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A recursive function $\phi(x)$ is defined to be $U(\mu yT(e, x, y))$ , if $\forall x\exists yT(e, x, y)$ ,
where $U$ and $T$ are primitive recursive and $e$ is an integer; but nothing is
said about the theory in which the predicate $\forall x\exists yT(e, x, y)$ is provable. The
investigation of reasonable theories $9i$ in which provable recursiveness in $q$ is
defined by $\mathfrak{j}-q\forall x\exists yT(e, x, y)$ forms an interesting branch of recursive function
theory, and the functions provably recursive in such $q$ constitute a not un-
natural subclass of the class of computable functions. We will give a charac-
terization of provable recursiveness for certain theories.

Let $q$ be the theory of natural numbers or a subtheory of analysis. A
recursive function $\phi(x)$ is called “ provably recursive in $EZ$ , if $-g\forall x\exists yT(e, x, y)$ ,

where $e$ is a Godel number of $\phi$ . $Let\prec be$ a primitive recursive well-ordering

of natural numbers with $7n^{\prime}\prec 0$ for every $n$ . We $call\prec a$ provable primitive
recursive well-ordering in $q$, if the sentence $\prec is$ a well-ordering” is provable
in $q$ (cf. \S 3). A number-theoretic function $\phi$ is called “ ordinal recursive with
respect to $\prec‘‘$ ($\prec$-recursive), if it is defined by $t$ ‘ defining equations “ of primi-
tive recursive form and by transfinite induction with respect to $\prec$ . (For the
precise definition, cf. $[8a]$ and \S 2.)

In [11], Takeuti defined $GLC$, a Gentzen-style simple type theory contain-
ing t-variables of the first order and $f$-variables with finitely many argument-
places and stated his fundamental conjecture (FC) about $GLC$ ; (that Gentzen’s
Hauptsatz for $LK$, that is the cut elimination theorem, holds in $GLC$ as well.)
Takeuti proved that FC holds for many subsystems of $GLC$ by using transfinite
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Automata held at Oriskany, N. Y. in August 1965. The author is indebted to Professor
J. Myhill, Drs. F. B. Cannonito and V. H. Dyson, and Mr. G. E. Cash for reading this
paper in manuscript and suggesting a number of linguistic improvements.
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induction on various systems of ordinal diagrams introduced in [14] and $[17]^{0)}$ .
This provides constructive consistency-proofs of certain subsystems of analysis,
for example, arithmetic with the $\Pi_{1}1$-comprehension axiom:

$\forall x_{1}\ldots\forall x_{n}\forall\varphi_{1}\ldots\forall\varphi_{m}\exists\varphi\forall x(x\in\varphi\Leftrightarrow A(x, x_{1}, x_{n}, \varphi_{1}, \varphi_{m}))$

where $\varphi,$ $\varphi_{1},$
$\cdots$ , $\varphi_{m}$ are variables of the second order and $A(x,$ $x_{1},$ $\cdots$ , $x_{n}$ ,

$\varphi_{1},$
$\cdots$ , $\varphi_{m}$) does not contain $\varphi$ and is in $\Pi_{1}^{\iota}$-form; $i$ . $e$ . in the form $\forall\psi B$ with $B$

arithmetic.
Let $\sigma r$ be such a subsystem of analysis, $O(9^{\vee})$ the system of ordinal dia-

grams used to prove the consistency of $g$; and well-ordered by $\prec$ , and $|O(T)|$

the order-type of $O(9)$ . For an element $s$ of $O(\mathcal{G})$ , let $\prec^{s}$ denote the suborder
of $\prec$ up to $s$ , that is, $\prec^{s}$ is defined by $\forall x\forall y(x\prec s_{\mathcal{Y}}\xi\Rightarrow x\prec y\wedge y\prec s)$ . By the
technique of arithmetization the relations “

$s$ is an element of $O(X)$ “, “ $a\prec b$ ”

and “ $a\prec^{s}b$ ” become primitive recursive predicates, and $\prec$ and $\prec^{s}$ become
primitive recursive well-orderings of natural numbers.

THEOREM 1. Let $\phi$ be a provably recursive function in 9“. Then we find
an element $s$ of $O(\mathcal{G})$ such that $\phi$ $is\prec^{s}$-recursive.

THEOREM 2. $If\prec is$ a provable primitive recursive well-ordering in $g$, then
every $\prec$ -recursive function is provably recursive in $q$ .

Theorems 1 and 2 apply also to Gentzen’s theory $NN$ of natural numbers,
yielding results which have been obtained by Kreisel1).

In [20] Takeuti proved that the following condition $(t)^{2)}$ is satisfied by $g$ ,

where $g$; is any of the theories $NN$ (classical arithmetic), $RNN$ and f-CNN.
(Some intuitive idea of the latter two theories may be gained by observing
that in each of them the following form of the comprehension axiom holds.

$\forall x_{1}\ldots\forall x_{n}\exists\varphi\forall x(x\in\varphi\Leftrightarrow A(x, x_{1}, \cdots, x_{n}))$

where $A(x, x_{1}, \cdots , x_{n})$ does not contain $\varphi$ or any free second-order variable;
but in each of them the power of this axiom is somewhat lessened by restric-
tions on the inference schema

$0)$ In this paper we simply say ‘ ordinal diagrams of finite order ’ referring to the
system of ordinal diagrams of order $n$ developed in [14] or the system $O(\{0, \cdots n\}, N)$

$(=O(\{0, \cdots , n\}, N, \phi))$ where $N$ denotes the set of natural numbers in their usual order,
developed in [17]. The system $O(\{0, \cdots , n\}, N)$ which is order-isomorphic to the system
of ordinal diagrams of order $n+1$ in [14], will sometimes be referred to as the system
of ordinal diagrams of order $n$ . By a system of $t$ ordinal diagrams of infinite order ’

we understand a system $O(I, A)$ , where, at least, $I$ is not a finite set.
1) It was suggested to the author that Kreisel be credited for first having proved

in [6] Theorems 1 and 2 for the case of arithmetic. Professor Kreisel suggested re-
ferring to [9], particularly 3. 3234 and 3. 3421.

2) Though the condition $(\uparrow)$ in [20] is stated incorrectly, the results there remain
correct by reading (t) in the present form.
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$\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$ .
These theories will be exactly defined in \S 1.)

(t) For every ordinal $a$ less than $|O(9)|$ , there is a provable primitive re-
cursive well-ordering in $q$ whose order-type is $\sigma$ .

Theorem 2 implies:
$CoROLLARY$ . When (t) holds for $q$, for every ordinal $\sigma$ less than $|O(f)|$ ,

there is a provable primitive recursive $well- ordering\prec inf$ such that the order-
type $of\prec is$ $\sigma$ and every $\prec$-recursive function is provably recurs $ive$ in S.

In [4], Godel defined $t$ primitive recursive functionals of finite type ” (PR
functionals) and showed that every ordinal recursive function (or order $<\epsilon_{0}$

with respect to the usual standard ordering of order $\epsilon_{0}$) is a PR functional.
Tait in [10] stated that the converse, that is, “ Every PR functional of type
$(0,0)$ is ordinal recursive “, was established by a result of Kreisel3) and esta-
blished it himself by a method more direct than Kreisel’s. From these results
together with our theorem we see that provable recursiveness in arithmetic
coincides with $G\ddot{o}del’ s$ primitive recursiveness, which is essentially proved by
Godel [4].

In [20] and [21], Takeuti remarked that Gentzen’s result of [3] can be
stated in a more general form, namely: The order-type of any provable recur-
sive well-ordering in St is less than $|O(\mathscr{Z})|$ ; and this applies to most systems
$q$ whose consistency has been proved by an application of the proof of FC to
the corresponding subsystem of $GLC$ . We will show that this technique can
also be imitated for SJNN, if we take a suitable slightly larger system for
$O(SJNN)^{sa)}$ .

\S 1. Preliminary definitions.

In the following we will restate several Gentzen-style theories of natural
numbers formalized in the first or second order predicate calculus, and de-
veloped in [2], [15], [18], [19] and [21].

The subsystem $G^{1}LC$ of $GLC$ is the second order predicate calculus, where
$f$-variables are predicate variables with argument-places only of the first order.
We recall several notions concerning $G^{1}LC$ (see [11], [12] or [21] for these
notions as well as $G^{1}LC$ ). A semi-formula is a formula or is obtained from a
formula by substituting bound t-variables for one or more free ones. Note
that while each formula is a semi-formula, not all semi-formulas are formulas;

3) Professor Kreisel informed us that the paper that Tait referred to is $[8b]$ .
$3a)$ Kreisel has suggested that “ recursive” above might plausibly be replaced by

“
$\Sigma_{1}^{1}$ following his method in $[8c]$ , but we have not verified the details.
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the distinction being that a semi-formula is a formula if and only if each
occurrence in it of a bound variable is quantified. A semi-variety is the form
abstracted from a semi-formula and is expressed as $\{x_{1}, \cdots , x_{n}\}F(x_{1}, \cdots , x_{n})$ ,
where $F(a_{1}, \cdots , a_{n})$ is a semi-formula, $a_{1},$ $\cdots$ , $a_{n}$ are pairwise distinct free t-
variables and $x_{1},$

$\cdots$ , $x_{n}$ are pairwise distinct bound t-variables not contained in
$F(a_{1}, \cdots , a_{n})$ . A semi-variety is called a variety, if it does not contain any free
occurrence of bound variables. A quasi-formula is a semi-formula or a semi-
variety. By $A\mapsto B$ we understand $7AVB$ .

Throughout this paper, by a mathematical beginning sequence we under-
stand a sequence $\Gamma\rightarrow\Delta$ with the following properties; every formula of $\Gamma$

or $\Delta$ is primitive recursive and contains no logical symbol, and every sequence
obtained from $\Gamma\rightarrow\Delta$ by replacing all free t-variables in $\Gamma$ and $\Delta$ by arbitrary
natural numbers (i. e. numerals) is true. By a logical beginning sequence and
a beginning sequence for equality we mean a sequence of the form $D\rightarrow D$ and
$s=t,$ $A(s)\rightarrow A(t)$ respectively ($s$ and $t$ arbitrary terms).

An inference in a proof-figure is called implicit if the fibre $(Formelbund^{4)})$

through the principal formula (Hauptformel) of this inference ends in a cut-
formula (Schnittformel); otherwise it is called explicit (cf. [12] or [21] for the
precise definition of “ implicit” and ‘ explicit ”).

Let $\#$ be a universal quantifier for predicate variables ( $\forall$ on an $f$-variable)
and $\#$ a variable or a logical symbol. If $\mathfrak{h}$ appears in the scope of $\#$ , we say
“

$\#$ ties $\mathfrak{h}$ . If $\#$ appears as the leftmost $\forall$ in the form $\forall\varphi B$ in a quasi-formula
$A$ and lt is an $\forall$ on an $f$-variable appearing in the scope $B$ of $\#$ and ta ties $\varphi$ ,
we say “

$\#$ affects $\mathfrak{h}$ in $A$ ”.
1.1 Gentzen’s system $NN$ of the theory of natural numbers (given in [2]):

$NN$ is obtained from $LK$ ([1]) by the following modifications.
1.1.1 Every beginning sequence of $NN$ is a logical or mathematical begin-

ning sequence or a beginning sequence for equality.
1.1.2 The following inference schema ” induction” (VJ-Schlussfigur) is

added:

$\frac{A(a),\Gamma\rightarrow\Delta,A(a^{\prime})}{A(0),\Gamma\rightarrow\Delta,A(t)}$

where $a$ is not contained in any of $A(O),$ $\Gamma$ and $\Delta$ , and $t$ is an arbitrary term.
$A(a)$ and $A(a^{\prime})$ are called the principal-formulas and $a$ is called the eigenvari-
able of this induction.

The consistency of $NN$ is proved by using transfinite induction up to $\epsilon_{0}$

(cf. [2]). By a result of [3], (t) is true for $NN$ ([20]).

1.2 The theory $RNN$ of natural numbers (developed in [15]): $R_{1}VN$ is

4) Here and in the following Gentzen’s terminologies in $[1]-[3]$ are sometimes
given in parentheses.
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obtained from $G^{1}LC$ by the following modifications:
1.2.1 Every beginning sequence of $RNN$ is a logical or mathematical

begmning sequence or a beginning sequence for equality.
1.2.2 The inference schema “ induction ” is added.
1.2.3 Every implicit inference $\forall$ left on an $f$-variable in a proof-figure of

$RNN$ is restricted by the condition that its principal formula be regular. The
definition of a regular formula is seen in \S 2, Chapter I of [15]. Briefly, a
formula $A$ is regular, if the following condition is satisfied: Let $\#$ and in be
an arbitrary pair of $\forall s$ on $f$-variables in $A$ occurring in the forms $\#\psi B(\psi)$

and $\mathfrak{h}\varphi C(\varphi)$ respectively. If $\eta_{\varphi C(\varphi)}$ appears in $B(\psi)$ and ta is negative with
respect to $\#$ , then ta is isolated, where ta is called isolated if the following con-
ditions are satisfied:

(i) $C(\varphi)$ contains no free $f$-variable.
(ii) No $\forall$ on an $f$-variable affects $\#$ .

(iii) lt does not affect any $\forall$ on an $f$-variable.
The consistency of $RNN$ is proved by using transfinite induction on ordinal
diagrams of finite order in [15]. It is proved in [16] that (t) is true for $RNN$.

1.3 The theory f-CNN of natural numbers (developed in [18]): f-CNN is
obtained from $G^{1}LC$ by the following modifications.

1.3.1 Every beginning sequence of f-CNN is a logical or mathematical
beginning sequence or a beginning sequence for equality.

1.3.2 The inference schema “ induction ” is added.
1.3.3 Every implicit inference $\forall$ left on an $f$-variable in a proof-figure of

f-CNN is restricted by the condition that its principal-formula be $f$-closed;
that is, if

$\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

is such an inference, $\forall\varphi F(\varphi)$ does not contain any free $f$-variable.
The consistency of f-CNN is proved in [18] by using transfinite induction

on ordinal diagrams of finite order. It is proved in [16] that (t) is true for
f-CNN 5) ([20]).

1.4 The system $ID$ with inductive def nition (developed in [19]): This system
is obtained from $G^{1}LC$ by the following modifications.

5) Every principal formula of an inference $\forall$ left on an $f$-variable used in [16] is
isolated and $f$-closed. Moreover, if

$\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

is an inference $\forall$ left on an $f$-variable used in [16], then $V$ is isolated. That is, the
formal theory of the ordinal diagrams (of finite order) can be developed within any of
$RNN$, f-CNN, SJNN, and SMINN.
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Let $I(a)$ and $a<*b$ be primitive recursive predicates, $<*$ being a well-
ordering of the set $\{a:I(a)\}$ , and let $A_{0},$ $A_{1},$ $A_{2},$ $\cdots$ be new symbols for pre-
dicates with two argument-places.

1.4.1 Every beginning sequence is a logical or mathematical beginning
sequence or a beginning sequence for equality, or a sequence of the following
form (referred to as a “ beginning sequence for inductive definition ‘’):

$I(s),$ $A_{j}(s, t)\rightarrow G_{j}(s, t, \{x, y\}(A_{j}(x, y)\Lambda x<*s))$

or
$I(s),$ $G_{j}(s, t, \{x, y\}(A_{j}(x, y)\wedge x<^{*}s))\rightarrow A_{j}(s, t)$ ,

where $j=0,1,2,$ $\cdots$ and $s,$
$t$ are arbitrary terms. Here $G_{j}(j=0,1, 2, )$ are

arbitrary formulas satisfying the following conditions: (i) $G_{j}(a, b, \alpha)$ does not
contain $A_{j},$ $A_{j+1},$ $\cdots$ (ii) If $G_{j}(a, b, \alpha)$ contains a figure of the form $\forall\varphi A(\varphi)$ ,
then $A(\beta)$ does not contain any bound $f$-variable.

1.4.2 The inference schema ” induction ” is added.
1.4.3 Every implicit inference $\forall$ left on an $f$-variable of the form

$\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

is restricted by the condition that $F(\alpha)$ does not contain any bound $f$-variables.
($F(\alpha)$ may contain $A_{0},$ $A_{1},$ $A_{2},$ $\cdots$ and $V$ may contain bound $f$-variables and
$A_{0},$ $A_{1},$ $A_{2},$ $\cdots$ ). The consistency of $ID$ is proved by using transfinite induction
on a system of ordinal diagrams (of a certain infinite order, cf. [17] and [19]).
It is not known whether (t) for $ID$ is true or not.

1.5 SINN (developed in [21]). SINN is obtained from $G^{1}LC$ by the fol-
lowing modifications.

1.5.1 Every beginning sequence of SINN is a logical or mathematical be-
ginning sequence or a beginning sequence for equality.

1.5.2 The inference schema “ induction ” is added.
1.5.3 Every implicit inference $\forall$ left on an $f$-variable of the form

$\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

is restricted by the condition that $V$ be semi-isolated, where $V$ is called semi-
isolated if every $\forall$ on $f$-variable ta in $V$ satisfies the conditions (ii) and (iii) in
1.2.3. The consistency of this system is proved by using transfinite induction
on a system of ordinal diagrams (of a certain infinite order. Cf. [17] and [21]).

1.6 The system SMINN. SMINN is obtained from $G^{1}LC$ by the following
modifications.

1.6.1 Every beginning sequence of SMINN is a logical or mathematical
beginning sequence or a beginning sequence for equality.
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1.6.2 The inference schema “ induction “ is added.
1.6.3 Every implicit inference $\forall$ left on an $f$-variable in a proof-figure of

SMINN is restricted by the condition that its principal formula be semi-
isolated. The consistency of this system is proved by using transfinite induc-
tion on ordinal diagrams of finite order by a slight modification of the con-
sistency-proof of $S_{2}$ in $[21]^{6)}$ . It is proved in [16] that (t) is ture for SMINN5).

1.7 SJNN (given in [21]). SJNN is obtained from SINN by the following
restrictions.

1.7.1 Every formula in a beginning sequence of SJNN is without logical
symbols.

1.7.2 Every principal formula of an induction in SJNN is semi-isolated.
The consistency of this system is proved in [21] by using transfinite in-

duction on ordinal diagrams of finite order. It is proved in [16] that (t) is
true for SJNN 5).

1.8 The system $EID$ with extended inductive definition (defined in [21]).
Let $I(a)$ and $a<*b$ be as in 1.4 and $A_{0},$ $A_{1},$ $A_{2}$ , $\cdot$ .. be symbols for predicates,

where $A_{j}(a, b, \alpha)$ is a formula.
Let $A$ be a semi-formula, $A_{j}(a, b, V)$ a semi-formula in $A$ and lt an arbi-

trary variable or logical symbol contained in $V$ . Then we say “ ta is tied by
$A_{j}$ in A.” We say $\#$ affects $A_{j}$ in $\forall\varphi F’$ , if $\#$ is the outermost $\forall$ of $\forall\varphi F$ and
$\varphi$ is tied by $A_{j}$ in $\forall\varphi F$. The notion ” semi-isolated ‘’ for this system is ex-
tended as follows: A semi-formula $A$ is called semi-isolated, if any $\forall$ on an
$f$-variable contained in $A$ does not affect any other $\forall$ on an $f$-variable or
$A_{0},$ $A_{1},$ $\cdots$ in $A$ .

A semi-variety $\{x_{0}, \cdots , x_{m}\}H(x_{0}, \cdots , x_{m})$ is called semi-isolated, if $H(a_{0}, a_{m})$

is semi-isolated.
The system $EID$ is obtained from $G^{1}LC$ by the following modifications.
1.8.1 Every beginning sequence is a logical or mathematical beginning

sequence or a beginning sequence for equality, or a sequence of the following
form (called a beginning sequence for inductive definition):

$I(s),$ $A_{j}(s, t, V)\rightarrow G_{j}(s, t, V, \{x, y\}(A_{j}(x, y, V)\wedge x<*s))$

or
$I(s),$ $G_{j}$($s,$ $t,$ $V,$ $\{x,$ $y\}$ ($A_{j}(x,$ $y,$ $V)$ A $x<*s)$) $\rightarrow A_{j}(s, t, V)$ ,

where $j=0,1,2,$ $\cdots$ , $G_{j}(a, b, \alpha, \beta)$ is an arbitrary semi-isolated formula contain-
ing none of $A_{j},$ $A_{j+1},$ $\cdots$ , $V$ is an arbitrary variety and $s,$

$t$ are arbitrary terms.
1.8.2 The inference schema “ induction ” is added.
1.8.3 Every implicit inference $\forall$ left on an $f$-variable of the form

6) The consistency-proof of SMINN is given in \S 4. The system $S_{2}$ is obtained
from SMINN by deleting the inference schema induction .
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$\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

is restricted by the condition that $V$ be semi-isolated. The consistency of $EID$

is proved by using transfinite induction on a system of ordinal diagrams of
certain infinite order (cf. [21]). It is not known whether (t) for $EID$ is true
or not.

1.9 The system $S_{1}$ (defined in [12]). $S_{1}$ is obtained from SJNN by deleting
the inference schema “ induction “.

\S 2. Ordinal recursiveness of provably recursive functions.

In this section, we prove Theorem 1 proposed in the introduction, begin-
ning by defining several notions.

DEFINITION la. Let $S(a)$ and $a\prec b$ be primitive recursive predicates such
that $\prec$ is a well-ordering of $\{a:S(a)\},$ $7n^{\prime}\prec 0$ for every natural number $n$

and $b\prec a\rightarrow S(a)\wedge S(b)$ . A number-theoretic function $\phi$ is called $\prec$ -recurs $ive$ if
and only if one of the following holds (cf. [5] and $[8a]$ ) :

(I) $\phi(a)=a^{\prime}$ .
(II) $\phi(a_{1}, a_{n})=0$ .

(III) $\phi(a_{1}, \cdots , a_{n})=a_{i},$ $1\leqq i\leqq n$ .
(IV) $\phi(a_{1}, \cdots , a_{n})=\psi(\chi_{1}(a_{1}, \cdots , a_{n}), \cdots , \chi_{m}(a_{1}, \cdots , a_{n}))$ .

where $\psi$ and $\chi_{i}(1\leqq i\leqq m)$ are $\prec$-recursive.

(V) $\left\{\begin{array}{l}\phi(0,a_{2},a_{n})=\psi(a_{2},\ldots a_{n}),\\\phi(a^{\prime},a_{2},a_{n})=\chi(a,\phi(a,a_{2},a_{n}),a_{2},a_{n}),\end{array}\right.$

where $\psi$ and $\chi$ are $\prec$ -recursive.

(VI) $\left\{\begin{array}{l}\phi(0,a_{2},\ldots a_{n})=\psi(a_{2},\ldots a_{n}),\\\phi(a^{\prime},a_{2},\ldots\end{array}\right.$

, $a_{n}$) $=\chi(a, \phi(\tau^{*}(a, a_{2}, \cdots , a_{n}), a_{2}, a_{n}), a_{2}, \cdots , a_{n})$ ,

where $\psi,$
$\chi$ and $\tau$ are $\prec$ -recursive and

$\tau^{*}(a, a_{2}, a_{n})=\{0\tau(a, a_{2}, a_{n})$
if

$\tau(a, a_{2}, ’, a_{n})\prec a^{\prime}$

,

otherwise.
By a Gentzen-style theory of natural numbers we mean a theory of natural

numbers formalized in $LK$ or in $G^{1}LC$ and containing $NN$ as a subsystem.
(For example, any of the systems given in 1.1-1.8)

DEFINITION 2. Let $\tau$ be a Gentzen-style theory of natural numbers. A
recursive function $\phi(a_{1}, \cdots , a_{n})$ is called provably recursive in $g$, if the follow-
ing sequence is provable in $\sigma$ ;



464 A. KINO

$\rightarrow\forall x_{1}\ldots\forall x_{n}\exists yT_{n}(e, x_{1}, x_{n}, y)$ ,

where $T_{n}$ expresses Kleene’s primitive recursive predicate $T_{n}$ (cf. [5]) and $e$ is
a G\"odel number of $\phi$ . In the following $T_{1}$ will be abbreviated by T.

THEOREM la. Let $q$ be one of the systems given in 1.1-1.6 and 1.8. Let
$\phi(a_{1}, \cdots , a_{n})$ be a provably recursive function in $q$, and $e$ a Godel number of $\phi$

such that the sequence

$\rightarrow\forall x_{1}\ldots\forall x_{n}\exists yT_{n}(e, x_{1}, x_{n}, y)$

is provable in $g$. Then we can find an element $s$ of $0(X)$ such that $\phi$ is $<^{-}$

recursive, where $<$ is the primitive recursive well-ordering of natural numbers
obtained by arithmetizing the suborder $\prec^{s}$ of the well-ordering $\prec of$ O(EZ“) up
to $s$ .

PROOF. Without loss of generality, we may assume that $n=1$ .
2.0 Outline of the proof. We define $t$ degree “, $t$ proof-figure with degree “,

“ proof-figure of order $n$ ”, etc., in a manner analogous to that used to define
these concepts in the consistency-proof of $g$, and use the same assignment of
an element of $O(9)$ to every sequence of a proof-figure of $q$ as in the con-
sistency-proof of $\mathcal{G}^{7)}$ .

The $sequence\rightarrow\exists yT(e, a, y)$ , where $a$ is a free t-variable, is provable in $g$

according to our assumption. Let $\mathfrak{P}_{0}$ be a proof-figure ending with the
$sequence\rightarrow\exists yT(e, a, y)$ in $q$ and such that every free t-variable except $a$ in
$\mathfrak{P}_{0}$ is used as an eigenvariable in $\mathfrak{P}_{0}$ and the eigenvariables in $\mathfrak{P}_{0}$ are different
from each other and $a$ ; let $s$ be the element of O(St) assigned to $\mathfrak{P}_{0}$ and $\prec^{s}$

the suborder of $\prec$ up to $s$ . Let $<$ be the primitive recursive well-ordering
of natural numbers which is obtained from $\prec^{s}$ by arithmetization. We will
show that $P$ is $<$ -recursive, where $P$ is the process which, for given $m$ , com-
putes $n$ such that $T(e, m, n)$ from the proof-figure $\mathfrak{P}_{0}$ .

In the following we will fix a primitive recursive enumeration of sequences
in a proof-figure in $q$ and call the number corresponding to a sequence its

7) See \S 1, for the reference to the consistency-proof of $9^{\vee}$. Here a proof-figure of
$\mathscr{Z}$ may contain the inference schema ‘ substitution ‘ with certain restrictions, if $\mathscr{Z}$ is
not $NN$ . The inference schema “ substitution ’ is of the form

$\frac{A_{1},\cdots,A_{m}\rightarrow B_{1},\ldots,B_{n}}{A_{1}\left(\begin{array}{l}V\\\alpha\end{array}\right),\cdots\prime A_{m}\left(\begin{array}{l}V\\\alpha\end{array}\right)\rightarrow B_{1}\left(\begin{array}{l}V\\\alpha\end{array}\right),\cdots,B_{n}\left(\begin{array}{l}V\\\alpha\end{array}\right)}$

where $\alpha$ is a free $f$-variable, $V$ is a variety with the same number of argument-places
as $\alpha$ and

$A_{i}(V\alpha)$ or $B_{j}\left(\begin{array}{l}V\\\alpha\end{array}\right)$

is a formula obtained from $A_{i}$ or $B_{j}$ by substituting $V$ for $\alpha$ ( $1\leqq i\leqq m$ and $1\leqq i\leqq n$), cf.
[11], [15] and [21].
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v-number. By the v-number of an inference we mean the v-number of the
lower sequence of the inference. First, we define the reduction of proof-
figures in $q$ .

2.1 Reduction of proof-figures in $\sigma r$ . Let $o(\mathfrak{P})$ denote the element of $0(f)$

assigned to a proof-figure $\mathfrak{P}$ . Let $R$ be the set of proof-figures $\mathfrak{P}$ (with degree
or of order n) in $g$; having the following properties:

(P1) The end-sequence of $\mathfrak{P}$ is of the form

$\rightarrow\exists yT(e, m, y),$ $T(e, m, n_{1}),$ $T(e, m, n_{k})(k\geqq 0)$ ,
or

$\rightarrow T(e, m, n_{1}),$ $\cdots$ , $T(e, m, n_{k})(k\geqq 1)$ ,

where $m$ and $n_{i}(0\leqq i\leqq k)$ are numerals.
(P2) Every free t-variable in $\mathfrak{P}$ is used as an eigenvariable.
(P3) The eigenvariables in $\mathfrak{P}$ are pairwise distinct.
(P4) $o(\mathfrak{P})$ is not larger than $s$ with respect to the well-ordering of $O(\mathscr{Z})$ .

We will define the reduction $r$ of proof-figures $\mathfrak{P}$ in R.
2.1.1 If the end-piece (Endst\"uck) of $\mathfrak{P}$ contains an induction, $r(\mathfrak{P})$ is the

proof-figure obtained from $\mathfrak{P}$ by applying the $i$ ‘ VJ-Reduktion ” (3.3 of [2]) to
the bottommost induction with the smallest v-number. The end-sequence of
$r(\mathfrak{P})$ is the same as that of $\mathfrak{P}$ .

2.1.2 If the end-piece of $\mathfrak{P}$ does not contain any induction and it contains
an explicit logical inference (which is an inference $\exists$ -right on a t-variable),
$r(\mathfrak{P})$ is the proof-figure obtained from $\mathfrak{P}$ as follows: Let $\delta^{\alpha}$ be the explicit
logical inference with the smallest v-number in the end-piece of $\mathfrak{P}$ which
appears as the bottommost one of such inferences in the string (Faden) to
which it belongs.

$\iota_{\Psi^{j}’}\iota_{4}t|,’$’

$\frac{\Gamma\rightarrow\Delta,T(e,m,n)}{\Gamma\rightarrow\Delta,\exists yT(e,m,y)}s^{\alpha}$

$\backslash \backslash ji\backslash \backslash ’ i^{\prime}v^{\prime}$

$\Gamma_{0}\rightarrow\Delta_{0}$

$r(\mathfrak{P})$ is defined to be the proof-figure obtained from $\mathfrak{P}$ by replacing the above
part of the proof-figure by the following:

$\backslash \backslash \backslash s_{\Psi^{\prime}}|,’’’$

,

$\frac{\Gamma\rightarrow\Delta,T(e,m,n)}{\underline Someexchangesandaweakening}$

$\Gamma\rightarrow T(e, m, n),$ $\exists yT(e, m, y)$

$s_{\backslash _{\backslash }.\acute{i}^{J^{1}},}\iota_{V}$

”

$\Gamma_{0}\rightarrow T(e, m, n),$ $\Delta_{0}$
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REMARK. Elimination of beginning sequences for equality in the end-piece
of a proof-figure. If the end-piece of $\mathfrak{P}$ does not contain any induction or
explicit logical inference, we can eliminate beginning sequences for equality
contained in the end-piece by 8.4, Chapter 2 of [21]. By $\mathfrak{P}\#$ we denote the
proof-figure thus obtained from $\mathfrak{P}$ .

2.1.3 If the end-piece of $\mathfrak{P}$ does not contain any induction, or explicit
logical inference, and contains a logical beginning sequence, $r(\mathfrak{P})$ is the proof-
figure obtained from $\mathfrak{P}\#$ by applying the reduction 8.5, Chapter 2 of [21] (or

3.3 of [15]) to the sequence with the smallest v-number.
REMARK. Elimination of weakenings (Verd\"unnungen) in the end-piece of

a proof-figure. Let $\mathfrak{Q}$ be a proof-figure such that the end-piece of $\mathfrak{Q}$ does not
contain any induction, logical inference, or beginning sequence for equality.
By $\mathfrak{Q}^{*}$ we denote the proof-figure obtained from $\mathfrak{Q}$ by applying the reduction
8.6, Chapter 2 of [21]; $i$ . $e.$ , the end-place of $\mathfrak{Q}^{*}$ does not contain any induc-
tion, logical inference, beginning sequence for equality, or weakening.

2.1.4 For the case where $q$ is $ID$ or $EID$ : Let the end-piece of $\mathfrak{P}$ not
contain any induction, logical inference, beginning sequence for equality, or
logical beginning sequence, but assume it contains a beginning sequence for
inductive definition. Then $r(\mathfrak{P})$ is the proof-figure obtained from $\mathfrak{P}^{*}$ by apply-
ing the reduction 3.6 of [19] or 9.1, Chapter 4 of [21], respectively, to the
beginning sequence for inductive definition with the smallest v-number.

2.1.5 Let the end-piece of $\mathfrak{P}$ not contain any induction, logical inference,
beginning sequence for equality, logical beginning sequence, or beginning
sequence for inductive definition. Then the end-piece of $\mathfrak{P}^{*}$ does not contain
any cut, or contains a suitable cut. In the former case, let $r(\mathfrak{P})$ be $\mathfrak{P}^{*}$ . (In

this case the end-piece of $\mathfrak{P}^{*}$ is $\mathfrak{P}^{*}$ itself, and the reduction is completed.) In
the latter case, let $r(\mathfrak{P})$ be the proof-figure obtained from $\mathfrak{P}^{*}$ by applying the
essential reduction (Verkn\"upfungsreduktion) to the suitable cut with the
smallest v-number8).

This completes the definition of the reduction.
Let $o(\mathfrak{P})$ denote the element of $O(\mathfrak{Y}$ assigned to a proof-figure $\mathfrak{P}$ . The

reduction has the following properties:
(Q1) For every $\mathfrak{P}$ in $R,$ $r(\mathfrak{P})$ is also in $R$ and the second argument of $T$

in the end-formula of $\mathfrak{P}$ is preserved by $r$ .

8) A cut in the end-piece of a proof-figure is called suitable if and only if each
cut-formula of this cut has a fibre that ends with this cut-formula, and contains the
principal formula of a logical inference whose lower sequence is an uppermost sequence
of the end-piece. For the existence of a suitable cut, see 6. 4 of [12], or 9, Chapter 2
of [21]. For the essential reduction, see 3.5 of [2] for $NN$ ; 4. 2-4. 5 of [15] for $RNN$

and f-CNN ; 4 of [19] for the system with inductive definition ; 10, Chapter 2 of [21]
for the systems given in 1.5-1.8.



Provably recursive functions 467

(Q2) $o(r(\mathfrak{P}))$ is not larger than $o(\mathfrak{P})$ with respect to the well-ordering of
$O(5^{\prime})$ .

(Q3) If $o(r(\mathfrak{P}))=o(\mathfrak{P})$ , then $o(r(r(\mathfrak{P})))=o(\mathfrak{P})$ .
(Q4) Let $o(r(\mathfrak{P}))=o(\mathfrak{P})$ . Then $\mathfrak{P}$ does not contain any logical inference,

free variable, induction, or weakening, and every beginning sequence of $\mathfrak{P}$ is
a mathematical beginning sequence.

2.2 Arithmetization (conclusion of the proof). Let $P(a)$ be primitive recur-
sive predicate which states that $a$ is (the G\"odel number of) a proof-figure in R.

Let $o(a)$ be the function expressing (the G\"odel number of) the element of
$O(\mathscr{Z})$ assigned to $a$ , provided that $P(a)$ holds, $a\prec b$ the arithmetization of the
well-ordering $\prec$ of $O(\mathcal{G})$ , and $r(a)$ the function which expresses (the Godel
number of) the proof-figure obtained from $a$ by applying the reduction $r$ in
2.1, provided that $P(a)$ holds. $r(a)=a$ will mean that the reduction is over.
In this case, the end-sequence of $a$ is of the $form\rightarrow T(e, m, n_{1})\cdots,$ $T(e, m, n_{k})$

$(k\geqq 1)$ . As is easily seen, $o(a)$ and $r(a)$ can be chosen to be primitive recur-
sive. Defining “ $a<b$ “ and “ $a\equiv b$ “ by “ $o(a)\prec o(b)\wedge P(a)\Lambda P(b)$ “ and “ $o(a)$

$=o(b)$ A $P(a)$ A $P(b)$ “, respectively, we can consider $\{a:P(a)\}$ well-ordered by
$<,$ whose order-type is that of $\prec^{s}$ . Let $\chi(a)$ be defined as follows:

$\chi(a)=\{0otherwisetheleastns$
uch that $T(e, m, n)$ is an end-formula of $a$

and $T(e, m, n)$ is true, if $P(a)\wedge r(a)=a$ ,

$\chi$ is a primitive recursive function. Let $\psi_{1}(a)$ be the cocharacteristic function
of $P(a)\wedge r(a)=a$ . Let $\psi$ be defined as follows:

$\left\{\begin{array}{l}\psi(0)=0,\\\psi(a’)=\psi_{1}(a^{\prime})+\psi(\tau^{*}(a)),\end{array}\right.$

where $\tau(a)=r(a^{\prime})$ , and $\tau^{*}(a)=\tau(a)$ if $\tau(a)<a^{\prime}$ ; $0$ otherwise. The function $\psi$ is
$<$ -recursive. Let $p$ be the Godel number of the proof-figure obtained from

$\mathfrak{P}_{0}$ (in 2.0) by substituting $m$ for the free t-variable $a$ throughout $\mathfrak{P}_{0}$ . Then
$\phi(m)$ is given by $U(\psi(p))$ . This completes the proof of Theorem la.

DEFINITION lb. Let $S(a)$ and $a\prec b$ be as in Definition la, and let $S_{1}(a)$

and $a\prec_{1}b$ be primitive recursive predicates such that $\prec_{1}$ is a well-ordering
of $\{a:S_{1}(a)\},$ $7n^{\prime}\prec_{1}0$ for every natural number $n$ , and $b\prec 1a\rightarrow S_{1}(a)$ A $S_{1}(b)$ .
A number-theoretic function $\phi$ is called $(\prec, \prec_{1})$ -recursive, if and only if one
of $(I)-(VI)$ in Definition la holds (where $\psi,$

$\chi,$ $\chi_{i},$
$(1\leqq i\leqq m)$ and $\tau$ are regarded

as $(\prec, \prec_{1})$-recursive), or else the following holds:

(VII) $\left\{\begin{array}{l}\phi(0,a_{2},a_{n})=\psi(a_{2^{\prime}}a_{n})\\\phi(a^{\prime},a_{2},a_{n})=\chi(a,\phi(\tau^{*}(a,a_{2},a_{n}),a_{2},a_{n}),a_{2},a_{n}),\end{array}\right.$

where $\psi,$
$\chi$ and $\tau$ are $(\prec, \prec_{1})$ -recursive and
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$\tau^{*}(a, a_{2}, a_{n})=\dagger 0oth^{2}e\tau(a,a$

,

rwise.

... , $a_{n}$) if $\tau(a, a_{2}, \cdots , a_{n})\prec_{1}a^{\prime}$ ,

THEOREM lb. Let $\phi(a_{1}, \cdots , a_{n})$ be a provably recursive function in SJNN,
and $e$ a Godel number of $\phi$ such that the sequence

$\rightarrow\forall x_{1}\ldots\forall x_{n}\exists yT_{m}(e, x_{1}, x_{n}, y)$

is provable in SJNN. Then we can find an element $s$ of $O(SJNN)$ such that $\phi$

is $(^{0}<, \approx)$ -recursive, where $0<$ is the primitive recursive well-ordering of natural
numbers obtained $from\prec^{s}$ by arithmetization and \yen is a primitive recursive
well-ordering of natural numbers with the order-type $\omega^{\omega}$ .

PROOF. Let $e(a)$ be the formula

$\forall\varphi(\varphi[0]\wedge\forall y(\varphi[y]-\varphi[y^{\prime}])-\varphi[a])$ .
We begin the proof by defining the reduction of proof-figures in SJNN.

Without loss of generality, we may assume that $n=1$ .
2.3 Reduction of proof-figures in SJNN. Let $\mathfrak{P}$ be a proof-figure ending

with the sequence $\rightarrow\exists yT(e, a, y)$ in SJNN.
2.3.1 Let $q_{1}(\mathfrak{P})$ be the figure obtained from $\mathfrak{P}$ by replacing every induction

$A(a),$ $\Gamma\rightarrow\Delta,$ $A(a^{\prime})$

$\overline{A(}0\overline{),\Gamma\rightarrow\Delta,A(t)}$

occurring in $\mathfrak{P}$ by the following form:
$\prime j$

$\backslash \backslash ’\backslash /$

$\backslash \backslash \tau_{\Psi^{\prime}}\acute{i},^{\prime}’$

’

$\frac{A(,\underline{0)\rightarrow A(0}\underline{)}}{A(0)\Gamma\rightarrow\Delta,A(0})$ $\frac{\underline{A(a),\Gamma\rightarrow\Delta,A(a^{\prime})}-}{\Gamma\rightarrow\Delta,\forall x(A(x)-A(x^{\prime}))}$

$\backslash _{\backslash }\backslash \backslash I,’’’$

’

$A(0),$ $\Gamma\rightarrow\Delta,$ $A(0)\wedge\forall x(A(x)-A(x^{\prime}))$ $A(t)\rightarrow A(t)$

$A(O)\wedge\forall x(A(x)|-A(x^{\prime}))-A(t),$ $A(O),$ $\Gamma\rightarrow\Delta,$ $A(t)$

$\forall xe(x),$ $A(0),$ $\Gamma\rightarrow\Delta,$ $A(t)$

(where the double bars indicate that several inference schemata in $S_{1}$ (actually,
inference schemata in $LK$) are applied), and then by making an obvious modi-
fication, so that $q_{1}(\mathfrak{P})$ is a proof-figure in $S_{1}$ whose end-sequence is of the form

$\forall xe(x)\rightarrow\exists yT(e, a, y)$ or $\rightarrow\exists yT(e, a, y)$ ,

according as $\mathfrak{P}$ does or does not contain an induction.
2.3.2 Let $F$ be a formula. By $F^{e}$ we denote as in 7.1 of [11] the restric-

tion of $F$ depending on the predicate $e$ , that is, the relativization of $F$ to the
predicate $e$ . Let $\Gamma$ be a list $A_{1}$ , $\cdot$ .. , $A_{n}$ of formulas. By $\Gamma^{e}$ we denote the
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list $A_{1}^{e},$ $\cdots$ , $A_{n}^{e}$ . Let $\mathfrak{Q}$ be a proof-figure ending with $\Gamma\rightarrow\Delta$ in $S_{1}$ . As is easily
seen, we can construct proof-figures ending respectively with each of the fol-
lowing sequences in $S_{1}$ :

(1) $\rightarrow e(0)$ .
(2) $\rightarrow\exists xe(x)$ .
(3) $\rightarrow\forall x(e(x)\leftarrow e(x^{\prime}))$ .
(4) $\rightarrow(\forall xe(x))^{e}$ .
(5) $(e(0))^{e},$ $(\exists xe(x))^{e},$ $(\forall x(e(x)\leftarrow e(x^{\prime})))^{e},$ $(\forall xe(x))^{e},$ $\Gamma^{*e}\rightarrow\Delta^{e}$ ,

where $\Gamma^{*}$ is the result of deleting the formulas in the right sides of (1) $-(3)$

and $\forall xe(x)$ from $\Gamma$ , and where (5) is obtained from $\mathfrak{Q}$ by the process given in
7.6.1 of [11]. From the proof-figures ending with (1) $-(5)$ we obtain a proof-
figure ending with the sequence $\Gamma^{*e}\rightarrow\Delta^{e}$ in $S_{1}$ . By $q_{2}(\mathfrak{Q})$ we denote the proof-
figure thus obtained from Q.

2.3.3 Let $\mathfrak{Q}$ be a proof-figure in $S_{1}$ ending with the sequence

$\rightarrow\exists y(e(y)\wedge T(e, a, y))$ .
From this proof-figure we obtain a proof-figure ending $with\rightarrow\exists yT(e, a, y)$ of
$S_{1}$ . We will denote this operation by $q_{3}$ .

2.3.4 Let $\mathfrak{Q}$ be a proof-figure in $S_{1}$ , and $r_{1}(\mathfrak{Q})$ be the proof-figure obtained
from $\mathfrak{Q}$ by applying the reduction with respect to the grade of a proof-figure
given in 9, Chapter 3 of [21], and modifying it so that every free t-variable
except $a$ is used as an eigenvariable and the eigenvariables are different from
each other and $a$ . Starting from $q_{8}(q_{2}(q_{1}(\mathfrak{P})))$ and making a finite number of
applications of $r_{1}$ , we obtain a proof-figure of $S_{1}$ ending with the sequence
$\rightarrow\exists yT(e, a, y)^{9)}$ .

2.4 Arithmetization (conclusion of the proof). We will complete the proof
in the same way as in the proof of Theorem la. We will use the following
abbreviations:

$P_{0}(b)$ for “ $b$ is the G\"odel number of a proof-figure ending $with\rightarrow\exists yT(e, a, y)$

in SJNN ”.

9) Here we use the grade defined as follows : Let $A$ be a quasi-formula of $S_{1}$ .
The grade of $A$ (written $g(A)$ ) is defined to be

$\omega^{g1(A)}+g_{2}(A)$ ,

where $g_{1}(A)$ and $g_{2}(A)$ are the first and the second grades of $A$ in 8. 1 of Chapter 3
of [21], i. e. : If $A$ is semi-isolated, then $g_{1}(A)$ is $0$ ; otherwise $g_{1}(A)$ is $\max(g_{1}(B)$ ,
$g_{1}(C))+1$ , or $g_{1}(B)+1$ , or $g_{1}(B)$ , according as $A$ is of the form $B\wedge C$, or one of the
forms $7B,$ $\forall xB$ and $\forall\varphi B$ , or $\{x_{1}, \cdots x_{n}\}B$ , respectively. $g_{2}(A)$ is the number of logical
symbols contained in $A$ . The grade of a cut $s^{\infty}(g(s\triangleright))$ is the grade of the cut-formula,
and the grade of a proof-figure $\mathfrak{P}(g(\mathfrak{P}))$ is $\Sigma_{\Im}g(\triangleright s)$ , where $\Sigma$ indicates natural sum and
$\delta^{\circ}$ ranges over the cuts in $\mathfrak{P}$ such that the cut-formulas are not semi-isolated, if such
exist; otherwise $g(\mathfrak{P})$ is defined to be $0$ .
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$P(b)$ for “ $b$ is the G\"odel number of a proof-figure of $S_{1}$ “.
$q_{1}(b)$ for the Godel number of $q_{1}(\mathfrak{P})$ , provided that $b$ is the G\"odel number

of a proof-figure $\mathfrak{P}$ and $P_{0}(b)$ holds.
$q_{2}(b)$ for the G\"odel number of $q_{2}(\mathfrak{P})$ , provided that $b$ is the G\"odel number

of a proof-figure $\mathfrak{P}$ and $P(b)$ holds.
$q_{3}(b)$ for the Godel number of $q_{8}(\mathfrak{P})$ , provided that $b$ is the Godel number

of a proof-figure $\mathfrak{P}$ of $S_{1}$ whose end-sequence $is\rightarrow\exists y(e(y)\wedge T(e, a, y))$ .
$r_{1}(b)$ for the G\"odel number of $r_{1}(\mathfrak{P})$ , provided that $b$ is the Godel number

of a proof-figure $\mathfrak{P}$ and $P(b)$ holds.
Each of $P_{0},$ $P,$ $q_{1},$ $q_{2},$ $q_{3}$ and $r_{1}$ can be chosen to be primitive recursive.

Let $\prec^{1}$ express the well-ordering of the set of the Godel numbers of ordinals
smaller than $\omega^{\omega},$ $o_{1}(b)$ the G\"odel number of the grade of $b$ , provided that $P(b)$

holds, and let “ $a*b$ ‘’ be “ $o_{1}(a)^{1}\prec o_{1}(b)$ A $P(a)$ A $P(b)$ . Let $\theta(b)$ be the co-
characteristic function of ” $P(b)$ A $r_{1}(b)=b$ . We define $\chi$ as follows:

$\left\{\begin{array}{l}\chi(0)=0\\\chi(b’)=\theta(b^{\prime})\cdot b^{\gamma}+\chi(\tau_{1}^{*}(b)),\end{array}\right.$

where $\tau_{1}(a)=r_{1}(a^{\prime})$ , and $\tau_{1}^{*}(a)=\tau_{1}(a)$ if $\tau_{1}(a)<^{1}a^{\prime}$ ; $0$ otherwise. The function
$\chi$ is a $i<$ -recursive function. Consider $\chi(q_{8}(q_{2}(q_{1}(b))))$ , where $P_{0}(b)$ holds. This
can be regarded as the Godel number of the proof-figure $\mathfrak{P}_{0}$ in 2.0, where $q$

is SMINN, so that we can apply the reduction $r$ for SMINN to this proof-
figure. Thus, by the proof of Theorem la, $\phi(m)$ is $(^{0}<, \xi)$ -recursive and is
given by $U(\psi(\sigma(m, a;\chi(q_{3}(q_{2}(q_{1}(b)))))))$ , where $P_{0}(b)$ holds and $a(m, a;q)$ is the
primitive recursive function which gives the G\"odel number of the proof-figure
obtained from a proof-figure $\mathfrak{Q}$ in $S_{1}$ with the G\"odel number $q$ by substituting
the numeral $m$ for the free t-variable $a$ throughout Q.

\S 3. Provable recursiveness of $\prec$-recursive functions.

Let $S(a)$ and $a\prec b$ be primitive recursive predicates such that $\prec$ is a well-
ordering of $\{a:S(a)\},$ $7n^{\prime}\prec 0$ for every natural number $n$ and $b\prec a\rightarrow S(a)\Lambda S(b)$ .

DEFINITION $3a$ . Extending $NN$ by adjoining a free predicate variable $\mathcal{E}$

of one argument-place, we formulate “ transfinite induction on $\prec’’$ $TI(\prec)$ by

$\forall x(S(x)\wedge\forall y(y\prec x|-\mathcal{E}(y))\leftarrow \mathcal{E}(x))|-\forall x(S(x)-\mathcal{E}(x))$

(cf. [3]). We call $\prec$ a provable primitive recursive well-ordering in $NN$, if
$TI(\prec)$ is provable in the system extended by addition of the predicate vari-
able $\mathcal{E}$ .

DEFINITION $3b$ . Let 9 be a Gentzen-style theory of natural numbers for-
malized in $G^{1}LC$ . “ Transfinite inductionon $\prec$ $TI(\prec)$ for 9 is formulated by
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$\forall\varphi(\forall x(S(x)\wedge\forall y(y\prec x\leftarrow\varphi[y])\leftarrow\varphi[x])\leftarrow\forall x(S(x)\mapsto\varphi[x]))$ .

We call $\prec$ a provable primitive recursive well-ordering in $q$, if $TI(\prec)$ is
provable in $9i$.

DIGRESSION. Let St be a Gentzen-style theory of natural numbers. For
each formula $Q(a)$ of $g$, let $TI(Q, \prec)$ be the formula

$\forall x(S(x)\wedge\forall y(y\prec x\leftarrow Q(y))\leftarrow Q(x))\leftarrow\forall x(S(x)-Q(x))$ .

If $q$ is $NN$ (extended by addition of the predicate variable $\mathcal{E}$), or full analysis
($i$ . $e$ . the Gentzen-style theory of natural numbers formalized in $G^{1}LC$ without
any restriction on $\forall$ left on an $f$-variable), then $TI(Q, \prec)$ is provable in $\mathscr{Z}$ for
every formula $Q(a)$ and for every provable primitive recursive well-ordering
well-ordering $\prec$ in S. This is also true in the case where St is one of $RNN$,
f-CNN, $ID$ and SMINN, since in such a $\mathscr{Z}$ the inference $\forall$ left on an $f$-variable

$\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$ $(^{*})$

has no restriction on $V$ , and $TI(\prec)$ is of the form $\forall\varphi F(\varphi)$ where $F(\alpha)$ contains
no bound or free $f$-variable other than $\alpha$ (cf. 1.2.3, 1.3.3, 1.4.3 and 1.6.3). How-
ever it should be noticed that this is presumably not true for subsystems of
analysis in general, $e$ . $g$ . SINN in which there is a restriction on $V$ in $(^{*})$ .

Let $\mathscr{Z}$ be $NN(1.1)$ , or a Gentzen-style theory of natural numbers satisfy-
ing the following condition: The inference $\forall$ left on an $f$-variable of the
following form is available in this theory:

$\frac{F(V),\Gamma\rightarrow\Delta}{\forall\varphi F(\varphi),\Gamma\rightarrow\Delta}$

where $V$ is arithmetical (that is, contains no free or bound $f$-variables) and
$F(\alpha)$ is arithmetical in $\alpha$ . For example, $\mathscr{Z}$ can be any of the systems given
in 1.2-1.8.

THEOREM 2. $If\prec is$ a provable primitive well-ordering in $q$ , than every
$\prec$ -recursive function is provably recursive in $q$.

PROOF. Let $\prec$ be a provable primitive recursive well-ordering in $q$ and $\phi$

a $\prec$ -recursive function. We will prove the theorem by mathematical induction
on the number of steps required to construct $\phi$ . We follow the G\"odel number-
ing of Kleene [5, \S \S 50-56]. Since there is no danger of confusion, we will
use Kleene’s notation in our formal theory. We consider here only the case
where the last schema used to define $\phi$ is (VI), since the other cases are easy.
For simplicity, let $\phi$ be defined as follows:

(0) $\left\{\begin{array}{l}\phi(0)=0\\\phi(a)=\psi(a,\phi(\tau^{*}(a))).\end{array}\right.$
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By the hypothesis of induction, we can find systems of equations $G$ and
$H$ with the respective G\"odel numbers $g$ and $h$ such that $G$ and $H$ define recur-
sively $\psi$ and $\tau$ respectively, and the following sequences are provable in $9i$ .

$\rightarrow\forall x\forall y\exists zT_{2}(g, x, y, z)$

(1)
$\rightarrow\forall x\exists yT(h, x, y)$ .

Let $E_{0}$ be the system of equations obtained by translating ${}^{t}\tau^{*}(a)=0$ ‘’ and
(0) using $g,$ $h,$ $f,$ $a$ , for $\psi$ , $\tau^{*}$ , “

$\phi$ , “
$a$ , respectively, where $g$ and $h$

are the principal function letters of $G$ and $H$ , respectively. Let $e$ be the G\"odel

number of the system $G,$ $H,$ $E_{0}$ . (We assume that the principal and auxiliary
function letters are properly chosen.) Then the following sequences are pro-
vable in S.

(2) $\rightarrow\exists yT(e, 0, y)$ .
\langle 3) $T_{2}(g, a, 0, b),$ $T(h, a, c),$ $7U(c)\prec a^{\prime}\rightarrow\exists yT(e, a^{\prime}, y)$ .
\langle 4) $\forall x\forall y\exists zT_{2}(g, x, y, z),$ $T(h, a, c),$ $7U(c)\prec a^{\prime}\rightarrow\exists yT(e, a^{\prime}, y)$ (from (3)).

\langle 5) $\forall x\forall y\exists zT_{2}(g, x, y, z),$ $\forall x\exists yT(h, x, y),$ $7S(a)\rightarrow\exists yT(e, a, y)$

\langle by (2), (4), and a mathematical beginning sequence $b\prec a\rightarrow S(a)$ (cf. the begin-
ning of this section)).

\langle 6) $T(e, U(c),$ $d$) $,$
$T_{2}(g, a, U(d), b),$ $T(h, a, c),$ $U(c)\prec a^{\prime}\rightarrow\exists yT(e, a^{\prime}, y)$ .

\langle 7) $\forall x(x\prec a^{\prime}-\exists yT(e, x, y)),$ $\forall x\forall y\exists zT_{2}(g, x, y, z)$ ,

$T(h, a, c),$ $U(c)\prec a^{\gamma}\rightarrow\exists yT(e, a^{\prime}, y)$

(from (6)).

(8) $\forall x(x\prec a^{\prime}-\exists yT(e, x, y)),$ $\forall x\forall y\exists zT_{2}(g, x, y, z)$ .
$\forall x\exists yT(h, x, y)\rightarrow\exists yT(e, a^{\prime}, y)$

$\lambda by(4)$ and (7)).

$\lambda 9)$ $\forall x\forall y\exists zT_{2}(g, x, y, z),$ $\forall x\exists yT(h, x, y),$ $S(a)\rightarrow\exists yT(e, a, y)$

(from (2), (8), and the hypothesis that $\prec$
’ is a provable primitive recursive

well-ordering in 9). Then from (1), (5), and (9), the $sequence\rightarrow\forall x\exists yT(e, x, y)$

is provable in $g;$, which completes the proof.

\S 4. Alternative consistency-proof of $SJNN$.
The consistency of SJNN was proved in [21] by using transfinite induc-

tion on ordinal diagrams of finite order with the help of the restriction theory
developed in \S 7, [11]. In this section we will give an alternative proof of
the consistency of SJNN along the line of the consistency-proof of $S_{1}$ given in
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[21]. We will sketch a proof of the theorem of [20] for SJNN, which will
be seen to hold in a somewhat weakened form owing to the use of a larger
system of ordinals.

LEMMA 1. The system SMINN is consistent.
PROOF. The consistency of SMINN easily follows from the cut-elimination

theorem for semi-isolated proof-figures (Theorem 1 of [21], Chapter 3]), fol-
lowing the consistency-proof of SINN (Theorem 1 of [21], Chapter 2]) by the
following addition to 5.1-5.7 in Chapter 3 of [21]:

(1) If $S_{1}$ and $S_{2}$ are the upper sequence and the lower sequence of an
induction, then the o. d. of $S_{2}$ is $(n+2;a+2, a)$ , where $a$ is the o.d. of $S_{1}$ and
$a$ is the number of logical symbols in the principal formula of the induction.

(2) If $S_{1}$ and $S_{2}$ are the upper sequence and the lower sequence of an
inference “ term-replacement 10) then the $0$ . $d$ . of $S_{2}$ is equal to that of $S_{1}$ .

THEOREM 3. The system SJNN is consistent. (Theorem 4 of Chapter 3 of
[21]).

PROOF. (Alternative) Regarding SMINN and SJNN as $S_{2}$ and $S_{1}$ in the
consistency-proof of $S_{1}$ (Theorem 3 of [21, Chapter 3]), respectively, and ad-
joining the following statement to $9.2^{11)}$ there, we have the consistency-proof
of SJNN: If $\mathfrak{J}_{1}$ is an ” induction” of the form

$A(a),$ $\Pi_{2}\rightarrow\Lambda_{2},$ $A(a^{\prime})$

$\overline{A(}0\overline{),\Pi}_{2}\overline{\rightarrow\Lambda}_{2}\overline,$$A(t)$

then since the principal formula of an induction of SJNN is semi-isolated,

neither $A(a)$ nor $A(O)$ is equivalent to the formula $B$ which is not semi-isolated.
By our assumption, the proof-figure $Q_{1}$ ending with the sequence

$A(a),$ $\Pi_{2^{*}},$ $\Gamma\rightarrow\Delta,$ $\Lambda_{2},$ $A(a^{\prime})$

is defined. Then we construct the proof-figure:

10) A term-replacement is the inference schema ${}^{t}Termeinsetzung$ in [3] :

$\frac{\Gamma_{1},A(s),\Gamma_{2}\rightarrow\Delta}{\Gamma_{1},A(t),\Gamma_{2}\rightarrow\Delta}$ or $\frac{\Gamma\rightarrow\Delta_{1},A(s),\Delta_{2}}{\Gamma\rightarrow\Delta_{1},A(t),\Delta_{2}}$

where $s$ and $t$ are terms which do not contain any free t-variables and stand for the
same numeral ; cf. 8 of Chapter 2 of [21].

11) The case where the uppermost cut $s^{\circ}$ with the maximal grade of the cuts whose
cut-formulas are not semi-isolated is of the following form:

$\frac{\Gamma\rightarrow\Delta,\forall\varphi F(\varphi)\forall\varphi F(\varphi),\Pi\rightarrow\Lambda}{\Gamma,\Pi\rightarrow\Delta,\Lambda}$ .

Let $B$ be the right cut-formula of 3, and $\Pi_{1}\rightarrow\Lambda_{1}$ the right upper sequence of $s^{\infty}$ or an
arbitrary sequence above. We construct a proof-figure ending with $\Pi_{1}^{*},$ $\Gamma\rightarrow\Delta,$ $\Lambda_{1}$, where
$\Pi_{1}^{*}$ is obtained from $\Pi_{1}$ by deleting the formulas equivalent to $B$ . Let $s^{\triangleright_{1}}$ be the in-
ference whose lower sequence is $\Pi_{1}\rightarrow\Lambda_{1}$ , and assume that the proof-figure $\mathfrak{Q}_{1}$ correspond-
ing to the upper sequence of $s^{\alpha_{1}}$ has been defined.
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$\mathfrak{Q}_{1}$

$\backslash ^{:}\sqrt{}$

:

$\frac{A(a),\Pi_{2}*,\Gamma\rightarrow\Delta,\Lambda_{2},A(a^{\prime})}{A(0),\Pi_{2}*,\Gamma\rightarrow\Delta,\Lambda_{2},A(t)}\lrcorner$

Thus we complete the proof.
Takeuti remarked in [20] that Gentzen’s results of [3] can be stated in a

more general form, and in [20] and in [21] he proved the following theorem:
The order-type of any provable recursive well-ordering in $9i$ is less than $|O(f)|$ ,

where $q$ is any of the systems 1.1-1.5, and 1.8 (and naturally 1.6). We will
prove this theorem for SJNN in the following form:

THEOREM 4. The order-type of any provable recursive well-ordering in
SJNN is less than the order-type of $(0, \omega, (0,0,0))$ in $O(n, \omega+1)$ , where $n$ is a
positive integer.

PROOF. We begin the proof of Theorem 4 by recalling the definition of
a “ TJ-proof-figure ” from [20].

4.1 TJ-proof-figure. A TJ-proof-figure with respect to SJNN (or simply, a
TJ-proof-figure) is defined to be a figure which is obtained from a proof-figure
of SJNN by modifying it as follows:

4.1.1 The beginninng sequences of SJNN and the sequences of the follow-
ing form called TJ-upper sequences (TJ-Obersequenzen), are allowed as begin-
ning sequences:

$S(t),$ $\forall x(x\prec t-\mathcal{E}[x])\rightarrow \mathcal{E}[t]$ ,

where $S(a)$ and $a\prec b$ are (primitive) recursive predicates such that $\prec$ is a
well-ordering of $\{a:S(a)\},$ $7n^{\prime}\prec 0$ for every natural number $n$ and $b\prec a\rightarrow S(a)$

$\wedge S(b),$ $t$ is an arbitrary term, and $\mathcal{E}$ is a free $f$-variable.
4.1.2 The inference schema “ term-replacement “ is $added^{1)}$ .
4.1.3 The end-sequence is of the form

$\rightarrow \mathcal{E}[s_{1}],$ $\mathcal{E}[s_{n}]$ ,

where $s_{1},$ $\cdots$ $s_{n}$ are numerals.
4.2 TJ-proof-figure of order $n$ . We define a TJ-proof-figure with degree

and TJ-proof-figure of order $n$ in the same way as in the consistency-proof of
SMINN, where a TJ-proof-figure with degree satisfies the conditions 2.1-2.2,
Chapter 3 of [21] and also

4.2.1 Every implicit $\forall$ left on an $f$-variable is restricted by the condition
that the principal formula is semi-isolated. We will assign an ordinal diagram
of order $n+2(0. d.)$ to every sequence in a TJ-proof-figure of order $n$ in the
same way as in the consistency-proof of SMINN with the following additional
statement:
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4.2.2 The o. d of a TJ-upper sequence is

$(n+2,0, (n+2,0, (n+2,0, (n+2,0,0fl(n+2,0,0)))))$ ,

where the o.d. of a beginning sequence of SJNN is $0$ , (cf. \S 3 of [3]).

4.3 Grade of a TJ-proof-figure. Let $A$ be a quasi-formula of SJNN. The
grade of $A$ (written as $g^{\prime}(A)$) is defined to be $(0, \omega, 0^{(g_{1}(\Lambda))})\# 0^{(g_{2}(A))}$ where $0^{(i)}$ is
defined by $0^{(0)}=0$ and $0^{(i+1)}=0^{(i)}\# 0$ , (cf. Footnote 9 for $g_{1}(A)$ and $g_{2}(A)$). Let
the grade of a cut $ s\circ$ in a TJ-proof-figure $(g^{\prime}(\circ s))$ be the grade of the cut-
formula. The grade of a TJ-proof-figure $\mathfrak{P}(g^{\prime}(\mathfrak{P}))$ is taken to be $ g^{\prime}(s_{1}\propto)\#\ldots$

$\# g^{\prime}(\circ s_{m})$ , where $s_{1}^{\alpha}$ , $\cdot$ .. , $s_{m}^{\alpha}$ are all the cuts in $\mathfrak{P}$ with cut-formulas that are not
semi-isolated, if such exist; otherwise $g^{\prime}(\mathfrak{P})$ is defined to be $0$ .

4.4 Ordinal diagram of a TJ-proof-figure. (Conclusion of the proof.) Let
$\mathfrak{P}$ be a TJ-proof-figure. The ordinal diagram of $\mathfrak{P}$ is defined to be $g^{\prime}(\mathfrak{P})$ if
there exists a cut in $\mathfrak{P}$ whose cut-formula is not semi-isolated; otherwise the
ordinal diagram of $\mathfrak{P}$ is defined to be the ordinal diagram of $\mathfrak{P}$ regarded as a
TJ-proof-figure of order $n$ . Modifying the proof of Theorem 3 along the line
of the proof of the theorem in [20] for the system $\mathfrak{S}_{i}$ , we can complete the
proof of Theorem 4.

State University of New York at Buffalo
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