On the Davenport-Hasse curves

Dedicated to Professor Iyanaga on his 60th birthday

By Toshihiko YAMADA

(Received July 31, 1967)

Let p be any prime number, and consider the Davenport-Hasse curves C_a defined by the equations

$$y^{p} - y = x^{p^{a-1}}$$
 (a = 1, 2, 3, ...)

over the prime field GF(p). If we denote by θ a primitive $(p^{\alpha}-1)(p-1)$ -th root of unity in the algebraic closure of GF(p), the map

(1)
$$\sigma: (x, y) \longrightarrow (\theta x, \theta^{p^{a-1}}y)$$

defines an automorphism of C_a , which generates a cyclic group G of order $(p^a-1)(p-1)$. In this note we shall investigate the Davenport-Hasse curves, on the basis of the automorphism groups G.

In §1, we will determine the *l*-adic representation of G (Theorem 1).

In §2, we shall investigate simple factors of the jacobian variety J_a of C_a . Let χ be a character of order p^a-1 of $GF(p^a)^*$. Then owing to Davenport-Hasse [1], the characteristic roots of p^a -th power endomorphism of J_a are

(2)
$$\tau_j(\chi^t) = -\sum_{u \in GF(p^a)*} \chi^t(u) \exp\left[\frac{2\pi i j}{p} \operatorname{tr}(u)\right] \qquad {t=1, \cdots, p^a-2 \choose j=1, \cdots, p-1}.$$

Let J_a be isogenous to a product:

(3)
$$J_a \sim A_1 \times A_2 \times \cdots \times A_h, \ A_i = B_i \times \cdots \times B_i \qquad (i = 1, \cdots, h),$$

where the B_i are simple abelian varieties not isogenous to each other. Then the A_i are in one-to-one correspondence to the conjugate classes of the $\tau_j(\chi^t)$ as algebraic numbers (Tate [2]). Let $A = A_1$ correspond to the conjugate class of $\tau(\chi) = \tau_1(\chi)$, and call it the main component of J_a . Then we see that A is a simple abelian variety (Theorem 2). For a = 1, we describe completely the decomposition of the jacobian variety into simple factors (Theorem 3). The results are obtained from the prime ideal decomposition of the $\tau_j(\chi^t)$ and from determining the fields which are generated by the $\tau_j(\chi^t)$ over Q, combined with the recent work of Tate [2].

In \S 3, using results of \S 1, the *l*-adic representation of the automorphism

group G on the main component A is determined: the 'main' representation of G is realized on the main component A of J_a (Theorem 4). From this fact, we see that the endomorphism algebra $\mathcal{A}_0(A)$ of A is generated by the p-th power endomorphism and the endomorphism ξ_{σ} , which is induced by the automorphism σ defined by (1) (Theorem 5).

The author thanks to Professor H. Morikawa for his kind encouragement. A short summary of this paper has been announced in $\lceil 4 \rceil$.

§ 1. If we put $z = y^{p-1}$, the curve C_a is birationally equivalent to the curve defined by the equation

(4)
$$x^{(p^{a}-1)(p-1)} = z(z-1)^{p-1}$$
.

The previous automorphism σ is given in this case by

(1)'
$$\sigma: (z, x) \longrightarrow (z, \theta x).$$

LEMMA 1. The smallest natural number f such that $p^f \equiv 1 \mod (p^a-1)^{(p-1)}$ (p-1) is equal to a(p-1).

PROOF. For any non-negative integers ν , μ , we have

 $p^{a\nu+\mu} \equiv \nu p^a + p^{\mu} - \nu \mod (p^a - 1)(p - 1).$

Therefore, $p^{a\nu+\mu} \equiv 1 \mod (p^a-1)(p-1)$ $(0 \leq \mu < a)$, if and only if $\nu \equiv 0 \mod p-1$ and $\mu = 0$. q.e.d.

By this lemma, θ is in the field $k = GF(p^{a(p-1)})$. So the algebraic function field k(z, x) defined by the equation (4) is a Kummer extension over k(z) of degree $(p^a-1)(p-1)$, whose Galois group G is generated by σ . We denote by \mathfrak{p}_0 , \mathfrak{p}_1 , the prime divisors of k(z) which are the numerators of principal divisors (z), (z-1) respectively, and by \mathfrak{p}_{∞} the denominator of (z). It is easy to see that \mathfrak{p}_0 and \mathfrak{p}_{∞} are totally ramified, and \mathfrak{p}_1 is ramified by exponent p^a-1 , in k(z, x). If we put $x^{p^{a-1}}(z-1)^{-1}=w$, the inertia field of \mathfrak{p}_1 in k(z, x) is k(z, w), of defining equation $w^{p-1}=z$. So \mathfrak{p}_1 decomposes in k(z, w) into p-1 prime divisors. Summarizing, we have

(5)
$$\mathfrak{p}_{0} = \mathfrak{P}_{0}^{(p^{a}-1)(p-1)}, \quad \mathfrak{p}_{1} = (\mathfrak{P}_{1,1} \cdots \mathfrak{P}_{1,p-1})^{p^{a}-1}, \quad \mathfrak{p}_{\infty} = \mathfrak{P}_{\infty}^{(p^{a}-1)(p-1)}$$

in k(z, x). Since the prime divisors \mathfrak{P}_0 , $\mathfrak{P}_{1,i}$ $(1 \leq i \leq p-1)$, \mathfrak{P}_{∞} are of degree one, they correspond respectively to the points P_0 , $P_{1,i}$ $(1 \leq i \leq p-1)$, P_{∞} of the complete non-singular model C_a of the function field k(z, x).

We denote by ξ_{α} , the correspondence of the curve C_a defined by an element α of the Galois group G. Let P be a point of C_a , and n a positive integer, and Δ the diagonal of $C_a \times C_a$. We denote by $V_n(P)$ the subgroup of G composed of the identity element ε of G and of all the elements α of G, other than ε , such that $P \times P$ has in the intersection $\xi_{\alpha} \cdot \Delta$ a coefficient which is at least equal to n. Then on account of (5), we have

(6)
$$V_1(P_0) = V_1(P_\infty) = G,$$

$$V_1(P_{1,i}) = \{\sigma^{\nu}; \nu \equiv 0 \mod p-1\}$$
 $(1 \le i \le p-1).$

Since the ramification exponents are all prime to p, we have

(7)
$$V_2(P_0) = V_2(P_\infty) = V_2(P_{1,i}) = \{\varepsilon\}$$

We denote by $M_{\iota}(\xi_{\alpha})$ ($\alpha \in G$) the representation of G on the Tate group $T_{\iota}(J_{\alpha})$ of the jacobian variety J_{α} of C_{α} , where l is a prime number different from characteristic p, and denote by $a_{P}(\alpha)$ for $\alpha \neq \varepsilon$, the multiplicity of $P \times P$ in the intersection $\Delta \cdot \xi_{\alpha}$. We shall quote the result of Weil [3].

LEMMA 2. The trace of the representation $M_l(\xi_{\alpha})$ is given by the formula:

$$\operatorname{tr} M_{\iota}(\xi_{\alpha}) = 2 - \sum_{P} a_{P}(\alpha) \qquad (\alpha \neq \varepsilon)$$

$$\operatorname{tr} M_l(\xi_{\epsilon}) = 2g$$

where g is the genus of C_a and is equal to $(p^a-2)(p-1)/2$.

From this lemma combined with (6) and (7), we calculate readily:

(9)
$$\operatorname{tr} M_{l}(\xi_{\sigma\nu}) = \begin{cases} -(p-1) & \nu \equiv 0 \mod p-1 & (\sigma^{\nu} \neq \varepsilon) \\ 0 & \nu \neq 0 \mod p-1 \end{cases}$$

As G is a cyclic group of order $(p^a-1)(p-1)$, its character group G^* is generated by ϕ such that

(10)
$$\psi(\sigma^{\nu}) = \exp \frac{2\pi i\nu}{(p^a - 1)(p - 1)} \cdot$$

Then we have

(8)

tr
$$M_{\iota}(\xi_{\alpha}) = \sum_{\mu=1}^{(p^{a}-1)(p-1)} c_{\mu} \psi^{\mu}(\alpha)$$
 ,

where the coefficients c_{μ} are calculated by the relations of orthogonality of characters:

$$c_{\mu} = \frac{1}{(p^{\alpha}-1)(p-1)} \sum_{\alpha \in G} \psi^{\mu}(\alpha^{-1}) \operatorname{tr} M_{l}(\xi_{\alpha}).$$

If we substitute the terms in the summation by (8), (9) and (10), we get

$$c_{\mu} = \frac{1}{(p^{a}-1)(p-1)} \left[2g - \sum_{\nu=1}^{p^{a}-2} \phi^{\mu} (\sigma^{-(p-1)\nu}) \cdot (p-1) \right]$$

= $\frac{1}{p^{a}-1} \left[(p^{a}-2) - \sum_{\nu=1}^{p^{a}-2} \exp \frac{-2\pi i}{p^{a}-1} \mu \nu \right]$
= $\begin{cases} 1 \quad \mu \neq 0 \mod p^{a}-1 \\ 0 \quad \mu \equiv 0 \mod p^{a}-1. \end{cases}$

Thus we have proved

tr
$$M_l(\xi_\alpha) = \sum_{\nu \neq 0 \mod p^{\alpha} - 1} \phi^{\nu}(\alpha)$$
.

THEOREM 1. The l-adic representation $M_l(\xi_{\alpha})$ of the automorphism group G is the direct sum of the irreducible representations ϕ^{ν} of multiplicity one, where ν runs from 1 to $(p^{\alpha}-1)(p-1)$ except $\nu \equiv 0 \mod p^{\alpha}-1$.

§2. In the first place we shall summarize the facts about the prime ideal decomposition of the characteristic roots $\tau_j(\chi^t)$ of p^a -th power endomorphism (Davenport-Hasse [1]). After this we put $p^a = q$, and denote by K_n the field of the *n*-th roots of unity over the field Q of rational numbers. Then the $\tau_j(\chi^t)$ are in $K_{p(q-1)}$. We write simply $\tau(\chi^t)$ in place of $\tau_1(\chi^t)$. From the expression (2) of $\tau_j(\chi^t)$ it follows that

(11)
$$\tau(\chi^{t}) \longrightarrow \chi^{-t}(j)\tau(\chi^{t}) = \tau_{j}(\chi^{t}) \qquad (1 \leq j \leq p-1)$$

by the automorphisms $\exp \frac{2\pi i}{p} \rightarrow \exp \frac{2\pi i}{p} j$ of $K_{p(q-1)}$ over K_{q-1} , and

(12)
$$\tau(\chi^{t}) \longrightarrow \tau(\chi^{tr}) \quad ((\gamma, q-1) = 1)$$

by the automorphisms $\exp \frac{2\pi i}{q-1} \to \exp \frac{2\pi i}{q-1} \gamma$ of $K_{p(q-1)}$ over K_p . The Galois group of K_{q-1} over Q is isomorphic to the group R of prime residue-classes mod. q-1. Denote by P the subgroup of R which is generated by $p \mod q-1$, and let ρ run through representatives of the factor group R/P: $R = \sum_{\rho} \rho P$. Then the prime ideal decomposition of p is as follows:

$$(p) = \prod_{\rho} \mathfrak{p}_{\rho} \text{ in } K_{q-1}, \ \mathfrak{p}_{\rho} = \mathfrak{P}_{\rho}^{p-1}, \ (e^{\frac{2\pi i}{p}} - 1) = \prod_{\rho} \mathfrak{P}_{\rho},$$
$$(p) = \prod_{\rho} \mathfrak{P}_{\rho}^{p-1} \text{ in } K_{p(q-1)}.$$

For a rational integer α , we denote by $\lambda(\alpha) = \alpha_0 + \alpha_1 p + \cdots + \alpha_{a-1} p^{a-1}$ $(0 \le \alpha_i \le p-1)$, not all $\alpha_i = p-1$) the smallest non-negative residue of $\alpha \mod q-1$, and put $\sigma(\alpha) = \alpha_0 + \alpha_1 + \cdots + \alpha_{a-1}$. The prime ideal decomposition of $\tau(\chi^t)$ in $K_{p(q-1)}$ is

(13)
$$(\tau(\chi')) = \prod_{\rho} \mathfrak{P}_{\rho}^{\sigma(t\rho)} \, .$$

For the (p-1)-th power of $\tau(\chi^t)$ which belongs to K_{q-1} by (11), the prime ideal decomposition in K_{q-1} is

(14)
$$(\tau(\chi^t)^{p-1}) = \prod_{\rho} \mathfrak{p}_{\rho}^{\sigma(t\rho)} .$$

It is said that $\tau_i(\chi^t)$ and $\tau_i(\chi^s)$ are equivalent when there exist natural

406

numbers *n*, *m* such that $\tau_j(\chi^t)^n$ and $\tau_i (\chi^s)^m$ are conjugate algebraic numbers. Clearly this is an equivalence relation. If the jacobian variety J_a is isogenous over the algebraic closure of GF(p) to a product in the same notation as (3):

(3)
$$J_a \sim A_1 \times A_2 \times \cdots \times A_h, \ A_i = B_i \times \cdots \times B_i,$$

then the A_i are in one-to-one correspondence to the equivalence classes of the $\tau_j(\chi^t)$ (Tate [2]).

The following lemma is easily proved.

LEMMA 3. For $0 < \alpha < p^a - 1$ we have

i) $1 \leq \sigma(\alpha) \leq a(p-1)-1$,

ii) $\sigma(\alpha) = 1$ if and only if $\alpha = p^i$ $(0 \le i \le a-1)$,

iii) $\sigma(\alpha) = a(p-1)-1$ if and only if $\alpha = p^a - 1 - p^i$ $(0 \le i \le a-1)$.

PROPOSITION 1. If t satisfies $(t, p^{\alpha}-1) > 1$, then $\tau(\chi)$ and $\tau(\chi^{t})$ are not equivalent.

PROOF. Suppose that t satisfies $(t, p^a-1) = d > 1$, then $(\lambda(\rho t), p^a-1) = d$, and by Lemma 3, $\sigma(\rho t)$ cannot take the value 1 nor the value a(p-1)-1 for any ρ . If we assume that there exist natural numbers n and m such that $\tau(\chi)^n$ and $\tau(\chi^t)^m$ are conjugate algebraic numbers, the prime ideal decomposition (13) shows that the sets $\{n \cdot \sigma(\rho); \rho\}$ and $\{m \cdot \sigma(t\rho); \rho\}$ are the same. But this contradicts the above mentioned fact.

COROLLARY. The set $\{\tau_j(\chi^{\mu}); (\mu, p^a-1)=1, 1 \leq \mu < p^a-1, 1 \leq j \leq p-1\}$ fills up just an equivalence class of the $\tau_j(\chi^t)$.

The decomposition fields of p in K_{q-1} and in $K_{p(q-1)}$ are the same, which we denote by K. For any natural number μ the prime ideal decomposition of $\tau(\chi)^{\mu}$ in $K_{p(q-1)}$ is $(\tau(\chi)^{\mu}) = \prod_{\rho} \mathfrak{P}_{\rho}^{\sigma(\rho)\mu}$. Among the numbers $\sigma(\rho)\mu$, the number μ appears only once because of Lemma 3. Therefore $Q(\tau(\chi)^{\mu})$ contains K.

LEMMA 4. $\tau(\chi)$ is invariant under the automorphisms $\exp \frac{2\pi i}{q-1} \to \exp \frac{2\pi i}{q-1} p^{j}$ (j = 1, 2, ..., a) of $K_{p(q-1)}$ over K_p , i. e., $\tau(\chi) = \tau(\chi^p) = \cdots = \tau(\chi^{p^{a-1}})$.

PROOF. From the expression of $\tau(\chi)$ as a generalized Gaussian sum, it follows that

$$\begin{aligned} \tau(\chi^{pj}) &= -\sum_{u \neq 0} \chi^{pj}(u) \exp\left[\frac{-2\pi i}{p} \operatorname{tr}(u)\right] \\ &= -\sum_{u \neq 0} \chi(u^{pj}) \exp\left[\frac{-2\pi i}{p} \operatorname{tr}(u^{pj})\right] \\ &= \tau(\chi) , \end{aligned}$$

which proves the assertion.

As $\tau(\chi) \to \chi^{-1}(j)\tau(\chi)$ $(1 \le j \le p-1)$ by the automorphisms $\exp \frac{2\pi i}{p} \to \exp\left(\frac{2\pi i}{p}j\right)$ of $K_{p(q-1)}$ over K_{q-1} , $Q(\tau(\chi)^{p-1})$ is contained in K_{q-1} . Further, by Lemma 4,

T. YAMADA

 $\tau(\chi)^{p-1}$ is invariant under the automorphisms of the decomposition group of p in K_{q-1} . Hence $Q(\tau(\chi)^{p-1})$ is contained in K. When we put $Q_{\tau(\chi)} = \bigcap_{\mu=1}^{\infty} Q(\tau(\chi)^{\mu})$, from what has been stated, we get

$$\boldsymbol{Q}_{\tau(\boldsymbol{\chi})} = \boldsymbol{Q}(\tau(\boldsymbol{\chi})^{p-1}) = K.$$

Now for any ρ , prime ideal \mathfrak{p}_{ρ} of K_{q-1} is regarded as prime ideal of K, which is also denoted by \mathfrak{p}_{ρ} . Let $\|\tau(\chi)^{p-1}\|_{\mathfrak{p}_{\rho}}$ denote the normal absolute value of $\tau(\chi)^{p-1}$ at the prime \mathfrak{p}_{ρ} of K. From (14) we have $\|\tau(\chi)^{p-1}\|_{\mathfrak{p}_{\rho}} = p^{-\sigma(\rho)}$. Recall that $\tau(\chi)^{p-1}$ is a characteristic root of $p^{\alpha(p-1)}$ -th power endomorphism. Putting $p^{\alpha(p-1)} = q_0$, we have

$$\| \tau(\chi)^{p-1} \|_{\mathfrak{p}_{\rho}} = q_0^{-\frac{\sigma(\rho)}{a(p-1)}}$$

In the expression (3) of J_a , let A_1 correspond to the equivalence class, to which $\tau(\chi)$ belongs (Prop. 1, Coroll.). Hereafter we put $A_1 = A$. Let $\mathcal{A}(A)$ denote the endomorphism ring of the abelian variety A, and put $\mathcal{A}_0(A) = \mathcal{A}(A) \otimes \mathbf{Q}$. We have prepared all things to apply Tate's results [2] to our case.

PROPOSITION 2. i) $\mathcal{A}_0(A)$ is a central simple algebra over K, which splits at all finite primes \mathfrak{p} of K not dividing p.

ii) The local invariants of the algebra $\mathcal{A}_0(A)$ at the primes \mathfrak{p}_{ρ} are given by

$$\operatorname{inv}_{\mathfrak{p}\rho}[\mathcal{A}_{\mathfrak{q}}(A)] \equiv \frac{\sigma(\rho)}{a(p-1)} \operatorname{mod} Z$$

iii) The dimension of the simple constituent B_1 of A is

dim
$$B_1 = \frac{1}{2} a(p-1) \cdot \deg \tau(\chi)^{p-1} = \frac{1}{2} (p-1) \cdot \varphi(p^a-1)$$
,

where φ is as usual the Euler's function.

Since by Prop. 1, Coroll., dim A is equal to $\frac{1}{2}(p-1) \cdot \varphi(p^a-1)$, Prop. 2, iii) shows that A is a simple abelian variety. Hence we have

THEOREM 2. The jacobian variety J_a of the curve C_a contains as simple component the simple abelian variety A with multiplicity one, which has $\tau(\chi)^{p-1}$ as a characteristic root of the $p^{a(p-1)}$ -th power endomorphism. (We call A the main component of J_a .)

In the case of a=1, the situation is very simplified.

THEOREM 3. For a = 1, we have

$$J_1 \sim \prod (B_m \times \cdots \times B_m)$$
 (each B_m appears m times)

where the index m runs over all divisors of p-1 except m = p-1, and each B_m is a simple abelian variety of dimension $\frac{1}{2} \cdot \frac{p-1}{m} \varphi\left(\frac{p-1}{m}\right)$, which has $\tau(\chi^m)$ as a characteristic root, and B_m is not isogenous to $B_{m'}$, for $m \neq m'$. PROOF. We exclude the case characteristic p=2, because in that case, the curve C_1 is of genus 0. As a=1, we have

(2)'
$$\tau_j(\chi') = -\sum_{u \in GF(p)^*} \chi'(u) \exp\left(\frac{2\pi i j}{p} u\right),$$

and

(13)'
$$\tau(\chi^t) = \prod_{\rho} \mathfrak{P}_{\rho}^{\lambda(t\rho)}$$

where ρ ranges over representatives of prime residue-classes mod. p-1. Let m and n be any divisors of p-1 except m or n = p-1. Assume that $\tau(\chi^m)^\mu$ and $\tau(\chi^n)^\nu$ are conjugate algebraic numbers, for some positive integers μ and ν . Then by (13)', the set $\{\mu \cdot \lambda(m\rho); \rho\}$ and the set $\{\nu \cdot \lambda(n\rho); \rho\}$ are the same. Since g. c. m. of the sets are μm and νn , respectively, we have $\mu m = \nu n$. Hence $\frac{1}{m} \sum_{\rho} \lambda(m\rho) = \frac{1}{n} \sum_{\rho} \lambda(n\rho)$. On the other hand we can elementarily prove that $\sum_{\rho} \lambda(s\rho) = (p-1)\varphi(p-1)/2$ for $s \neq 0 \mod p-1$. So we get m=n. From this fact, combined with (11) and (12), the equivalence classes of the $\tau_j(\chi^t)$ are represented by $\tau(\chi^m)$, where m runs over all divisors of p-1 except m = p-1. Now because of the expression (2)', we easily see that $\tau_j(\chi^t) = \tau_i(\chi^s)$, if and only if t = s and $\operatorname{Ind} j \equiv \operatorname{Ind} i \mod \frac{p-1}{(t, p-1)}$, where we put $\operatorname{Ind} j = \nu$, if $j \equiv \omega^{\nu} \mod p$, ω being a generator of the group of prime residue classes mod. p. From this and (13)', we conclude that $Q_{\tau(x^t)} = K_{p-1} \cap Q(\tau(\chi^t))$, and we can determine the prime ideal decomposition of $\tau(\chi^t)^{p-1}$ in $Q_{\tau(\chi t)}$. On account of what has been outlined, Theorem 3 will be obtained.

§3. According to the notation of (3), the Tate group $T_l(J_a)$ is the direct sum of the Tate groups $T_l(A_i)$. The elements α of the automorphism group G induce the endomorphisms $\xi_{\alpha}^{(i)}$ on each A_i , so that we obtain representations $M_l(\xi_{\alpha}^{(i)})$ of G $(i=1, \dots, h)$. The *l*-adic representation $M_l(\xi_{\alpha})$ of G on $T_l(J_a)$ is the direct sum of the $M_l(\xi_{\alpha}^{(i)})$. We shall determine the representation $M_l(\xi_{\alpha}^{(i)})$ on the main component $A = A_1$.

THEOREM 4. The representation $M_l(\xi_{\alpha}^{(1)})$ of G on $T_l(A)$ is the direct sum of the irreducible representations ϕ^{ν} of multiplicity one, where ν runs through the numbers such that $1 \leq \nu \leq (p^a-1)(p-1)$ and $(\nu, (p^a-1)(p-1)) = 1$.

PROOF. As A is a simple abelian variety, $\mathcal{A}_0(A)$ is a division algebra. Hence the characteristic roots of $M_t(\xi_{\sigma}^{(1)})$ are conjugate to each other, where σ is defined by (1). Now the characteristic roots of $M_t(\xi_{\sigma})$ are, by Theorem 1, $\{\phi^{\nu}(\sigma); 1 \leq \nu \leq (p^a-1)(p-1), \nu \neq 0 \mod p^a-1\}$. So the number of such characteristic roots that are conjugate to $\phi^{\nu}(\sigma)$ is equal to $\varphi(\frac{(p^a-1)(p-1)}{d})$, $d = (\mu, (p^a-1)(p-1))$. If we assume d > 1, then we have T. YAMADA

$$\varphi\left(\frac{(p^a-1)(p-1)}{d}\right) < \varphi((p^a-1)(p-1)).$$

But the right side is just equal to 2 dim $A = (p-1)\varphi(p^a-1)$. Therefore the characteristic roots of $M_l(\xi_{\sigma}^{(1)})$ must be $\{\psi^{\mu}(\sigma); 1 \leq \mu \leq (p^a-1)(p-1), (\mu, (p^a-1)(p-1)) = 1\}$, that proves the theorem.

COROLLARY. $Q(\xi_{\sigma}^{(p)})$ is the field $K_{(p^{\alpha}-1)(p-1)}$ of $(p^{\alpha}-1)(p-1)$ -th roots of unity. Hereafter we write simply $\xi_{\sigma}^{(1)} = \xi_{\sigma}$. The endomorphism algebra $\mathcal{A}_{0}(A)$ of A contains the field $Q(\xi_{\sigma})$ of degree 2 dim $A = (p-1)\varphi(p^{\alpha}-1)$ over Q. The p-th power endomorphism of J_{α} induce an endomorphism of A, which is denoted by Π . Since $\Pi \xi_{\sigma} = \xi_{\sigma}^{p} \Pi$, we get $\Pi^{a(p-1)} \xi_{\sigma} = \xi_{\sigma} \Pi^{a(p-1)}$ because of Lemma 1. Consequently $\Pi^{a(p-1)}$ is in $Q(\xi_{\sigma})$. Let K denote the decomposition field of p in $Q(\xi_{\sigma})$. Then, by Lemma 1, K is also the decomposition field of p in $K_{p^{\alpha}-1}$. On account of $\Pi \xi_{\sigma} \Pi^{-1} = \xi_{\sigma}^{p}$, the mapping $\eta : \gamma \to \Pi \gamma \Pi^{-1}$ ($\gamma \in Q(\xi_{\sigma})$) is a generator of the Galois group of $Q(\xi_{\sigma})$ over K. Since $\Pi^{a(p-1)}$ is fixed by η , $\Pi^{a(p-1)}$ is in K. Thus we conclude that the algebra $Q(\Pi, \xi_{\sigma})$ which is generated by Π and ξ_{σ} , is a cyclic algebra over $K: (\Pi^{\alpha(p-1)}, Q(\xi_{\sigma}), \eta)$. The rank of this algebra over K is equal to $[Q(\xi_{\sigma}): K]^{2} = a^{2}(p-1)^{2}$. By the way, Proposition 2 shows that the field K is the center of $\mathcal{A}_{0}(A)$. Since $\mathcal{A}_{0}(A)$ contains the field $Q(\xi_{\sigma})$ of degree 2 dim A, its rank over the center K must be $[Q(\xi_{\sigma}): K]^{2}$. Thus we have proved the following

THEOREM 5. The endomorphism algebra $\mathcal{A}_0(A)$ of the main component A of J_a is the cyclic algebra over K:

$$(\Pi^{a(p-1)}, \mathbf{Q}(\xi_{\sigma}), \eta)$$

where σ is the automorphism of the curve C_a defined by (1), and η is a generating automorphism of $Q(\xi_{\sigma})$ over K.

Tokyo Metropolitan University

References

- [1] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen im gewissen zyklischen Fällen, J. Reine Angew. Math., 172 (1935), 151-182.
- [2] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math., 2' (1966), 134-144.
- [3] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Paris, Hermann, 1948.
- [4] T. Yamada, On the jacobian varieties of Davenport-Hasse curves, Proc. Japan Acad., 43 (1967), 407-411.