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Introduction

Let $G$ be a group of finite order and let $p$ be a fixed prime number. We
consider the representations of $G$ in the field $\Omega$ of the g-th roots of unity.
Then every absolutely irreducible representation of $G$ can be written with
coefficients in $\Omega$ . Let $p$ be a prime ideal divisor of $p$ in $\Omega$ and let Op be the
ring of all p-integers of $\Omega$ , and $\Omega^{*}$ the residue class field of Op $(mod p)$ . We
denote by $\alpha^{*}$ the residue class of $\alpha\in 0\mathfrak{p}$ .

Let $\zeta_{0}=1,$ $\zeta_{1},$ $\cdots$ , $\zeta_{m- 1}$ be the (absolutely) irreducible characters of $G$ and
let $\varphi_{0}=1,$ $\varphi_{1},$

$\cdots$ , $\varphi_{n- 1}$ be the modular irreducible characters of $G$ for $p$ . Then
we have for a $p$-regular element $y$ in $G$

(1) $\zeta_{i}(y)=\sum_{\kappa}d_{i\kappa}\varphi_{\kappa}(y)$

where the $d_{i\kappa}$ are non-negative rational integers and are called the decomposi-
tion numbers of $G$ . The irreducible characters $\zeta_{i}$ and the modular irreducible
characters $\varphi_{\kappa}$ are distributed into a certain number of blocks $B_{0},$ $B_{1},$ $\cdots$ , $B_{s-1}$

for $p$ , each $\zeta_{i}$ and each $\varphi_{\kappa}$ belonging to exactly one block $B_{\sigma}$ . In (1) we have
$d_{i\kappa}=0$ for $\zeta_{i}\in B_{\sigma}$ if $\varphi_{r_{\vee}}$ is not contained in $B_{0}.$ .

In the following we denote by $x$ the $p$-element of $G$ . Let $\varphi_{0}^{x}=1,$ $\varphi_{1}^{x},$ $\cdots$

$\varphi_{r-1}^{x}$ be the modular irreducible characters of the normalizer $N(x)$ of $x$ in $G$ .
We have for a $p$-regular element $y$ in $N(x)$

(2)
$\zeta_{i}(xy)=\sum_{\kappa}d_{i}^{x_{\mathcal{K}}}\varphi_{\kappa}^{x}(y)$

where the $d_{i}^{x_{\chi}}$ are the algebraic integers and are called the generalized decom-
position numbers of $G$ . We have $d_{ir_{\vee}}=d_{i\kappa}^{1}$ for $x=1$ . Let us denote by $B^{(\sigma)}$

the collection of all blocks B. of $N(x)$ which determine a given block $B_{\sigma}$ of $G$ .
In (2) we have $d_{i\kappa}^{x}=0$ for $\zeta_{i}\in B_{\sigma}$ if $\varphi_{\kappa}^{x}$ is not contained in $B^{(\sigma)}$ ([1], [3]).

Recently A. Kerber [5] proved the following
THEOREM 1. The generalized decomposition numbers of the symmetric group
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are rational integers.
He also determined the generalized decomposition numbers of the sym-

metric group $S_{n}$ for $p=2$ and $n\leqq 9$ . In section 1 we shall give a simpler
proof of Theorem 1. By our method we can determine directly the generalized
decomposition numbers of $S_{n}$ . In section 2 we shall obtain the necessary and
sufficient condition that two irreducible characters $\zeta_{i}^{x}$ and $\zeta_{j}^{x}$ of $N(x)$ belong to
the same block. As is well known, the block of $S_{n}$ is determined by its $p$-core
([4], [6], [7], [9]). Similarly, we shall prove that the block of $N(x)$ is deter-
mined by its $p$-core. The aim of section 3 is to find the block of $S_{n}$ which is
determined by a given block of $N(x)$ . We obtain the following

THEOREM 2. Let Young diagram $[\alpha_{0}]$ be the p-core of the block B. of
$N(x)$ . Then $B_{\tau}$ determines the block of $S_{n}$ with the same p-core $[\alpha_{0}]$ .

Let $B^{(\sigma)}$ be the collection of all blocks $B_{\tau}$ which determine the block $B_{\sigma}$ of
$S_{n}$ . Then Theorem 2 implies that every $B^{(\sigma)}$ consists of one block of $N(x)$ .

1. Proof of Theorem 1.

Let $x$ be a $p$-element of $S_{n}$ which consists of $a_{i}$ cycles of length $p^{i}(0\leqq i\leqq k$ ,
$a_{i}\geqq 0)$ . The normalizer $N(x)$ of $x$ in $S_{n}$ is the direct product of its subgroups
$S(a_{i}, p^{i})$ :

(3) $N(x)=S(a_{0},1)\times S(a_{1}, p)\times\cdots\times S(a_{k}, p^{k})$

where the $S(a_{i}, p^{i})$ are called the generalized symmetric groups ([8]). $S(a_{i}, p^{i})$

is the semi-direct product of the normal subgroup $Q_{i}$ of order $(p^{i})^{a_{i}}$ and the
subgroup $S_{a_{i}}^{*}$ which is isomorphic with the symmetric group $S_{a_{i}}$ :

(4) $S(a_{i}, p^{i})=S_{a_{i}}^{*}Q_{i}$ , $S_{a_{i}}^{*}\cap Q_{i}=1$ , $S_{a_{i}}^{*}\cong S_{a_{i}}$ .

Evidently we have $S(a_{0},1)=S_{a_{0}}$ . Since $S(a_{i}, p^{i})/Q_{i}\cong S_{a_{i}}^{*},$ (4) implies that every
modular irreducible character of $S(a_{i}, p^{i})$ is given by the modular irreducible
character of $S_{a_{i}}$ . Let us denote by $\Phi_{n}$ and $\Phi^{x}$ the matrices of the modular
irreducible characters of $S_{n}$ and $N(x)$ respectively. Since the modular irreduci-
ble character $\varphi^{x}$ of $N(x)$ is the product of the modular irreducible characters
$\varphi^{i}$ of $S_{\alpha}\mathring{.}$ :

(5) $\varphi^{x}=\varphi^{0}\varphi^{1}\cdots\varphi^{k}$ ,

we see that $\Phi^{x}$ is the Kronecker product of $\Phi_{a_{i}}$ :

(6) $\Phi^{x}=\Phi_{a_{0}}\times\Phi_{a_{1}}\times\cdots\times\Phi_{\alpha_{k}}$ .

LEMMA 1. Let $x$ be a p-element of $S_{n}$ . Then the modular irreducible
characters $\varphi^{x}(y)$ of $N(x)$ are rational integers.

PROOF. As is well known, the irreducible characters $\zeta_{i}(g)$ of $S_{n}$ are rational
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integers. Since the modular irreducible characters $\varphi_{\kappa}(y)$ of $S_{n}$ can be expressed
by the irreducible characters $\zeta_{i}(y)$ of $S_{n}$ (restricted to $p$-regular elements) with
integral coefficients, $\varphi_{\kappa}(y)$ are rational integers. This, combining with (5), yields
the proof of Lemma 1.

Let $g$ be an element of $S_{n}$ . We then have $g=xy=yx$ where $x$ is a p-
element and $y$ is a $p$-regular element. The $p$-element $x$ is called the $p$-factor
of $g$ . Let $y_{0}=1,$ $y_{1},$ $\cdots$ , $y_{t-1}$ be a complete system of representatives for the
$p$-regular elements in $N(x)$ such that they all lie in different classes of $N(x)$

but that every $p$-regular element in $N(x)$ is conjugate to one of them. Then
the $xy_{i}$ $(i=0,1, \cdots , t-1)$ consist of a complete system of representatives for
the classes of $G$ which contain an element whose $p$-factor is conjugate to $x$ in
$G$ . We set

(7) $Z^{x}=(\zeta_{i}(xy_{j}))$ .

We then have from (2)

(8) $Z^{x}=D^{x}\Phi^{x}$

where $D^{x}=(d_{i}^{x_{\kappa}})$ . Hence

(9) $D^{x}=Z^{x}(\Phi^{x})^{-1}$ .

This, combining with Lemma 1, shows that the $d_{l}^{x_{\kappa}}$ are rational numbers.
Since the $d_{i}^{x_{K}}$ are algebraic integers, we see readily that the $d_{i\kappa}^{x}$ are rational
integers. This completes the proof of Theorem 1.

As an example we shall calculate the $d_{i\kappa}^{x}$ of $S_{6}$ for $p=2$ and $x=(12)(34)$

(56) (see [5] p. 45). Since $N(x)=S(3,2)$ , we have by (6)

$\Phi^{x}=\Phi_{s}=[_{2}^{1}$ $-11]$ .

We have for $y_{0}=1$ and $y_{1}=(135)(246)$

$Z^{x}=\ovalbox{\tt\small REJECT}_{-1}^{-2}-3-3-1321031$
$-1-1-110000101\ovalbox{\tt\small REJECT}$ .

Hence we can obtain from (9)
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$D^{x}=[-1-10010111$ $-1-1-100000111\ovalbox{\tt\small REJECT}$ .

2. The blocks of characters of the normalizer $N(x)$ .
First we shall mention the following
LEMMA 2. Two irreducible characters of $S_{n}$ belong to the same block if

and only if they have the same p-core.
This fact was first conjectured by Nakayama [6] and was proved by

Brauer and Robinson jointly [4].

Let $\zeta^{x}$ be an irreducible character of $N(x)$ . According to (3), we have

(10) $\zeta^{x}=\zeta^{0}\zeta^{1}\ldots\zeta^{k}$

where $\zeta^{i}$ denotes the irreducible character of $S(a_{i}, p^{\iota})$ . In particular, $\zeta^{0}$ may
be considered as the irreducible character of $S_{a_{0}}$ .

LEMMA 3. Two irreducible characters

$\zeta_{i}^{x}=\zeta_{i_{0}}^{0}\zeta_{i_{1}}^{1}\ldots\zeta_{i_{k}}^{k}$

$\zeta_{j}^{x}=\zeta_{j_{0}}^{0}\zeta_{j_{1}}^{1}\cdots\zeta_{j_{k}}^{k}$

of $N(x)$ belong to the same block if and only if two characters $\zeta_{\iota 0}^{0}$ and $\zeta_{Jo}^{0}$ of
$S_{a_{0}}$ belong to the same block of $S_{a_{0}}$ .

PROOF. For $i>0,$ $S(a_{i}, p^{i})$ has only one block ([11], Lemma 10). Hence
we readily obtain the proof of Lemma 3.

We shall denote by $B_{\tau}^{0}$ the block of $S_{a_{0}}$ which contains $\zeta_{i_{0}}^{0}$ . Then the block
of $N(x)$ which contains $\zeta_{i}^{x}$ is completely determined by $B_{\tau}^{0}$ . Hence we shalk
denote by B. this block of $N(x)$ .

Let Young diagram $[\alpha_{0}]$ be the $p$-core of the irreducible character $\zeta_{i_{0}}^{0}\in B_{\tau}^{0}$ .
Then we shall call $[\alpha_{0}]$ the $p$ -core of the irreducible character $\zeta_{i}^{x}\in\tilde{B}_{\tau}$ . Then
Lemma 2, combining with Lemma 3, yields

THEOREM 3. Two irreducible characters of $N(x)$ belong to the same block
if and only if they have the same p-core.

Theorem 3 is reduced to Lemma 2 for $x=1$ . We have (cf. [5], p. 49).
COROLLARY 1. $N(x)$ has only one block if $a_{0}\leqq 1$ for $p\neq 2$ and $a_{0}\leqq 2$ for

$p=2$ .
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COROLLARY 2. Let $B_{0}$ be the first block of $S_{n}$ , that is, the block which
contains the principal character $\zeta_{0}=1$ . Then $\zeta_{i}(xy)=0$ for $\zeta_{i}\not\in B_{0}$ if $a_{0}\leqq 1$ for
$p\neq 2$ and $a_{0}\leqq 2$ for $p=2$ .

We can also obtain Corollary 2 by using the Murnaghan-Nakayama recur-
sion formula.

3. Proof of Theorem 2.

Let $G$ be a group of finite order, and let $\Gamma=\Gamma(G)$ denote the group ring
of $G$ over $\Omega$ . We denote by $\Lambda=\Lambda(G)$ the center of $\Gamma$ . Let $K_{\alpha}$ be a class of
conjugate elements in $G$ . If necessary, we denote by the same notation $K_{\alpha}$

the sum of all elements in $K_{\alpha}$ . Then $K_{1},$ $K_{2}$ , $\cdot$ . , $K_{m}$ form a basis of $\Lambda$ and
we have

$\backslash (11)$

$K_{\alpha}K_{\beta}=\sum_{\gamma}a_{\alpha\beta Y}K_{\gamma}$

where the $a_{\alpha\beta T}$ are non-negative rational integers.
Let $H$ be a subgroup of $G$ of an order $p^{h},$ $h\geqq 0$ , and let $C(H)$ be the cen-

tralizer of $H$ in $G$ . We consider the subgroup $N=HC(H)$ . If we set $K_{\alpha}^{0}=K_{\alpha}$

$\cap C(H)$ , then either $K_{\alpha^{0}}=0$ or $K_{\alpha^{0}}$ is a sum of complete classes of $N$. We ob-
tain from (11)

\langle 12) $K_{a^{0}}K_{\beta}^{0}=\sum_{\gamma}a_{\alpha\beta^{\gamma}}K_{\gamma}^{0}$
$(mod p)$ .

The classes $K_{\alpha}$ with $K_{\alpha^{0}}=0$ form the basis of an ideal $\tau*$ of the center $\Lambda^{*}$ of
the modular group ring $\tau*$ . The $K_{\alpha^{0}}\neq 0$ can be considered as the basis of a
subring $R^{*}$ of the center $\Lambda^{*}(N)$ of the modular group ring $\Gamma^{*}(N)$ . According
to (12) we have ([2])

(13) $\Lambda^{*}(G)/T^{*}\cong R^{*}$ .
Let $B$ be a block of $G$ . We set

$|(14)$ $\eta=\sum_{\alpha=1}^{m}b_{\alpha}K_{\alpha}$

where

(15) $b_{\alpha}=\sum_{\zeta i\in B}\zeta_{i}(1)\overline{\zeta}_{i}(g_{\alpha})/g(G)$ .

Here $g_{a}\in K_{\alpha}$ and $g(G)$ denotes the order of $G$ . Then we see that $b_{\alpha}\in 0_{P}$ and

(16) $\eta^{*}=\sum_{\alpha=1}^{m}b_{\alpha}^{*}K_{\alpha}$

is a primitive idempotent of $\Lambda^{*}$ corresponding to $B([10])$ . We have $b_{\alpha}^{*}=0$ for
any $p$-singular class $K_{\alpha}$ . Let $\mathfrak{D}$ be the defect group of $B$ . We denote by $\mathfrak{H}_{\alpha}$

the defect group of $K_{\alpha}$ . If $K_{\alpha}$ is a $p$-regular class such that $\mathfrak{H}_{a}$ is not con-
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jugate to some subgroup of $\mathfrak{D}$ , then we have $b_{\alpha}^{*}=0$ . On the other hand, there
exists a $p$-regular class $K_{\beta}$ with the defect group $\mathfrak{H}_{\beta}\cong \mathfrak{D}$ such that $b_{\beta}^{*}\neq 0$ and

(17) $w_{i}(K_{\beta})=g(G)\zeta_{i}(g_{\beta})/n_{\beta}\zeta_{i}(1)\not\equiv 0$ (mod p)

where $n_{\beta}$ denotes the order of the normalizer $N(g_{\beta})$ of $g_{\beta}$ in $G$ .
In the following we denote by $\eta_{\sigma}^{*}$ the primitive idempotent of $\Lambda^{*}$ corre-

sponding to $B_{\sigma}$ . If $\eta_{\sigma}^{\star}\not\in\tau*$ , then the element $\tilde{\eta}_{\sigma}^{*}$ of $R^{*}$ corresponding to $\eta_{\sigma}^{*}$ in
(13) is a sum of primitive idempotents of the center $\Lambda^{*}(N)$ . Hence the collec-
tion $ B^{()}\sigma$ of the blocks $B_{\tau}$ of $N$ corresponds to $\tilde{\eta}_{\sigma}^{*}$ . If B. is contained in $B^{(\sigma)}$ ,

then we shall say that $B_{\sigma}$ is determined by B. of $N([2])$ . If $w_{i}(K_{\alpha})$ is formed
by means of a character $\zeta_{i}$ of $B_{\sigma}$ while $\tilde{w}_{j}(\tilde{K}_{\beta})$ is formed in an analogous.
manner by means of a character of $B_{\tau}$ , then we see by (13) that

(18) $w_{i}(K_{a})\equiv\sum_{\beta}\tilde{w}_{j}(\tilde{K}_{\beta})$ (mod p).

Here $\tilde{K}_{\beta}$ ranges over all classes of $N$ which lie in $K_{a}$ .
Let $x$ be a $p$-element of $S_{n}$ as in section 1. Let $K_{\alpha}$ be a $p$-regular class.

of $S_{a_{0}}$ . Then we see by (3) that $K_{\alpha}$ is also a class of $N(x)$ . Since $S(a_{i}, p^{i})$ ,

$i>0$ has only one block, if $\tilde{w}_{i}(\tilde{K}_{a})$ is formed by means of a character $\zeta_{i}^{x}$ while
$\overline{w}_{i_{0}}(\tilde{K}_{\alpha})$ is formed by means of a character $\zeta_{i_{0}}^{0}$ in Lemma 3, then

(19) $\tilde{w}_{i}(\tilde{K}_{\alpha})\equiv\overline{w}_{i_{0}}(\tilde{K}_{\alpha})$ (mod p).

The defect group of $B_{\sigma}$ of $S_{n}1s$ conjugate to the $p$-Sylow-subgroup of
$S(\beta, p)$ for a suitable $\beta$ where $n=a+\beta p$ ([4]). Hence we may denote by $\mathfrak{D}^{(\beta)}$

the defect group of $B_{\sigma}$ . The defect of $B_{\sigma}$ is given by

(20) $ d_{\beta}=\beta+e(\beta$ ! $)$ .

Here $e(m)$ denotes the exponent of the highest power of $p$ dividing an integer
$m$ . Let $K_{\alpha}$ be the $p$-regular classes with the defect group $\mathfrak{H}_{a}\cong \mathfrak{D}^{(\beta)}$ . Then we
see easily that $K_{\alpha}$ contains the $p$-regular element $g_{\mathcal{L}t}$ of $S_{\alpha}$ such that the order
of the normalizer $N(g_{\alpha})$ in $S_{a}$ is prime to $p$ .

Now we shall give the proof of Theorem 2. We have from (3)

(21) $n=\sum_{\iota=0}^{k}a_{i}p^{i}=a_{0}+lp$

where we set $l=\sum_{i=1}^{k}a_{i}p^{i- 1}$ . We shall first consider the block $B_{\sigma}$ of defect $d_{\beta}$

such that $\beta<1$ . Let $K_{\alpha}$ be the p-regular classes such that $\mathfrak{H}_{\alpha}\cong \mathfrak{D}^{(\Theta)}$ . Then
we see by above argument that $K_{\alpha}\cap N(x)=0$ . This implies that $K_{\alpha}\in\tau*$ and
hence $\eta_{\sigma}^{*}\in\tau*$ . Thus the block $B_{\sigma}$ which satisfies $\beta<1$ can not be determined
by any block of $N(x)$ .

In what follows we may assume that $\beta\geqq l$ . Let $B_{\tau}$ be a given block of
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$N(x)$ and let $B_{\tau}^{0}$ be the block of $S_{a_{0}}$ corresponding to $\tilde{B}_{\tau}$ . Let the defect of
$B_{\tau}^{0}$ be $d_{\gamma}$. Then $a_{0}=b+\gamma p$ . The p-core of $B_{\tau}^{0}$ and hence that of $B_{\tau}$ consists
of $b$ nodes. If we set $l+\gamma=l^{\prime}$ , then $n=b+l^{\prime}p$ .

First we assume that $1^{\prime}<\beta$ . There exists a p-regular class $K_{a}$ of $S_{a_{0}}$ with
the defect group $\tilde{\mathfrak{H}}_{\alpha}\cong \mathfrak{D}^{(\mathcal{T})}$ such that $\overline{w}_{i_{0}}(\tilde{K}_{\alpha})\not\equiv 0$ (mod p) for $\zeta_{t_{0}}^{0}\in B_{r}^{0}$ . We then
have by (19)

(22) $\tilde{w}_{i}(\tilde{K}_{\alpha})\not\equiv 0$ (mod p).

The class $K_{\alpha}$ contains the $p$-regular element $y_{\alpha}$ of $S_{b}$ such that the order of
the normalizer $N(y_{\alpha})$ in $S_{b}$ is prime to $p$ . Let $K_{\alpha}$ be the class of $S_{n}$ containing
$y_{\alpha}$ . Then we have $K_{\alpha}\cap N(x)=\tilde{K}_{\alpha}$ . Since $ l^{\prime}<\beta$ , we see that $h_{\alpha}<d_{\beta}$ where $h_{\alpha}$

denotes the defect of $K_{\alpha}$ . Hence we have for $\zeta_{i}\in B_{\sigma}$ ([10], Lemma 6)

(23) $w_{i}(K_{\alpha})\equiv 0$ $(mod p)$ .
It follows from (18), (22) and (23) that if $ l^{\prime}<\beta$ , then $B_{\sigma}$ is not determined by

$\tilde{B}_{\tau}$ . By the similar argument we can see also that if $1\leqq\beta<1^{\prime}$ , then $B_{\sigma}$ is not
determined by B..

Finally we consider the case that $\beta=l^{\prime}$ . Since $n=b+l^{\prime}p=a+\beta p$ , we have
$a=b$ and hence the p-cores of $B_{\sigma}$ and $B_{\tau}$ consist of $a$ nodes. Let $K_{a}$ be a p-
regular class of $S_{n}$ with the defect group $\mathfrak{D}^{(\beta)}$ . Then $K_{\alpha}\cap N(x)=\tilde{K}_{\alpha}$ is the
p-regular class of $S_{a_{0}}$ with the defect group $\mathfrak{D}^{(\mathcal{T})}$ . Now we assume that both
$B_{\sigma}$ and $B_{\tau}$ have the same p-core $[\alpha_{0}]$ . Let $\chi_{0}$ be the irreducible character of
$S_{a}$ determined by $[\alpha_{0}]$ . Then $\chi_{0}$ forms a block of its own. We see that
$K_{\alpha}\cap S_{a}=K_{a}^{(0)}$ is the p-regular class of $S_{a}$ of defect $0$ .

Let $g_{1}-$ be an element of $S_{n}$ possessing $\beta$ cycles of length $p$ such that
$K_{\alpha}^{(0)}\ni g_{\alpha}$ is obtained by removing those $\beta$ cycles of length $p$ . We then have
for $\zeta_{j}\in B_{\sigma}$

(24) $\zeta_{j}(g_{a})\equiv\zeta_{j}(g_{\gamma})$ (mod p).

If we choose $B_{\sigma}\ni\zeta_{j}$ of height $0$ , then we see easily that

$e(n_{\alpha})=e(n_{r})=e(g(G)/\zeta_{j}(1))=d_{\beta}$

and
$ n_{\alpha}/n_{\gamma}=(\beta p)!/\beta$ ! $p^{\beta}\equiv(-1)^{\beta}$ $(mod p)$ .

Hence we have by (24)

(25) $w_{j}(K_{\alpha})\equiv(-1)^{\beta}w_{j}(K_{\gamma})$ (mod p).

Consequently, from (25) and ([7], (11))

(26) $w_{j}(K_{0})\equiv w_{\alpha_{0}}(K_{\alpha}^{(0)})$ (mod p)

where $w_{\alpha_{0}}(K_{\alpha}^{(0)})$ is formed by means of $\chi_{0}$ . We obtain also by the same argu-
ment
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(27) $\overline{w}_{i_{0}}(\tilde{K}_{a})\equiv w_{a_{0}}(K_{\alpha}^{(0)})$ (mod p)

for $\zeta_{\iota_{0}}^{0}\in B_{\tau}^{0}$ .
It follows from (19), (26) and (27) that

(28) $w_{j}(K_{\alpha})\equiv\tilde{w}_{i}(\tilde{K}_{a})$ (mod p)

for $\zeta_{i}^{x}\in\tilde{B}_{\tau}$ . Since we have (28) for any $p$-regular class $K_{\alpha}$ with the defect
group $\mathfrak{D}^{(\beta)}$ , we obtain the proof of Theorem 2 by (28) and ([10], Theorem 4,
Corollary 2).

College of General Education
Osaka University
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