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The purpose of this note is to indicate two simple facts, of which the
first one is almost obvious, once it is formulated :

THEOREM 1. If a complex projective non-singular variety V has no defor-
mation, then V is biregularly equivalent to a projective variety defined over an
algebraic number field.

Here we say that V has no deformation if H(V,®)=0, where @ denotes
the sheaf of germs of holomorphic sections of the tangent bundle of V. Calabi
and Vesentini have proved that HY(V, ®)=0 if V is the quotient S/I" of
an irreducible bounded symmetric domain S of dimension >1 by a discontinuous
group I operating freely on S such that S/I" is compact. (See also [4], [5],
[1I1]) Therefore Th. 1 shows that such a quotient has a model defined over
an algebraic number field.

To state the second fact, let C,(N, m, d) denote the set of all the Chow
points of positive cycles of dimension m and degree d in the projective space
of dimension N, defined with respect to a universal domain of characteristic
p=0. It is well known that C,(N, m, d) is a Zariski closed set in a certain
projective space, which is defined by equations with coefficients in the prime
field. Then one can ask the following question:

(@) Is every absolutely irreducible component of Cy(N, m, d) defined over
the prime field ?V

The answer is negative if the characteristic is 0:

THEOREM 2. There exist positive integers N, m, d such that Cy(N, m, d) has
a component which is not defined over the rational number field.

Such a component will be obtained so as to contain the Chow point of a
certain variety without deformation. This is why we present these two theo-
rems together. We shall also show in the last section that the answer to the
question (@) is still negative even if the characteristic is positive.

1) I thank S. Lichtenbaum for reminding me of this question.
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1. We shall denote by ¢(X) the Chow point of a positive cycle X in a
projective space, and by P¥ the projective space of dimension N. A variety
or a curve will always mean an absolutely irreducible one. In this section,
the universal domain is the complex number field C.

PROPOSITION 1. Let V be a non-singular variety of dimension m and degree
d in PY, and B a component of C(N, m, d) containing c(V). Suppose that V
has no deformation. Then there exists a Zariski open subset B’ of B such that
if o(X)e B/, X is a non-singular variety biregularly isomorphic to V.

PrOOF. Let k, be a finitely generated extension of the rational number
field Q over which ¢(V) and B are rational. Let x be a generic point of B
over k,, and W the cycle such that ¢(WW)=x. We shall now prove

(1.1) W is a non-singular variety biregularly isomorphic to V.

The non-singularity is obvious, since V is a specialization of W over k,. Put
u=c(V). We can find a generic specialization y of x over k, and a finitely
generated extension k of k, such that u is a specialization of y over k and
k(y) is a regular extension of k of dimension one. Let E be a complete non-
singular curve with a generic point z over k such that k(z)=k(y), and f a
morphism of E into B, rational over k, such that f(z)=y. Take a point v on
E such that f(v)=u. For each t= E, let W, denote the cycle such that ¢(W,)
=f(t). Then W, is the unique specialization of W, compatible with the speciali-
zation z—t over k. Let E’ be the set of all ¢ on E such that W, is a non-
singular variety. Then [’ is a Zariski open subset of F rational over k, con-
taining both z and v. Let w be a generic point of W, over k(z). (Note that
W, is defined over k(z), since ¢(W,)=f(z).) Let H be the locus of zXw on
E’'XP¥ over k. Then we see easily that the intersection product of H with
tXP¥ on E’XPY is txX W, for every ¢t = E’. By [10, Ch. VI, §2, Th. 6], every
point of ¢X W, is simple on H. Thus we have a non-singular variety H which
may be regarded as a fibre bundle with E’/ as base and the W, as fibres. By
the theorem of Frolicher and Nijenhuis [2] (cf. also [8]), our assumption
HY(V, ® =0 implies that there exists a neighborhood M of v on E’ such that
V (= W,) is biregularly isomorphic to W, for every t= M. We can find a
generic point s of E over k lying in M. Let ¢ be a biregular morphism of
W, to V. Since f(s) is a generic specialization of x over £k, there exists an
automorphism ¢ of C over k, such that f(s)’=x. Then ¢° is a biregular mor-
phism of W (=(W,)") to V. This proves (1.1).

Now for every c(X)e B, (c¢(X), ¢(V)) is a specialization of (c(W), ¢(V))
over k,. Over this specialization, the graph of ¢° can be specialized to the
graph of a biregular morphism of X onto V, at least for all ¢(X) in some
Zariski open subset of B (see for example [9, § 12.3, Prop. 24]). This proves
our proposition.
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PrROOF OF THEOREM 1. Let V, B and B’ be as in Prop. 1, and % the
smallest field of definition for B. Then & is an algebraic number field of finite
degree. We can find a point v of B’ algebraic over k. Let X be such that
¢(X)=v. Then X is biregularly isomorphic to V and defined over k(v). This
proves Th. 1.

One could actually prove Th. 1 more directly. For example, take the locus
U of ¢(V) over the algebraic closure of @, and construct a fibre variety of
which the base is a Zariski open subset of U and the generic fibre at ¢(V) is
V. Specializing ¢(V) to an algebraic point on U close to c¢(V), one obtains
the desired conclusion.

2. The universal domain being still C, let V be a projective variety. A
subfield 4 of C is called the bottom field (resp. the strong bottom field) for V
if the following condition is satisfied.

2.1) An automorphism ¢ of C is the identity mapping on h if and only if
V? is birationally (resp. biregularly) equivalent to V.

Such a field & is unique for V if it exists. The following three assertions
are immediate consequences of this definition.

(2.2) If W is birationally (rvesp. biregularly) equivalent to V, and h is the
bottom field (resp. the strong boitom field) for V, then h is the bottom field
(vesp. the strong bottom field) for W.

(2.3) Every field of definition for V contains the bottom field (resp. the
strong bottom field) for V, if the latter exists.

(2.4) If V is defined over an algebraic number field, then the bottom field
and the strong bottom field for V exist and are algebraic number fields of finite
degree.

We say that V is a minimal model if every rational mapping of a variety
X into V is defined at all the simple points of X. Then we can easily verify

(25) The bottom field and the strong bottom field for V exist and coincide,
if either one of them exists and V is a non-singular minimal model.

PROPOSITION 2. Let V and B be as in Prop. 1. Suppose that V has no
deformation. Then the bottom field and the strong bottom field for V exist and
are contained in the smallest field of definition for B.

Proor. By (2.2), (24) and Th. 1, we know that the strong bottom field
for V exists and is an algebraic number field of finite degree. Denote it by
h. Let k, be a finitely generated extension of 4 over which B and ¢(V) are
rational. Let x be a generic point of B over k, and W the variety such that
«W)==x. By (1.1) and (2.2), h is the strong bottom field for W. Let £k be the
smallest field of definition for B. Since W is defined over k(x), we have
hC k(x) by (2.3). Since both 2 and % are algebraic over Q and % is algebraic-
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ally closed in k(x), we have hC k, which completes the proof for the strong
bottom field. The same reasoning applies also to the bottom field.

3. In order to prove Th. 2, it is sufficient, in view of Prop. 2, to show
the existence of a non-singular projective variety without deformation whose
strong bottom field is not Q. We shall obtain such a variety as a quotient
H7/I" of the product of » copies of the upper half plane $={z = C|Im (2)>0}
by a discontinuous group I'. To define I”, we consider a totally real algebraic
number fleld F of degree g, and a division quaternion algebra D over F. Let
Dooyy **+ » Doy be the archimedean primes of F. Suppose that D is unramified
At Pooyy ***y Poor and ramified at pooyyg, v, Poog.  Put DR:D%§R. Then Dg can

be identified with M,(R)" X K#"", the product of » copies of the total matrix
algebra of degree 2 over the real number field R and g—r copies of the divi-
sion ring K of real quaternions. Let o be a maximal order in D, and I'(0)
the group of all units in o whose reduced norm to F is 1. For every a=l'(o),

let [Z” 2”] (v=1, .-+, r) be the projections of a to the first » factors M,(R)
of Dp. Define the action of @ on " by
a(zl) tety Z'r'):(wl: Tty wr)’ w, = (auzv_}'bv)(cuzu"l_dv)-l (Zu e ‘g)) .

Then I'(0) gives a discontinuous group operating on £”. Now we assume

(B.1) The multiplicative group of invertible elements of D has no element
of finite order other than 1.
Then $7/I'(0) is biregularly isomorphic to a non-singular projective variety V.
By [5, Th. 7.4], V has no deformation if » >1. Assume further

3.2) r=g—1>1, and p., corresponds to the identity mapping of F.
The results of [7, 49 and 4.107] tell us that, under the assumptions (3.1) and
(3.2), the composite of F and the bottom field for V is an unramified class
field over I corresponding to an ideal group I(D/F) in F generated by the
following three types of ideals:

(I) the principal ideals (a) such that a is totally positive;

(ID) the squares of all ideals in F;

(ITI) the prime ideals in F which are ramified in D.
In view of these facts, we construct our counterexample in the following way.
‘Take any totally real algebraic number field F of degree g>2 whose class
number is even. (For example, F=@Q(+/10, +/13).) We can find a prime ideal
p in F which is generated by a totally positive element and decomposes in every
quadratic extension of F containing non-trivial roots of unity. There exists a
quaternion algebra D over F which is ramified exactly at p and p.,, where
Dwg 18 as in (3.2). By our choice of p, we see that (3.1) is satisfied, and I(D/F)
is different from the whole ideal group of F. Hence a model for £7/I'(p),
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with any maximal order o in D, has the bottom field different from . This
completes the proof of Th. 2.

It is possible to obtain many more examples of varieties without deforma-
tion and with bottom fields= @, by considering the quotient of a bounded
symmetric domain, other than 7, by a discontinuous group. This can be
done, for example, by making the results of [7, § 2] more precise, or extend-
ing them to the case of congruence subgroup of the discontinuous group in
question (cf. also [87]).

4.” Another type of counterexample can be obtained by considering the
topological structure of varieties. We first prove an elementary

PROPOSITION 3. Let V and V’ be non-singular projective varieties whose
Chow points belong to the same component of C(N, m, d). Then there exists a
diffeomorphism of V onto V'.

PrOOF. Let B, k,, z, E/, f, w and H be as in the proof of Prop. 1. We
see that V, as a fibre of H, is diffeomorphic to a generic fibre W, with a
generic point z of E’ over k. (Note that we do not need the condition H(V, @)
=0.) Let B, be the set of all simple points » of B such that »=c¢(X) with a
non-singular variety X. Then B, is a Zariski open subset of B rational over
k,. Let K be the locus of f(z)Xw over k, on B,xP¥. By the same type of
argument as in the proof of Prop. 1, we see that K is non-singular, and K— B,
defines a fibre bundle whose fibres are the varieties X such that ¢(X) e B,.
If ¢(X) and ¢(Y) belong to B,, then X and Y are diffeomorphic. Since ¢(W,)
(=/f(2)) belongs to B,, we see that V is diffeomorphic to the fibres of K.
Applying the same reasoning to V’, we obtain our assertion.

Now Sarre [6] gave an example of a non-singular projective variety V
defined over an algebraic number field £ such that V is not homeomorphic to-
V¢ for some isomorphism ¢ of %k into C. Then the component of Cy (N, m, d)
containing ¢(V) can not be defined over @, since it can not contain ¢(V?)=c(V)’
in view of Prop. 3. It may be interesting to investigate the deformation of
this V.

5. Let us now consider C,(N, m, d) for positive p. Since C(N, m, d) is
defined by equations with rational coefficients, we can naturally speak of its
reduction modulo p for a prime number p.

PROPOSITION 4. There exists a finite set S(N, m, d) of rational primes such
that C,(N, m, d) is exactly the reduction of C(N,m,d) modulo p if p is not
contained in S(N, m, d).

This can easily be verified by applying the following two simple principles

2) The possibility of using Serre’s example was kindly suggested by G. Washnitzer..
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to the defining equations of Cy(N, m, d).

(5.1) Reduction modulo p of the intersection of algebraic sets is the inter-
section of the reduced sets for all except a finite number of p.

(5.2) Reduction modulo p of the projection of an algebraic set is the pro-
jection of the reduced set for all except a finite number of p.

For more precise statements of these facts, sze, for example, [9, Ch. III,
Prop. 19, Prop. 207.

Now let B be a component of Cy(N, m, d) which is not defined over Q.
Let By, -+, B, be all the components of C(N, m, d) with B,=B. Let y,=c(B,)
for 1=1, ---,». Then both Q(y,) and Q(y,, ---, v,) are algebraic number fields
of degree >1. We can find a prime ideal p in Q(y,, ---,y,) such that: (i) y,
modulo p is not rational over the prime field; (ii) p(B,)® is absolutely irreduci-
ble and not contained in p(B;) for i >1; and (iii) the rational prime p divisible
by p does not belong to S(N, m, d). Then p(B,) is a component of C,(N, m, d)
which is not defined over the prime field. Thus the answer to the question
(Q) is negative at least for infinitely many prime characteristics.

Princeton University
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3) p(X) means the cycle obtained from X by reduction modulo .
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