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1. The purpose of this paper is to prove the following theorem.
THEOREM A. Let $G$ be a fnite group which satisfies the following two con- $\cdot$

ditions:
(i) $G$ is semi-simple, and

(ii) if $X$ is a cyclic subgroup of even order and if $Y$ is a non-identity sub-
group of $G$ , then

$X\supseteqq Y$ implies $N_{G}(X)\supseteqq N_{G}(Y)$ .

Then $G$ is isomorphic to either PGL (2, q) or PSL (2, q) for some prime power
$q>3$ .

Notation and terminology are standard. PGL (2, q) is the factor group of
the group of all $2\times 2$ non-singular matrices over the finite field of $q$ elements.
by its center. The group PSL (2, q) is similarly defined by replacing non-
singular by unimodular. If $q>3$ , PSL (2, q) is a simple group. See [3]. If $q$

is even, PGL (2, q) coincides with PSL $(2, q)$ . Otherwise PSL (2, q) is the only
proper normal subgroup of PGL $(2, q)$ . Thus, both groups are semi-simple, i.e..
they contain no proper solvable normal subgroups. $N_{G}(X)$ is the normalizer $\cdot$

and $C_{G}(X)$ is the centralizer of a subset $X$ in $G$ .
It is not hard to show that the groups PGL (2, q) and PSL (2, q) satisfy

the condition (ii). Thus the converse of Theorem A holds.
In [1], Brauer, Wall and the author studied a finite group of even order

which satisfies the property that two distinct maximal cyclic subgroups of
even order have a trivial intersection. Such a group satisfies the condition
(ii). So Theorem A may be considered as a generalization of the result of
[1].

$ln$ the proof of Theorem A we use the structure theorems of finite groups,
in which the centralizers of elements of order 2 are always nilpotent. Re-
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quired results are contained in Suzuki [12]. These results are deep and dif-
ficult to prove, so the proof of Theorem A is not elementary. In the next
section we prove a technical result (Theorem B), which is another characteriza-
tion of the projective transformation groups of the projective line. Actually
Theorem $B$ is more than necessary in order to prove Theorem A. Instead of
using Theorem $B$ , we may use the result of [1] to finish the proof in case of
Lemma 6 below.

It is possible to generalize Theorem A eliminating the assumption (i). But
the result becomes much more complicated to state. We do not go into this
generalization, although it is not difficult to supply missing arguments for
discussing groups which satisfy (ii) but not (i). We state a remark on the
assumption (ii). Since every subgroup of a cyclic group is characteristic,

$X\supseteqq Y\neq 1$ implies $N_{G}(X)\subseteqq N_{a}(Y)$ ,

for any cyclic subgroup $X$ of $G$ . Thus the condition (ii) is a containment
opposite to the natural one, and yields that

$X\supseteqq Y\neq 1$ implies $N_{G}(X)=N_{a}(Y)$

for a cyclic subgroup $X$ of even order.

2. The following proposition is a consequence of a result of Gorenstein
and Walter [6]. Let $G$ be a simple group and $S$ a Sylow 2-group of $G$ . If
the center of $S$ contains an involution $j$ such that $C_{G}(j)$ is a dihedral group,
then $G$ is isomorphic to PSL (2, q) for an odd prime power $q>3$ . We record
here a generalization of this result.

We define a D-group as a group $G$ which contains a proper subgroup $A$

such that
$x^{2}=1$ for all $x\in G-A$ .

By definition an elementary abelian 2-group is a D-group. If a group is a D-
group but is not an elementary abelian 2-group, then it is defined as a $D^{*}-$

group. The following lemma is easy to prove.
LEMMA 1. A D-group $G$ contains a normal abelian subgroup $A$ of index 2

and any element of $G-A$ is an involution and inverts every element of A. If
$G$ is a $D^{*}$ -group, the subgroup A which satisfies the above properties is unique.

It follows from Lemma 1 that the center of a $D^{*}$ -group is the set of ele-
ments of order $\leqq 2$ of $A$ .

THEOREM B. Let $G$ be a group. Suppose that $G$ contains a subgroup $H$

which satisfies the following two conditions:
(1) $H$ is a D-group of order divisible by 4, and
(2) $H=C_{G}(j)$ for any involution $j$ of the center of $H$.
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Then, if $G$ is not solvable, $G$ contains a normal subgroup $N$ such that the
order of $N$ is either odd or twice an odd number, and that

$G/N\cong PSL(2, q)$ or PGL (2, q)

for some prime power $q>3$ .
REMARKS. Since a dihedral group is a D-group, Theorem $B$ is a generali-

zation of a result of [6] mentioned earlier. The normal subgroup $N$ is solv-
able by Feit-Thompson [4]. This solvability of groups of odd order will be
used implicitly in the proof. It is however not essential. The prime power
$q$ may be odd or even. It is not difficult to find the structure of a solvable
group $G$ which satisfies the assumptions of Theorem B. Most of them are
either 2-closed or 2’-closed. But there is a class of groups with 2-1ength 2.

PROOF. If $H$ is an elementary abelian 2-group then $G$ is isomorphic to
PSL (2, q) for $q=|H|$ . This is a result of Fowler [5], and is a particular case
of a theorem of [11].

We may, therefore, assume that $H$ is a $D^{*}$ -group. Let $A$ be the unique
normal abelian subgroup of index 2 of $H$, and $S$ a Sylow 2-group of $H$. We
distinguish two cases according as $S$ is a Sylow 2-group of $G$ or not.

Suppose that $S$ is a Sylow 2-group of $G$ . Define $B=A\cap S$ . Any involu-
tion $j$ of $B$ is contained in the center of $H$ and by assumption (2) we have
$C_{G}(j)=H$. If $B$ is cyclic, $S$ is a dihedral group. Hence $G$ satisfies the assump-
tions of Theorem 1 of [6]. Since the alternating group $A_{7}$ does not satisfy
the assumptions (1) and (2), the assertion follows from [6]. Suppose that $B$

is not cyclic. Let $u$ be an element of $S-B$ and define

$ U=\langle u, Z(H)\rangle$ ,

where $Z(H)$ is the center of $H$. By assumption (1), $U$ is elementary abelian
and $U=C_{H}(u)$ . By assumption we have $|U|\geqq 8$ . If $S_{1}$ is a Sylow 2-group of
$G$ which contains $U$, then

$|U:U\cap Z(S_{1})|\leqq 2$ .
Hence there is an involution $j$ of $Z(H)$ such that $C_{G}(j)\supseteqq S_{1}$ . This forces $S_{1}$ to
coincide with $S$ . Therefore $S$ is the unique Sylow 2-group of $G$ , which con-
tains $U$ . This yields that $u\in S-B$ is not conjugate to any involution of $B$ .
Hence the focal group of $S$ in $G$ is contained in $B$ (cf. Higman [8]). This
implies that $G$ contains a normal subgroup $G_{1}$ of index 2 such that $G_{1}\cap H=A$ .
The group $B$ is a Sylow 2-group of $G_{1}$ . Hence the centralizer of any involu-
tion in $G_{1}$ is abelian. By the main theorem of [10], $G_{1}$ is a direct product
$L\times C$ where $L\cong PSL(2, q),$ $q=|B|$ , and $C$ is an abelian group of odd order.

An element $u$ of $S-B$ inverts every element of $C$ . Since $B$ is elementary
abelian, $u$ centralizes $B$ . The element $u$ normalizes $L$ . It is easy to see that
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the group $\langle u, L\rangle$ is a direct product of $L$ and a cyclic group of order 2.
Hence $G$ contains a normal subgroup $N$ such that $G/N\cong L$ and $N$ contains $C$

as a normal subgroup of index 2.
Suppose finally that $S$ is not a Sylow 2-group of $G$ . Let $T$ be a Sylow

2-group of $G$ , which contains $S$ . Consider $T_{1}=N_{T}(S)$ . Since $T\neq S,$ $T_{1}$ is larger
than $S$ . Let $t$ be an element of $T_{1}-S$ such that $t^{2}\in S$ . If $B$ denotes $A\cap S$

as before, $t$ normalizes $B\cap B^{t}$ . If $|B|>2$ , then $B\cap B^{t}$ contains an involution
$j$ which commutes with $t$ . This is not the case, since $H=C_{G}(j)$ . Hence we
have $|S|=4$ and $|B|=2$ . Let $j$ be the involution of $B$ . Then $S=C_{T}(j)$ is of
order 4. By Lemma 4 of [9], $T$ is either a dihedral or a semi-dihedral group.
Suppose that $T$ is a dihedral group. If $u$ denotes the involution of the center
of $T$, the group $C_{G}(u)$ contains a normal 2-complement $U$ . Since $j$ commutes
with $u,$ $j$ normalizes $U$ . Since no element of odd order centralizes the group
$\langle u, j\rangle,$ $j$ inverts every element of $U$. This forces $U$ to be abelian and Theorem
1 of [6] yields the assertion.

If $T$ is not a dihedral group, $G$ contains a normal subgroup $G_{1}$ of index
2 such that a Sylow 2-group of $G_{1}$ is a generalized or an ordinary quaternion
group. By Brauer-Suzuki [2], $G_{1}$ contains a normal subgroup $N$ such that the
order of $N$ is twice an odd integer. A Sylow 2-group of $G_{1}/N$ is dihedral and
since $G$ is not solvable involutions of $G_{1}/N$ form a single conjugate class. Let
$V$ be a normal cyclic subgroup of order 4 of T. $N_{G}(V)$ possesses a normal
2-complement $W$. The involution $j$ normalizes $W$. Since $u$ centralizes $W,$ $j$

inverts every element of $W$. Hence $W$ is abelian. The centralizer of an
involution of $G_{1}/N$ is a homomorphic image of $N_{G}(V)$ . Therefore $G_{1}/N$ satisfies
the assumptions of Theorem 1 of [6]. We have

$G/N\cong PGL(2, q)$ ,

since Sylow 2-groups of $G/N$ are dihedral groups.

3. We begin the proof of Theorem A. Suppose that the centralizer of
an involution of $G$ is always nilpotent. Then the structure of $G$ is known.
Theorems 1 and 2 of [12], together with (i) yield that a minimal normal sub-
group of $G$ is a simple group in the list given in Theorem 1 of [12]. It is
not hard to check the validity of Theorem A in this case.

We assume therefore that the centralizer of some involution $j$ of $G$ is not
nilpotent. Denote

$H=C_{G}(j)$ and $ J=\langle j\rangle$ .
We prove several propositions about $H$.

LEMMA 2. $H$ contains an abelian normal 2-complement A. $A$ is not trivial.

If $B$ is a non-identily subgroup of $A$ , then we have $N_{G}(B)=H$.
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PROOF. By assumption, $H$ is not nilpotent. Hence $H$ contains elements
of odd order $>1$ . Let $x$ be any one of those elements and set

$ X=\langle x\rangle$ and $ Y=\langle x, j\rangle$ .
Since $\chi$ commutes with $j$ , the condition (ii) yields that

$N_{G}(X)=N_{G}(Y)=N_{G}(J)=C_{G}(j)=H$ .
Therefore any subgroup of odd order of $H$ is normal. The assertions of Lem-
ma 2 are obvious.

LEMMA 3. Let $U$ be a cyclic 2-group $\neq 1$ of H. If $C_{A}(U)\neq 1$ , then $N_{G}(U))$

$=H$ and $U$ centralizes $A$ .
PROOF. Let $X$ be a non-identity cyclic subgroup of $C_{A}(U)$ . Define $Y=$

\langle X, $ U\rangle$ . By assumption $Y$ is cyclic and

$N_{o}(U)=N_{G}(Y)=N_{G}(X)$ .
By Lemma 2, $N_{G}(X)=H$. This yields Lemma 3.

We use the following further notation:
$S$ : a Sylow 2-group of $H$,
$B=C_{s}(A)$ .
LEMMA 4. $B$ is a normal subgroup of $H$ and $S/B$ is cyclic.
PROOF. By Lemma 2, we have $C_{G}(A)=C_{H}(A)$ and $H$ normalizes $C_{H}(A).$.

By definition $B=S\cap C_{G}(A)$ and so
$C_{G}(A)=B\times A$ .

This proves that $B$ is a normal subgroup of $H$. If $\chi$ is an element $\neq 1$ of $A_{t}$

then $C_{G}(x)$ is a part of $C_{G}(A)$ by Lemma 3. Hence $C_{G}(x)=C_{G}(A)$ . If $X=\langle x\rangle,$ ,

then
$S/B\cong H/C_{G}(A)=N_{G}(X)/C_{G}(X)$ .

If the order of $x$ is a prime number $N_{G}(X)/C_{G}(X)$ is cyclic. This proves Lem-
ma 4.

LEMMA 5. There is a cyclic subgroup $U$ of $S$ such that $S=UB$ and $U\cap B$

$=1$ . Furthermore if $v$ is the involution of $U$, then $v$ inverts every element of
$C_{G}(A)$ .

PROOF. By Lemma 4, there is a cyclic subgroup $U$ such that $S=UB$ .
Let $v$ be the involution of $U$ . Set $ V=\langle v\rangle$ . If $v\in B$, then by Lemma 3, $V$ is
a normal subgroup of $H$. By the assumption (ii), $U$ is a normal subgroup of
$H$ also. This implies that $U$ centralizes $A$ . This is not the case since $H$ is.
not nilpotent. Hence $v\not\in B$ and $B\cap U=1$ . By Lemma 3, $v$ centralizes $n$ (\rangle

non-identity element of $A$ . This implies that $v$ inverts every element of $A$ .
Let $x$ be an element of $B$ . By Lemma 3 again, $v$ normalizes $\langle x\rangle$ . Hence$\cdot$

we have
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$v^{-1}xv=x^{s}$ , or $(vx)^{2}=x^{1+\theta}$ .
If $x^{1+s}\neq 1$ , then $\langle vx\rangle$ is a normal subgroup of $H$ by (ii). This yields that $vx$

$\in C_{G}(A)$ . But this is not the case, because $v\not\in B$ . Hence $v$ inverts every ele-
ment of $C_{G}(A)$ .

LEMMA 6. If $|S:B|=2$, then $H$ satisfies the assumptions of Theorem $B$ .
PROOF. By Lemma 5, $H$ is a $D^{*}$-group if $|S:B|=2$ . The $cor_{-}dition(2)$ in

Theorem $B$ is satisfied by Lemma 3.
By Lemma 6, Theorem A follows from Theorem $B$ if $|S:B|=2$ . So in

the rest of this section we assume that

$|S:B|>2$

and try to derive a contradiction.
LEMMA 7. $B$ is elementary abelian.
PROOF. Since $|S:B|>2$ , the involution $v$ of $U$ is a square in $S$ ; that is,

$v=w^{2}$ for some $w$ of $S$ . If $B$ contains an element $x$ of order 4, we have
$w^{-1}xw=x^{s}$ and

$u^{-1}xv=w^{-2}xw^{2}=x^{\gamma}$ where $r=s^{2}$ .
This contradicts Lemma 5 as $r\not\equiv-1(mod 4)$ .

LEMMA 8. If an element $t$ normalizes $ V=\langle v\rangle$ , then

$ t^{-1}xt=\chi$ or $xv$ for all $x\in B$ .
PROOF. Let $u$ be a generator of $U$. By assumption (ii), the element $t$

normalizes $U$ and $\langle uv\rangle$ . Note that, by Lemmas 3 and 7, $u$ commutes with $x$

and $(ux)^{2}=u^{2}$ . Hence $t$ normalizes the subgroup $\langle u, ux\rangle$ . This group contains
exactly 3 elements of order 2, namely $v,$ $x$ and $vx$ . Lemma 8 follows immedi-
ately.

LEMMA 9. Define $T=N_{G}(V)$ where $ V=\langle v\rangle$ . Then the following assertions
hold:

(a) $|T:S|=2$ ,

(b) $T$ is a Sylow 2-group of $G$ , and
(c) $V$ is weakly closed in $T$ .

PROOF. By Lemma 5, we have $N_{H}(V)=S$ . Let $x$ be an involution of $B$ .
Then by Lemma 3, $C_{G}(x)$ coincides with $H$. This implies that

$C_{T}(x)=C_{G}(x)\cap T=H_{\cap}N_{G}(V)=S$ .
By Lemma 8 we have $|T:S|\leqq 2$ . By Lemmas 3 and 7, $S$ is abelian. Hence
$V$ is a characteristic subgroup of $S$ . If $T=S$ , then $N_{G}(S)=S$ . By the transfer
theorem of Burnside, $G$ contains a normal 2-complement. This is not the case.
The first assertion (a) holds.
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Again let $x$ be an involution of $B$ . Then $C_{T}(x)=S$ as shown above. This,
together with (a) and Lemma 8, implies that $x$ is conjugate to $xv$ in $T$ .
Furthermore the center of $T$ is contained in $S$ . Hence $v$ is the only involution
of the center of $T$ . Thus $V$ is a characteristic subgroup of $T$ . Hence we
have $N_{G}(T)=T$ . This implies (b).

Suppose that (c) is false. Let $ W=\langle w\rangle$ be a conjugate subgroup of $V$

which is contained in $T$ . Then $W$ is not contained in $S$ . Hence, if $\chi$ is an
involution of $B$ , we have

$w^{-1}xw=xv$ .
So $v=z^{2}$ where $z=xw$ . Set $ Z=\langle z\rangle$ . Then by (ii) $Z$ is a normal subgroup of
$T$ . We may suppose that $U$ centralizes $Z$. If a generator $u$ of $U$ does not
commute with $z$ , we replace $U$ by $\langle ux\rangle$ . Then $U$ is the center of $T$ . This
implies that $C_{T}(W)=W\times U$. Since $U$ is a cyclic 2-group of order $\geqq 4,$ $V$ is
a characteristic subgroup of $C_{T}(W)$ . On the other hand $C_{G}(W)$ is a Sylow 2-
group of $G$ . Since $C_{T}(W)$ is a proper subgroup of $T$ , it is a proper subgroup
of $R=C_{G}(W)$ . Hence $N_{R}(V)$ contains $C_{T}(W)$ as a proper subgroup. This is a
contradiction.

We can finish the proof of Theorem A as follows. Since $V$ is a weakly
closed subgroup of the center of $T$ , we can apply the transfer theorem of P.
Hall-Wielandt (cf. [7], p. 212). Since $T=N_{G}(V),$ $G$ contains a normal 2-com-
plement. This contradicts the assumption (i).
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