On the Davenport-Hasse curves

Dedicated to Professor Iyanaga on his 60th birthday

By Toshihiko Yamada

(Received July 31, 1967)

Let p be any prime number, and consider the Davenport-Hasse curves C_{a} defined by the equations

$$
y^{p}-y=x^{p^{a}-1} \quad(a=1,2,3, \cdots)
$$

over the prime field $G F(p)$. If we denote by θ a primitive $\left(p^{a}-1\right)(p-1)$-th root of unity in the algebraic closure of $G F(p)$, the map

$$
\begin{equation*}
\sigma:(x, y) \longrightarrow\left(\theta x, \theta^{p^{a-1} y}\right) \tag{1}
\end{equation*}
$$

defines an automorphism of C_{a}, which generates a cyclic group G of order $\left(p^{a}-1\right)(p-1)$. In this note we shall investigate the Davenport-Hasse curves, on the basis of the automorphism groups G.

In $\S 1$, we will determine the l-adic representation of G Theorem 1).
In $\S 2$, we shall investigate simple factors of the jacobian variety J_{a} of C_{a}. Let χ be a character of order $p^{a}-1$ of $G F\left(p^{a}\right)^{*}$. Then owing to DavenportHasse [1], the characteristic roots of p^{a}-th power endomorphism of J_{a} are

$$
\begin{equation*}
\tau_{j}\left(\chi^{l}\right)=-\sum_{u \in G F(p(p) *} \chi^{t}(u) \exp \left[\frac{2 \pi i j}{p} \operatorname{tr}(u)\right] \quad\binom{t=1, \cdots, p^{a}-2}{j=1, \cdots, p-1} . \tag{2}
\end{equation*}
$$

Let J_{a} be isogenous to a product:

$$
\begin{equation*}
J_{a} \sim A_{1} \times A_{2} \times \cdots \times A_{h}, A_{i}=B_{i} \times \cdots \times B_{i} \quad(i=1, \cdots, h), \tag{3}
\end{equation*}
$$

where the B_{i} are simple abelian varieties not isogenous to each other. Then the A_{i} are in one-to-one correspondence to the conjugate classes of the $\tau_{j}\left(\chi^{i}\right)$ as algebraic numbers (Tate [2]). Let $A=A_{1}$ correspond to the conjugate class of $\tau(\chi)=\tau_{1}(\chi)$, and call it the main component of J_{a}. Then we see that A is a simple abelian variety Theorem 2). For $a=1$, we describe completely the decomposition of the jacobian variety into simple factors Theorem 3). The results are obtained from the prime ideal decomposition of the $\tau_{j}\left(\chi^{l}\right)$ and from determining the fields which are generated by the $\tau_{j}\left(\chi^{t}\right)$ over \boldsymbol{Q}, combined with the recent work of Tate [2].

In $\S 3$, using results of $\S 1$, the l-adic representation of the automorphism
group G on the main component A is determined: the 'main' representation of G is realized on the main component A of J_{a} (Theorem 4). From this fact, we see that the endomorphism algebra $\mathcal{A}_{0}(A)$ of A is generated by the p-th power endomorphism and the endomorphism ξ_{σ}, which is induced by the automorphism σ defined by (1) Theorem 5).

The author thanks to Professor H. Morikawa for his kind encouragement. A short summary of this paper has been announced in [4].
§ 1. If we put $z=y^{p-1}$, the curve C_{a} is birationally equivalent to the: curve defined by the equation

$$
\begin{equation*}
x^{\left(p^{a}-1\right)(p-1)}=z(z-1)^{p-1} . \tag{4}
\end{equation*}
$$

The previous automorphism σ is given in this case by

$$
\begin{equation*}
\sigma:(z, x) \longrightarrow(z, \theta x) \tag{1}
\end{equation*}
$$

Lemma 1. The smallest natural number f such that $p^{f} \equiv 1 \bmod .\left(p^{a}-1\right)$ ($p-1$) is equal to $a(p-1)$.

Proof. For any non-negative integers ν, μ, we have

$$
p^{a \nu+\mu} \equiv \nu p^{a}+p^{\mu}-\nu \quad \bmod .\left(p^{a}-1\right)(p-1)
$$

Therefore, $p^{a \nu+\mu} \equiv 1 \bmod .\left(p^{a}-1\right)(p-1)(0 \leqq \mu<a)$, if and only if $\nu \equiv 0 \bmod . p-1$ and $\mu=0$. q.e.d.

By this lemma, θ is in the field $k=G F\left(p^{a(p-1)}\right)$. So the algebraic function field $k(z, x)$ defined by the equation (4) is a Kummer extension over $k(z)$ of degree $\left(p^{a}-1\right)(p-1)$, whose Galois group G is generated by σ. We denote by $\mathfrak{p}_{0}, \mathfrak{p}_{1}$, the prime divisors of $k(z)$ which are the numerators of principal divisors $(z),(z-1)$ respectively, and by p_{∞} the denominator of (z). It is easy to see that \mathfrak{p}_{0} and \mathfrak{p}_{∞} are totally ramified, and \mathfrak{p}_{1} is ramified by exponent $p^{a}-1$, in $k(z, x)$. If we put $x^{p^{a_{-1}}(z-1)^{-1}=w \text {, the inertia field of } \mathfrak{p}_{1} \text { in } k(z, x) \text { is } k(z, w) \text {, }, \text {, }{ }^{2}(z)}$ of defining equation $w^{p-1}=z$. So \mathfrak{p}_{1} decomposes in $k(z, w)$ into $p-1$ prime divisors. Summarizing, we have
in $k(z, x)$. Since the prime divisors $\mathfrak{P}_{0}, \mathfrak{F}_{1, i}(1 \leqq i \leqq p-1)$, \mathfrak{F}_{∞} are of degree one, they correspond respectively to the points $P_{0}, P_{1, i}(1 \leqq i \leqq p-1), P_{\infty}$ of the complete non-singular model C_{a} of the function field $k(z, x)$.

We denote by ξ_{α}, the correspondence of the curve C_{a} defined by an element α of the Galois group G. Let P be a point of C_{a}, and n a positive integer, and Δ the diagonal of $C_{a} \times C_{a}$. We denote by $V_{n}(P)$ the subgroup of G composed of the identity element ε of G and of all the elements α of G, other than ε, such that $P \times P$ has in the intersection $\xi_{\alpha} \cdot \Delta$ a coefficient which
is at least equal to n. Then on account of (5), we have

$$
V_{1}\left(P_{0}\right)=V_{1}\left(P_{\infty}\right)=G,
$$

$$
\begin{equation*}
V_{1}\left(P_{1, i}\right)=\left\{\sigma^{\nu} ; \nu \equiv 0 \bmod . p-1\right\} \quad(1 \leqq i \leqq p-1) \tag{6}
\end{equation*}
$$

Since the ramification exponents are all prime to p, we have

$$
\begin{equation*}
V_{2}\left(P_{0}\right)=V_{2}\left(P_{\infty}\right)=V_{2}\left(P_{1, i}\right)=\{\varepsilon\} . \tag{7}
\end{equation*}
$$

We denote by $M_{\iota}\left(\xi_{\alpha}\right)(\alpha \in G)$ the representation of G on the Tate group $T_{\iota}\left(J_{a}\right)$ of the jacobian variety J_{a} of C_{a}, where l is a prime number different from characteristic p, and denote by $a_{P}(\alpha)$ for $\alpha \neq \varepsilon$, the multiplicity of $P \times P$ in the intersection $\Delta \cdot \xi_{\alpha}$. We shall quote the result of Weil [3].

Lemma 2. The trace of the representation $M_{l}\left(\xi_{\alpha}\right)$ is given by the formula:

$$
\begin{align*}
& \operatorname{tr} M_{\iota}\left(\xi_{\alpha}\right)=2-\sum_{\boldsymbol{F}} a_{P}(\alpha) \quad(\alpha \neq \varepsilon) \tag{8}\\
& \operatorname{tr} M_{l}\left(\xi_{\varepsilon}\right)=2 g
\end{align*}
$$

where g is the genus of C_{a} and is equal to $\left(p^{a}-2\right)(p-1) / 2$.
From this lemma combined with (6) and (7), we calculate readily:

$$
\operatorname{tr} M_{l}\left(\xi_{\sigma \nu}\right)=\left\{\begin{array}{cl}
-(p-1) & \nu \equiv 0 \bmod . p-1 \tag{9}\\
0 & \nu \equiv 0 \bmod . p-1
\end{array} \quad\left(\sigma^{\nu} \neq \varepsilon\right)\right.
$$

As G is a cyclic group of order $\left(p^{a}-1\right)(p-1)$, its character group G^{*} is generated by ψ such that

$$
\begin{equation*}
\psi\left(\sigma^{\nu}\right)=\exp \frac{2 \pi i \nu}{\left(p^{a}-1\right)(p-1)} . \tag{10}
\end{equation*}
$$

Then we have

$$
\operatorname{tr} M_{\iota}\left(\xi_{\alpha}\right)=\sum_{\mu=1}^{\left(p^{a}-1\right)(p-1)} c_{\mu} \psi^{\mu}(\alpha),
$$

where the coefficients c_{μ} are calculated by the relations of orthogonality of characters:

$$
c_{\mu}=\frac{1}{\left(p^{\alpha}-1\right)(p-1)} \sum_{\alpha \in G} \phi^{\mu}\left(\alpha^{-1}\right) \operatorname{tr} M_{l}\left(\xi_{\alpha}\right) .
$$

If we substitute the terms in the summation by (8), (9) and (10), we get

$$
\begin{aligned}
c_{\mu} & =\frac{1}{\left(p^{a}-1\right)(p-1)}\left[2 g-\sum_{\nu=1}^{p^{a}-2} \psi^{\mu}\left(\sigma^{-(p-1) \nu}\right) \cdot(p-1)\right] \\
& =\frac{1}{p^{a}-1}\left[\left(p^{a}-2\right)-\sum_{\nu=1}^{p^{a}-2} \exp \frac{-2 \pi i}{p^{a}-1} \mu \nu\right] \\
& =\left\{\begin{array}{lll}
1 & \mu \neq 0 & \text { mod. } p^{a}-1 \\
0 & \mu \equiv 0 & \text { mod. } p^{a}-1 .
\end{array}\right.
\end{aligned}
$$

Thus we have proved

$$
\operatorname{tr} M_{l}\left(\xi_{\alpha}\right)=\sum_{\nu \neq 0 \text { mod. } p^{a}-1} \psi^{\nu}(\alpha) .
$$

Theorem 1. The l-adic representation $M_{l}\left(\xi_{\alpha}\right)$ of the automorphism group G is the direct sum of the irreducible representations ψ^{ν} of multiplicity one, where ν runs from 1 to $\left(p^{a}-1\right)(p-1)$ except $\nu \equiv 0 \mathrm{mod} . p^{a}-1$.
§ 2. In the first place we shall summarize the facts about the prime ideal decomposition of the characteristic roots $\tau_{j}\left(\chi^{l}\right)$ of p^{a}-th power endomorphism (Davenport-Hasse [1]). After this we put $p^{a}=q$, and denote by K_{n} the field of the n-th roots of unity over the field \boldsymbol{Q} of rational numbers. Then the $\tau_{j}\left(\chi^{l}\right)$ are in $K_{p(q-1)}$. We write simply $\tau\left(\chi^{l}\right)$ in place of $\tau_{1}\left(\chi^{l}\right)$. From the expression (2) of $\tau_{j}\left(\chi^{l}\right)$ it follows that

$$
\begin{equation*}
\tau\left(\chi^{t}\right) \longrightarrow \chi^{-t}(j) \tau\left(\chi^{t}\right)=\tau_{j}\left(\chi^{t}\right) \quad(1 \leqq j \leqq p-1) \tag{11}
\end{equation*}
$$

by the automorphisms $\exp \frac{2 \pi i}{p} \rightarrow \exp \frac{2 \pi i}{p} j$ of $K_{p(q-1)}$ over K_{q-1}, and

$$
\begin{equation*}
\tau\left(\chi^{t}\right) \longrightarrow \tau\left(\chi^{t r}\right) \quad((\gamma, q-1)=1) \tag{12}
\end{equation*}
$$

by the automorphisms $\exp \frac{2 \pi i}{q-1} \rightarrow \exp \frac{2 \pi i}{q-1} \gamma$ of $K_{p(q-1)}$ over K_{p}. The Galois group of K_{q-1} over \boldsymbol{Q} is isomorphic to the group R of prime residue-classes mod. $q-1$. Denote by P the subgroup of R which is generated by p mod. $q-1$, and let ρ run through representatives of the factor group $R / P: R=\sum_{\rho} \rho P$. Then the prime ideal decomposition of p is as follows:

$$
\begin{aligned}
& (p)=\prod_{\rho} \mathfrak{p}_{\rho} \text { in } K_{q-1}, \mathfrak{p}_{\rho}=\mathfrak{F}_{\rho}^{p-1},\left(e^{\frac{2 \pi i}{p}}-1\right)=\Pi_{\rho} \mathfrak{F}_{\rho}, \\
& (p)=\prod_{\rho} \mathfrak{F}_{\rho}^{p-1} \text { in } K_{p(q-1)} .
\end{aligned}
$$

For a rational integer α, we denote by $\lambda(\alpha)=\alpha_{0}+\alpha_{1} p+\cdots+\alpha_{a-1} p^{\alpha-1}\left(0 \leqq \alpha_{i}\right.$ $\leqq p-1$, not all $\alpha_{i}=p-1$) the smallest non-negative residue of $\alpha \bmod . q-1$, and put $\sigma(\alpha)=\alpha_{0}+\alpha_{1}+\cdots+\alpha_{a-1}$. The prime ideal decomposition of $\tau\left(\chi^{t}\right)$ in $K_{p(q-1)}$ is

$$
\begin{equation*}
\left(\tau\left(\chi^{\ell}\right)\right)=\prod_{\rho} \Re_{\rho}^{\sigma(t \rho)} . \tag{13}
\end{equation*}
$$

For the ($p-1$)-th power of $\tau\left(\chi^{t}\right)$ which belongs to K_{q-1} by (11), the prime ideal decomposition in K_{q-1} is

$$
\begin{equation*}
\left(\tau\left(\chi^{t}\right)^{p-1}\right)=\prod_{\rho} \mathfrak{p}_{\rho}^{\sigma(t \rho)} . \tag{14}
\end{equation*}
$$

It is said that $\tau_{j}\left(\chi^{t}\right)$ and $\tau_{i}\left(\chi^{s}\right)$ are equivalent when there exist natural
numbers n, m such that $\tau_{j}\left(\chi^{t}\right)^{n}$ and $\tau_{i}\left(\chi^{s}\right)^{m}$ are conjugate algebraic numbers. Clearly this is an equivalence relation. If the jacobian variety J_{a} is isogenous over the algebraic closure of $G F(p)$ to a product in the same notation as (3):

$$
\begin{equation*}
J_{a} \sim A_{1} \times A_{2} \times \cdots \times A_{h}, A_{i}=B_{i} \times \cdots \times B_{i} \tag{3}
\end{equation*}
$$

then the A_{i} are in one-to-one correspondence to the equivalence classes of the $\tau_{j}\left(\chi^{t}\right)$ (Tate [2]).

The following lemma is easily proved.
Lemma 3. For $0<\alpha<p^{a}-1$ we have
i) $1 \leqq \sigma(\alpha) \leqq a(p-1)-1$,
ii) $\sigma(\alpha)=1$ if and only if $\alpha=p^{i}(0 \leqq i \leqq a-1)$,
iii) $\sigma(\alpha)=a(p-1)-1$ if and only if $\alpha=p^{a}-1-p^{i}(0 \leqq i \leqq a-1)$.

Proposition 1. If t satisfies $\left(t, p^{a}-1\right)>1$, then $\tau(\chi)$ and $\tau\left(\chi^{t}\right)$ are not equivalent.

Proof. Suppose that t satisfies $\left(t, p^{a}-1\right)=d>1$, then $\left(\lambda(\rho t), p^{a}-1\right)=d$, and by Lemma 3, $\sigma(\rho t)$ cannot take the value 1 nor the value $a(p-1)-1$ for any ρ. If we assume that there exist natural numbers n and m such that $\tau(\chi)^{n}$ and $\tau\left(\chi^{t}\right)^{m}$ are conjugate algebraic numbers, the prime ideal decomposition (13) shows that the sets $\{n \cdot \sigma(\rho) ; \rho\}$ and $\{m \cdot \sigma(t \rho) ; \rho\}$ are the same. But this contradicts the above mentioned fact.

Corollary. The set $\left\{\tau_{j}\left(\chi^{\prime \prime}\right) ;\left(\mu, p^{a}-1\right)=1,1 \leqq \mu<p^{a}-1,1 \leqq j \leqq p-1\right\}$ fills up just an equivalence class of the $\tau_{j}\left(\chi^{t}\right)$.

The decomposition fields of p in K_{q-1} and in $K_{p(q-1)}$ are the same, which we denote by K. For any natural number μ the prime ideal decomposition of $\tau(\chi)^{\mu}$ in $K_{p(q-1)}$ is $\left(\tau(\chi)^{\mu}\right)=\prod_{\rho} \Re_{\rho}^{\sigma(\rho) \mu}$. Among the numbers $\sigma(\rho) \mu$, the number μ appears only once because of Lemma 3. Therefore $\boldsymbol{Q}\left(\tau(\chi)^{\mu}\right)$ contains K.

Lemma 4. $\tau(\chi)$ is invariant under the automorphisms $\exp \frac{2 \pi i}{q-1} \rightarrow \exp \frac{2 \pi i}{q-1} p^{j}$ $(j=1,2, \cdots, a)$ of $K_{p(q-1)}$ over K_{p}, i.e., $\tau(\chi)=\tau\left(\chi^{p}\right)=\cdots=\tau\left(\chi^{p \omega-1}\right)$.

Proof. From the expression of $\tau(\chi)$ as a generalized Gaussian sum, it follows that

$$
\begin{aligned}
\tau\left(\chi^{p j}\right) & =-\sum_{u \neq 0} \chi^{p j}(u) \exp \left[\frac{2 \pi i}{p} \operatorname{tr}(u)\right] \\
& =-\sum_{u \neq 0} \chi\left(u^{p j}\right) \exp \left[\frac{2 \pi i}{p} \operatorname{tr}\left(u^{p j}\right)\right] \\
& =\tau(\chi),
\end{aligned}
$$

which proves the assertion.
As $\tau(\chi) \rightarrow \chi^{-1}(j) \tau(\chi)(1 \leqq j \leqq p-1)$ by the automorphisms $\exp \frac{2 \pi i}{p} \rightarrow \exp \left(\frac{2 \pi i}{p} j\right)$ of $K_{p(q-1)}$ over $K_{q-1}, \boldsymbol{Q}\left(\tau(\chi)^{p-1}\right)$ is contained in K_{q-1}. Further, by Lemma 4,
$\tau(\chi)^{p-1}$ is invariant under the automorphisms of the decomposition group of p in K_{q-1}. Hence $\boldsymbol{Q}\left(\tau(\chi)^{p-1}\right)$ is contained in K. When we put $\boldsymbol{Q}_{\tau(\chi)}=\bigcap_{\mu=1}^{\infty} \boldsymbol{Q}\left(\tau(\chi)^{\mu}\right)$, from what has been stated, we get

$$
\boldsymbol{Q}_{\tau(x)}=\boldsymbol{Q}\left(\tau(\chi)^{p-1}\right)=K .
$$

Now for any ρ, prime ideal \mathfrak{p}_{ρ} of K_{q-1} is regarded as prime ideal of K, which is also denoted by \mathfrak{p}_{ρ}. Let $\left\|\tau(\chi)^{p-1}\right\|_{\mathfrak{p}}$ denote the normal absolute value of $\tau(\chi)^{p-1}$ at the prime \mathfrak{p}_{ρ} of K. From (14) we have $\left\|\tau(\chi)^{p-1}\right\|_{p_{\rho}}=p^{-\sigma(\rho)}$. Recall that $\tau(\chi)^{p-1}$ is a characteristic root of $p^{\alpha(p-1)}$-th power endomorphism. Putting $p^{a(p-1)}=q_{0}$, we have

$$
\left\|\tau(\chi)^{p-1}\right\|_{p_{\rho}}=q_{0}^{--\sigma(\rho-1)} .
$$

In the expression (3) of J_{a}, let A_{1} correspond to the equivalence class, to which $\tau(\chi)$ belongs (Prop. 1, Coroll.). Hereafter we put $A_{1}=A$. Let $\mathcal{A}(A)$ denote the endomorphism ring of the abelian variety A, and put $\mathcal{A}_{0}(A)=\mathcal{A}(A) \otimes \boldsymbol{Q}$. We have prepared all things to apply Tate's results [2] to our case.

Proposition 2. i) $\mathcal{A}_{0}(A)$ is a central simple algebra over K, which splits at all finite primes \mathfrak{p} of K not dividing p.
ii) The local invariants of the algebra $\mathcal{A}_{0}(A)$ at the primes \mathfrak{p}_{ρ} are given by

$$
\operatorname{inv}_{p p}\left[\mathcal{A}_{0}(A)\right] \equiv \frac{\sigma(\rho)}{a(p-1)} \bmod \boldsymbol{Z}
$$

iii) The dimension of the simple constituent B_{1} of A is

$$
\operatorname{dim} B_{1}=\frac{1}{2} a(p-1) \cdot \operatorname{deg} \tau(\chi)^{p-1}=\frac{1}{2}(p-1) \cdot \varphi\left(p^{a}-1\right),
$$

where φ is as usual the Euler's function.
Since by Prop. 1, Coroll., $\operatorname{dim} A$ is equal to $\frac{1}{2}(p-1) \cdot \varphi\left(p^{a}-1\right)$, Prop. 2, iii) shows that A is a simple abelian variety. Hence we have

Theorem 2. The jacobian variety J_{a} of the curve C_{a} contains as simple component the simple abelian variety A with multiplicity one, which has $\tau(\chi)^{p-1}$ as a characteristic root of the $p^{a(p-1)}$-th power endomorphism. (We call A the main component of J_{a}.)

In the case of $a=1$, the situation is very simplified.
Theorem 3. For $a=1$, we have

$$
J_{1} \sim \prod_{m}\left(B_{m} \times \cdots \times B_{m}\right) \quad\left(\text { each } B_{m} \text { appears } m \text { times }\right)
$$

where the index m runs over all divisors of $p-1$ except $m=p-1$, and each B_{m} is a simple abelian variety of dimension $\frac{1}{2} \cdot \frac{p-1}{m} \varphi\left(\frac{p-1}{m}\right)$, which has $\tau\left(\chi^{m}\right)$ as a characteristic root, and B_{m} is not isogenous to $B_{m^{\prime}}$, for $m \neq m^{\prime}$.

Proof. We exclude the case characteristic $p=2$, because in that case, the curve C_{1} is of genus 0 . As $a=1$, we have

$$
\begin{equation*}
\tau_{j}\left(\chi^{t}\right)=-\sum_{u \in G \mathcal{F}(p) *} \chi^{t}(u) \exp \left(\frac{2 \pi i j}{p} u\right), \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau\left(\chi^{t}\right)=\prod_{\rho} \mathfrak{F}_{\rho}^{\chi(t \rho)} \tag{13}
\end{equation*}
$$

where ρ ranges over representatives of prime residue-classes mod. $p-1$. Let m and n be any divisors of $p-1$ except m or $n=p-1$. Assume that $\tau\left(\chi^{m}\right)^{\mu}$ and $\tau\left(\chi^{n}\right)^{\nu}$ are conjugate algebraic numbers, for some positive integers μ and ν. Then by (13)', the set $\{\mu \cdot \lambda(m \rho) ; \rho\}$ and the set $\{\nu \cdot \lambda(n \rho) ; \rho\}$ are the same. Since g.c. m. of the sets are μm and νn, respectively, we have $\mu m=\nu n$. Hence $\frac{1}{m} \sum_{\rho} \lambda(m \rho)=\frac{1}{n} \sum_{\rho} \lambda(n \rho)$. On the other hand we can elementarily prove that $\sum_{\rho} \lambda(s \rho)=(p-1) \varphi(p-1) / 2$ for $s \neq 0 \bmod . p-1$. So we get $m=n$. From this fact, combined with (11) and (12), the equivalence classes of the $\tau_{j}\left(\chi^{t}\right)$ are represented by $\tau\left(\chi^{m}\right)$, where m runs over all divisors of $p-1$ except $m=p-1$. Now because of the expression (2)', we easily see that $\tau_{j}\left(\chi^{t}\right)=\tau_{i}\left(\chi^{s}\right)$, if and only if $t=s$ and Ind $j \equiv \operatorname{Ind} i \bmod . \frac{p-1}{(t, p-1)}$, where we put Ind $j=\nu$, if $j \equiv \omega^{\nu}$ \bmod , p, ω being a generator of the group of prime residue classes mod. p. From this and (13)', we conclude that $\boldsymbol{Q}_{\tau\left(\chi^{t}\right)}=K_{p-1} \cap \boldsymbol{Q}\left(\tau\left(\chi^{t}\right)\right.$), and we can determine the prime ideal decomposition of $\tau\left(\chi^{t}\right)^{p-1}$ in $\boldsymbol{Q}_{\tau(x t)}$. On account of what has been outlined, Theorem 3 will be obtained.
§ 3. According to the notation of (3), the Tate group $T_{l}\left(J_{a}\right)$ is the direct sum of the Tate groups $T_{l}\left(A_{i}\right)$. The elements α of the automorphism group G induce the endomorphisms $\xi_{\alpha}^{(i)}$ on each A_{i}, so that we obtain representations $M_{l}\left(\xi_{\alpha}^{(i)}\right)$ of $G(i=1, \cdots, h)$. The l-adic representation $M_{l}\left(\xi_{\alpha}\right)$ of G on $T_{l}\left(J_{a}\right)$ is the direct sum of the $M_{l}\left(\xi_{\alpha}^{(i)}\right)$. We shall determine the representation $M_{l}\left(\xi_{\alpha}^{(1)}\right)$ on the main component $A=A_{1}$.

ThEOREM 4. The representation $M_{l}\left(\xi_{\alpha}^{(1)}\right)$ of G on $T_{l}(A)$ is the direct sum of the irreducible representations ψ^{ν} of multiplicity one, where ν runs through the numbers such that $1 \leqq \nu \leqq\left(p^{a}-1\right)(p-1)$ and $\left(\nu,\left(p^{a}-1\right)(p-1)\right)=1$.

Proof. As A is a simple abelian variety, $\mathcal{I}_{0}(A)$ is a division algebra. Hence the characteristic roots of $M_{l}\left(\xi_{\sigma}^{(1)}\right)$ are conjugate to each other, where σ is defined by (1). Now the characteristic roots of $M_{l}\left(\xi_{\sigma}\right)$ are, by Theorem 1 , $\left\{\phi^{\nu}(\sigma) ; 1 \leqq \nu \leqq\left(p^{a}-1\right)(p-1), \nu \equiv 0 \bmod . p^{a}-1\right\}$. So the number of such characteristic roots that are conjugate to $\psi^{\mu}(\sigma)$ is equal to $\varphi\left(\frac{\left(p^{a}-1\right)(p-1)}{d}\right)$, $d=\left(\mu,\left(p^{a}-1\right)(p-1)\right)$. If we assume $d>1$, then we have

$$
\varphi\left(\frac{\left(p^{a}-1\right)(p-1)}{d}\right)<\varphi\left(\left(p^{a}-1\right)(p-1)\right) .
$$

But the right side is just equal to $2 \operatorname{dim} A=(p-1) \varphi\left(p^{a}-1\right)$. Therefore the characteristic roots of $M_{l}\left(\xi_{\sigma}^{(1)}\right)$ must be $\left\{\psi^{\mu}(\sigma) ; 1 \leqq \mu \leqq\left(p^{a}-1\right)(p-1)\right.$, $\left(\mu,\left(p^{a}-1\right)\right.$ $(p-1))=1\}$, that proves the theorem.

Corollary. $\boldsymbol{Q}\left(\xi_{\sigma}^{(1)}\right)$ is the field $K_{\left(p^{a}-1\right)(p-1)}$ of $\left(p^{a}-1\right)(p-1)$-th roots of unity.
Hereafter we write simply $\xi_{\sigma}^{(1)}=\xi_{\sigma}$. The endomorphism algebra $\mathcal{A}_{0}(A)$ of A contains the field $\boldsymbol{Q}\left(\xi_{\sigma}\right)$ of degree $2 \operatorname{dim} A=(p-1) \varphi\left(p^{a}-1\right)$ over \boldsymbol{Q}. The p-th power endomorphism of J_{a} induce an endomorphism of A, which is denoted by Π. Since $\Pi \xi_{\sigma}=\xi_{\sigma}^{p} \Pi$, we get $\Pi^{a(p-1)} \xi_{\sigma}=\xi_{\sigma} \Pi^{a(p-1)}$ because of Lemma 1. Consequently $\Pi^{a(p-1)}$ is in $\boldsymbol{Q}\left(\xi_{\sigma}\right)$. Let K denote the decomposition field of p in $\boldsymbol{Q}\left(\xi_{\sigma}\right)$. Then, by Lemma 1, K is also the decomposition field of p in $K_{p^{a_{-1}}}$. On account of $\Pi \xi_{\sigma} \Pi^{-1}=\xi_{\sigma}^{p}$, the mapping $\eta: \gamma \rightarrow \Pi_{\gamma} \Pi^{-1}\left(\gamma \in \boldsymbol{Q}\left(\xi_{\sigma}\right)\right)$ is a generator of the Galois group of $\boldsymbol{Q}\left(\xi_{\sigma}\right)$ over K. Since $\Pi^{a(p-1)}$ is fixed by $\eta, \Pi^{a(p-1)}$ is in K. Thus we conclude that the algebra $\boldsymbol{Q}\left(\Pi, \xi_{\sigma}\right)$ which is generated by Π and ξ_{σ}, is a cyclic algebra over $K:\left(\Pi^{\sigma(p-1)}, \boldsymbol{Q}\left(\xi_{\sigma}\right), \eta\right)$. The rank of this algebra over K is equal to $\left[\boldsymbol{Q}\left(\xi_{\sigma}\right): K\right]^{2}=a^{2}(p-1)^{2}$. By the way, Proposition 2 shows that the field K is the center of $\mathcal{A}_{0}(A)$. Since $\mathcal{A}_{0}(A)$ contains the field $\boldsymbol{Q}\left(\xi_{\sigma}\right)$ of degree $2 \operatorname{dim} A$, its rank over the center K must be $\left[\boldsymbol{Q}\left(\xi_{\sigma}\right): K\right]^{2}$. Thus we have proved the following

Theorem 5. The endomorphism algebra $\mathcal{A}_{0}(A)$ of the main component A of J_{a} is the cyclic algebra over K :

$$
\left(\Pi^{\alpha(p-1)}, \boldsymbol{Q}\left(\xi_{\sigma}\right), \eta\right)
$$

where σ is the automorphism of the curve C_{a} defined by (1), and η is a generating automorphism of $\boldsymbol{Q}\left(\xi_{\sigma}\right)$ over K.

Tokyo Metropolitan University

References

[1] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math., 172 (1935), 151-182.
[2] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math., 2' (1966), 134-144.
[3] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Paris, Hermann, 1948.
[4] T. Yamada, On the jacobian varieties of Davenport-Hasse curves, Proc. Japan Acad., 43 (1967), 407-411.

