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Let {Q,:, Qe @2} be a system of indeterminates and denote

9u(@= 3 Q(m+gmtg)  @=(a,a); ¢ e6=0,1-1),

where Q<m+—%»-, m+%> means Ql(lmlﬁ‘%)(foz(ml -F%)(mﬁ%z_)@(fz “5") In the
present note we shall give an explicit defining equation for the projective
scheme Proj Z["g(o,o)(Q)’ "9(1,0)(Q): 19(0, (@), "9(1,1)<Q)’ 19(1,—1>(Q>]- The defining
equation 4(Xc,0, Xa,0r Xo,00 Xa,0 Xa,-p)=0 is a rather simple equation of
degree ten. From this equation we can conclude the following important result:
Let { be a primitive cubic root of unity and I'; a transformation group on
Q¢ 8(0,0)(@): 3(1,0)(Q)’ 19(0,1)(@): "9(1,1)<Q): 19(1,—1)(Q)) consisting of all the elements
(@ B); 9a(Q) — (*F29,(Q) (as GF (3,
where «, B are 2X2-matrices with coefficients in GF(3) such that det o’ %0 and
Ba=a'f. Then the invariant subfield of Q(L, F,0(@)/Fc0,0(Q)s F0,1XQ)/Fo,0x(@),
1,00/ F0,0(@), Fer,-1XQ)/Feo,0(Q)) With respect to the group I'y of automorphisms
is the rational function field Q(C, a$%20>79a(Q)3/19(0,0)(Q)3: H%’O)&(Q)G/@(o,m(é?)“,

e1,0(@)F 0,0 @)1, (@) F 1, - X @)/ P 0,(@))-

§1. Canonical systems of theta constants on abstract abelian varieties.

1.1. Let A be an abelian variety defined over an algebraically closed field
of characteristic p, where p is a prime number or zero. Let & be an algebraic
equivalent class on A and X be a divisor in &, We denote by gy the
group of all the points ¢ in A such that X,~X?». Since gy depends only the
class &, we may denote g. instead of gy. If g, is a finite group, the divisor
class £ (the divisor X) is called non-degenerate. For any prime number [

1) Xz~X means that X is linearly equivalent to X.
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coprime to p we choose a system @ ="4z®, ---, ) of [-adic coordinates on A
and an isomorphism [g® of the group of roots of unity of [-power degree onto
the additive residue group Q,/Z,. Denote by E,(£) the skew symmetric [-adic
integral matrix associated with a divisor class & with respect to z® and [g®
and denote by g¢, the [-Sylow subgroup of ge. Then, if £ is non-degenerate,
the group g., coinsides with the set of all the points of /-power order such
that E(&)c®(a)=0 mod 1.
Putting

a:ap—l—ZL}aL, b:bp+;bl (a;, by € qe,1)
and
eg(a, b) =TIlg® 'z ®(a)EE)c®(by) ,
2

we have a function e.(, ) on g.Xg. such that
e.(a, b4-c)=-eg(a, b)ea, c),
ee(a+b, c)=ea, c)es(d, c), (a, bEge)
e(a, a)y=1, ex(a, byes(b, a)=1.

Moreover, if § is non-degenerate and the order of g. is coprime to p then the
function e.(,) is non-degenerate, i.e. e:(a, b)=1 for every b in g, implies a=0.

Since E,(£) is skew symmetric, there exists a direct sum decomposition
8, = @D § such that

TO(QELO)TP(b) =T U@DErP(B)=0 mod 1  (a,bcg; d,be).

If & is non-degenerate and the order of g, is coprime to p, we have a direct
sum decomposition

g =g@P3g (g:§gl, @Z}Pﬁz)

such that e.(g, 9) =e.(3, =1 and |g| =8| =+/|g|,, where |g|, |§], |g:] are the
orders of g, §, g, respectively. We call the subgroup g a standard subgroup
with respect to & and call the direct sum decomposition g.=g@§ the standard
dirvect sum decomposition with respect to &,

A divisor X on A is called symmetric if (—da) (X )= X, where —dp is the
automorphism x — —x. We denote by /(&) the dimension /(X) = dim H°(A4, ®a(X))
for a divisor X in the algebraic equivalence class £.

LEMMA 1.1. Let X be a non-degenerate positive divisor on an abelian variety
A defined over an algebraically closed field k. Then there exists the unique
system of functions {@,la gy} on A defined over k such that

(¢a>: X o—X,
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Po() =1, Gars(x) = Pa(x+b)Ps(x) (a, b= gy).
PROOF. By the definition of g, there exist function f, (¢ € gx) defined over
k such that (f,)=X_,—X (a=gy). Then it follows that

(divisor of fo(x+)) = X_n—X-p =(X-tarn—X)—(X_,—X)
=Jar) =) =Fars 31 (a,begr).

This means that fo.,(X) =74, fo(x+0)f5(x) (a, b= gx) holds with a non-zero
element y,, in k£ and y is a 2-cocycle of gy with coefficients in the multiplica-
tive group k* of &, i.e.
©OrXa, b, O =71seratnelaprclan=1 (@b, cEgy).

Since the field £ is algebraically closed and the 2-cohomology of finite group
with coefficients in the multiplicative group of an algebraically closed field is
always trivial®, there exist elements 8, (¢ €gx) in &* such that 7, ,= B1:8.8s
(a,bsgy). Putting ¢,=pf.f. (@a=gy), we have functions ¢, (ea€gy) in
Lemma 1.1.

PROPOSITION 1.2. Let & be a non-degenerate algebraic equivalence class on
an abelian variety A and g, =g@®§ be the standard divect sum decomposition
with respect to & If & contains a positive divisor and [(§) is coprime to the
characteristic p, then there exists a symmelric positive divisor X in & such that

X;=X (6<9).
Moreover, the symmetric positive divisor X is uniquely determined up to trans-
lations by 2-division points on A.

We call the symmetric positive divisor X the standard divisor in & with
respect to the standard group g.

ProOF OF PROPOSITION 1.2. Let D be a positive divisor in & and {¢,|a
€g.} be the system of functions given, in Lemma L1 Putting

¢a<x) = AEA es(a’ B)"lgﬁ a8 (%) (aeg,
beg
we observe that

D—(¢a)e >0

and

Po(i+0)= 3 0(a, ) Pars(x+0)

bE s

— (0, ) 3 (@, B0 Burs s (e ()

beg
= eg(a, £)Ps (X)71Pa(%) (acg ¢€9).
Since ¢.(,) is non-degenerate, at least one function ¢,, is not constant zero.
Hence, putting (¢,)=V—D (V>>0), we have

2) See [5].
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(divisor of ¢, (x+8)=V_;—D_3 = (7 Pa,)
=D—D_;+V—D=V—D_;.

This means that V£ and Vy=V (d=d). Let B be the quotient abelian.
variety A/d and x be the natural separable isogeny of A onto B. Then by
virtue of Proposition 38, 78° §1X there exists a positive divisor U on B.
such that V=z"%(U). By virtue of Riemann-Roch theorem on abelian varieties®
we have

VG| =& =UV)= Uz (U) = v@IU)= [§1LV),

and thus [(U)=1, where v(x) means the degree of the separable isogeny =..
Since (—dg) (U)= U, there exists a point s such that (—dg) (U)~U,;. From
(U)=1 it follows (—0p){(U)=U,. This means (—dg) (U, = U, Putting
X=n"1(U,), we have a standard divisor X® with respect to g.

Finally we shall prove the uniqueness of the standard divisor up to trans-
lations by 2-division points. Let =z’ be the isogeny of B onto A such that
zrn’ =y(x)0p and Y be any standard divisor in & with respect to g. We denote:
by W the symmetric positive divisor on B such that Y® =z-}(W). Then it
is sufficient to prove W= U,,, with a 2-division point ¢ on B. Since Y =X,
it follows®

v(@)P W= ((m)op) (W) =n""{z (W) =n""(¥)
=Y X)=r'"'r" W (Uy) = (v(7)op) ((Us) = v(n)2Us .
Since abelian variety has no torsion with respect to algebraic equivalence®.

we have W= U,. Therefore from I[(W)=I[U,)=1 it follows W,= U, with a
point a. From (—op) (W)= W and (—dg) “(U,)= Us we have

Wo=(—0B)" (W) =(—08)""(W)-. = W_,, W= W,,.

This implies 2a¢ =0, because (W) =1.

THEOREM 1.3. Let & be a non-degenerate algebraic equivalence class on an
abelian variety A and g.=g@§ be the standard direct sum decomposition with
respect to &. If & contains a positive divisor and (&) is coprime to both 2 and
the characteristic p, then there exist functions {¢,lasg} on A such that the
poles (@) (@ =g) are the same divisor contained in & and

SDO(X) =1, Po(—2) = @_o(1),
Paro(X) = Qo(X+0)py(%) (a,beg; beg).
gpa('x—l—l‘;) = ef((l, B)@a(x)

3) See [3].
4) See [3]
5) See [4]
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Moreover, the functions ¢, (a g) are uniquely determined up to simultaneous
translations by 2-division points on A.

Proor. Let = be the natural separable isogeny of A onto the quotient
abelian variety B— A/§. Then from the proof of [Proposition 1.2 there exists
a symmetric positive divisor U on B such that (U)=1 and X=xz"YU) is a
divisor in & Let ¢, (a g) be functions on A in Lemma 1.1, i.e.

(¢a> — X—a—X s ¢0(.7C) =1 3
Paso(X) = Po(x+b)Py(x)

Since X3 =X (b < §), there exist non-zero constants y(a, b), 3(b) (a =g, b<§)
such that

(a,bey).

Go(X+0)= (@, D)P (1),  Ps()= D),
1(a, b4-0) = 3(a, bx(a, &),
xla+Db, &)= y(a, Ox(b, &),
X(b+2) = x(B(0).

Let n be the degree of the isogeny of = and « the isogeny of B onto A such

that nop==n-a. Let F, (na=0) be the functions satisfying (F,) = (nop)"{(U_,)

—(ndg)™(U). Then by virtue of the definition of ¢, ,(a,b) in §IX we
have

(a’beg; B)EEQ>)

Fo(x+b)=ey ,(a, D)F (x) (na=nb=0).
Since ndg =rm o «, it follows that

¢aa(a x)= TaFna(x) ’
Paclax+ab) =y Fr(x+b) = ey n(na, b)pq.lax)

(nfa=0, aasg; abeg, r,+0).
Since n*U = (nop)"*(U) and

ey (s, ) =TIE (cO(s)nE(U)c®(t)  (ns=nt=0),
A
it follows

xlaa, ab) = ey ,(na, b)
=L (e O(na nEU)z0b)

= [P (e @EmU)e (b))
= TLY (e (@)E(nm) *(U)e(b))
= TLLP e @a)E (U ) (b))

= er1qgn(aa, ab)=eaa, ab)

(a=3a, b=>b, n?2a=0, aacsqg, abecsyj).
2 2
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Namely we have
X(a! B) - eE(ar B) ((1 €4, l; & @) .

Since X is symmetric, it follows (—da)""(X_,) =X, (¢ €g). Therefore there
exist non-zero constants p, (a €g) such that

Pu(—X)=paP-o(x) and p,0,=p.p (@, bEg).
Since the order of g is odd, we have a unique element %~a in g such that
%aJr —12—~»a =a (a =g). Putting
D =p7, 00 (a0

we have

0~ 0= 0T o~ )= pT, pu-u(2)

=01, P- D=0 P D=0 (@s9).

By virtue of [Proposition 1.2 the freedom of the choice of the standard divisor
X in & is only the translations by 2-division points on A. Hence the functions
{pq.]la g} are uniquely determined up to simultaneous translations by 2-division
points on A. This completes the proof of

DEFINITION 14. We shall call the system of functions {p,la<g} in
Theorem 1.3, the standard system of functions with vespect to a standard direct
sum decomposition g.=gP8.

The standard system is uniquely determined up to simultaneous trans-
lations by 2-division points.

PROPOSITION 1.5. The standard system of funcitons {¢,|a g} with respect
to a standard direct sum decomposition g, =g@§ forms a linear base of the
linear system L(X) where X is the pole divisor (¢g)c.

Proor. From Theorem 1.3 the functions ¢, (¢ €g) belong to .£(X) and
are linearly independent. On the other hand I(&)=IX)=+/[¢:| = |g|, hence
¢, (a=g) form a linear base of .L(X).

THEOREM 1.6. Let & be non-degenerate algebraic equivalent class on an
abelian variety A such that & contains a positive divisor and (&) is coprime to
2 and the chracterstic p. Let {¢,|a g} be the standard system of functions
on A with respect to a standard direct sum decomposition g:=g@D3F and
(0o(0))a=s be the image of the origin of A in the projective space by the map:
X (@a(X))ace. Then it follows

® rank (9o4s(00P-arn(O)ixs < 2Hm A,
where (ars(0)0_a1s(0)sxs means the |g| X |g|- matrix of which (a, b)- component
15 Qrp(0)@-0150) (a, b = 9).
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PrROOF. Let 7 be the natural separable isogeny of A onto the quotient
abelian variety B—A/§ and U the symmetric positive divisor on B such that
(@)=7r"YU) (a =g). Since

Po(X+D)_o(x+0) = ex(a, Ble(—a, Dpu(N)p-o(X) = pu(Dp-o(x)  (acg, be),
there exists the unique system of functions {h,|la=g} on B such that
Po(0)p_o(X)=ho(zx) and (hy)ew=2U. By virtue of [2U)=2d4mA[([J)=2dimA
we observe that the number of linearly independent A, (a € g) is at most 2dim 4,
Hence it follows

rank (gDa-J-b(x)sDAaw'—b(x));XS =rank (@a(x+b)€0—a(x+b>)9XB
=rank ((rx+7b)) s < 2dim A,

Specializing x to the origin on A, we complete the proof of Theorem 1.6.

DEFINITION 1.7. In the notation in Theorem 1.6 the system of homogeneous
coordinates (¢,(0)).e; 18 called the canonical system of theta constants with respect
to a standard direct sum q:=g@§. If [(§)=ndimA and g, is the group of all
the n-division points, we call (p,(0)).e, the canonical system of theta constants
of level n.

From (1) follow many equalities for theta constants (¢,(0))4e,. In the next
paragraph we shall show that two dimensional theta constants of level three
satisfy a unique explicitly expressed irreducible equation of degree ten.

§2. Canonical systems of two-dimensional theta constants of level three.

2.1. Let {X¢,0 Xa,00 X000 Xa,00 Xa,-n} be a system of indeterminates

and put
X(—l,()) - X(1,0) ’ zY(o,—x) = X(o,n ’

X(l,l):X(—l,—-l) y X(1,—1):X(—1,1) .

Regarding 0, 1, —1 as the elements of the prime field GF(3) of characteristic
three, we may consider the suffix a of X, as a vector in GF(3). A 2XZ2-matrix
a with coefficients in GF(3) operate on {X,} as follows X,— X,,. From the
definition it follows that

Xa=X_, (aes GF@3)?.

Let I'y=1",(GF(3)) be the group of all the 4x4-matrices

( o 8 )}2
0 tamt 1}2
P

with coefficients in GF(3) such that a‘'f=pf'a and let I'y=I (GF(3)) be the
quotient group FO/{((}“) (1)> <—(1) _(1)>} Let £ be a fixed primitive cubic root
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of unity. Since afa‘a=(—a)fa(—a), we may make ', operate on X,
{(a € GF(3)?) as follows;

a B
Xgo ta—l) — CaﬁtataXad

where {°=1, {*={, {"1=¢® for the elements 0, 1, —1 in GF(3).
LEMMA 21. Let N and [y, be the subgroups in I, {(O 1){“8:‘8} and

{(O ta_Jldeta;ﬁO}/{( 0), <—(1) (1)>} respectively. Then it follows that

1° T, is a split extension 'y N of N by the subgroup Iy,
2° Ly, operates faithfully on {Xa,p Xaonr Xan Xa-n} as the symmetric
group of four elements,
3° the index of the commutator group (I'y, I'y) in I, is two and an element
o in Iy belongs to (Ty, I'y) if and only if o induces an even permu-
tation on {Xq,m X, Xa,0 Xa,-n}s

4 if ‘8:<§i; g::) then ((1) KD operates on X, as follows

X<(o 102 X(oow X 1)—Cf11X<1>’ X 1)_Cﬁ22X(onr

X 1) - C811+2312+822‘X(1 Do ¥ , 11)) Cﬁll“2312+ﬂ22X(1'_1) .

PrROOF. From the definitions 1° and 4° follow immediately. The group
Iy, operates faithfully on {X e, Xon Xau Xa,-n} @S a permutation group
and the order of I"y, is 24, hence I, operates on {X¢ 5 X0 Xa,0 Xa,-n} as
the symmetric group. Next we shall show that the commutator (I, N)
generates N. From the relations

(-DE D6 -D-G =G o)
G D6 G -G 0=
G DG VG V-G D=G o

follow the commutator relations:

1 0 0 0 1 0 0 1] 1 0 0 1
0—-1 0 0 0 1 1 0 01 1 0
o0 1 0o[lo o010l o o1 0]/
L0 0 0 -1 0 0 0 1| 0 0 0 1
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0 1 0 0 1 0 1 0 1 0-1 0
1 0 0 0 0 1 0 0 0 1 0 1
00 0 110 o0 10l lo o1 o0l
0 0 1 0 0 0 0 1 0 0 0 1

[1 1 0 o0 1 0 0 0 1 0 1 1
01 0 0 0 1 0 1 0 1 1 0
o0 1 0lo o 1 oflo o1 0]
0 0—1 1 0 0 0 1 0 0 0 1

and thus the commutator (I, N) generates N. Therefore we conclude that
the index of the commutator group (I, I’y) in I; is two and an element ¢ in
I, does not belong to (", ")) if and only if ¢ induces an odd permutation
on {Xq,m X Xa,0 Xa,-p}. This completes the proof of Lemma 2.1l

Denote by s,(X), s¢(X), so(X), t,(X) the symmetric functions in the four
variable Xq,0, Xo,00 X, Xa,-»

$s(X) = X+ X+ Xty +X4-n
$e(X) = X+ X+ X4 +X4, o,
5(X) = X+ X+ X+ X4 5,
(X)) =XuoXonX anXa-o -

LEMMA 2.2. Let k be a field of characteristic p such that k contains a
primitive cubic root L of unity and p does not divide six. Then k[ X,p, Ss(X),
s(X), $o(X), t,(X)] is the subalgebra k[ X(,p, Xa,em Xao,n Xao X(l,—l)]fo con-
sisting of all the the invariant elements with respect to the group I’y of auto-
morphisms and k(X G%ySs(X), XF0Se(X)y X lnSo(X), Xatot (X)) is the subfield
RX GoXao XdoXon XooXan XooXe-p)T0 consisting of all the invariant
elements in B(XguXa,0 XaoXon X doXan XooXa-n) with respect to I,

PrOOF. From 4° in Lemma 2.1 it follows that a monomial in X, (acGF(@3)?
is invariant by NV if and only if it is a product of X0, X0, X% Xhnr X4 -1
Xa,0X0,0Xa,nXq,-p. This shows that k[ X 0, X%,0, X0, X0 X&,-n0 L(X)]
is the subring k[ X, 0 X100 Xeo,n0 Xa,ns Xa,-p]¥ consisting of all the invariant
with respect to N. Since Iy, is the symmetric group on {Xgq 0, X0 X0
Xa,-p}, T is also regarded as the symmetric group on {X% ., X2, X0
X%,-p}- On the other hand the characteristic p of k is zero or a prime number
not less than four. Hence we have

k[X(o,o): X(l,(})’ Tty X(l,—l)]ﬁ): k[X(o,o)’ t4<X)’ X%1,0)’ ) Xs(l,—l)]foo
= kL X 0,00 1a(X), $5(X), 86(X), so(X)] .
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We shall prove the second part of Denote
1 if ee@, Iy
—1 if o Ty,

sign o —= {

Any element in 2(X gleyXa,m = » Xo'oXa,-p)f0 is a quotient f(X)/g(X) of
homogeneous forms f(X) and g(X) of the same degree such that f(X)’ = y(o) f(X)
and g(X) = y(0)g(X) (¢ ') with a character y of degree 1 of [, By virtue

of 3° in the character y must be sign ¢ or the trivial character.
Hence it follows that f(X)°=f(X) and g(X)’=g(X) for ¢ in N. This shows
that

EX 3o Xam - X5oXa-)0
is the invariant subfield in the field E(X% X% o = » X FoX -1 XalotdX))
with respect to the group I",, of automorphisms. I, is regarded as the sym-
metric group on { XX ko X EoX o X PoXhy, X&oX4, ). Hence we have
R XX = » XatoXa,-p)T®

= k(XPo X o = » XX o -vr Xl (X)T0

= k(Xaiotad(X), Xnss(X), Xginse(X), X@lnse(X)) -
This completes the proof of

2.2. Denote by 4(X) the polynomial of degree ten defined by

Xoo Xt X Xtn Xt-n

X%LO) X(O,wX(l.o) X(1,1>X<1,—1) X(0,1)X(1,—1) X(O,I)X(l,l)
A<X) = det X%O,l) X(l,l)X(l,—-l) X(O,O)X(O.I) X(I,O)X(l.-l) X(I.O)X(l,l)

X%l.l) X(O. I)X(l,—l) X(I,O)X(l,—l) X(O,O)X(l,l) X(I.O)X(o,l)
\ X%l,—-l) X(O,I)X(l,l) X(1,0>X(1,1) X(1,0)X(0,1) X(O,O)X(l,—l)

and by M, the projective scheme

Proj Z[ X«,e Xa,00 X X Xa,-l/d(X))

corresponding to the homogeneous ideal (4(X)). From the direct calculation
we observe that ') leaves the polynomial A(X) invariant. Hence we may
consider I°; as a group of automorphisms of the projective scheme M, ,.
THEOREM 2.3. Let k be a field of characteristic p such that k contains
a primitic cubic root £ of unity and p does not divide six. Let X, 0, X0, Xco,0r
X Xa,-p be the images of Xepy Xayor Xoovr Xav» Xay-p in the residue
ring [ X, 00 Xa,00 Xeonr Xy Xao,-p1/(d(X)). Then the rational function field
k(x@d0yss(X), X0,056(X), x@tntX)) tn three variables is the invariant subfield in

k(X 0/ %0000 X0,/ X000 Xt/ Xcovor X1, -/ Xcoo0r) With respect to the group Fo of
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automorphisms where the operation is defined by
(a e GF(3)?
«a, ‘8 € (GF<3))2><2 ’

@ B
xgo ta—l): CaBtataxaa , det a0 s ﬁ‘a = Oélﬂ

Moreover x2,5,(x) is expressed by xtySs(%), X fpSe(x) and xgiyt () as follows

@ xitoso(0) = @t (D550 5o(0)
23 (5 5056 — 55,0 - B i)
- 1, ,
+Tx(o,o>t4(x)33(x)+ ‘6_75(0.0)(56(7‘)—33(3‘) )

1
+?x<—o.40>t4(x) .
Proor. Since the characteristic p of 2 does not divide six, by the direct.

calculation it follows

A(X) - X?O,O)X(l,o)X(o, I)X(l,l)X(l.—l)—X%O.O) 2 XﬁXﬁ
a+h+#(0,0)

+X<30»0)X(1n0)X(0. I)X(l, 1)X(1,— 1 Z Xg
a7(0,0)
2 2 2 2 2
+9X (O,O)X 1,0 X (O.I)X(I-I)X(l,—l)

—6Xqn B XXX XKoo B XiX
a*b+#c+#(0,0) a5=b7(0,0)
—2Xa,0 X XoXa,-n( D Xd— X3X3)

a(0,0) a#b+(0,0)

= —3X,059(X)+9X 5,0t (X )2 44X 4,095 5(X )so(X)
— Xeo,085(X )3 —38,(X)56(X)+ X 00t X)$5(X)

1
X 0,0 a(X)F8(X )t (X)——5-Xlo,05:(X )2+-%" Xo,08:(X) -

‘This shows that 4(X) is absolutely irreducible as a polynomial in the five
variable X, q, S3(X), S¢(X), s4(X), t,(X), because A4(X) contains the only one
monomial X, s,(X) containing the variable s,(X) and X ,, does not divide
A4(X). Hence the residue ring E[X5%,s:(X), XaolySe(X), X7nse(X), Xght(X)]
/(X9 4(X)) is an integral domain and its quotient field £(xgd,;s,(x), X5ty Ss(X),
Xl So(X), x5t (%)) is a rational function field in three variables xg3,s,(x), x55%,ss(%),
xakt(x).  We shall next show that 4(X) is an absolutely irreducible polynomial
in X0 Xcti,00 Xcoyyr X0 Xeao-p- Since k[ X, 5, -+, Xi,-1p] 18 2 unique factori-
zation domain, there exists a unique factorization 4(X)= P(X)--- P,(X). Since
the group I, leaves 4(X) invariant, P(X)’ (1<i<r; o< ', are also irreducible
factors of 4(X). This shows that there exists a subgroup H in [', and an
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irreducible element P(X) such that A(X)=TIP(X)’ where ¢ runs over a Sys-
tem of representatives of right cosets modulo H and P(X)° (¢ mod H) are
coprime to each other. The degree of A(X) is ten and the index [[,: H] is
a divisor of the order 223* of [,. Hence the only possibility of the index
[[,: H] is one or two. Assume for a moment that [[7,: H]=2. Then by
virtue of H coincides with the commutator group (I, I';) and
PX)’=y(0)P(X) (6 =y, Iy)) with a charactor y. On the other hand I, and
(Iy, [',) are the extensions of the normal subgroup N by the symmetric group
and the alternating group on {Xq, e, X Xa,0 Xa,-p}, respectively. Hence
P(X)?"#* is an alternating function in X¢,, Xc,00 Xc1» Xa,-» and thus P(X)z*s*
is a symmetric function in X0, X Xa Xa,-n- This means that P(X)2’s*
is an invariant for ;. On the other hand P(X) is an absolutely irreducible
element in k[ X, o, Ss(X), 54(X), so(X), t,(X)] which is the invariant subring
with respect to ", This shows that A(X)**=c¢P(X)?** with a constant ¢
and 4(X)=c¢’P(X)?. This is a contradiction. Therefore 4(X) is absolutely
irreducible in R[ X0 s Xa,-n] and k[xq,p, 5 Xo,-0] = R[ X0 s Xav-n]
/(4(X)) is an integral domain. Finaly we shall prove that k(xg3,s;(x), 58 ss(%),
xahyt(x)) is the invariant subfield in R(xGlyXa,00 Xain X0 XooXan XonXa,-n)
with respect to I7,. Let f(x) be an invariant element in 2(Xgly X0 ** » Xoio X - 1)
with respect to I7,. Then there exists a pair (g(X), h(X)) of homogeneous
elements of the same degree in k[ X0 Xaom o » Xa,-p] such that f(x)
=g@)/h(x), K(X)Y=WKX) (c=T,) and g(X)—g(X)=1I1,(X)4(X) with homo-
geneous elements /,(X) whose degree is deg g(X)—10. The system (,(X)),er,
may be regarded as a l-cocycle of I°, with coefficients in the additive group
B[ X = » Xaq,-pp)- Since the order 233t of fo is coprime to the characteristic
p of k, the l-cohomology group of I, is trivial®. Therefore there exists an
element a(X) in k[ X0 -+ » Xa,-n] such that [(X)=a(X)’—a(X) (¢ l).
Putting £,(X) = g(X)—a(X)4(X), we have f(x)=g,()/h(x) and g,(X)’= g(X),
WX)Y =nhX) (6 =I). This shows that the invariant subfield in 2(xgl,Xq, 0,
o, XgloXa,-n) With respect to Iy is the quotient field of the integral domain
A, where

A=k XG0 Xa0 s XGoXa,-n]/(X@h4(X)
= kL X @0 5:(X), X @l se(X), Xalyso(X), Xl t(X)1/ (X 4(X))
= kLx @0 85(1), X 60 Ss(2), X @y Ss(%), X gl l(X)]
= kL2 By ss(20), X @ ss(2), X@lnt(2)] .

This completes the proof of [Theorem 2.3.
COROLLARY 2.4. Let k be a field whose characteristic p does not divide six.

6) See [5]
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Then the projective variety

M2,3 Xz k =Proj (k[ X, 0, X X, X, Xa,-pl/4(X))

1s asbolutely irreducible.
2.2. Let {Q., Qu, Qs Uy, U,} be a system of indeterminates and denote
briefly
Um)=UmUp2,  Q@m, n)=QpmQfprmetmerrQpere
(m = (m,, my), n=(n,, ny)) .
By a two dimensional formal theta function of level n we mean a formal
series

oW)=_3 InUa)*,
such that
P(Qm)U) =Q(m, m)""Ulm)*"p(U) (meZ?,

where (Q@m)U)(n) = Q(m, n)U(n). Then two dimensional formal theta functions.
of level n form a vector space of dimension n? over the field of coefficients..
We shall be concerned with the following formal series

%QIN= 3 Q(m+5-, mt—5) U(mt—5)

9@= % Q(mt3,miy)  @=(0a); 6,6=01-1).

These formal series satisfy the relations

&) 9a(Q1QUMU) = Q(m, M)~ U(m)*9a(Q| ),
) 9-QIU)=9.QIU™,
b b b\, /b2
®) 9a(Q10(3)U)=0("3,73) U(3) Jan@IU),
(6) 9_a(Q) = Fa(Q)
m e 72

a—= (al’ az>, b == (bll bz)
a,, d,, by, b, =0,1, —1

and the products 9,(Q|U)9_.(Q|U) are considered as formal theta functions
of level 2. These relations (3)~(6) imply the inequality?

rank (Ja.p(Q| U)9-asp(Q| U) = 22 =14,

where (ain(Q|U)Jarn(QU)) is the 9x9-matrix whose (a, b)-component is
Garb(Q|U)I_ap(Q | U) and (a, b) run over the vector space GF(3)2. Since ($a(Q));

7) See [1].
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is a specialization of (J.(Q|U)) over the replacement U(m+—g—> by 1, it
follows that
@ rank (9a,p(Q)9-asn(@) <4 .
Since J2(Q) = 9_.(Q), we have
Ga (@9 -a:(Q) = I_arn(@I--arn(Q)

= F_a-p(@F-c-ar-b(@Q) = Fa-b(@)I-a-n(Q) .
This means that the inequality (7) is equivalent to
(8) det
0, 0(@)? I, (Q)? Peo,15(Q)? Py, 1x(Q)? Yi,-(@)?
| Fa,0(@) Fo,0(@)90,0(@) Ja,(@Fa,-5(Q) Feo,0(@F,-n(Q) Ii0,0(@)F,1(Q) |
| Fon(@? Fa,( @ a,- (@) Fao,p(@)F0,(Q) Ia,0(@Fat,- (@) I, @I, (@)
| 9a,0(Q) Fa,n(@)Fa,-(@) I4,6(@)Fa,-n(@Q) F0,n(@Fq,n(@)  Ia,0(@) 0 (@) J

9i1,-3(Q)? F0,0(@94,0(@) I4,0@9q,(Q) Ia,0(@I0,(Q)  Fio,0(@)Fcr,- (@)
=0.

THEOREM 2.5. Let k be a field of characteristic p such that k contains a
primitive cubic root £ of unity and p does not divide six. Then the projective
variety defined by A( X, X, = s Xa,-0)=0 1s the projective locus of
‘(’9(0,0)<Q>: 19(1,0)(Q)’ ’9(0,1)(Q>’ 19(1,1)(@): 19(1,—1)(@)) over k and the rational function field
S 9a(QP/ n@ 3 Q0@ Iaa@) Fa0,n(Q) Fes 0@ I, -(Q)

,/19(0,0)(62)4) is the 1nvariant subfield in k(‘g(l,o)(Q>/19(o,o)(Q>’ 79(0,1)(Q)/79(0,0)(Q)r
Fa1,00@)/ P0,0(@)s Fr,-(@)/F0,eXQ)) With respect to the group of automorphisms
(@, B): Fa(@Q) — 2F"29,,(Q) (@ GF3P,
where a, B are 2X2-matrices with coefficients in GF(3) such that detax0 and
Ba=a'B. Moreover if (a(0)) is the canonical system of theta constants of
level three on a two dimensional abstruct abelian variety, the point (@c,n(0),
-@(1,0)(0): 90<o,1)<0>» @(1,1)(0): 90<1,~1>(0)) is a point on the variety A(X(o,o): Xu,o), Tty

X(1,—1)>:0'
Proor. Since 4(X,p Xai,0 ==+ » Xa,-p) 18 absolutely irreducible, for the
first assertion it is sufficient to show that

dim,, k(9(1,0)<Q)/8(0,0)<Q)1 19(0,1)(@)/19@,0)(@)»
Y,/ Y0,0(@)s Y1,-(Q)/ F0,0(@)) = 3.

1t is also sufficient to prove for the case k=C. This is a well-known classical
result. The second part is a direct consequence from Theorem 2.3. Let
(¢a(0)) be the canonical system of theta constants of level three on a two
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dimensional abstruct abelian variety. Since
Parb(0)¢-a+6(0) = ¢ -a16(0)¢ - -a)+b(0)
= ¢-a-b(0)¢--a)--1(0) = Pa-b(0)¢_a-10) ,
by virtue of it follows

A(gpm,o)(O), 90(1,0)(0): 50(0,1)(0), 90<1,1>(0), SD<1,—1)(0)) =0.
This completes the proof of [Theorem 2.5

Mathematical Institute of
Nagoya University
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