we must then
have $f^{i}(s)=c^{i}$ (a constant) for $2m+1\leqq i\leqq 2n$ . Letting $s$ approach $b$ from
below we find that $0=f^{i}(b)=c^{i},$ $2m+1\leqq i\leqq 2n$ . Thus $\gamma^{*}(b)$ is in the maximal
integral manifold which contains $\gamma(s),$ $a<s<b$ . In other words $\gamma^{*}(b)\in M^{0}$

and it is possible to extend $\gamma(s)$ as a geodesic in $M^{0}$ for parameter values
larger than $b$ . Thus $M^{0}$ is complete.

Since we know that any complete totally geodesic complex n-dimensional
submanifold of $P^{n+1}(C),$ $C^{n+1}$ , or $D^{n+1}$ is of the form $P^{m}(C),$ $C^{m},$ $D^{m}$, respectively,
we obtain

PROPOSITION 1. Let $M$ be a complex hypersurface of $\tilde{M}=P^{n+1}(C),$ $C^{n+1}$ , or
$D^{n+1}$ . If the rank (of the second fundamental form) of $M$ is everywhere equal
to a constant, $2r$ , then $M$ contains a complete totally geodesic complex $(n-r)-$

dimensional submanifold of $\tilde{M}$, namely $P^{n- r}(C),$ $C^{n-r},$ $D^{n- r}$ , respectively.
We now prove the main theorem of this section
THEOREM 6. Let $M$ be a compact complex hypersurface of $P^{n+1}(C),$ $n\geqq 3$ .

The rank (of the second fundamental form) of $M$ cannot be identically equal
to 2.

REMARK. For $n=1$ , the quadrics are the only closed complex curves in
$P^{2}(C)$ of rank identically equal to 2 (see (i) of Theorem 9 in \S 6). The case
$n=2$ remains unsettled.
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PROOF. By virtue of Proposition 1, $M$ contains a projective subspace $P^{n- 1}$ .
Choose a system of homogeneous coordinates $(z_{0}, z_{1}, \cdots , z_{n+1})$ in $P^{n+1}(C)$ such
that $P^{n- 1}$ is given by $z_{0}=z_{1}=0$ . By a theorem of Chow the compact complex
hypersurface $M$ can be defined by $f=0$ , where $f$ is a homogeneous polynomial

in $z_{0},$ $z_{1}$ , $\cdot$ , $z_{n+1}$ such that the partial derivatives $\frac{\partial f}{\partial z_{k}}(0\leqq k\leqq n+1)$ are not

all zero at any point of $M$. We write $f$ in the form

$f(z_{0}, \cdots z_{n+1})=F(z_{2}, \cdots z_{n+1})+z_{0}f_{0}(z_{2}, \cdots z_{n+1})+z_{1}f_{1}(z_{2}, \cdots z_{n+1})$

$+\sum_{k+l\geqq 2}z_{0}^{k}z_{1}^{\iota}f_{kl}(z_{2}, \cdots z_{n+1})$ ,

where $F,$ $f_{0},$ $f_{1}$ and $f_{kl}$ are homogeneous polynomials in the variables $z_{2},$ $\cdots$ , $z_{n+1}$ .
Since $P^{n-1}\subset M$, we have $f(O, 0, z_{2}, \cdots , z_{n+1})=0$ for all $z_{2},$ $\cdots$ , $z_{n+1}$ . Thus $F$ is
identically zero and

$f=z_{0}f_{0}+z_{1}f_{1}+\sum_{k\lrcorner l\geqq 2}z_{0}^{k}z_{1}^{\iota}f_{kl}$ .
Consequently

$\frac{\partial f}{\partial z_{0}}=f_{0}+\sum_{k+l\geqq 2}kz_{0}^{k-1}z_{1}^{\iota}f_{kl}$ ,

$\frac{\partial f}{\partial z_{1}}=f_{1}+\sum_{k+l\geqq 2}lz_{0}^{k}z_{1}^{l-1}f_{kl}$

and

$\frac{\partial f}{\partial z_{j}}=z_{0}\frac{\partial f_{0}}{\partial z_{j}}+z_{1}\frac{\partial f_{1}}{\partial z_{j}}+\sum_{k+l\geqq 2}z_{0}^{k}z_{1}^{\iota}\frac{\partial f_{kl}}{\partial z_{j}}$

for $j\geqq 2$ . At $(0,0, z_{2}, \cdots , z_{n+1})\in P^{n-1}\subset M$, we have $\frac{\partial f}{\partial z_{j}}=0$ for $j\geqq 2,$ $\frac{\partial f}{\partial z_{0}}=f_{0}$

and $\frac{\partial f}{\partial z_{1}}=f_{1}$ . Lemma 8 will show, however, that unless $f_{0}$ and $f_{1}$ are constants

there exist $z_{2},$ $\cdots$ , $z_{n+1}$ (not all zero) for which $f_{0}=f_{1}=0$ . This would mean
that there is a point $(0,0, z_{2}, \cdots z_{n+1})\in M$ where all the partial derivatives
$\frac{\partial f}{\partial z_{k}}$ are zero. Thus $f_{0}$ and $f_{1}$ are constants, so that $f$ is of degree 1 and is

given by $f=c_{0}z_{0}+c_{1}z_{1}$ , where $c_{0},$ $c_{1}$ are constants; therefore $M$ is a projective
hyperplane in $P^{n+1}$ and thus $M$ is of rank zero everywhere. This is a con-
tradiction.

The following lemma occurs as a particular case of the main theorem of
\S 5 in Samuel’s book [7], although it is easy to give a direct proof using the
theory of resultants.

LEMMA 8. For any two non-constant homogeneous polynomials $g,$ $h\in C[x_{1}$ ,
... , $x_{n}$], $n\geqq 3$ , there is a non-trivial solution of $g=h=0$ .
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\S 5. Hypersurfaces in $C^{n+1}$ .
To begin with, we suppose that $M$ is a complex hypersurface in an

arbitrary K\"ahlerian manifold $\tilde{M}$ . For any vector field $X$ on $M$ and for any
field of vectors $\xi$ normal to $M$ in $\tilde{M}$ , we define $\hat{\nabla}_{X}\xi$ to be the normal component
of $\tilde{\nabla}_{X}\xi$ , where $\tilde{\nabla}$ refers, as in [8], to covariant differentiation in $\tilde{M}$ . We may
easily verify that $\hat{\nabla}$ is a linear connection in the normal bundle over $M$, which
we call the normal connection for the hypersurface $M$. The relative curvature
tensor $\hat{R}$ of $M$ (that is, the curvature tensor of the normal connection of $M$ )

is given by
$\hat{R}(X, Y)\xi=[\hat{\nabla}_{X},\hat{\nabla}_{Y}]\xi-\hat{\nabla}_{[X,Y]}\xi$ ,

where $X$ and $Y$ are vector fields tangent to $M$. If $\xi$ is a field of unit normals,
$\hat{\nabla}_{X}\xi$ is equal to $ s(X)J\xi$ and, by an easy computation, we find

PROPOSITION 2. The relative curvature tensor $\hat{R}$ of $M$ is expressed by

$\hat{R}(X, Y)\xi=2ds(X, Y)J\xi$ ,

where $\xi$ is a field of unit normals to $M$.
Now assume that $\tilde{M}$ has constant holomorphic sectional curvature $ c\sim$ .

According to Proposition 4 of [8], we have
$\tilde{S}(X, JY)=S(X, JY)+2ds(X, Y)$ ,

where $\tilde{S}$ and $S$ denote the Ricci tensors of $\tilde{M}$ and $M$, respectively. We shall
prove

THEOREM 7. Let $M$ be a complex hypersurface of complex dimension $n\geqq 1$

in a space $\tilde{M}$ of constant holomorphic curvature $ c\sim$ . The following conditions are
equivalent:

i) The normal connection of $M$ is trivial, that is, $\hat{R}=0$ .
ii) $S=\tilde{S}$ on $M$.

iii) $S=0$ on $M$.
iv) $c\sim=0$ and $M$ is totally geodesic in $\tilde{M}$ .
PROOF. It is clear that iv) implies each of the other conditions, while the

equivalence of i) and ii) follows from Proposition 2 above. Assuming ii) we
see that $M$ is Einstein. By Theorem 4, $M$ is then totally geodesic in $\tilde{M}$ or
else $c\sim>0$ and $M$ is locally holomorphically isometric to $Q^{n}$ in $P^{n+1}(C)$ . Thus
$S=(n+1)-\frac{c\sim}{2}g$ or else $c\sim>0$ and $S=\frac{n\tilde{c}}{2}g$. However, $\tilde{S}=(n+2)\frac{c\sim}{2}g$. Therefore
$\tilde{c}=0$ and $S=0$ and consequently $M$ is totally geodesic in $\tilde{M}$ . In other words,
ii) implies both iii) and iv). If $S=0$ , then $M$ is Einstein and it is clear from
the above that $c\sim=0$ and $M$ is totally geodesic in $\tilde{M}$ . Thus iii) implies iv) and
the equivalence of all four conditions is proved.

The general object of the remainder of this section is to define the Gaussian
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mapping of a complex hypersurface in complex Euclidean space $C^{n+1}$ into the
complex projective space $P^{n}(C)$ , and to give a geometric interpretation thereof.
It is convenient to begin by establishing a relationship between the Riemannian
connection on the sphere $S^{2n+1}$ and the K\"ahlerian connection on $P^{n}(C)$ (for the
Fubini-Study metric, of course).

$P^{n}(C)$ can be regarded as the base of a principal fibre bundle $S^{2n+1}$ (unit
sphere in $C^{n+1}$) on which the structure group $S^{1}=\{e^{i\theta}|\theta\in R\}$ acts as follows:
$S^{2n+1}\times S^{1}\ni(z, e^{t\theta})\rightarrow ze^{i\theta}\in S^{2n+1}$ . $\pi$ denotes the canonical projection of $S^{2n+1}$

onto $P^{n}(C)$ and $g(z, w)={\rm Re}(\sum_{k=0}^{n}z^{k}w^{-k})$ for $z=(z^{0}, z^{1}, \cdots , z^{n}),$ $w=(w^{0}, w^{1}, \cdots , w^{n})$

defines the Euclidean metric on $C^{n+1}$ . With the natural identification between
vectors tangent to $S^{2n+1}$ and vectors $C^{n+1}$ , we have

$T_{z}(S^{2n+1})=\{w\in C^{n+1}|g(z, w)=0\}$

for each $z\in S^{2n+1}$ . The orthogonal complement of
$T_{z^{\prime}}=\{w\in C^{n+1}|g(z, w)=g(iz, w)=0\}$

in $T_{z}(S^{2n+1})$ is the l-dimensional subspace $\{iz\}$ which is spanned by the vector
$iz$ (in the sense of the above identification). The distribution $T^{\prime}$ defines a
connection in the principal fibre bundle $S^{2n+1}(P^{n}(C), S^{1})$ , that is, $T_{z}^{\prime}$ is comple-
mentary to the subspace $\{iz\}$ tangent to the fibre through $z$ , and $T^{\prime}$ is invariant
by the action of $S^{1}$ . Thus the projection $\pi$ induces a linear isomorphism of
$T_{z}^{\prime}$ onto $T_{\pi(z)}(P^{n}(C))$ and $\pi$ maps $\{iz\}$ into zero for each $z\in S^{2n+1}$ .

The classical Fubini-Study metric of holomorphic sectional curvature 1
is nothing but the metric $\tilde{g}$ defined by $\tilde{g}(\tilde{X},\tilde{Y})=4g(X^{\prime}, Y^{\prime})$ , where $\tilde{X},\tilde{Y}$

$\in T_{p}(P^{n}(C))$ and $X^{\prime},$ $Y^{\prime}$ are their respective horizontal lifts at $z(\pi(z)=p)$ .
Since $g$ is invariant by $S$ ‘, the definition of $\tilde{g}(\tilde{X},\tilde{Y})$ is independent of the
choice of $z$ . We might also observe that the complex structure in $T_{z}^{\prime}$ (defined
by multiplication of vectors by i) induces the canonical complex structure $J$ on
$P^{n}(C)$ , when transferred by means of $\pi$ . (What we have said so far is more
or less well known.)

The horizontal lift of a vector field $\tilde{X}$ on $P^{n}(C)$ will be denoted by $X^{\prime}$ .
If $\tilde{X}$ and $\tilde{Y}$ are vector fields on $P^{n}(C)$ , then the vector fields $X^{\prime}$ and $Y^{\prime}$ are
invariant by $S^{1}$ ; since the Riemannian connection on $S^{2n+1}$ is invariant by $S^{1}$ ,

it follows that $\nabla_{X^{\prime}}^{\prime}Y^{\prime}$ (where $\nabla^{\prime}$ denotes covariant differentiation on $S^{2n+1}$) is
also invariant by $S^{1}$ and hence projectable, that is, there exists a vector field
$\tilde{Z}$ on $P^{n}(C)$ such that $\pi_{*}(\nabla_{X^{\prime}}^{\prime}Y^{\prime})_{z}=\tilde{Z}_{\pi(z)}$ for all $z\in S^{2n+1}$ .

PROPOSITION 3. For every pair of vector fields $\tilde{X},\tilde{Y}$ on $P^{n}(C)$ the vector
field $\nabla_{X}^{\prime},Y^{\prime}$ on $S^{2n+1}$ is projectable and $\tilde{\nabla}_{\tilde{X}}\tilde{Y}=\pi_{*}(\nabla_{X^{\prime}}^{\prime}Y^{\prime})$ defines the Kahlerian
connection on $P^{n}(C)$ .

PROOF. To prove this we verify the following:
i) $\tilde{\nabla}$ is a linear connection. Obviously $\tilde{\nabla}_{\tilde{X}}\tilde{Y}$ is bi-additive in $X$ and $Y$.
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For any differentiable function $f$ on $P^{n}(C)$ we let $ f^{\prime}=f\circ\pi$ be its lift to $S^{2n+1}$ .
Then $f^{1}X^{\prime}$ is the horizontal lift of $\tilde{f}\tilde{X}$ and $\nabla_{f^{\prime}X}^{\prime},Y^{\prime}=f^{\prime}\nabla_{X^{\prime}}^{\prime}Y^{\prime}$ is projectable.
Thus

$\tilde{\nabla}_{\overline{f}\tilde{X}}\tilde{Y}=\pi_{*}(\nabla_{f’ X^{\prime}}^{J}Y^{J})=\pi_{*}(f^{\prime}\nabla_{X^{\prime}}^{\prime}Y^{\prime})=\tilde{f}\tilde{\nabla}_{\tilde{X}}\tilde{Y}$ .
Similarly, we can prove

$\tilde{\nabla}_{X}(\tilde{f}\tilde{Y})=(\tilde{X}\tilde{f})\tilde{Y}+\tilde{f}\tilde{\nabla}_{\tilde{X}}\tilde{Y}$ .
ii) The torsion tensor of $\tilde{\nabla}$ is zero. If $\tilde{X}$ and $\tilde{Y}$ are vector fields on $P^{n}(C)$

then [X’, $Y^{\prime}$] is projectable and $\pi_{*}[X^{\prime}, Y^{\prime}]=[\tilde{X},\tilde{Y}]$ . Consequently
$\tilde{\nabla}_{\tilde{X}}\tilde{Y}-\tilde{\nabla}_{\tilde{Y}}\tilde{X}-[\tilde{X},\tilde{Y}]=\pi_{*}(\nabla_{X^{\prime}}^{\prime}Y^{\prime}-\nabla_{Y^{\prime}}^{\prime}X^{\prime}-[X^{\prime}, Y^{\prime}])=0$ .

iii) $\nabla$ is a metric connection for $\tilde{g}$. Let $\tilde{X},\tilde{Y}$ and $\overline{Z}$ be vector fields on
$P^{n}(C)$ . On $S^{2n+1}$ we have

$X^{\prime}g(Y^{\prime}, Z^{\prime})=g(\nabla_{X^{\prime}}^{\prime}Y^{\prime}, Z^{\prime})+g(Y^{\prime}, \nabla_{X^{\prime}}^{\prime}Z^{\prime})$ .
Denoting by $h$ the horizontal component of vector fields on $S^{2n+1}$ , we see that

$g_{z}(\nabla_{X^{\prime}}^{\prime}Y^{\prime}, Z^{\prime})=g_{z}(h(\nabla_{X^{\prime}}^{\prime}Y^{\prime}), Z^{\prime})$

$=\frac{1}{4}\tilde{g}_{p}(\pi_{*}h(\nabla_{X^{\prime}}^{\prime}Y^{\prime}), \pi_{*}Z^{\prime})=_{4}^{1}--\tilde{g}_{p}(\tilde{\nabla}_{\tilde{X}}\tilde{Y},\tilde{Z})$ ,

where $\pi(z)=p$ . Similarly, we have $g_{z}(Y^{\prime}, \nabla_{X^{\prime}}^{\gamma}Z^{\prime})=_{4}^{1}--\tilde{g}_{p}(\tilde{Y},\tilde{\nabla}_{X}\tilde{Z})$ . On the other

hand we have $ g(Y^{\prime}, Z^{\prime})=\tilde{f}\circ\pi$ , where $\tilde{f}=_{4}^{1}--\tilde{g}(\tilde{Y},\tilde{Z})$ , so that

$X_{z^{\prime}}g(Y^{\prime}, Z^{\prime})=X_{z}^{\prime}(\tilde{f}\circ\pi)=(\pi_{*}X_{z^{f}})\tilde{f}=\tilde{X}_{p}\tilde{f}=\frac{1}{4}\tilde{X}_{p}\tilde{g}(\tilde{Y},\tilde{Z})$ .

The metric condition for $\nabla^{\gamma}$ therefore gives rise to the same condition for $\tilde{\nabla}$ ,
that is,

$\tilde{X}\tilde{g}(\tilde{Y},\tilde{Z})=\tilde{g}(\tilde{\nabla}_{\tilde{X}}\tilde{Y},\tilde{Z})+\tilde{g}(\tilde{Y},\tilde{\nabla}_{\tilde{X}}\tilde{Z})$ .

REMARK. If $z_{t}$ is a horizontal curve on $S^{2n+1}$ and $Y_{t}^{\prime}$ is a family of
horizontal vectors defined along $z_{t}$ , then $\pi_{*}(\nabla_{z_{t}}^{\prime}\rightarrow Y_{t}^{\prime})=\tilde{\nabla}_{\pi_{*(}}\rightarrow\pi(Y_{t}^{\prime})$ along $z_{t}$ , where
$\vec{z}_{t}$ is the velocity vector of the curve $z_{t}$ at time $t$ .

To verify this for each $t_{0}$ we extend $ z_{t}\rightarrow$ and $Yl$ , respectively, to horizontal
vector fields $Z^{\prime}$ and $Y^{\prime}$ in a neighborhood of $z_{\iota_{0}}$ , as follows: extend $\pi_{*}(\rightarrow z_{t})$

(resp. $\pi_{*}(Y_{t}^{\prime})$) to a neighborhood of $\pi(z_{\iota_{0}})$ and let $Z^{\prime}$ (resp. $Y^{\prime}$) be its horizontal
lift. We then have $\pi_{*}(\nabla_{Z^{\prime}}^{\gamma}Y^{\prime})=\tilde{\nabla}_{Z}\sim\tilde{Y}$, which implies $\pi_{*}(\nabla_{z_{t}}^{\prime}\rightarrow Y_{t}^{\prime})=\tilde{\nabla}_{\pi_{*}(z_{t^{)}}^{1}}\pi_{*}(Y_{t}^{\prime})$ at
$z_{t_{0}}$ .

Turning our attention now to a complex hypersurface $M$ in $C^{n+1}$ , we shall
first define a generalized Gaussian mapping of $M$ into $P^{n}(C)$ .

For each point $x\in M$ we can choose a unit vector $\xi$ normal to $M$ at $x$ .
As a vector in $C^{n+1}$ , it is determined to within a multiple of the form $e^{i\theta}$ .



516 K. NOMIZU and B. SMYTH

Thus $\phi(x)=\pi(\xi)\in P^{n}(C)$ is well defined and the mapping $\phi$ : $M\rightarrow P^{n}(C)$ is
called the Gaussian mapping of $M$. We can relate $\phi$ to the second fundamental
form $A$ of $M$ (in the formalism of [8]) as follows:

Let $X\in T_{x}(M)$ and take a curve $x_{t}$ on $M$ such that $x_{0}=x$ and $(\vec{x}_{c})_{t=0}=X$.
Choose a (differentiable) family of unit normals $\xi_{t}$ along $\chi_{/}$ . The differential
$\Phi*of\phi$ maps $X$ upon

$(\frac{d\pi(\xi_{\iota})}{dt})_{t=0}=\pi_{*}(\frac{d\xi_{t}}{dt})_{t=0}\in T_{\phi(x)}(P^{n}(C))$ ,

where $(\frac{d\xi_{t}}{dt})_{t=0}$ is the tangent vector of the curve $\xi_{t}$ on $S^{2n+1}$ at $\xi_{0}$ . On the

other hand, the Weingarten formula for $M$ as a complex hypersurface in $C^{n+1}$

(with the flat connection $D$) gives

$(\frac{d\xi_{t}}{dt})_{\iota=0}=D_{X}\xi=-AX+s(X)J\xi$ , where $ J\xi=i\xi$ .

Since $ J\xi$ is the initial tangent vector of the curve $ e^{i\theta}\xi$ on $S^{2n\vdash 1}$ , we have
$\pi_{*}(J\xi)=0$ . Hence

$\phi_{*}(X)=-\pi_{*}(AX)$ .
The vector $AX$, considered by translation as a tangent vector to $S^{2n+1}$ at $\xi$ ,

belongs to $T_{\xi^{\prime}}$ because it is perpendicular to $ J\xi$ . Since $\pi_{*};$ $T_{\xi^{\prime}}\rightarrow T_{\pi(\xi)}(P^{n}(C))$ is
one-to-one, we conclude that

i) $\phi_{*}(X)=0$ if and only if $AX=0$ .
ii) The rank of $\Phi*is$ equal to the rank of $A$ .
Since $\phi_{*}(JX)=-\pi_{*}(AJX)=\pi_{*}(JAX)$ and since the complex structure $J$ on

$T_{\xi^{\prime}}$ corresponds to the complex structure $J$ on $T_{\pi(\xi)}(P^{n}(C))$ , by means of $\pi$ , we
have

$\phi_{*}(JX)=\tilde{J}\pi_{*}(AX)=-\tilde{J}\phi_{*}(X)$ ,
namely,

iii) the Gaussian mapping $\phi$ is anti-holomorphic.
EXAMPLES.
i) If $M$ is a hyperplane $C^{n}$ in $C^{n+1}$ we have a constant unit normal $\xi$ over

$M$, so that $\phi(M)$ is a single point in $P^{n}(C)$ .
ii) If $M$ is of the form $K\times C^{n-1}$ , where $K$ is a complex curve in a plane

$C^{2}$ perpendicular to $C^{n-1}$ , then the rank of $\phi$ is $\leqq 2$ everywhere and $\phi(M)$ lies
in a projective line $P^{1}(C)$ in $P^{n}(C)$ . It will be interesting to find an appropriate
converse of this proposition.

In relating the K\"ahlerian connection on $M$ to that on $P^{n}(C)$ , the following
lemma will be useful.

LEMMA 9. Let $x_{t}$ be a differentiable curve on M. Then there is a family

of unit normals $\xi_{t}$ along $x_{t}$ which, as a curve in $S^{2n+1}$ , is horizontal.
PROOF. For an arbitrary family of unit normals $\eta_{t}$ along $x_{t}$ we consider
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a family of unit normals given by $\xi_{t}=a\eta_{t}+bJ\eta_{t}$ , where $a=a(t)$ and $b=b(t)$

are differentiable functions such that $a^{2}+b^{2}=1$ . We show that by choosing $a$

and $b$ suitably we can make $\xi_{t}$ horizontal, that is $g(\frac{d\xi_{t}}{dt},$ $J\xi_{t})=0$ for all $t$ .
It is readily verified that

$g(\frac{d\xi_{t}}{dt},$ ]$\xi_{t})=g(\frac{d\eta_{t}}{dt},$ $J\eta_{t})+a\frac{db}{dt}-b\frac{da}{dt}$ .

Thus our purpose will be achieved if we can choose $a$ and $b$ such that

$a\frac{db}{dt}-b\frac{da}{dt}=k(t)$ and $a^{2}+b^{2}=1$ ,

where $k(t)=-g(\frac{d\eta_{t}}{dt}$ , $J\eta_{t})$ . Since $a^{2}+b^{2}=1$ implies $a\frac{da}{dt}+b\frac{db}{dt}=0$ , we have

$\frac{da}{dt}=-bk(t)$ and $\frac{db}{dt}=ak(t)$ .
Thus we may take

$a(t)=\cos l(t)-\sin l(t)$ , $b(t)=\sin l(t)+\cos l(t)$ ,

where $1(t)=\int k(f)dt$ .
THEOREM 8. Let $M$ be a complex hypersurface in $C^{n+1}$ and let $Y_{\iota}$ be a

family of vectors tangent to $M$ along a curve $x_{t}$ . Choose a family of unit
normals $\xi_{t}$ along $x_{t}$ as in Lemma 9 and let $Y_{t^{\prime}}$ be the vector tangent to $S^{2n+1}$ at
$\xi_{t}$ which is parallel to $Y_{t}$ in $C^{n+1}$ . Let $\tilde{Y}_{t}=\pi_{*}(Y_{t}^{\prime})$ . Then $Y_{t}$ is parallel along
$x_{t}$ on $M$ if and only if $\tilde{Y}_{t}$ is parallel along $\phi(x_{t})$ on $P^{n}(C)$ .

PROOF. For $M$ we have

(10) $\frac{dY_{t}}{dt}=D_{x_{t}}^{A}Y_{t}=\nabla_{x_{t}}^{\rightarrow}Y_{t}+h(\rightarrow x_{t}, Y_{t})\xi_{t}+k(\rightarrow x_{t}, Y_{t})J\xi_{t}$ ,

where $D$ is the flat connection in $C^{n+1}$ and $\nabla$ is the K\"ahlerian connection on
$M$. On the other hand, for $S^{2n+1}$ (with the Riemannian connection $\nabla^{f}$ ) we get

(11) $\frac{dY_{t}}{dt}=\frac{dY_{t}^{1}}{dt}=D_{\xi_{t}^{\rightarrow}}Y_{t}^{\prime}=\nabla_{\rightarrow,\xi_{t}}^{\prime}Y_{t}^{\prime}+h^{\prime}(\xi_{t}\rightarrow, Y_{t}^{\prime})\xi_{t}$ ,

where $h^{\prime}$ is the second fundamental form of $S^{2n+1}$ with respect to the unit
normals $\xi_{t}$ . Equations (10) and (11) yield

$\nabla_{x_{t}}^{\rightarrow}Y_{\ell}+\{h(\rightarrow x, Y_{t})-h^{\prime}(\xi_{t}\rightarrow, Y_{t}^{\prime})\}\xi_{\iota}+k(\overline{x}_{t}, Y_{t})J\xi_{t}=\nabla_{\xi_{i}}^{\prime}\rightarrow Y_{t^{\prime}}$

\langle considered as an identity among vectors in $C^{n+1}$). Therefore

$\nabla_{x_{t}\iota_{\xi_{t}}}^{\rightarrow Y=\nabla^{\prime}\rightarrow Y_{t}^{\prime}-k(x_{t}}\rightarrow,$
$Y_{t}$) $J\xi_{t}$ .

Thus, if $\nabla_{x_{t}}^{\rightarrow}Y_{t}=0$ , the fact that both $\rightarrow\xi_{t}$ and $Y_{t}^{\prime}$ are horizontal and that $J\xi_{r}$ is
vertical in $T_{\xi\iota}(S^{2n+1})$ implies
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$0=\pi_{*}(\nabla_{\xi_{t}^{\wedge}}^{\prime}Y_{t}^{\prime}-k(\grave{x}_{t}, Y_{t})J\xi_{t})=\pi_{*}(\nabla_{\xi_{t}}^{\prime}.Y_{t}^{\prime})=\tilde{\nabla}_{\pi}(\pi(Y_{t}^{\prime})=\tilde{\nabla}_{\phi(x_{t)}}^{\rightarrow\tilde{Y}_{t}}$ ,

in view of the remark following Proposition 3. Conversely, suppose $\tilde{\nabla}_{\emptyset(x_{b})}\rightarrow\tilde{Y}_{t}=0$ .
Then $\nabla_{\xi_{t}}^{\prime}\rightarrow Y_{t^{\prime}}$ must be vertical, that is, in the direction of $J\xi_{t}$ . From (11) we see

that $\underline{d_{d^{\frac{Y_{t}}{t}}}}$ is a linear combination of $\xi_{t}$ and $J\xi_{t}$ . Therefore $\nabla_{x_{f}}^{\rightarrow}Y_{t}=0$ , by virtue

of (10).
REMARK. For a complex n-dimensional submanifold $M$ of $C^{n+k}$ there is a

naturally defined mapping $\phi:M\rightarrow U(n+k)/U(n)\times U(k)$ and an associated map-
ping of the bundle of unitary frames over $M$ into $U(n+k)/U(k)$ . This bundle
mapping was studied by Kerbrat [3]. For an n-dimensional (real) orientable
submanifold in real Euclidean space $R^{n+k}$, there is a naturally defined mapping
$\phi:M\rightarrow SO(n+k)/SO(n)\times SO(k)$ . If $k=2$ , the latter space can be identified with
the quadric $Q^{n}$ in $P^{n+1}(C)$ and we may relate the Riemannian connection on
$M$ to the K\"ahlerian connection on $Q^{n}$ by means of $\phi$ in a geometric manner
similar to that of Theorem 8.

\S 6. Complex curves.

We now turn to (nonsingular) complex curves in a complex 2-dimensional
space $\tilde{M}$ of constant holomorphic sectional curvature $ c\sim$ and we derive a very
convenient formula for their curvature. If $M$ is such a curve, then $A^{2}=\lambda_{1}^{2}I$

on $M$. Since the curvature $K$ of $M$ is given by $K=-2\lambda_{1}^{2}+\tilde{c}$ (Corollary 3, [8]),

we have $ K\leqq c\sim$ on $M$. We now suppose that $ K(x_{0})\neq c\sim$ , so that $\lambda_{1}^{2}\neq 0$ in a
neighborhood $U(x_{0})$ of $x_{0}$ ; let $\lambda_{1}$ denote its positive square root. Consider the
distributions $T_{1^{+}},$ $T_{1}^{-}$ on $U(x_{0})$ as defined in \S 3. Codazzi’s equation may be
written

$\nabla_{Y}(AZ)-\nabla_{Z}(AY)-A\nabla_{Y}Z+A\nabla_{Z}Y-s(Y)JAZ+s(Z)JAY=0$

and, supposing that the vector fields $Y$ and $Z$ belong to $T_{1}^{-}$ and $T_{1}^{+}$ respectively,
we obtain

$Y(\text{{\it \‘{A}}}_{1})Z+\lambda_{1}\nabla_{Y}Z+Z(\lambda_{1})Y+\lambda_{1}\nabla_{Z}Y-A\nabla_{Y}Z+A\nabla_{Z}Y-\lambda_{1}s(Y)JZ-\lambda_{1}s(Z)JY=0$ .
If, in addition, $Y$ and $Z$ are unit vector fields, a consideration of the $T_{1}^{-}-$

component of this equation yields

$-A\nabla_{Y}Z+\lambda_{1}\nabla_{Y}Z+Z(\lambda_{1})Y-\lambda_{1}s(Y)JZ=0$ ,

$i$ . $e$ . $2\lambda_{1}\nabla_{Y}Z+Z(\lambda_{1})Y-\lambda_{1}s(Y)JZ=0$ ,

$i$ . $e$ . $\nabla_{Y}Z=-\frac{1}{2}\{Z(-\frac{1}{2}\ln\lambda_{1}^{2})Y-s(Y)JZ\}$

$=-\frac{1}{2}\{Z(\mu)Y-s(Y)JZ\}$ ,
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where $\mu=\frac{1}{2}\ln\lambda_{1}^{2}$ . However, $Z(\mu)Y=-(JY)(\mu)JZ$ since $JY=\pm Z$. Hence

$\nabla_{Y}Z=_{2}^{1}--[(JY)\mu+s(Y)\}JZ$ .

Note that this still holds if $Y$ is an arbitrary vector field in $T_{1}^{-}$ . Also, if $Z$

is a unit vector field in $T_{1^{-}}$ (instead of $T_{1^{+}}$), then $JZ$ is a unit vector field in
$T_{1}^{+}$ so that the formula above is valid when we replace $Z$ by $JZ$. Using
$\nabla_{Y}(JZ)=J(\nabla_{Y}Z)$ we obtain again

$\nabla_{Y}Z=_{2}^{1}--\{(JY)\mu+s(Y)\}JZ$ ,

where $Z$ is a unit vector field in $T_{1}^{-}$ .
Similarly, we obtain

1
$\nabla_{Z}Y=_{2}--\{(JZ)\mu+s(Z)\}JY$

on considering the $T_{1}^{+}$-component of Codazzi’s equation. Note that this still
holds if $Z$ is an arbitrary vector field in $T_{1^{+}}$ and if $Y$ is a unit vector field in
$T_{1}^{+}$ . Combining all cases we conclude that

$\nabla_{Y}Z=\frac{1}{2}\{(JY)\mu+s(Y)\}JZ$

when $Z$ is a unit vector field in either $T_{1}^{+}$ or $T_{1^{-}}$ and $Y$ is an arbitrary vector.
It may be readily verified that

$\nabla_{X}\nabla_{Y}Z=\frac{1}{2}\{X(JY)\mu+Xs(Y)\}JZ_{4^{-}}^{1}--\{(JY)\mu+s(Y)\}\{(JX)\mu+s(X)\}Z$ ,

where $Z$ is a unit vector field in $T_{1}^{+}$ . Therefore

$R(JZ, Z)Z=\frac{1}{2}\{(JZ)(JZ)\mu+ZZ\mu-J([JZ, Z])\mu\}JZ+ds(JZ, Z)JZ$

$=\frac{1}{2}\{ZZ\mu+(JZ)(JZ)\mu-(\nabla_{Z}Z+\nabla_{JZ}JZ)\mu\}JZ+ds(JZ, Z)JZ$

$=\{\frac{1}{2}\Delta\mu+ds(JZ, Z)\}JZ$ ,

where $\Delta\mu$ denotes the Laplacian of $\mu$ . Since $K=g(R(JZ, Z)Z,$ $JZ$), we obtain
$K=_{2}^{1}--\Delta\mu+ds(JZ, Z)$ and, using (12), we have

PROPOSITION 4. Let $M$ be a complex curve in a complex 2-dimensional
space $\tilde{M}$ of constant holomorphic curvature $ c\sim$. The curvature of $M$ is given by $\cdot$

$K=_{3}^{1}--\Delta\mu+\frac{c\sim}{2}$

on the open set $\{x\in M|K(x)\neq c\sim\}$ , where $\mu=\frac{1}{2}\ln\text{{\it \‘{A}}}_{1}^{2}$ and $\lambda_{1}^{2}$ is defined by
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$A^{2}=\lambda_{1}^{2}I$.
It is now easy to prove Theorem 4 for the case $n=1$ . Let $M$ be of con-

stant curvature but not totally geodesic in $\tilde{M}$, then $\lambda_{1}^{2}$ is a nonzero constant,
so that $\Delta\mu=0$ on $M$. Thus $K=c\sim/2$ by Proposition 4, and since $K=-2\lambda_{1}^{2}+\tilde{c}$,

it follows that $\lambda_{1}^{2}=c\sim/4$. In particular $\tilde{c}>0$ . However the complex quadric $Q^{1}$

in $P^{2}(C)$ is of constant curvature and is not totally geodesic in $P^{2}(C)$ ; con-
sequently $\lambda_{1}^{2}=\tilde{c}/4$ on $Q^{1}$ also. Thus if $M$ is of constant curvature but not
totally geodesic in $\tilde{M}$ then $c\sim>0$ and $M$ is locally holomorphically isometric to
$Q^{1}$ in $P^{2}(C)$ .

Consider $P^{2}(C)$ with the Fubini-Study metric of holomorphic curvature 1.
Let $M$ be a (nonsingular) closed complex curve in $P^{2}(C)$ and suppose $K<1$ at

every point of $M$. Then $K=\frac{1}{3}\Delta\mu+\frac{1}{2}$ is a global formula for the curvature

of $M$. Let $dv$ denote the area element of the Riemannian manifold $M$. By
virtue of the Gauss-Bonnet theorem and Green’s theorem we obtain

$2\pi\chi=4\pi(1-p)=\int_{M}Kdv=\int_{M}(\frac{1}{3}\Delta\mu+\frac{1}{2})dv=\frac{1}{2}\int_{M}dv>0$ ,

where $\chi$ and $p$ are the Euler characteristic and genus of $M$, respectively. The
genus of $M$ is therefore zero. However $M$, being a closed complex curve in

$P^{2}(C)$ , is algebraic and its genus is given by $p=\underline{(n-1}$)$\underline{(n-2)}2$ where $n$ is the

order of the curve $M$ (see p. 179, [10]). Thus $M$ is of order 1 or 2, that is,
$M$ is either a projective line or a quadric. However, $K$ is identically equal to
1 on a projective line. Thus $M$ is a quadric, which is congruent to $Q^{1}$ : $z_{0}^{2}+z_{1}^{2}$

$+z_{2}^{2}=0$ by a projective transformation of $P^{2}(C)$ but not necessarily by a
holomorphic motion of $P^{2}(C)$ .

If further we assume either $K\leqq 1/2$ everywhere or $1/2\leqq K<1$ everywhere,
then $\Delta\mu=3(K-1/2)$ is of constant sign on $M$ and, by Green’s Theorem, we
must have $\Delta\mu=0$ on $M$, that is, $K\equiv 1/2$ . In either case $M$ is congruent to $Q^{1}$

by a holomorphic motion of $P^{2}(C)$ .
We now show that $M$ is a projective line if $K>1/2$ everywhere on $M$.

If not there would be a point $x_{0}\in M$ of minimum curvature $K(x_{0})<1$ . Then
$\mu(x_{0})$ is a maximum for $\mu$ so that $\Delta\mu=3(K-1/2)\leqq 0$ at $x_{0}$ . In other words
$K(x_{0})\leqq 1/2$ and this is a contradiction.

We summarize these results in the following theorem.
THEOREM 9. On an arbitrary nonsingular complex curve $M$ in the projective

plane $P^{2}(C)$ , the curvature $K$ of $M$ (considered with the induced Kahler struc-
ture) satisfies $K\leqq 1$ everywhere. If $M$ is closed, the following results hold:

i) If $K<1$ everywhere, then $M$ is (complex analytically) a quadric2).

2) Blaine Lawson has given us an example which shows that $M$ need not be holo-
morphically isometric to the quadric $Q^{1}$ .
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ii) If $K\leqq 1/2$ everywhere or if $1/2\leqq K<1$ everywhere, then $M$ is congruent
to the quadric $Q^{1}$ by a holomorphic motion of $P^{2}(C)$ , and of course $K=1/2$

everywhere.
iii) If $K>1/2$ everywhere, then $M$ is a projective line and $K=1$ everywhere.
From ii) and iii) we also obtain
$CoROLLARY$ . Any closed nonsingular complex curve in $P^{2}(C)$ has a point

where $K\geqq 1/2$ . If $M$ is not a projective line, it has a point where $K=1/2$ .

Brown University and
University of Notre Dame
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