On the relation for two-dimensional theta constants of level three

Dedicated to Professor Iyanaga on the occation of his 60th birthday

By Hisasi Morikawa

(Received June 18, 1967) (Revised Sept. 18, 1967)

Let $\{Q_{11}, Q_{12}, Q_{22}\}$ be a system of indeterminates and denote

$$\theta_{\mathbf{a}}(Q) = \sum_{\mathbf{m} = \mathbf{z}^2} Q\left(\mathbf{m} + \frac{\mathbf{a}}{3}, \mathbf{m} + \frac{\mathbf{a}}{3}\right)$$
 $(\mathbf{a} = (a_1, a_2); a_1, a_2 = 0, 1, -1),$

where $Q\left(\mathbf{m}+\frac{\mathbf{a}}{3},\mathbf{m}+\frac{\mathbf{a}}{3}\right)$ means $Q_{11}^{\left(m_1+\frac{a_1}{3}\right)^2}Q_{12}^{2\left(m_1+\frac{a_1}{3}\right)\left(m_2+\frac{a_2}{3}\right)}Q_{22}^{\left(m_2+\frac{a_2}{3}\right)^2}$. In the present note we shall give an explicit defining equation for the projective scheme $\operatorname{Proj}\mathbf{Z}[\mathcal{Y}_{(0,0)}(Q),\,\mathcal{Y}_{(1,0)}(Q),\,\mathcal{Y}_{(0,1)}(Q),\,\mathcal{Y}_{(1,1)}(Q),\,\mathcal{Y}_{(1,-1)}(Q)]$. The defining equation $\Delta(X_{(0,0)},X_{(1,0)},X_{(0,1)},X_{(1,1)},X_{(1,-1)})=0$ is a rather simple equation of degree ten. From this equation we can conclude the following important result:

Let ζ be a primitive cubic root of unity and $\overline{\Gamma}_0$ a transformation group on $\mathbf{Q}(\zeta, \vartheta_{(0,0)}(Q), \vartheta_{(1,0)}(Q), \vartheta_{(0,1)}(Q), \vartheta_{(1,1)}(Q), \vartheta_{(1,-1)}(Q))$ consisting of all the elements

$$(\alpha, \beta)$$
; $\vartheta_{\mathbf{a}}(Q) \to \zeta^{\mathbf{a}\beta^t\alpha^t\mathbf{a}}\vartheta_{\mathbf{a}\alpha}(Q)$ $(\mathbf{a} \in GF(3)^2)$,

where α , β are 2×2 -matrices with coefficients in GF(3) such that $\det \alpha' \neq 0$ and $\beta^t \alpha = \alpha^t \beta$. Then the invariant subfield of $\mathbf{Q}(\zeta, \vartheta_{(1,0)}(Q)/\vartheta_{(0,0)}(Q), \vartheta_{(0,1)}(Q)/\vartheta_{(0,0)}(Q), \vartheta_{(1,1)}(Q)/\vartheta_{(0,0)}(Q))$ with respect to the group Γ_0 of automorphisms is the rational function field $\mathbf{Q}(\zeta, \sum_{\mathbf{a}\neq(0,0)} \vartheta_{\mathbf{a}}(Q)^3/\vartheta_{(0,0)}(Q)^3, \sum_{\mathbf{a}\neq(0,0)} \vartheta_{\mathbf{a}}(Q)^6/\vartheta_{(0,0)}(Q)^6, \vartheta_{(1,0)}(Q)\vartheta_{(1,1)}(Q)\vartheta_{(1,1)}(Q)\vartheta_{(1,-1)}(Q)/\vartheta_{(0,0)}(Q)^4).$

§ 1. Canonical systems of theta constants on abstract abelian varieties.

1.1. Let **A** be an abelian variety defined over an algebraically closed field of characteristic p, where p is a prime number or zero. Let ξ be an algebraic equivalent class on **A** and X be a divisor in ξ . We denote by \mathfrak{g}_X the group of all the points a in A such that $X_a \sim X^{10}$. Since \mathfrak{g}_X depends only the class ξ , we may denote \mathfrak{g}_{ξ} instead of \mathfrak{g}_X . If \mathfrak{g}_{ξ} is a finite group, the divisor class ξ (the divisor X) is called non-degenerate. For any prime number l

¹⁾ $X_a \sim X$ means that X is linearly equivalent to X.

coprime to p we choose a system $\tau^{(l)} = {}^{l}(\tau_1^{(l)}, \cdots, \tau_{2r}^{(l)})$ of l-adic coordinates on A and an isomorphism $lg^{(l)}$ of the group of roots of unity of l-power degree onto the additive residue group $\mathbf{Q}_l/\mathbf{Z}_l$. Denote by $E_l(\xi)$ the skew symmetric l-adic integral matrix associated with a divisor class ξ with respect to $\tau^{(l)}$ and $lg^{(l)}$ and denote by $\mathfrak{g}_{\xi,l}$ the l-Sylow subgroup of \mathfrak{g}_{ξ} . Then, if ξ is non-degenerate, the group $\mathfrak{g}_{\xi,l}$ coinsides with the set of all the points of l-power order such that $E_l(\xi)\tau^{(l)}(a)\equiv 0 \mod 1$.

Putting

$$a=a_p+\sum\limits_l a_l$$
 , $b=b_p+\sum\limits_l b_l$ $(a_l,\,b_l\in\mathfrak{g}_{\xi,l})$

and

$$e_{\xi}(a, b) = \prod_{l} lg^{(l)^{-1}}({}^{t}\tau^{(l)}(a_{l})E_{l}(\xi)\tau^{(l)}(b_{l}))$$
,

we have a function $e_{\xi}(,)$ on $\mathfrak{g}_{\xi} \times \mathfrak{g}_{\xi}$ such that

$$\begin{split} e_{\xi}(a, b+c) &= e_{\xi}(a, b)e_{\xi}(a, c) \,, \\ e_{\xi}(a+b, c) &= e_{\xi}(a, c)e_{\xi}(b, c) \,, \\ e_{\xi}(a, a) &= 1 \,, \qquad e_{\xi}(a, b)e_{\xi}(b, a) = 1 \,. \end{split}$$

Moreover, if ξ is non-degenerate and the order of \mathfrak{g}_{ξ} is coprime to p then the function $e_{\xi}(a,b)=1$ for every b in \mathfrak{g}_{ξ} implies a=0.

Since $E_{\iota}(\xi)$ is skew symmetric, there exists a direct sum decomposition $\mathfrak{g}_{\xi,\iota} = \mathfrak{g}_{\iota} \oplus \hat{\mathfrak{g}}_{\iota}$ such that

$${}^{t}\tau^{(l)}(a)E_{l}(\hat{\xi})\tau^{(l)}(b) \equiv {}^{t}\tau^{(l)}(\hat{a})E_{l}(\hat{\xi})\tau^{(l)}(\hat{b}) \equiv 0 \mod 1 \qquad (a, b \in \mathfrak{g}_{l}; \hat{a}, \hat{b} \in \hat{\mathfrak{g}}_{l}).$$

If ξ is non-degenerate and the order of \mathfrak{g}_{ξ} is coprime to p, we have a direct sum decomposition

$$g_{\xi} = g \oplus \hat{g}$$
 $(g = \sum_{l} g_{l}, \ \hat{g} = \sum_{l} \hat{g}_{l})$

such that $e_{\xi}(\mathfrak{g}, \mathfrak{g}) = e_{\xi}(\hat{\mathfrak{g}}, \hat{\mathfrak{g}}) = 1$ and $|\mathfrak{g}| = |\hat{\mathfrak{g}}| = \sqrt{|\mathfrak{g}|_{\xi}}$, where $|\mathfrak{g}|$, $|\hat{\mathfrak{g}}|$, $|\mathfrak{g}_{\xi}|$ are the orders of \mathfrak{g} , $\hat{\mathfrak{g}}$, respectively. We call the subgroup \mathfrak{g} a standard subgroup with respect to ξ and call the direct sum decomposition $\mathfrak{g}_{\xi} = \mathfrak{g} \oplus \hat{\mathfrak{g}}$ the standard direct sum decomposition with respect to ξ .

A divisor X on A is called *symmetric* if $(-\delta_A)^{-1}(X) = X$, where $-\delta_A$ is the automorphism $x \to -x$. We denote by $l(\xi)$ the dimension $l(X) = \dim H^0(A, \mathcal{O}_A(X))$ for a divisor X in the algebraic equivalence class ξ .

LEMMA 1.1. Let X be a non-degenerate positive divisor on an abelian variety **A** defined over an algebraically closed field k. Then there exists the unique system of functions $\{\phi_a \mid a \in \mathfrak{g}_X\}$ on **A** defined over k such that

$$(\phi_a) = X_{-a} - X$$
,

$$\phi_0(x) = 1$$
, $\phi_{a+b}(x) = \phi_a(x+b)\phi_b(x)$ $(a, b \in \mathfrak{g}_x)$.

PROOF. By the definition of \mathfrak{g}_X there exist function f_a ($a \in \mathfrak{g}_X$) defined over k such that $(f_a) = X_{-a} - X$ ($a \in \mathfrak{g}_X$). Then it follows that

(divisor of
$$f_a(x+b)$$
) = $X_{-(a+b)} - X_{-b} = (X_{-(a+b)} - X) - (X_{-b} - X)$
= $(f_{a+b}) - (f_b) = (f_{a+b} f_b^{-1})$ (a, $b \in \mathfrak{g}_X$).

This means that $f_{a+b}(x) = \gamma_{a,b} f_a(x+b) f_b(x)$ (a, $b \in \mathfrak{g}_x$) holds with a non-zero element $\gamma_{a,b}$ in k and γ is a 2-cocycle of \mathfrak{g}_x with coefficients in the multiplicative group k^* of k, i. e.

$$(\partial \gamma)(a, b, c) = \gamma_{b,c} \gamma_{a+b,c}^{-1} \gamma_{a,b+c} \gamma_{a,b}^{-1} = 1$$
 $(a, b, c \in \mathfrak{g}_X)$.

Since the field k is algebraically closed and the 2-cohomology of finite group with coefficients in the multiplicative group of an algebraically closed field is always trivial²⁾, there exist elements β_a $(a \in \mathfrak{g}_X)$ in k^* such that $\gamma_{a,b} = \beta_{a+b}^{-1}\beta_a\beta_b$ $(a,b\in\mathfrak{g}_X)$. Putting $\phi_a = \beta_a f_a$ $(a\in\mathfrak{g}_X)$, we have functions ϕ_a $(a\in\mathfrak{g}_X)$ in Lemma 1.1.

PROPOSITION 1.2. Let ξ be a non-degenerate algebraic equivalence class on an abelian variety A and $\mathfrak{g}_{\xi} = \mathfrak{g} \oplus \hat{\mathfrak{g}}$ be the standard direct sum decomposition with respect to ξ . If ξ contains a positive divisor and $l(\xi)$ is coprime to the characteristic p, then there exists a symmetric positive divisor X in ξ such that

$$X_{\hat{a}} = X \qquad (\hat{a} \in \hat{\mathfrak{g}}).$$

Moreover, the symmetric positive divisor X is uniquely determined up to translations by 2-division points on A.

We call the symmetric positive divisor X the standard divisor in ξ with respect to the standard group g.

PROOF OF PROPOSITION 1.2. Let D be a positive divisor in ξ and $\{\phi_a | a \in \mathfrak{g}_{\xi}\}$ be the system of functions given, in Lemma 1.1. Putting

$$\psi_a(x) = \sum_{\hat{b} = \hat{a}} e_{\xi}(a, \hat{b})^{-1} \phi_{a+\hat{b}}(x) \qquad (a \in \mathfrak{g})$$
 ,

we observe that

$$D-(\phi_a)_{\infty}>0$$

and

$$\begin{split} \psi_{a}(x+\hat{c}) &= \sum_{\hat{b} \in \hat{\mathfrak{g}}} e_{\xi}(a, \hat{b})^{-1} \phi_{a+\hat{b}}(x+\hat{c}) \\ &= e_{\xi}(a, \hat{c}) \sum_{\hat{b} \in \hat{\mathfrak{g}}} e_{\xi}(a, \hat{b}+\hat{c})^{-1} \phi_{a+\hat{b}+\hat{c}}(x) \phi_{\hat{c}}(x)^{-1} \\ &= e_{\xi}(a, \hat{c}) \phi_{\hat{c}}(x)^{-1} \psi_{a}(x) \qquad (a \in \mathfrak{g}, \hat{c} \in \hat{\mathfrak{g}}). \end{split}$$

Since $e_{\xi}(\cdot,\cdot)$ is non-degenerate, at least one function ψ_{a_0} is not constant zero. Hence, putting $(\psi_{a_0})=V-D$ (V>0), we have

²⁾ See [5].

$$\begin{split} \text{(divisor of } & \phi_{a_0}(x+\hat{c})) = V_{-\hat{c}} - D_{-\hat{c}} = (\phi_{\hat{c}}^{-1}\phi_{a_0}) \\ & = D - D_{-\hat{c}} + V - D = V - D_{-\hat{c}} \; . \end{split}$$

This means that $V \in \xi$ and $V_{\hat{a}} = V$ ($\hat{a} \in \hat{\mathfrak{g}}$). Let **B** be the quotient abelian variety $A/\hat{\mathfrak{g}}$ and π be the natural separable isogeny of A onto **B**. Then by virtue of Proposition 38, 78° § IX [6] there exists a positive divisor U on **B** such that $V = \pi^{-1}(U)$. By virtue of Riemann-Roch theorem on abelian varieties³⁾ we have

$$\sqrt{|\hat{\mathfrak{g}}_{arepsilon}|} = l(\xi) = l(V) = l(\pi^{-1}(U)) = \nu(\pi)l(U) = |\hat{\mathfrak{g}}| l(U)$$
 ,

and thus l(U)=1, where $\nu(\pi)$ means the degree of the separable isogeny π . Since $(-\delta_{\mathbf{B}})^{-1}(U)\equiv U$, there exists a point s such that $(-\delta_{\mathbf{B}})^{-1}(U)\sim U_{2s}$. From l(U)=1 it follows $(-\delta_{\mathbf{B}})^{-1}(U)=U_{2s}$. This means $(-\delta_{\mathbf{B}})^{-1}(U_s)=U_s$. Putting $X=\pi^{-1}(U_s)$, we have a standard divisor $X^{(g)}$ with respect to \mathfrak{g} .

Finally we shall prove the uniqueness of the standard divisor up to translations by 2-division points. Let π' be the isogeny of **B** onto **A** such that $\pi\pi' = \nu(\pi)\delta_{\mathbf{B}}$ and Y be any standard divisor in ξ with respect to \mathfrak{g} . We denote by W the symmetric positive divisor on **B** such that $Y^{(\mathfrak{g})} = \pi^{-1}(W)$. Then it is sufficient to prove $W = U_{s+c}$ with a 2-division point c on **B**. Since $Y \equiv X_s$, it follows⁴⁾

$$\begin{split} \nu(\pi)^2 W &\equiv (\nu(\pi)\delta_{\mathbf{B}})^{-1}(W) = \pi'^{-1}(\pi^{-1}(W)) \equiv \pi'^{-1}(Y) \\ &\equiv \pi'^{-1}(X) \equiv \pi'^{-1}\pi^{-1}(U_s) \equiv (\nu(\pi)\delta_{\mathbf{B}})^{-1}(U_s) \equiv \nu(\pi)^2 U_s \; . \end{split}$$

Since abelian variety has no torsion with respect to algebraic equivalence⁵⁾, we have $W \equiv U_s$. Therefore from $l(W) = l(U_s) = 1$ it follows $W_a = U_s$ with a point a. From $(-\delta_B)^{-1}(W) = W$ and $(-\delta_B)^{-1}(U_s) = U_s$ we have

$$W_a = (-\delta_B)^{-1}(W_a) = (-\delta_B)^{-1}(W)_{-a} = W_{-a}, \qquad W = W_{2a}.$$

This implies 2a = 0, because l(W) = 1.

THEOREM 1.3. Let ξ be a non-degenerate algebraic equivalence class on an abelian variety A and $\mathfrak{g}_{\xi} = \mathfrak{g} \oplus \mathfrak{g}$ be the standard direct sum decomposition with respect to ξ . If ξ contains a positive divisor and $l(\xi)$ is coprime to both 2 and the characteristic p, then there exist functions $\{\varphi_a \mid a \in \mathfrak{g}\}$ on A such that the poles $(\varphi_a)_{\infty}$ $(a \in \mathfrak{g})$ are the same divisor contained in ξ and

$$\begin{split} \varphi_{\mathbf{0}}(x) &= 1 \text{ , } \quad \varphi_{a}(-x) = \varphi_{-a}(x) \text{ ,} \\ \varphi_{a+b}(x) &= \varphi_{a}(x+b)\varphi_{b}(x) \text{ , } \\ \varphi_{a}(x+\hat{b}) &= e_{\hat{\xi}}(a,\,\hat{b})\varphi_{a}(x) \end{split} \qquad (a,\,b \in \mathfrak{g} \text{ ; } \hat{b} \in \hat{\mathfrak{g}}) \text{ .} \end{split}$$

³⁾ See [3].

⁴⁾ See [3].

⁵⁾ See [4].

Moreover, the functions φ_a ($a \in \mathfrak{g}$) are uniquely determined up to simultaneous translations by 2-division points on \mathbf{A} .

PROOF. Let π be the natural separable isogeny of \mathbf{A} onto the quotient abelian variety $\mathbf{B} = A/\hat{\mathfrak{g}}$. Then from the proof of Proposition 1.2 there exists a symmetric positive divisor U on \mathbf{B} such that l(U) = 1 and $X = \pi^{-1}(U)$ is a divisor in ξ . Let ϕ_a $(a \in \mathfrak{g})$ be functions on \mathbf{A} in Lemma 1.1, i.e.

$$(\phi_a)=X_{-a}-X$$
, $\phi_0(x)=1$,
$$\phi_{a+b}(x)=\phi_a(x+b)\phi_b(x)$$
 $(a,b\in\mathfrak{g})$.

Since $X_{\hat{b}} = X$ ($\hat{b} \in \hat{\mathfrak{g}}$), there exist non-zero constants $\chi(a, \hat{b})$, $\chi(\hat{b})$ ($a \in \mathfrak{g}$, $\hat{b} \in \hat{\mathfrak{g}}$) such that

$$\begin{split} \phi_{a}(x+\hat{b}) &= \chi(a,\,\hat{b})\phi_{a}(x)\;, \qquad \phi_{\hat{b}}(x) = \chi(\hat{b})\;, \\ \chi(a,\,\hat{b}+\hat{c}) &= \chi(a,\,\hat{b})\chi(a,\,\hat{c})\;, \\ \chi(a+b,\,\hat{c}) &= \chi(a,\,\hat{c})\chi(b,\,\hat{c})\;, \end{split} \qquad (a,\,b \in \mathfrak{g}\;;\;\hat{b},\,\hat{c} \in \hat{\mathfrak{g}})\;, \\ \chi(\hat{b}+\hat{c}) &= \chi(\hat{b})\chi(\hat{c})\;. \end{split}$$

Let n be the degree of the isogeny of π and α the isogeny of B onto A such that $n\delta_{\mathbf{B}} = \pi \circ \alpha$. Let F_a (na = 0) be the functions satisfying $(F_a) = (n\delta_{\mathbf{B}})^{-1}(U_{-a}) - (n\delta_{\mathbf{B}})^{-1}(U)$. Then by virtue of the definition of $e_{U,n}(a,b)$ in § IX [6] we have

$$F_a(x+b) = e_{U,n}(a, b)F_a(x)$$
 $(na = nb = 0)$.

Since $n\delta_{\mathbf{B}} = \pi \circ \alpha$, it follows that

$$\begin{split} \phi_{\alpha a}(\alpha x) &= \gamma_a F_{na}(x) \,, \\ \phi_{\alpha a}(\alpha x + \alpha b) &= \gamma_a F_{na}(x + b) = e_{U,n}(na, \, b) \phi_{\alpha a}(\alpha x) \\ &\qquad \qquad (n^2 a = 0, \, \, \alpha a \in \mathfrak{g} \,; \, \, \alpha b \in \hat{\mathfrak{g}}, \, \, \gamma_a \neq 0) \,. \end{split}$$

Since $n^2U \equiv (n\delta_{\mathbf{B}})^{-1}(U)$ and

$$e_{U,n}(s,t) = \prod_l l_g^{(l)^{-1}(t} \tau^{(l)}(s_l) n E_l(U) \tau^{(l)}(t_l))$$
 $(ns = nt = 0)$,

it follows

$$\begin{split} \chi(\alpha a, \alpha b) &= e_{U,n}(na, b) \\ &= \prod_{l} l_{g}^{(l)^{-1}(^{l}\tau^{(l)}(na_{l})nE_{l}(U)\tau^{(l)}(b_{l}))} \\ &= \prod_{l} l_{g}^{(l)^{-1}(^{l}\tau^{(l)}(a_{l})E_{l}(n^{2}U)\tau^{(l)}(b_{l}))} \\ &= \prod_{l} l_{g}^{(l)^{-1}(^{l}\tau^{(l)}(a_{l})E_{l}(n\delta_{\mathbf{B}})^{-1}(U)\tau^{(l)}(b_{l})) \\ &= \prod_{l} l_{g}^{(l)^{-1}(^{l}\tau^{(l)}(\alpha a_{l})E_{l}(\pi^{-1}(U))\tau^{(l)}(\alpha b_{l})) \\ &= e_{\pi^{-1}(U)}(\alpha a, \alpha b) = e_{\xi}(\alpha a, \alpha b) \\ &(a = \sum_{l} a_{l}, \ b = \sum_{l} b_{l}, \ n^{2}a = 0, \ \alpha a \in \mathfrak{g}, \ \alpha b \in \hat{\mathfrak{g}}) \,. \end{split}$$

Namely we have

$$\chi(a, \hat{b}) = e_{\varepsilon}(a, \hat{b}) \qquad (a \in \mathfrak{g}, \hat{b} \in \hat{\mathfrak{g}}).$$

Since X is symmetric, it follows $(-\delta_A)^{-1}(X_{-a}) = X_a$ $(a \in \mathfrak{g})$. Therefore there exist non-zero constants ρ_a $(a \in \mathfrak{g})$ such that

$$\phi_a(-x) = \rho_a \phi_{-a}(x)$$
 and $\rho_a \rho_b = \rho_{a+b}$ $(a, b \in \mathfrak{g})$.

Since the order of g is odd, we have a unique element $\frac{1}{2}a$ in \mathfrak{g} such that $\frac{1}{2}a+\frac{1}{2}a=a$ $(a\in\mathfrak{g})$. Putting

$$\varphi_a(x) = \rho_{\frac{1}{2}a}^{-1} \phi_a(x) \qquad (a \in \mathfrak{g})$$

we have

$$\begin{split} \varphi_a(-x) &= \rho_{\frac{1}{2}a}^{-1} \phi_a(-x) = \rho_{\frac{1}{2}a}^{-1} \rho_a \phi_{-a}(x) \\ &= \rho_{\frac{1}{2}a}^{-1} \phi_{-a}(x) = \rho_{-\frac{1}{2}a}^{-1} \phi_{-a}(x) = \varphi_{-a}(x) \qquad (a \in \mathfrak{g}) \,. \end{split}$$

By virtue of Proposition 1.2 the freedom of the choice of the standard divisor X in ξ is only the translations by 2-division points on A. Hence the functions $\{\varphi_a \mid a \in \mathfrak{g}\}$ are uniquely determined up to simultaneous translations by 2-division points on A. This completes the proof of Theorem 1.3.

DEFINITION 1.4. We shall call the system of functions $\{\varphi_a \mid a \in \mathfrak{g}\}$ in Theorem 1.3, the standard system of functions with respect to a standard direct sum decomposition $\mathfrak{g}_{\xi} = \mathfrak{g} \oplus \hat{\mathfrak{g}}$.

The standard system is uniquely determined up to simultaneous translations by 2-division points.

PROPOSITION 1.5. The standard system of functions $\{\varphi_a \mid a \in \mathfrak{g}\}$ with respect to a standard direct sum decomposition $\mathfrak{g}_{\xi} = \mathfrak{g} \oplus \hat{\mathfrak{g}}$ forms a linear base of the linear system $\mathcal{L}(X)$ where X is the pole divisor $(\varphi_a)_{\infty}$.

PROOF. From Theorem 1.3 the functions φ_a $(a \in \mathfrak{g})$ belong to $\mathcal{L}(X)$ and are linearly independent. On the other hand $l(\xi) = l(X) = \sqrt{|\mathfrak{g}_{\xi}|} = |\mathfrak{g}|$, hence φ_a $(a \in \mathfrak{g})$ form a linear base of $\mathcal{L}(X)$.

THEOREM 1.6. Let ξ be non-degenerate algebraic equivalent class on an abelian variety \mathbf{A} such that ξ contains a positive divisor and $l(\xi)$ is coprime to 2 and the chracterstic p. Let $\{\varphi_a \mid a \in \mathfrak{g}\}$ be the standard system of functions on \mathbf{A} with respect to a standard direct sum decomposition $\mathfrak{g}_{\xi} = \mathfrak{g} \oplus \hat{\mathfrak{g}}$ and $(\varphi_a(0))_{a \in \mathfrak{g}}$ be the image of the origin of \mathbf{A} in the projective space by the map: $x \to (\varphi_a(x))_{a \in \mathfrak{g}}$. Then it follows

(1)
$$\operatorname{rank} (\varphi_{a+b}(0)\varphi_{-a+b}(0))_{\beta \times \beta} \leq 2^{\dim A},$$

where $(\varphi_{a+b}(0)\varphi_{-a+b}(0))_{\mathfrak{d}\times\mathfrak{g}}$ means the $|\mathfrak{g}|\times|\mathfrak{g}|$ - matrix of which (a,b)- component is $\varphi_{a+b}(0)\varphi_{-a+b}(0)$ $(a,b\in\mathfrak{g})$.

PROOF. Let π be the natural separable isogeny of \mathbf{A} onto the quotient abelian variety $\mathbf{B} = \mathbf{A}/\hat{\mathfrak{g}}$ and U the symmetric positive divisor on \mathbf{B} such that $(\varphi_a)_{\infty} = \pi^{-1}(U)$ $(a \in \mathfrak{g})$. Since

$$\varphi_a(x+\hat{b})\varphi_{-a}(x+\hat{b})=e_\xi(a,\,\hat{b})e_\xi(-a,\,\hat{b})\varphi_a(x)\varphi_{-a}(x)=\varphi_a(x)\varphi_{-a}(x) \qquad (a\in\mathfrak{g},\,\hat{b}\in\hat{\mathfrak{g}})\,,$$
 there exists the unique system of functions $\{h_a\,|\,a\in\mathfrak{g}\}$ on \mathbf{B} such that $\varphi_a(x)\varphi_{-a}(x)=h_a(\pi x)$ and $(h_a)_\infty=2U.$ By virtue of $l(2U)=2^{\dim\mathbf{A}}\,l(U)=2^{\dim\mathbf{A}}$ we observe that the number of linearly independent h_a $(a\in\mathfrak{g})$ is at most $2^{\dim\mathbf{A}}.$ Hence it follows

$$\operatorname{rank} (\varphi_{a+b}(x)\varphi_{-a+b}(x))_{3\times 3} = \operatorname{rank} (\varphi_a(x+b)\varphi_{-a}(x+b))_{8\times 8}$$
$$= \operatorname{rank} (h_a(\pi x + \pi b))_{3\times 8} \le 2^{\dim \mathbf{A}}.$$

Specializing x to the origin on A, we complete the proof of Theorem 1.6.

DEFINITION 1.7. In the notation in Theorem 1.6 the system of homogeneous coordinates $(\varphi_a(0))_{a\in\mathfrak{s}}$ is called the canonical system of theta constants with respect to a standard direct sum $\mathfrak{g}_{\xi}=\mathfrak{g}\oplus\hat{\mathfrak{g}}$. If $l(\xi)=n^{\dim A}$ and \mathfrak{g}_{ξ} is the group of all the n-division points, we call $(\varphi_a(0))_{a\in\mathfrak{s}}$ the canonical system of theta constants of level n.

From (1) follow many equalities for theta constants $(\varphi_a(0))_{a\in \mathbb{R}}$. In the next paragraph we shall show that two dimensional theta constants of level three satisfy a unique explicitly expressed irreducible equation of degree ten.

§ 2. Canonical systems of two-dimensional theta constants of level three.

2.1. Let $\{X_{(0,0)}, X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}\}$ be a system of indeterminates and put

$$X_{(-1,0)} = X_{(1,0)},$$
 $X_{(0,-1)} = X_{(0,1)},$
 $X_{(1,1)} = X_{(-1,-1)},$ $X_{(1,-1)} = X_{(-1,1)}.$

Regarding 0, 1, -1 as the elements of the prime field GF(3) of characteristic three, we may consider the suffix \mathbf{a} of $X_{\mathbf{a}}$ as a vector in GF(3). A 2×2 -matrix α with coefficients in GF(3) operate on $\{X_{\mathbf{a}}\}$ as follows $X_{\mathbf{a}} \to X_{\mathbf{a}\alpha}$. From the definition it follows that

$$X_{\bf a} = X_{-\bf a}$$
 $({\bf a} \in GF(3)^2)$.

Let $\Gamma_0 = \Gamma_0(GF(3))$ be the group of all the 4×4-matrices

$$\begin{pmatrix} \alpha & \beta \\ 0 & {}^{t}\alpha^{-1} \end{pmatrix} \} 2$$

with coefficients in GF(3) such that $\alpha^t\beta=\beta^t\alpha$ and let $\bar{\Gamma}_0=\bar{\Gamma}_0(GF(3))$ be the quotient group $\Gamma_0/\left\{\begin{pmatrix}1&0\\0&1\end{pmatrix},\;\begin{pmatrix}-1&0\\0&-1\end{pmatrix}\right\}$. Let ζ be a fixed primitive cubic root

of unity. Since $\mathbf{a}\beta^t\alpha^t\mathbf{a} = (-\mathbf{a})\beta^t\alpha(-\mathbf{a})$, we may make $\bar{\Gamma}_0$ operate on $X_{\mathbf{a}}$ $(\mathbf{a} \in GF(3)^2)$ as follows;

$$X_{\mathbf{a}}^{(\alpha t_{\alpha-1})} = \zeta^{\mathbf{a}\beta^t\alpha^t\mathbf{a}}X_{\mathbf{a}\alpha}$$

where $\zeta^0 = 1$, $\zeta^1 = \zeta$, $\zeta^{-1} = \zeta^2$ for the elements 0, 1, -1 in GF(3).

LEMMA 2.1. Let \bar{N} and $\bar{\Gamma}_{00}$ be the subgroups in $\bar{\Gamma}_0$ $\left\{ \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \middle| {}^t\beta = \beta \right\}$ and $\left\{ \begin{pmatrix} \alpha & 0 \\ 0 & {}^t\alpha^{-1} \end{pmatrix} \middle| \det \alpha \neq 0 \right\} \middle/ \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$, respectively. Then it follows that

- 1° $\bar{\Gamma}_0$ is a split extension $\bar{\Gamma}_{00}\bar{N}$ of \bar{N} by the subgroup $\bar{\Gamma}_{00}$,
- 2° $\bar{\Gamma}_{00}$ operates faithfully on $\{X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}\}$ as the symmetric group of four elements,
- 3° the index of the commutator group $(\bar{\Gamma}_0, \bar{\Gamma}_0)$ in $\bar{\Gamma}_0$ is two and an element σ in $\bar{\Gamma}_{00}$ belongs to $(\bar{\Gamma}_0, \bar{\Gamma}_0)$ if and only if σ induces an even permutation on $\{X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}\}$,
- 4° if $\beta = \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{12} & \beta_{22} \end{pmatrix}$ then $\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$ operates on X_s as follows

$$X_{\scriptscriptstyle (0,\,0)}^{\binom{1\,\beta}{0\,\,1}}\!=\!X_{\scriptscriptstyle (0,\,0)}\,,\qquad X_{\scriptscriptstyle (1,\,0)}^{\binom{1\,\beta}{0\,\,1}}\!=\!\zeta^{\beta_{\,1\,1}}X_{\scriptscriptstyle (1,\,0)}\,,\qquad X_{\scriptscriptstyle (0,\,1)}^{\binom{1\,\beta}{0\,\,1}}\!=\!\zeta^{\beta_{\,2\,2}}X_{\scriptscriptstyle (0,\,1)}\,,$$

$$X_{(\mathbf{1},\mathbf{1})}^{\binom{1}{0}} = \zeta^{\beta_{11}+2\beta_{12}+\beta_{22}}X_{(\mathbf{1},\mathbf{1})}\,, \qquad X_{(\mathbf{1},\mathbf{1})}^{\binom{1}{0}} = \zeta^{\beta_{11}-2\beta_{12}+\beta_{22}}X_{(\mathbf{1},\mathbf{-1})}\,.$$

PROOF. From the definitions 1° and 4° follow immediately. The group Γ_{00} operates faithfully on $\{X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}\}$ as a permutation group and the order of Γ_{00} is 24, hence Γ_{00} operates on $\{X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}\}$ as the symmetric group. Next we shall show that the commutator $(\bar{\Gamma}_{00}, \bar{N})$ generates \bar{N} . From the relations

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}^{t} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

follow the commutator relations:

and thus the commutator $(\bar{\Gamma}_{00}, \bar{N})$ generates \bar{N} . Therefore we conclude that the index of the commutator group $(\bar{\Gamma}_0, \bar{\Gamma}_0)$ in $\bar{\Gamma}_0$ is two and an element σ in $\bar{\Gamma}_{00}$ does not belong to $(\bar{\Gamma}_0, \bar{\Gamma}_0)$ if and only if σ induces an odd permutation on $\{X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}\}$. This completes the proof of Lemma 2.1.

Denote by $s_3(X)$, $s_6(X)$, $s_9(X)$, $t_4(X)$ the symmetric functions in the four variable $X_{(1,0)}$, $X_{(0,1)}$, $X_{(1,1)}$, $X_{(1,-1)}$

$$\begin{split} s_{\rm 3}(X) &= X^{\rm 3}_{\rm (I,0)} \! + \! X^{\rm 3}_{\rm (0,1)} \! + \! X^{\rm 3}_{\rm (I,1)} \! + \! X^{\rm 3}_{\rm (I,-1)} \, , \\ s_{\rm 6}(X) &= X^{\rm 6}_{\rm (I,0)} \! + \! X^{\rm 6}_{\rm (0,1)} \! + \! X^{\rm 6}_{\rm (I,1)} \! + \! X^{\rm 6}_{\rm (I,-1)} \, , \\ s_{\rm 9}(X) &= X^{\rm 9}_{\rm (I,0)} \! + \! X^{\rm 9}_{\rm (0,1)} \! + \! X^{\rm 9}_{\rm (I,1)} \! + \! X^{\rm 9}_{\rm (I,-1)} \, , \\ t_{\rm 4}(X) &= X_{\rm (I,0)} X_{\rm (0,1)} X_{\rm (I,1)} X_{\rm (I,-1)} \, . \end{split}$$

LEMMA 2.2. Let k be a field of characteristic p such that k contains a primitive cubic root ζ of unity and p does not divide six. Then $k[X_{(0,0)}, s_3(X), s_6(X), s_9(X), t_4(X)]$ is the subalgebra $k[X_{(0,0)}, X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}]^{\overline{\Gamma}_0}$ consisting of all the the invariant elements with respect to the group $\overline{\Gamma}_0$ of automorphisms and $k(X_{(0,0)}^{-3}s_3(X), X_{(0,0)}^{-6}s_6(X), X_{(0,0)}^{-9}s_9(X), X_{(0,0)}^{-4}t_4(X))$ is the subfield $k(X_{(0,0)}^{-1}X_{(1,0)}, X_{(0,1)}^{-1}, X_{(0,0)}^{-1}X_{(1,1)}, X_{(0,0)}^{-1}X_{(1,-1)})^{\overline{\Gamma}_0}$ consisting of all the invariant elements in $k(X_{(0,0)}^{-1}X_{(0,0)}X_{(0,0)}, X_{(0,1)}^{-1}, X_{(0,0)}^{-1}X_{(0,1)}, X_{(0,0)}^{-1}X_{(1,1)}, X_{(0,0)}^{-1}X_{(1,1)}, X_{(0,0)}^{-1}X_{(1,1)})$ with respect to $\overline{\Gamma}_0$.

PROOF. From 4° in Lemma 2.1 it follows that a monomial in $X_{\mathbf{a}}$ ($\mathbf{a} \in GF(3)^2$) is invariant by \bar{N} if and only if it is a product of $X_{(0,0)}$, $X_{(1,0)}^3$, $X_{(0,1)}^3$, $X_{(1,1)}^3$, $X_{(1,-1)}^3$, $X_{(1,-1)}^3$. This shows that $k[X_{(0,0)}, X_{(1,0)}^3, X_{(0,1)}^3, X_{(1,1)}^3, X_{(1,-1)}^3$, $X_{(1,-1)}^3$, $X_{(1,1)}^3$,

$$k[X_{(0,0)}, X_{(1,0)}, \cdots, X_{(1,-1)}]^{\overline{F}_0} = k[X_{(0,0)}, t_4(X), X_{(1,0)}^3, \cdots, X_{(1,-1)}^3]^{\overline{F}_{00}}$$

= $k[X_{(0,0)}, t_4(X), s_3(X), s_6(X), s_9(X)]$.

We shall prove the second part of Lemma 2.2. Denote

$$\operatorname{sign} \sigma = \left\{ egin{array}{ll} 1 & & \operatorname{if} & \sigma \in (ar{arGamma}_0, ar{arGamma}_0) \ -1 & & \operatorname{if} & \sigma \in (ar{arGamma}_0, ar{arGamma}_0), \end{array}
ight.$$

Any element in $k(X_{(0,0)}^{-1}X_{(1,0)},\cdots,X_{(0,0)}^{-1}X_{(1,-1)})\overline{\varGamma}{}^0$ is a quotient f(X)/g(X) of homogeneous forms f(X) and g(X) of the same degree such that $f(X)^\sigma=\chi(\sigma)f(X)$ and $g(X)^\sigma=\chi(\sigma)g(X)$ ($\sigma\in\overline{\varGamma}_0$) with a character χ of degree 1 of $\overline{\varGamma}_0$. By virtue of 3° in Lemma 2.1 the character χ must be sign σ or the trivial character. Hence it follows that $f(X)^\sigma=f(X)$ and $g(X)^\sigma=g(X)$ for σ in N. This shows that

$$k(X_{(0,0)}^{-1}X_{(1,0)},\cdots,X_{(0,0)}^{-1}X_{(1,-1)})\overline{\varGamma}_0$$

is the invariant subfield in the field $k(X_{(0,0)}^3X_{(1,0)}^3, \cdots, X_{(0,0)}^{-3}X_{(1,-1)}^3, X_{(0,0)}^{-4}t_4(X))$ with respect to the group $\bar{\Gamma}_{00}$ of automorphisms. $\bar{\Gamma}_{00}$ is regarded as the symmetric group on $\{X_{(0,0)}^{-3}X_{(1,0)}^3, X_{(0,0)}^{-3}X_{(0,1)}^3, X_{(0,0)}^{-3}X_{(1,1)}^3, X_{(0,0)}^{-3}X_{(1,1)}^3, X_{(0,0)}^{-3}X_{(1,-1)}^3\}$. Hence we have

$$\begin{split} k(X_{(0,0)}^{-1}X_{(1,0)},\cdots,X_{(0,0)}^{-1}X_{(1,-1)})\overline{\varGamma}_0\\ &=k(X_{(0,0)}^{-3}X_{(1,0)}^3,\cdots,X_{(0,0)}^{-3}X_{(1,-1)}^3,X_{(0,0)}^{-4}t_4(X))\overline{\varGamma}_{00}\\ &=k(X_{(0,0)}^{-4}t_4(X),X_{(0,0)}^{-3}s_3(X),X_{(0,0)}^{-6}s_6(X),X_{(0,0)}^{-9}s_9(X))\;. \end{split}$$

This completes the proof of Lemma 2.2.

2.2. Denote by $\Delta(X)$ the polynomial of degree ten defined by

and by $\mathbf{M}_{2,3}$ the projective scheme

Proj
$$\mathbf{Z}[X_{(0,0)}, X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}]/(\Delta(X))$$

corresponding to the homogeneous ideal $(\Delta(X))$. From the direct calculation we observe that $\bar{\Gamma}_0$ leaves the polynomial $\Delta(X)$ invariant. Hence we may consider $\bar{\Gamma}_0$ as a group of automorphisms of the projective scheme $\mathbf{M}_{2,3}$.

Theorem 2.3. Let k be a field of characteristic p such that k contains a primitic cubic root ζ of unity and p does not divide six. Let $x_{(0,0)}, x_{(1,0)}, x_{(0,1)}, x_{(1,1)}, x_{(1,-1)}$ be the images of $X_{(0,0)}, X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}$ in the residue ring $k[X_{(0,0)}, X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}]/(\Delta(X))$. Then the rational function field $k(x_{(0,0)}^{-3}s_3(x), x_{(0,0)}^9s_6(x), x_{(0,0)}^{-4}t_4(x))$ in three variables is the invariant subfield in $k(x_{(1,0)}/x_{(0,0)}, x_{(0,1)}/x_{(0,0)}, x_{(1,1)}/x_{(0,0)}, x_{(1,-1)}/x_{(0,0)})$ with respect to the group $\bar{\Gamma}_0$ of

automorphisms where the operation is defined by

$$x_{\mathbf{a}}^{\binom{\alpha}{0}} t_{\alpha-1}^{\beta} = \zeta^{\mathbf{a}\beta^t\alpha^t\mathbf{a}} x_{\mathbf{a}\alpha}, \qquad \binom{\mathbf{a} \in GF(3)^2}{\alpha, \ \beta \in (GF(3))_{2\times 2}}, \quad \det \alpha \neq 0, \quad \beta^t\alpha = \alpha^t\beta \ .$$

Moreover $x_{(0,0)}^{-9} s_9(x)$ is expressed by $x_{(0,0)}^{-3} s_3(x)$, $x_{(0,0)}^{-6} s_6(x)$ and $x_{(0,0)}^{-4} t_4(x)$ as follows

(2)
$$x_{(0,0)}^{-9}s_{9}(x) = x_{(0,0)}^{-10}t_{4}(x)\left(\frac{1}{3}s_{3}(x)^{2} - s_{6}(x)\right) + x_{(0,0)}^{-9}\left(\frac{4}{3}s_{3}(x)s_{6}(x) - \frac{1}{3}s_{3}(x)^{3}\right) + 3x_{(0,0)}^{-8}t_{4}(x)^{2} + \frac{1}{3}x_{(0,0)}^{-7}t_{4}(x)s_{3}(x) + \frac{1}{6}x_{(0,0)}^{-6}(s_{6}(x) - s_{3}(x)^{2}) + \frac{1}{3}x_{(0,0)}^{-4}t_{4}(x).$$

PROOF. Since the characteristic p of k does not divide six, by the direct calculation it follows

$$\begin{split} & \varDelta(X) = X^{6}_{(0,0)} X_{(1,0)} X_{(0,1)} X_{(1,1)} X_{(1,-1)} - X^{4}_{(0,0)} \sum_{\mathbf{a} \neq \mathbf{b} \neq (0,0)} X^{3}_{\mathbf{a}} X^{3}_{\mathbf{b}} \\ & + X^{3}_{(0,0)} X_{(1,0)} X_{(0,1)} X_{(1,1)} X_{(1,-1)} \sum_{\mathbf{a} \neq (0,0)} X^{3}_{\mathbf{a}} \\ & + 9 X^{2}_{(0,0)} X^{2}_{(1,0)} X^{2}_{(0,1)} X^{2}_{(0,1)} X^{2}_{(1,1)} X^{2}_{(1,-1)} \\ & - 6 X_{(0,0)} \sum_{\mathbf{a} \neq \mathbf{b} \neq \mathbf{c} \neq (0,0)} X^{3}_{\mathbf{a}} X^{3}_{\mathbf{b}} X^{3}_{\mathbf{c}} + X_{(0,0)} \sum_{\mathbf{a} \neq \mathbf{b} \neq (0,0)} X^{6}_{\mathbf{a}} X^{3}_{\mathbf{b}} \\ & - 2 X_{(1,0)} X_{(0,1)} X_{(1,1)} X_{(1,-1)} \Big(\sum_{\mathbf{a} \neq (0,0)} X^{6}_{\mathbf{a}} - \sum_{\mathbf{a} \neq \mathbf{b} \neq (0,0)} X^{3}_{\mathbf{a}} X^{3}_{\mathbf{b}} \Big) \\ & = - 3 X_{(0,0)} s_{9}(X) + 9 X^{2}_{(0,0)} t_{4}(X)^{2} + 4 X_{(0,0)} s_{3}(X) s_{6}(X) \\ & - X_{(0,0)} s_{3}(X)^{3} - 3 t_{4}(X) s_{6}(X) + X^{3}_{(0,0)} t_{4}(X) s_{3}(X) \\ & + X^{6}_{(0,0)} t_{4}(X) + s_{3}(X)^{2} t_{4}(X) - \frac{1}{2} X^{4}_{(0,0)} s_{3}(X)^{2} + \frac{1}{2} X^{4}_{(0,0)} s_{6}(X) \;. \end{split}$$

This shows that $\Delta(X)$ is absolutely irreducible as a polynomial in the five variable $X_{(0,0)}$, $s_3(X)$, $s_6(X)$, $s_9(X)$, $t_4(X)$, because $\Delta(X)$ contains the only one monomial $X_{(0,0)}s_9(X)$ containing the variable $s_9(X)$ and $X_{(0,0)}$ does not divide $\Delta(X)$. Hence the residue ring $k[X_{(0,0)}^{-3}s_3(X), X_{(0,0)}^{-6}s_6(X), X_{(0,0)}^{-9}s_9(X), X_{(0,0)}^{-4}t_4(X)]$ / $(X_{(0,0)}^{-10}\Delta(X))$ is an integral domain and its quotient field $k(x_{(0,0)}^{-3}s_3(x), x_{(0,0)}^{-6}s_6(x), x_{(0,0)}^{-9}s_9(x), x_{(0,0)}^{-4}t_4(x))$ is a rational function field in three variables $x_{(0,0)}^{-3}s_3(x), x_{(0,0)}^{-6}s_6(x), x_{(0,0)}^{-6}t_4(x)$. We shall next show that $\Delta(X)$ is an absolutely irreducible polynomial in $X_{(0,0)}$, $X_{(1,0)}$, $X_{(0,1)}$, $X_{(1,1)}$, $X_{(1,-1)}$. Since $k[X_{(0,0)}, \cdots, X_{(1,-1)}]$ is a unique factorization domain, there exists a unique factorization $\Delta(X) = P_1(X) \cdots P_r(X)$. Since the group $\bar{\Gamma}_0$ leaves $\Delta(X)$ invariant, $P_i(X)^{\sigma}$ ($1 \le i \le r$; $\sigma \in \bar{\Gamma}_0$) are also irreducible factors of $\Delta(X)$. This shows that there exists a subgroup H in $\bar{\Gamma}_0$ and an

irreducible element P(X) such that $\Delta(X) = \prod P(X)^{\sigma}$ where σ runs over a system of representatives of right cosets modulo H and $P(X)^{\sigma}$ (σ mod H) are coprime to each other. The degree of $\Delta(X)$ is ten and the index $[\bar{\Gamma}_0:H]$ is a divisor of the order 2^33^4 of $\overline{\Gamma}_0$. Hence the only possibility of the index $[\bar{\Gamma}_0:H]$ is one or two. Assume for a moment that $[\bar{\Gamma}_0:H]=2$. Then by virtue of Lemma 2.1 H coincides with the commutator group $(\bar{\Gamma}_0, \bar{\Gamma}_0)$ and $P(X)^{\sigma} = \chi(\sigma)P(X)$ ($\sigma \in (\overline{\Gamma}_0, \overline{\Gamma}_0)$) with a charactor χ . On the other hand $\overline{\Gamma}_0$ and $(\bar{\Gamma}_0, \bar{\Gamma}_0)$ are the extensions of the normal subgroup \bar{N} by the symmetric group and the alternating group on $\{X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}\}$, respectively. Hence $P(X)^{2^{3}3^{4}}$ is an alternating function in $X_{(1,0)}$, $X_{(0,1)}$, $X_{(1,1)}$, $X_{(1,-1)}$ and thus $P(X)^{2^{3}3^{4}}$ is a symmetric function in $X_{(1,0)}$, $X_{(0,1)}$, $X_{(1,1)}$, $X_{(1,-1)}$. This means that $P(X)^{2^{3}3^{4}}$ is an invariant for $\bar{\Gamma}_0$. On the other hand P(X) is an absolutely irreducible element in $k[X_{(0,0)}, s_3(X), s_6(X), s_9(X), t_4(X)]$ which is the invariant subring with respect to $\overline{\Gamma}_0$. This shows that $\Delta(X)^{2^23^4} = cP(X)^{2^23^4}$ with a constant cand $\Delta(X) = c'P(X)^2$. This is a contradiction. Therefore $\Delta(X)$ is absolutely irreducible in $k[X_{(0,0)}, \cdots, X_{(1,-1)}]$ and $k[x_{(0,0)}, \cdots, x_{(1,-1)}] = k[X_{(0,0)}, \cdots, X_{(1,-1)}]$ $/(\Delta(X))$ is an integral domain. Finally we shall prove that $k(x_{(0,0)}^{-3}s_3(x), x_{(0,0)}^{-6}s_6(x),$ $x_{(0,0)}^{-4}t_4(x)$) is the invariant subfield in $k(x_{(0,0)}^{-1}x_{(1,0)}, x_{(0,0)}^{-1}x_{(0,1)}, x_{(0,0)}^{-1}x_{(1,1)}, x_{(0,0)}^{-1}x_{(1,-1)})$ with respect to $\overline{\Gamma}_0$. Let f(x) be an invariant element in $k(x_{(0,0)}^{-1}x_{(1,0)}, \cdots, x_{(0,0)}^{-1}x_{(1,-1)})$ with respect to $\overline{\Gamma}_0$. Then there exists a pair (g(X), h(X)) of homogeneous elements of the same degree in $k[X_{(0,0)}, X_{(1,0)}, \cdots, X_{(1,-1)}]$ such that f(x)=g(x)/h(x), $h(X)^{\sigma}=h(X)$ ($\sigma\in \overline{\Gamma}_0$) and $g(X)^{\sigma}-g(X)=l_{\sigma}(X)\Delta(X)$ with homogeneous elements $l_{\sigma}(X)$ whose degree is deg g(X)-10. The system $(l_{\sigma}(X))_{\sigma \in \overline{I}_0}$ may be regarded as a 1-cocycle of $\bar{\Gamma}_0$ with coefficients in the additive group $k[X_{(0,0)}, \cdots, X_{(1,-1)}]$. Since the order 2^33^4 of $\overline{\Gamma}_0$ is coprime to the characteristic p of k, the 1-cohomology group of $\overline{\Gamma}_0$ is trivial⁶⁾. Therefore there exists an element a(X) in $k[X_{(0,0)}, \dots, X_{(1,-1)}]$ such that $l_{\sigma}(X) = a(X)^{\sigma} - a(X)$ $(\sigma \in \overline{\Gamma}_0)$. Putting $g_1(X) = g(X) - a(X)\Delta(X)$, we have $f(x) = g_1(x)/h(x)$ and $g_1(X)^{\sigma} = g_1(X)$, $h(X)^{\sigma} = h(X)$ ($\sigma \in \overline{\Gamma}_0$). This shows that the invariant subfield in $h(\chi_{(0,0)}^{-1}\chi_{(1,0)},$ \cdots , $x_{(0,0)}^{-1}x_{(1,-1)}$ with respect to $\bar{\Gamma}_0$ is the quotient field of the integral domain A, where

$$A = k \left[X_{(0,0)}^{-1} X_{(1,0)}, \cdots, X_{(0,0)}^{-1} X_{(1,-1)} \right] / (X_{(0,0)}^{-10} \Delta(X))$$

$$= k \left[X_{(0,0)}^{-3} s_3(X), X_{(0,0)}^{-6} s_6(X), X_{(0,0)}^{-9} s_9(X), X_{(0,0)}^{-4} t_4(X) \right] / (X_{(0,0)}^{-10} \Delta(X))$$

$$= k \left[x_{(0,0)}^{-3} s_3(x), x_{(0,0)}^{-6} s_6(x), x_{(0,0)}^{-9} s_9(x), x_{(0,0)}^{-4} t_4(x) \right]$$

$$= k \left[x_{(0,0)}^{-3} s_3(x), x_{(0,0)}^{-6} s_6(x), x_{(0,0)}^{-4} t_4(x) \right].$$

This completes the proof of Theorem 2.3.

COROLLARY 2.4. Let k be a field whose characteristic p does not divide six.

⁶⁾ See [**5**].

Then the projective variety

$$\mathbf{M}_{2,3} \otimes_{\mathbf{Z}} k = \text{Proj}(k[X_{(0,0)}, X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}]/\Delta(X))$$

is asbolutely irreducible.

2.2. Let $\{Q_{11},\,Q_{12},\,Q_{22},\,U_1,\,U_2\}$ be a system of indeterminates and denote briefly

$$U(\mathbf{m}) = U_1^{m_1} U_2^{m_2}, \qquad Q(\mathbf{m}, \mathbf{n}) = Q_{11}^{m_1 n_1} Q_{12}^{(m_1 n_2 + m_2 n_1)} Q_{22}^{m_2 n_2}$$

$$(\mathbf{m} = (m_1, m_2), \mathbf{n} = (n_1, n_2)).$$

By a two dimensional formal theta function of level n we mean a formal series

$$arphi(U) = \sum_{\mathbf{m} \in \mathbf{Z}^2} \lambda_{\mathbf{m}} U(\mathbf{m})^2$$
 ,

such that

$$arphi(Q(\mathbf{m})U) = Q(\mathbf{m},\,\mathbf{m})^{-n}U(\mathbf{m})^{-2n}arphi(U) \qquad (\mathbf{m} \in \mathbf{Z}^2)$$
 ,

where $(Q(\mathbf{m})U)(\mathbf{n}) = Q(\mathbf{m}, \mathbf{n})U(\mathbf{n})$. Then two dimensional formal theta functions of level n form a vector space of dimension n^2 over the field of coefficients. We shall be concerned with the following formal series

$$\begin{split} &\vartheta_{\mathbf{a}}(Q \mid U) = \sum_{\mathbf{m} \in \mathbf{Z}^2} Q\left(\mathbf{m} + \frac{\mathbf{a}}{3}, \mathbf{m} + \frac{\mathbf{a}}{3}\right) U\left(\mathbf{m} + \frac{\mathbf{a}}{3}\right)^2 \\ &\vartheta_{\mathbf{a}}(Q) = \sum_{\mathbf{m} \in \mathbf{Z}^2} Q\left(\mathbf{m} + \frac{\mathbf{a}}{3}, \mathbf{m} + \frac{\mathbf{a}}{3}\right) \qquad (\mathbf{a} = (a_1, a_2); \ a_1, a_2 = 0, 1, -1). \end{split}$$

These formal series satisfy the relations

(3)
$$\vartheta_{\mathbf{a}}(Q \mid Q(\mathbf{m})U) = Q(\mathbf{m}, \mathbf{m})^{-1}U(\mathbf{m})^{-2}\vartheta_{\mathbf{a}}(Q \mid U),$$

(4)
$$\vartheta_{-\mathbf{a}}(Q \mid U) = \vartheta_{\mathbf{a}}(Q \mid U^{-1}),$$

(5)
$$\vartheta_{\mathbf{a}}\left(Q|Q\left(\frac{\mathbf{b}}{3}\right)U\right) = Q\left(\frac{\mathbf{b}}{3}, \frac{\mathbf{b}}{3}\right)^{-1}U\left(\frac{\mathbf{b}}{3}\right)^{-2}\vartheta_{\mathbf{a}+\mathbf{b}}(Q|U),$$

(6)
$$\vartheta_{-\mathbf{a}}(Q) = \vartheta_{\mathbf{a}}(Q)$$

$$\begin{pmatrix} \mathbf{m} \in \mathbf{Z}^2 \\ \mathbf{a} = (a_1, a_2), \ \mathbf{b} = (b_1, b_2) \\ a_1, a_2, b_1, b_2 = 0, 1, -1 \end{pmatrix}$$

and the products $\vartheta_{\mathbf{a}}(Q \mid U)\vartheta_{-\mathbf{a}}(Q \mid U)$ are considered as formal theta functions of level 2. These relations (3)~(6) imply the inequality⁷⁾

rank
$$(\vartheta_{\mathbf{a}+\mathbf{b}}(Q \mid U)\vartheta_{-\mathbf{a}+\mathbf{b}}(Q \mid U)) \leq 2^2 = 4$$
,

where $(\vartheta_{\mathbf{a}+\mathbf{b}}(Q|U)\vartheta_{\mathbf{a}+\mathbf{b}}(Q|U))$ is the 9×9 -matrix whose (\mathbf{a},\mathbf{b}) -component is $\vartheta_{\mathbf{a}+\mathbf{b}}(Q|U)\vartheta_{-\mathbf{a}+\mathbf{b}}(Q|U)$ and (\mathbf{a},\mathbf{b}) run over the vector space $GF(3)^2$. Since $(\vartheta_{\mathbf{a}}(Q))$

⁷⁾ See [1].

is a specialization of $(\theta_{\mathbf{a}}(Q \mid U))$ over the replacement $U\left(\mathbf{m} + \frac{\mathbf{a}}{3}\right)$ by 1, it follows that

(7)
$$\operatorname{rank} (\vartheta_{\mathbf{a}+\mathbf{b}}(Q)\vartheta_{-\mathbf{a}+\mathbf{b}}(Q)) \leq 4.$$

Since $\theta_{\mathbf{a}}(Q) = \theta_{-\mathbf{a}}(Q)$, we have

$$\begin{split} &\vartheta_{\mathbf{a}+\mathbf{b}}(Q)\vartheta_{-\mathbf{a}+\mathbf{b}}(Q) = \vartheta_{-\mathbf{a}+\mathbf{b}}(Q)\vartheta_{-(-\mathbf{a})+\mathbf{b}}(Q) \\ &= \vartheta_{-\mathbf{a}-\mathbf{b}}(Q)\vartheta_{-(-\mathbf{a})-\mathbf{b}}(Q) = \vartheta_{\mathbf{a}-\mathbf{b}}(Q)\vartheta_{-\mathbf{a}-\mathbf{b}}(Q) \end{split}$$

This means that the inequality (7) is equivalent to

(8) det

$$\begin{cases} \vartheta_{(0,0)}(Q)^2 & \vartheta_{(1,0)}(Q)^2 & \vartheta_{(0,1)}(Q)^2 & \vartheta_{(1,1)}(Q)^2 & \vartheta_{(1,-1)}(Q)^2 \\ \vartheta_{(1,0)}(Q)^2 & \vartheta_{(0,0)}(Q)\vartheta_{(1,0)}(Q) & \vartheta_{(1,1)}(Q)\vartheta_{(1,-1)}(Q) & \vartheta_{(0,1)}(Q)\vartheta_{(1,-1)}(Q) & \vartheta_{(0,1)}(Q)\vartheta_{(1,1)}(Q) \\ \vartheta_{(0,1)}(Q)^2 & \vartheta_{(1,1)}(Q)\vartheta_{(1,-1)}(Q) & \vartheta_{(0,0)}(Q)\vartheta_{(0,1)}(Q) & \vartheta_{(1,0)}(Q)\vartheta_{(1,-1)}(Q) & \vartheta_{(1,0)}(Q)\vartheta_{(1,1)}(Q) \\ \vartheta_{(1,1)}(Q)^2 & \vartheta_{(0,1)}(Q)\vartheta_{(1,-1)}(Q) & \vartheta_{(1,0)}(Q)\vartheta_{(1,-1)}(Q) & \vartheta_{(0,0)}(Q)\vartheta_{(1,1)}(Q) & \vartheta_{(1,0)}(Q)\vartheta_{(0,1)}(Q) \\ \vartheta_{(1,-1)}(Q)^2 & \vartheta_{(0,1)}(Q)\vartheta_{(1,1)}(Q) & \vartheta_{(1,0)}(Q)\vartheta_{(1,1)}(Q) & \vartheta_{(1,0)}(Q)\vartheta_{(0,1)}(Q) & \vartheta_{(0,0)}(Q)\vartheta_{(1,-1)}(Q) \\ \vartheta_{(1,-1)}(Q)^2 & \vartheta_{(0,1)}(Q)\vartheta_{(1,1)}(Q) & \vartheta_{(1,0)}(Q)\vartheta_{(1,1)}(Q) & \vartheta_{(1,0)}(Q)\vartheta_{(0,1)}(Q) & \vartheta_{(0,0)}(Q)\vartheta_{(1,-1)}(Q) \\ = 0 \ . \end{cases}$$

Theorem 2.5. Let k be a field of characteristic p such that k contains a primitive cubic root ζ of unity and p does not divide six. Then the projective variety defined by $\Delta(X_{(0,0)}, X_{(1,0)}, \cdots, X_{(1,-1)}) = 0$ is the projective locus of $(\vartheta_{(0,0)}(Q), \vartheta_{(1,0)}(Q), \vartheta_{(0,1)}(Q), \vartheta_{(1,1)}(Q), \vartheta_{(1,-1)}(Q))$ over k and the rational function field $k(\sum_{\mathbf{a}\neq(0,0)}\vartheta_{\mathbf{a}}(Q)^3/\vartheta_{(0,0)}(Q)^3, \sum_{\mathbf{a}\neq(0,0)}\vartheta_{\mathbf{a}}(Q)^6/\vartheta_{(0,0)}(Q)^6, \vartheta_{(1,0)}(Q)\vartheta_{(0,1)}(Q)\vartheta_{(1,1)}(Q)\vartheta_{(1,-1)}(Q) \vartheta_{(0,0)}(Q)^4$ is the invariant subfield in $k(\vartheta_{(1,0)}(Q)/\vartheta_{(0,0)}(Q), \vartheta_{(0,1)}(Q)/\vartheta_{(0,0)}(Q), \vartheta_{(1,1)}(Q)/\vartheta_{(0,0)}(Q)$, $\vartheta_{(1,1)}(Q)/\vartheta_{(0,0)}(Q), \vartheta_{(1,1)}(Q)/\vartheta_{(0,0)}(Q)$ with respect to the group of automorphisms

$$(\alpha, \beta): \quad \theta_{\mathbf{a}}(Q) \to \zeta^{\mathbf{a}\beta^t\alpha^t\mathbf{a}}\theta_{\mathbf{a}\alpha}(Q) \qquad (\mathbf{a} \in GF(3)^2),$$

where α , β are 2×2 -matrices with coefficients in GF(3) such that $\det \alpha \neq 0$ and $\beta^t \alpha = \alpha^t \beta$. Moreover if $(\varphi_{\mathbf{a}}(0))$ is the canonical system of theta constants of level three on a two dimensional abstruct abelian variety, the point $(\varphi_{(0,0)}(0), \varphi_{(1,0)}(0), \varphi_{(0,1)}(0), \varphi_{(1,1)}(0), \varphi_{(1,-1)}(0))$ is a point on the variety $\Delta(X_{(0,0)}, X_{(1,0)}, \cdots, X_{(1,-1)}) = 0$.

PROOF. Since $\Delta(X_{(0,0)}, X_{(1,0)}, \cdots, X_{(1,-1)})$ is absolutely irreducible, for the first assertion it is sufficient to show that

$$\begin{split} \dim_k k(\vartheta_{(1,0)}(Q)/\vartheta_{(0,0)}(Q), \ \vartheta_{(0,1)}(Q)/\vartheta_{(0,0)}(Q), \\ \vartheta_{(1,1)}(Q)/\vartheta_{(0,0)}(Q), \ \vartheta_{(1,-1)}(Q)/\vartheta_{(0,0)}(Q)) = 3 \ . \end{split}$$

It is also sufficient to prove for the case $k = \mathbb{C}$. This is a well-known classical result. The second part is a direct consequence from Theorem 2.3. Let $(\varphi_{\mathbf{a}}(0))$ be the canonical system of theta constants of level three on a two

dimensional abstruct abelian variety. Since

$$\begin{split} \varphi_{\mathbf{a}+\mathbf{b}}(0)\varphi_{-\mathbf{a}+\mathbf{b}}(0) &= \varphi_{-\mathbf{a}+\mathbf{b}}(0)\varphi_{-(-\mathbf{a})+\mathbf{b}}(0) \\ &= \varphi_{-\mathbf{a}-\mathbf{b}}(0)\varphi_{-(-\mathbf{a})-(-\mathbf{b})}(0) = \varphi_{\mathbf{a}-\mathbf{b}}(0)\varphi_{-\mathbf{a}-\mathbf{b}}(0) \; , \end{split}$$

by virtue of Theorem 1.6 it follows

$$\Delta(\varphi_{(0,0)}(0), \varphi_{(1,0)}(0), \varphi_{(0,1)}(0), \varphi_{(1,1)}(0), \varphi_{(1,-1)}(0)) = 0$$
.

This completes the proof of Theorem 2.5.

Mathematical Institute of Nagoya University

References

- [1] H. Morikawa, On the defining equations of abefian varieties, Nagoya Math. J., 30 (1967), 143-161.
- [2] D.G. Northcott, An introduction to homological algebra, Cambridge, 1960.
- [3] M. Nishi, The Frobenius theorem and the duality theorem on abelian variety, Mem. Coll. Sci. Univ. Kyoto Ser. A, 32 (1959), 333-350.
- [4] J.-P. Serre, Quelques propriétés des variétés abéliennes en caractéristique p, Amer. J. Math., 80 (1958), 715-739.
- [5] J.-P. Serre, Cohomologie Galoisienne, chapitre II, College de France, 1963.
- [6] A. Weil, Variétés abéliennes et courbes algébriques, Paris, 1948.