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By a minimal non-singular algebraic surface of general type we shall mean
a non-singular algebraic surface free from exceptional curves (of the first
kind) of which the bigenus $P_{2}$ and the Chern number $c_{1}^{2}$ are both positive.
where $c_{1}$ denote the first Chern class of the surface (see \S 3). Let $S$ denote a
minimal non-singular algebraic surface of general type defined over the field
of complex numbers and let $K$ be a canonical divisor on $S$ . The number of
non-singular rational curves $E$ on $S$ satisfying the equation: $KE=0$ is smaller
than the second Betti number of $S$ , where $KE$ denotes the intersection multi-
plicity of $K$ and $E$ . We define $\mathcal{E}$ to be the union of all the non-singular rational
curves $E$ with $KE=0$ on $S$ and represent it as a sum : $\mathcal{E}=\sum_{\nu}\mathcal{E}_{\nu}$ of its con-
nected components S.. Obviously 8 may be an empty set. Consider a holo-
morphic map $\Phi$ : $z\rightarrow\Phi(z)$ of $S$ into a projective n-space $P^{n}$ . We shall say that
$\Phi$ is biholomorphic modulo $\mathcal{E}$ if and only if $\Phi$ is biholomorphic on $S-\mathcal{E}$ and
$\Phi^{-1}\Phi(z)=e_{\nu}$ for $z\in\epsilon_{\nu}$ . For any positive integer $m$ , we let $\Phi_{mK}$ denote the
rational map of $S$ into $P^{n}$ defined by the pluri-canonical system $|mK|$ , where
$n=\dim|mK|$ . Note that, if $|mK|$ has no base point, then $\Phi_{mK}$ is a holomor-
phic map. D. Mumford proved that, for every sufficiently large integer $m,$ ,

the pluri-canonical system $|mK|$ has no base point and $\Phi_{mK}$ is biholomorphic
modulo $\mathcal{E}$ (see Mumford [6]; compare also Zariski [9], Matsusaka and Mum-
ford [5]). His proof is based on results of Zariski [9] and covers the abstract
case. On the other hand, it has been shown by \v{S}afarevi\v{c} [8] that $\Phi_{9K}$ is a
birational map. The main purpose of this paper is to prove the following
theorem:

THEOREM. For every integer $m\geqq 4$ , the pluri-canonical system $mK|$ has
no base point and $\Phi_{mK}$ is a holomorphic map. For every integer $m\geqq 6$ , the $maI^{y}$

$\Phi_{mK}$ is biholomorphic modulo $s$ .
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\S 1. Notation.

Let $S$ be a non-singular algebraic surface defined over the field $C$ of com-
plex numbers. We shall denote by $x,$ $y,$ $z$ points on $S$ , by $C,$ $C_{1}$ , $\cdot$ .. , $0$ , $\cdot$ .. irre-
ducible curves on $S$ , by $X,$ $Y,$ $D,$ $D_{1},$ $\cdots$ divisors on $S$ and by $m,$ $n,$ $h,$ $i,$ $j$ , A
rational integers. We say that a divisor $D=\sum_{?}n_{i}C_{i}$ is positive and write $D>0$

if the coefficients $n_{i}$ are positive. For any divisors $D$ and $X$ on $S$ we denote
by $DX$ the intersection multiplicity of $D$ and $X$. We write $D^{2}$ for $DD$ . We
indicate by the symbol $\approx$ linear equivalence. We let $[D]$ denote the complex
line bundle over $S$ determined by the divisor $D$ .

Let $F$ be a complex line bundle over $S$ . By a local holomorphic section of
$F$ we shall mean a holomorphic section of $F$ defined over an open subset of $S$ .
Let $\varphi:z\rightarrow\varphi(z)$ be a local holomorphic section of $F$ . We choose a sufficiently
fine finite covering $\{U_{j}\}$ of $S$ and denote by $\varphi_{j}(z)$ the fibre coordinate of $\varphi(z)$

over $U_{j}$ , provided that $z\in U_{j}$ . Let $x$ be a point on $S$ and let $(z_{1}, z_{2})$ denote a
local coordinate of the center $x$ on $S$ . We call $x$ a zero of $\varphi$ of order $h$ if

$\varphi_{j}(x)=0$ , $(\partial^{m\vdash n}\varphi_{j}/\partial z_{1}^{m}\partial z_{2}^{n})(x)=0$ for $m+n\leqq h-1$

and if at least one partial derivative $(\partial^{h}\varphi_{j}/\partial z_{1}^{n}\partial z_{2}^{h- n})(x)$ of order $h$ does not
vanish, provided that $x\in U_{j}$ . We denote by $O$ the sheaf over $S$ of germs of
holomorphic functions and by $O(F)$ the sheaf over $S$ of germs of holomorphic
sections of $F$ . Moreover we denote by the symbol

$\mathcal{O}(F-hx-ky- )$

the subsheaf of $O(F)$ consisting of germs of those holomorphic sections of $F$

of which the points $x,$ $y,$ $\cdots$ are zeros of respective orders $\geqq h,$ $\geqq k,$ $\cdots$ We
remark that $O(-x)$ is the sheaf of the ideals of the point $x$ and that

$O(F-hx-ky-\cdots)=G(F)\bigotimes_{c?}O(-x)^{h}O(-y)^{k}\cdots$ .

Let $C^{n}$ denote the vector space of $n$ complex variables. The stalks of the
quotient sheaf ($2/O(-x)^{h}$ are

$(\mathcal{O}/\mathcal{O}(-x)^{h})_{z}=\{C^{h(h+1)/2}0$

if $z=x$ ,

otherwise.
To indicate this we write

$C_{x}^{h(h+1)/2}=\mathcal{O}/\mathcal{O}(-x)^{h}$ .

Then, for instance, we have

(1) $O(F)/G(F-hx-ky)\cong C_{x}^{h(h+1)/2}\oplus C_{y}^{k(k+1)/2}$ .

For any holomorphic section $\psi$ of a complex line bundle over $S$ , we denote
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by $(\psi)$ the divisor of $\psi$ . Let $D$ be a positive divisor on $S$ . Obviously $D$ is the
divisor $(\psi)$ of a holomorphic section $\psi$ of the complex line bundle $[D]$ . We
say that $\chi$ is a point of $D$ and write $x\in D$ if and only if $x$ is a zero of $\psi$ .
We define the multiplicity of a point $x$ of $D$ to be $m$ if $x$ is a zero of $\psi$ of
order $m$ . Moreover we call $x$ a simple point or a multiple point of $D$ according
as $m=1$ or $m\geqq 2$ . We shall say that a local holomorphic section $\varphi$ of $F$ de-
fined on an open subset $W\subset S$ is divisible by $D$ if $\varphi_{j}/\psi_{j}$ is holomorphic on
$U_{j}\cap W$ for every neighborhood $U_{j}$ . We denote by $O(F-D)$ the sheaf over $S$

of germs of those holomorphic sections of $F$ which are divisible by $D$ . We
have the isomorphism:

$O(F-D)\cong O(F-[D])$ .
We define

$O(F-D-hx-ky-\cdots)=O(F-D)\cap O(F-hx-ky- )$ .

Note that, if $x$ is a point of $D$ of multiplicity $m\geqq h$ , then

(2) $O(F-D-hx-ky-\cdots)=O(F-D-ky- )$ .
We denote by $|F|$ the complete linear system consisting of the divisors

$(\varphi)$ of holomorphic sections $\varphi\in H^{0}(S, o(F)),$ $\varphi\neq 0$, and define

$\dim|F|=\dim H^{0}(S, O(F))-1$ .
Note that $|[D]|=|D|$ . Letting $\{\varphi_{0}, \varphi_{1}, \cdots , \varphi_{n}\}$ be a base of the linear space
$H^{0}(S, o(F))$ , we define a rational map

$\Phi_{F}$ : $z\rightarrow\Phi_{F}(z)=(\varphi_{0}(z), \varphi_{1}(z),$
$\cdots,$

$\varphi_{n}(z))$

of $S$ into $P^{n}$ . We call $z$ a base point of the complete linear system $|F|$ if
$z\in D$ for all divisors $D\in|F|$ . It is obvious that, if $|F|$ has no base point,
then $\Phi_{F}$ is a holomorphic map. We let $K$ denote either the canonical bundle
of $S$ or a canonical divisor on $S$. We denote by $p_{g},$ $P_{m}$ and $q$ , respectively, the
geometric genus, the m-genus and the irregularity of $S$. Note that

$P_{m}=\dim|mK|+1$ , $m=1,2,3,$ $\cdots$

For any divisor $X$ on $S$ we let $\pi(X)$ denote the virtual genus of $X$ defined by
the formula:

$2\pi(X)-2=X^{2}+KX$ .
Every complex line boundle $F$ over $S$ is determined by a divisor $D$ on $S:F$

$=[D]$ . We let $F^{2}=D^{2}$ . Moreover, for any divisor $X$ on $S$, we define

$FX=DX$ , $F=[D]$ .
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\S 2. Vanishing theorems.

Let $F$ be a complex line bundle over $S$ and let $C$ denote an irreducible
curve on $S$ . We define the restriction to $C$ of the sheaf $O(F)$ to be the quotient
sheaf:

$O(F)_{C}=O(F)/O(F-C)$ .
For any element $\varphi$ of $O(F)$ we denote by $\varphi_{C}$ the element of $O(F)_{C}$ correspond-
ing to $\varphi$ .

Let $\tilde{C}$ denote the non-singular model of $C$ and let $\mu$ be the holomorphic
birational map of $\tilde{C}$ onto $C$ . Moreover let $\mu^{*}F$ denote the complex line bundle
over $\tilde{C}$ induced from $F$. For any complex line bundle $f$ over $\tilde{C}$ we denote by
$c(f)$ the Chern class of $f$ which can be regarded as an integer. We have

$c(\mu^{*}F)=FC$ .
Letting $\mathfrak{d}$ be an effective divisor on $\tilde{C}$, we denote by $o(f-b)$ the sheaf over $\tilde{C}$

of germs of holomorphic sections of $f$ which are divisible by $\mathfrak{d}$ . Let $c$ denote
the conductor of $C$ on $\tilde{C}$. We have the exact sequence

(3) $0\rightarrow O(\mu^{*}F-c)\rightarrow^{\mu}O(F)_{C}\rightarrow M\rightarrow 0$ ,

where $M$ is a sheaf over $C$ such that the stalk $M_{z}$ is zero for every simple
point $z$ of $C$ . In forming the exact sequence (3) we regard $O(\mu^{*}F-c)$ as a
sheaf over $C$ by means of the map $\mu:\tilde{C}\rightarrow C$ (see [2], \S 1).

In what follows we denote by $C\{t\}$ the ring of convergent power series
in a variable $t$ with coefficients in $C$. Let $x$ be a point of $C$ of multiplicity $m$ .
The inverse image $\mu^{-1}(x)$ consists of a finite number of points $p_{1},$ $\cdots$ , $p_{\lambda},$ $\cdots$ , $p_{r}$

on $\tilde{C}$. We introduce a local coordinate $(w, z)$ of the center $x$ on $S$ which is
‘ general “ with respect to $C$ (we write $w,$ $z$ in place of $z_{1},$ $z_{2}$). Then, for each
point $p_{\lambda}$ , we find a local uniformization variable $t_{\lambda}$ of the center $p_{\lambda}$ on $\tilde{C}$ such
that, in a neighborhood of $p_{\lambda}$ , the map $\mu$ takes the following form

$\mu:t_{\lambda}\rightarrow(w, z)=(P_{\lambda}(t_{\lambda}), t_{\lambda}^{m_{\lambda}})$ , $P_{\lambda}(t_{\lambda})\in t_{\lambda}^{m_{\lambda}}C\{t_{\lambda}\}$ ,

where $m_{\lambda}$ is a positive integer and $t_{\lambda}^{m}$a $C\{t_{\lambda}\}$ denotes the ideal of $C\{t_{\lambda}\}$ generated
by $t_{\lambda^{\lambda}}^{m}$ . It is clear that

$R(w, z)=\prod_{\lambda=1}^{rm}\prod_{k=0}^{\lambda^{-1}}(w-P_{\lambda}(\epsilon_{\lambda}^{k}z^{1/m_{\lambda}}))$ , $\epsilon_{\lambda}=e^{2\pi i/m}\lambda$

is a polynomial of the form

$w^{m}+A_{1}(z)w^{m- 1}+$ $+A_{m}(z)$ , $A_{k}(z)\in z^{k}C\{z\}$ ,

and the equation:
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$R(w, z)=w^{m}+A_{1}(z)w^{m- 1}+$ $+A_{m}(z)=0$

is a minimal equation of $C$ on a neighborhood of $\chi$ . We let

$B_{h}(w, z)=w^{h}+A_{1}(z)w^{h-1}+$ $+A_{h}(z)$ .
We define

$\sigma_{\lambda}dt_{\lambda}=d(t_{\lambda}^{m_{\lambda}})/\partial_{w}R(P_{\lambda}(t_{\lambda}), t_{\lambda}^{m\gamma})$ ,

where $\partial_{w}R(w, z)=\partial R(w, z)/\partial w$ . The exponent $c_{\lambda}$ in the expansion

$\sigma_{\lambda}=t_{\lambda}^{-c_{\lambda}}(a_{\lambda 0}+a_{\lambda 1}t_{\lambda}+a_{\lambda 2}t_{\lambda}^{2}+ )$ , $a_{\lambda 0}\neq 0$ ,

is a non-negative integer and, by definition,

$c=c_{1}p_{1}+$ $+c_{\lambda}p_{\lambda}+$ $+c_{r}p_{r}+\cdots$

Since the complex line bundle $F$ is locally trivial, the restriction to the point
$x$ of the exact sequence (3) is reduced to

$0\rightarrow\bigoplus_{\lambda=1}^{r}O(-c)_{p_{\lambda}}\rightarrow^{\mu}(\mathcal{O}_{C})_{x}\rightarrow M_{x}\rightarrow 0$ .

For any convergent power series $f=f(w, z)$ in $w$ and $z$ , we denote by $f_{C}$ the
restriction of $f$ to $C$ . Obviously the stalk $(\mathcal{O}_{C})_{x}$ consists of the restrictions $f_{C}$

of elements $f$ of $0_{x}$ . It is clear that $O(-c)_{p_{\lambda}}=t_{\lambda}^{c_{\lambda}}C\{t_{\lambda}\}$ . Hence an arbitrary

element of the ring $\bigoplus_{\lambda=1}^{\prime}O(-c)_{p_{\lambda}}$ can be written in the form

$\xi=\sum_{\lambda=1}^{r}\xi_{\lambda}(t_{\lambda})$ , $\xi_{\lambda}(t_{\lambda})\in t_{\lambda^{\lambda}}^{c}C\{t_{\lambda}\}$ .

LEMMA 1. For any element $\xi=\sum_{\lambda=1}^{r}\xi_{\lambda}(t_{\lambda})$ of the ring $\bigoplus_{\lambda=1}^{Y}\mathcal{O}(-c)_{p_{\lambda}}$ , there exists

one and only one element $f$ of $\mathcal{O}_{x}$ of the form

$f=\sum_{h=0}^{m-1}f_{h}(z)w^{m-1-h}$ , $f_{h}(z)=\sum_{n=0}^{\infty}f_{hn}z^{n}$ ,

which satisfies the equation:
$ f_{C}=\mu\xi$ .

Moreover the coefficients $f_{hn}$ of $f$ are given by the formula

\langle 4) $f_{hn}=2\pi i1\sum_{\lambda=1}^{r}\oint\xi_{\lambda}(t_{\lambda})B_{h}(P_{\lambda}(t_{\lambda}), t_{\lambda}^{m_{\lambda}})t_{\lambda}^{-(n+1)m_{\lambda}}\sigma_{\lambda}dt_{\lambda}$ .

For a proof of this lemma, see [2], Appendix I.
For any integer $h$ , we denote by $h^{+}$ the positive part of $h$ , i. e., $h^{+}$

$=\max\{h, 0\}$ .
LEMMA 2. Let $k$ be a non-negative integer and let

$\mathfrak{d}_{x}=\sum_{\lambda-- 1}^{r}(k-m+1)^{+}m_{\lambda}p_{\lambda}$ .
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Then we have

(5) $\mu\bigoplus_{\lambda=1}^{r}O(-c-\mathfrak{d}_{x})_{p_{\lambda}}\subset(O(-kx)_{C})_{x}$ .

PROOF. We take an arbitrary element $\xi$ of $\bigoplus_{\lambda}\Theta(-c-\mathfrak{d}_{x})_{p_{\lambda}}$
and, with the

aid of the above lemma, determine an element $f$ of $O_{x}$ satisfying the equation:
$ f_{c}=\mu\xi$ . Let $d_{\lambda}=(k-m+1)^{+}m_{\lambda}$ . We then have

$\xi=\sum_{\lambda=1}^{r}\xi_{\lambda}(t_{\lambda})$ , $\xi_{\lambda}(t_{\lambda})\in t_{\lambda}^{c_{\lambda}+a_{\lambda}}C\{t_{\lambda}\}$ .
Since

$\xi_{\lambda}(t_{\lambda})B_{h}(P_{\lambda}(t_{\lambda}), t_{\lambda}^{m_{\lambda}})t_{\lambda}^{-(n+1)m_{\lambda}}\sigma_{\lambda}\in t_{\lambda}^{(h-n-1)m_{\lambda+a_{\lambda}}}C\{t_{\lambda}\}$

and
$(h-n-1)m_{\lambda}+d_{\lambda}\geqq 0$ for $m-1-h+n\leqq k-1$ ,

we infer from (4) that

$f_{hn}=0$ , for $m-1-h+n\leqq k-1$ .
It follows that $f\in o(-kx)_{x},$ $q$ . $e$ . $d$ .

We remark that, in the case in which $x$ is a simple point of $C$ , the formula
(5) is reduced to the equality

$\mu O(-\mathfrak{d}_{x})_{p}=(O(-kx)_{C})_{x}$ , $p=\mu^{-1}(x)$ .
THEOREM 1. Let $C$ be an irreducible curve on $S$ and let $F$ denote a complex

line bundle over S. Moreover let $x$ and $y$ be distinct points of $C$ with respective
multiplicities $m$ and $n$ and let $h$ and $k$ denote non-negative integers. If

$FC-C^{2}-KC>(h-m+1)^{+}m+(k-n+1)^{+}n$ ,

then the cohomology group $H^{1}(C, \mathcal{O}(F-hx-ky)_{0})$ vanishes.
PROOF. In view of Lemma 2 and the above remark, we have the exact

sequence
$0\rightarrow o(\mu^{*}F-c-\mathfrak{d}_{x}-\mathfrak{d}_{y})\rightarrow o(F-hx-ky)_{C}\rightarrow M^{\prime\prime}\rightarrow 0$ ,

where $\mathfrak{d}_{x}$ and $\mathfrak{d}_{y}$ are effective divisors on $\tilde{C}$ of respective degrees $(h-m+1)^{+}m$

and $(k-n+1)^{\succ}n$ and $M^{\prime 1}$ is a sheaf over $C$ such that the stalk $M_{z}^{\prime\prime}$ vanishes
for every simple point $z$ of $C$ . Hence we obtain the exact sequence

. $\rightarrow H^{1}(\tilde{C}, O(\mu^{*}F-c-\mathfrak{d}_{x}-\mathfrak{d}_{y}))\rightarrow H^{1}(C, \mathcal{O}(F-hx-ky)_{C})\rightarrow 0$ .
Let $\mathfrak{k}$ denote the canonical bundle of $\tilde{C}$. Since

$f=\mu^{*}([C]+K)-[c]$

(see [2], \S 2), we have

$c(\mu^{*}F-[c+\mathfrak{d}_{x}+\mathfrak{d}_{y}]-\mathfrak{k})=FC-C^{2}-KC-(h-m+1)^{+}m-(k-n+1)^{+}n>0$ .
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Hence, using the duality theorem, we infer that

$H^{1}(\tilde{C}, o(\mu^{*}F-c-\mathfrak{d}_{x}-\mathfrak{d}_{y}))=0$ .
Combining this with the above exact sequence, we conclude that

$H^{1}(C, o(F-hx-ky)_{C})=0$ ,
$q$ . $e$ . $d$ .

THEOREM 2. Let $F$ be a complex line bundle over $S$ with $F^{2}>0$ . If there
exists a positive integer $m$ such that the complete linear system $|mF|$ has no
base point, then the cohomology group $H^{1}(S, O(F+K))$ vanishes.

PROOF. Let $\{\varphi_{0}, \varphi_{1}, \cdots , \varphi_{n}\}$ be a base of the linear space $H^{0}(S, O(mF))$ .
Since, by hypothesis, $|mF|$ has no base point,

$\Phi:z\rightarrow\Phi(z)=(\varphi_{0}(z), \varphi_{1}(z),$ $\varphi_{n}(z))$

is a holomorphic map of $S$ into a projective n-space $P^{n}$ . Suppose that the
image $\Phi(S)$ is a curve in $P^{n}$ . Then, for any pair of general hyperplanes $L_{\iota}$

and $L_{2}$ in $P^{n}$ , the intersection $\Phi(S)\cap L_{1}\cap L_{2}$ is empty. The inverse images
$D_{1}=\Phi^{-1}(L_{1})$ and $D_{2}=\Phi^{-1}(L_{2})$ are divisors belonging to $|mF|$ . It follows that
$m^{2}F^{2}=D_{1}D_{2}=0$ . This contradicts that $F^{2}>0$ . Thus we see that the image
$\Phi(S)$ is a surface in $P^{n}$ .

Let $\{U_{j}\}$ be a finite covering of $S$ by small open subsets $U_{j}$ . The complex
line bundle $F$ is determined by a l-cocycle $\{f_{jk}\}$ composed of non-vanishing
holomorphic functions $f_{jk}=f_{jk}(z)$ with respective domains $U_{j}\cap U_{k}$ . Let $\varphi_{\lambda j}(z)$}

denote the fibre coordinate of $\varphi_{\lambda}(z)$ over $U_{j}$ and let

$a_{j}(z)=(\sum_{\lambda=0}^{n}|\varphi_{\lambda j}(z)|^{2})^{\iota/m}$ , for $z\in U_{j}$ .

Since $|mF|$ has no base point, $a_{j}(z)$ is positive. Moreover, since

$\varphi_{\lambda j}(z)=f_{jk}(z)^{m}\varphi_{\lambda k}(z)$ , on $U_{j\cap}U_{k}$ ,
we have

$a_{j}(z)=|f_{jk}(z)|^{2}a_{k}(z)$ , on $U_{j\cap}U_{k}$ .
We let

$\gamma=-2\frac{i}{\pi}\sum_{\alpha,\beta=1}^{2}\gamma_{\alpha\beta}(z)dz^{\alpha}\wedge d\overline{z}^{\beta}=-2\frac{i}{\pi}\partial\overline{\partial}\log a_{f}(z)$ , $i=\sqrt{-1}$ ,

on each open set $U_{j}\subset S$ . The real d-closed $(1, 1)$-form $\gamma$ thus defined belongs
to the Chern class $c(F)$ of $F$ (see [3], Lemma). The $(1, 1)$-form $ m\gamma$ is induced
from a standard K\"ahler form on $P^{n}$ by the holomorphic map $\Phi:S\rightarrow P^{n}$, while
the image $\Phi(S)$ is a surface. Consequently, there exists a proper analytic sub-
set $N$ of $S$ such that the Hermitian matrix $(\gamma_{\alpha\beta}(z))$ is positive definite for every
point $z\in S-N$. Hence, applying a differential geometric method of [3], we
infer that $H^{1}(S, \mathcal{O}(F+K))$ vanishes (see Mumford [7]).
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\S 3. Composition series of pluri-canonical divisors.

Let $S$ be a non-singular algebraic surface and let $K$ denote a canonical
divisor on $S$ .

DEFINITION. We call $S$ a minimal non-singular algebraic surface of general
type if and only if $S$ is free from exceptional curves (of the first kind) and

(6) $P_{2}=\dim|2K|+1\geqq 1$ , $K^{2}\geqq 1$ .
We remark that, if $S$ is free from exceptional curves of the first kind and

if either $P_{2}=0$ or $K^{2}\leqq 0$ , then $S$ is one of the following five types of surfaces:
projective plane, ruled surface, $K3$ surface, abelian variety, elliptic surface (see

[4], Enriques [1], \v{S}afarevi\v{c} [8]).

In what follows in this paper we let $S$ denote a minimal non-singular alge-
braic surface of general type.

By a divisorial cycle on $S$ we shall mean a linear combination $\sum r{}_{t}C_{i}$ of a
finite number of irreducible curves $C_{i}$ on $S$ with rational coefficients $r_{i}$ . We
say that a divisorial cycle $\Sigma r_{i}C_{i}$ is positive if the coefficients $r_{i}$ are positive.
We indicate by the $symbol\sim homology$ with respect to rational coefficients. For
any divisorial cycles $\xi$ and $\eta$ on $S$ we denote by $\xi\eta$ the intersection multiplicity
of $\xi$ and $\eta$ We write $\xi^{2}$ for $\xi\xi$ . Since, by hypothesis, $K^{2}\geqq 1$ , the following
lemma is an immediate consequence of Hodge’s index theorem (see Zariski
[9], \S 6):

LEMMA 3. Let $\zeta$ be a divisorial cycle on S. If $K\zeta=0$ and if $\zeta_{7}\circ 0$ , then
$\zeta^{2}$ is negative.

In connection with this lemma, we note that every positive divisorial cycle
on $S$ is not homologous to zero.

We have the inequality: $KC\geqq 0$ for every irreducible curve $C$ on $S$ . More-
over the equality: $KC=0$ holds if and only if $C$ is a non-singular rational
curve with $C^{2}=-2$ (see Mumford [6]). In fact, since, by hypothesis, $P_{2}\geqq 1$ ,

the bicanonical system $|2K|$ contains a positive divisor $D$ . If $KC<0$ , then
$DC<0$ and therefore $C^{2}$ is a negative integer, while $C^{2}+KC=2\pi(C)-2$ . Hence
$\pi(C)=0,$ $C^{2}=-1$ and thus $C$ is an exceptional curve of the first kind. If
$KC=0$ , then, by Lemma 3, we have

$2\pi(C)-2=C^{2}+KC=C^{2}<0$ .
This proves that $\pi(C)=0$ and $C^{2}=-2$ .

THEOREM 3. The number of those irreducible curves $E$ on $S$ which satisfy
the equation: $KE=0$ is smaller than the second Betti number $b_{2}$ of $S$ .

PROOF. Let $E_{1},$ $\cdots$ , $E_{i},$ $\cdots$ , $E_{n}$ be irreducible curves on $S$ such that $KE_{i}=0$ .
For our purpose it suffices to show that the curves $E_{i}$ are homologically inde-
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pendent. Assume a homology

$\sum_{\iota=1}^{k}r_{i}E_{i}\sim\sum_{i=k+1}^{n}r_{i}E_{i}$ , $r_{i}\geqq 0$ .
Then we have

$(\sum_{1}^{k}r_{i}E_{i})^{2}=(\sum_{k+1}^{n}r_{i}E_{i})^{2}=\sum_{t=1}^{k}\sum_{J=k+1}^{n}r_{i}r_{j}E_{i}E_{j}\geqq 0$ .

Hence we infer from Lemma 3 that the coefficients $r_{i}$ vanish, $q$ . $e$ . $d$ .
We denote by $\mathcal{E}$ the sum of all the irreducible curves $E_{i}$ on $S$ satisfying

$KE_{i}=0$ :
$8=E_{1}+\cdots+E_{i}+\cdots+E_{b}$ , $b<b_{2}$ .

Obviously the vanishing of $KE_{i}$ implies that the canonical bundle $K$ is trivial
on the non-singular rational curve $E_{i}$ .

Let $e$ be a positive integer such that $\dim|eK|\geqq 0$ and let $D$ denote a pluri-
canonical divisor belonging to the system $|eK|$ .

LEMMA 4. If $D$ is a sum: $D=X+Y$ of two positive divisors $X$ and $Y$,

then we have the inequality:
$XY\geqq 1$ .

PROOF. We let

$ X=rK+\xi$ , $r=KX/K^{2},$ $K\xi=0$ ,

$ Y=sK+\eta$ , $s=KY/K^{2},$ $K\eta=0$ ,

where $\xi$ and $\eta$ are divisorial cycles. Since $X+Y=D\approx eK$, we have a homo-
logy: $\xi+\eta\sim 0$ . Hence we obtain

X $Y=rsK^{2}-\xi^{2}$ .
On the other hand, $r$ and $s$ are non-negative and, since the positive divisors $X$

and $Y$ are not homologous to zero, if $\xi\sim 0$ then $rs$ is positive. If $\xi_{7^{6}}0$ , then,
by Lemma 3, $\xi^{2}$ is negative. Consequently, $XY$ is a positive integer, $q$ . $e$ . $d$ .

We represent the pluri-canonical divisor $D$ as a sum:

$D=\sum_{i=1}^{n}C_{i}=C_{1}+\cdots+C_{i}+$ $+C_{n}$

of irreducible curves $C_{i}$ and let

$D_{i}=C_{1}+C_{2}+\cdots+C_{i}$ .

We call the representation: $\sum_{i=1}^{n}C_{i}$ a composition series. Since $KD=eK^{2}\geqq K^{2}\geqq 1$ ,

at least one irreducible component $\Theta$ of $D$ satisfies the inequality: $K\Theta\geqq 1$ .
LEMMA 5. Let $\Theta$ be an irreducible component of $D$ with $K\Theta\geqq 1$ . There

exists a composition series $D=\sum_{i=1}^{n}C_{i}$ with $ C_{1}=\Theta$ satisfying the condition
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$(\alpha)$ $KC_{1}\geqq 1$ , $D_{i-1}C_{i}\geqq 1$ for $i=2,3,$ $\cdots$ , $n$ .
PROOF. We choose the components $C_{2},$ $C_{8},$ $\cdots$ of $D$ successively by induc-

tion. Suppose that we have chosen $C_{1}=\Theta,$ $C_{2},$ $\ldots$ , $C_{i-1}$ such that

$D_{j-1}C_{j}\geqq 1$ , for $j=2,3,$ $\cdots$ , $i-1$ ,

and let
$D=D_{i- 1}+Z_{i}$ ,

where $D_{j-1}=C_{1}+\cdots+C_{j-1}$ . If $Z_{i}>0$ , then, by Lemma 4, $D_{i-1}Z_{i}\geqq 1$ and there-
fore at least one irreducible curve $C\leqq Z_{i}$ has $D_{i-1}C\geqq 1$ . Hence, letting $C_{i}=C$,

we obtain
$D_{i-1}C_{i}\geqq 1$ ,

$q.e$ . $d$ .
LEMMA 6. Let $E_{1}$ and $E_{2}$ be irreducible curves on $S$ satisfying the condition

that $KE_{1}=KE_{2}=E_{1}E_{2}=0$ . If $D$ is a sum:
$D=X+Y+E_{1}+E_{2}$

of $E_{1},$ $E_{2}$ and two positive divisors $X,$ $Y$ and if $KX>0,$ $KY>0$ , then $XY$ is
non-negative.

PROOF. We write
$ X=rK+r_{1}E_{1}+r_{2}E_{2}+\xi$ , $K\xi=E_{1}\xi=E_{2}\xi=0$ ,

$ Y=sK+s_{1}E_{1}+s_{2}E_{2}+\eta$ , $K\eta=E_{1}\eta=E_{2}\eta=0$ ,

where $\xi$ and $\eta$ are divisorial cycles. Since $E_{1}^{2}=E_{2}^{2}=-2$ , the coefficients $r,$ $s$ ,
$r_{\nu},$ $s_{\nu},$ $\nu=1,2$ , are given by the formulae:

$K^{2}r=KX$, $K^{2}s=KY$ , $-2r_{\nu}=E_{\nu}X$, $-2s_{\nu}=E_{\nu}Y$ .
The linear equivalence $X+Y+E_{1}+E_{2}\approx eK$ implies that

$1+r_{1}+s_{1}=0$ , $1+r_{2}+s_{2}=0$ , $\xi+\eta\sim 0$ .
Hence we obtain

$XY=rsK^{2}-2r_{1}s_{1}-2r_{2}s_{2}+\xi\eta=rsK^{2}+\sum_{n=1}^{2}2r_{\nu}(r_{\nu}+1)-\xi^{2}\geqq rsK^{2}-1-\xi^{2}$ .

Since, by hypothesis, $r$ and $s$ are positive and, by Lemma 3, $\xi^{2}\leqq 0$ , this proves
that $XY>-1$ , while $XY$ is an integer. Consequently $XY$ is non-negative,
$q$ . $e$ . $d$ .

We write the curve $\mathcal{E}=E_{1}+E_{2}+\cdots+E_{b}$ as a sum:
$e=\epsilon_{1}+\cdots+8_{\nu}+$ $+e_{\kappa}$

of connected components $8_{\nu}$ . We shall say that a positive divisor $X$ meets $D$

if there exists a point $z$ such that $z\in X,$ $z\in D$ . Since $DE_{i}=eKE_{i}=0$ , if $E_{i}$

meets $D$ , then $E_{i}$ is a component of $D$ . Hence, if $8_{\nu}$ meets $D$ , then $8_{\nu}<D$ .
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LEMMA 7. If $\epsilon_{\lambda}+\epsilon_{\nu}<D,$ $\lambda\neq\nu$ , then there exists a composition series
$D=\sum_{\iota=1}^{n}C_{i}$ with $C_{n- 1}<8_{\lambda},$ $C_{n}<8_{\nu}$ , which satisfies the condition

$(\beta)$ $D_{i-1}C_{i}\geqq 0$ , $KC_{i}+D_{i-1}C_{i}\geqq 1$ , for $i=1,2,$ $\cdots$ , $n$ .
PROOF. We may assume that $E_{1}<\mathcal{E}_{\lambda},$ $E_{2}<8_{\nu}$ . Suppose that we have

chosen $C_{1},$ $\cdots$ , $C_{j},$ $\cdots$ , $C_{i-1}$ satisfying

$(\beta_{j})$ $D_{j-1}C_{j}\geqq 0$ , $KC_{j}+D_{j- 1}C_{j}\geqq 1$ , for $j=1,2,$ $\cdots$ , $i-1$ ,

in such a manner that

$D=D_{i-1}+X_{i}+E_{1}+E_{2}$ , $X_{i}\geqq 0$ ,

where $D_{j-1}=C_{1}+\cdots+C_{j-1}$ . Then we have two alternatives: either $KX_{i}=0$ or
there is an irreducible curve $C\leqq X_{i}$ satisfying the condition:

(7) $D_{i-1}C\geqq 0$ , $KC+D_{i-}{}_{1}C\geqq 1$ .

In fact, since $KD_{i-1}\geqq KC_{1}\geqq 1$ , if $KX_{\dot{t}}>0$ , then, by Lemma 6, $D_{i-1}X_{i}$ is non-
negative. It follows that either there is an irreducible curve $C\leqq X_{i}$ with
$D_{i-1}C\geqq 1$ or every irreducible curve $C\leqq X_{i}$ satisfies the equation: $D_{i-}{}_{1}C=0$ .
If $D_{i-1}C\geqq 1$ for an irreducible curve $C\leqq X_{i}$ , then the curve $C$ satisfies (7).

The inequality: $KX_{i}>0$ implies that an irreducible curve $C\leqq X_{i}$ satisfies
$KC\geqq 1$ . If $D_{i-1}C=0$ , then this curve $C$ satisfies (7).

If there exists an irreducible curve $C\leqq X_{i}$ satisfying (7), then, letting
$C.=C$ and $D_{i}=D_{i-1}+C_{i}$ , we get

$(\beta_{i})$ $D_{i-1}C_{i}\geqq 0$ , $KC_{i}+D_{i-1}C_{i}\geqq 1$ ,

and
$D=D_{i}+X_{i+1}+E_{1}+E_{2}$ , $X_{i+1}\geqq 0$ .

Thus we choose $C_{1},$ $\cdots$ , $C_{i},$ $\cdots$ , $C_{h}$ satisfying

$D_{i-1}C_{i}\geqq 0$ , $KC_{i}+D_{i- 1}C_{i}\geqq 1$ , for $i=1,2,$ $\cdots$ , $h$ ,

where $D_{i-1}=C_{1}+\cdots+C_{i-1}$ , such that

$D=C_{1}+$ $+C_{h}+X+E_{1}+E_{2}$ , $X\geqq 0,$ $KX=0$ .
Now, with the aid of Lemma 4, we extend the series $C_{1}+\cdots+C_{h}$ to a

composition series
$D=C_{1}+\cdots+C_{h}+C_{h+1}+\cdots+C_{n}$

such that

(8) $(C_{1}+ +C_{h}+\cdots+C_{i-1})C_{i}\geqq 1$ , for $i=h+1,$ $\cdots$ , $n$ .
Note that $C_{i}<\mathcal{E}$ for $i=h+1$ , $\cdot$ .. , $n$ . If $C_{j}C_{j+1}=0$ for an integer $j,$ $h<j<n$ ,

then the inequalities (8) are not affected by the permutation: $C_{j}\rightarrow C_{j+1},$ $C_{j+1}\rightarrow C_{\dot{P}^{\alpha}}$
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Moreover $E_{1}<\mathcal{E}_{\lambda}$ and $E_{2}<\mathcal{E}_{\nu}$ appear among the irreducible components $C_{i},$ $i$

$=h+1,$ $\cdots$ , $n$ . Hence, by means of an appropriate permutation of the com-

ponents $C_{h+1},$ $C_{h+2},$ $\cdots$ , $C_{n}$ , we obtain a composition series $D=\sum_{i=1}^{n}C_{i}$ satisfying

the condition $(\beta)$ such that $C_{n-1}<8_{\lambda},$ $C_{n}<8_{\nu},$ $q$ . $e$ . $d$ .
In a similar manner we obtain the following

LEMMA 8. If $\mathcal{E}_{\lambda}<D$, then there exists a composition series: $D=\sum_{i=1}^{1}C_{i}$ with
$C_{n}<8_{\lambda}$ which satisfies the above condition $(\beta)$ .

\S 4. Pluri-canonical systems.

In this section we denote by $K$ the canonical bundle of $S$ . Let $e$ be a
positive integer such that $\dim|eK|\geqq 0$ and let $D$ be a member of $|eK|$ . More-
over let $m$ denote an integer $>e$ . For any composition series:

$D=C_{1}+C_{2}+\cdots+C_{i}+\cdots+C_{n}$ ,

we let
$Z_{i}=C_{i}+C_{i+1}+\cdots+C_{n}$ , $Z_{n+1}=0$ ,

and define
$F_{i}=mK-[Z_{i}]$ .

Then, by a simple calculation, we obtain

$\lambda 9)$ $F_{i+1}C_{i}-C_{i^{2}}-KC_{i}=(m-e-1)KC_{i}+D_{i-1}C_{i}$ .
Let $x$ and $y$ be distinct points of $D$ and let

$--\iota=o(mK-Z_{i}-hx-ky)=O(mK-Z_{i})\cap O(mK-hx-ky)$ ,

where $h$ and $k$ are non-negative integers. We consider the ascending chain:
$ E_{1}\subset\Xi_{2}\subset$ $\subset\Xi_{i}\subset\ldots\subset E_{n+1}=o(mK-hx-ky)$ .

We assume that the multiplicities of the points $x$ and $y$ of $D$ are not smaller
than $h$ and $k$ , respectively, and that

$\Xi_{i+1}/\Xi_{i}\cong o(F_{i+1}-h_{i}x-k_{i}y)_{C_{i}}$ ,

where $h_{i}$ and $k_{i}$ are non-negative integers.
LEMMA 9. If

$(m-e-1)KC_{i}+D_{i-1}C_{i}>\frac{1}{4}(h_{i}+1)^{2}+-4-(k_{i}+1)^{2}1$ , for $i=1,2,$ $\cdots$ , $n$ ,

then we have the inequalities

\langle 10) $\dim H^{1}(S, O((m-e)K))\geqq\dim H^{1}(S, \Xi_{i})$ , $i=2,3,$ $\cdots$ , $n+1$ .
PROOF. According as $x\in C_{i}$ or $x\in\in C_{i}$ , we define $m_{i}$ to be the multiplicity

of the point $x$ of $C_{i}$ or zero. Similarly, according as $y\in C_{i}$ or $yGC_{i}$ , we define



182 K. KODAIRA

$n_{i}$ to be the multiplicity of the point $y$ of $C_{i}$ or zero. Since

$-4-(h_{i}+1)^{2}+\frac{1}{4}(k_{i}+1)^{2}1\geqq(h_{i}-m_{i}+1)^{+}m_{i}+(k_{\iota}-n_{i}+1)^{\vdash}n_{i}$ ,

we infer from Theorem 1 and the formula (9) that

$H^{1}(S, \Xi_{i+1}/\dot{u}_{i}-)\cong H^{1}(C_{i}, \mathcal{O}(F_{i+1}-h_{i}x-k_{i}y)_{C_{i}})=0$ .
It follows that the sequences

$H^{1}(S, --i)\rightarrow H^{1}(S, --t+1)\rightarrow 0$

are exact, while
$--1=\mathcal{O}(mK-D)\cong \mathcal{O}((m-e)K)$ .

Hence we obtain the inequalities (10), $q$ . $e$ . $d$ .
LEMMA 10. There exists an integer $m_{0}$ such that

(11) $\dim H^{1}(S, \mathcal{O}((m-e)K))=\dim H^{1}(S, \mathcal{O}(mK))$ , for $m\geqq m_{()}$,

(see Zariski [9]).

PROOF. With the aid of Lemma 5, we choose a composition series:
$D=\sum_{i=1}^{n}C_{i}$ satisfying the condition $(\alpha)$ and let

$\Xi_{i}=o(mK-Z_{i})$ .
We have

$--i+1/--i\cong o(F_{i+1})/O(F_{i+1}-C_{i})=O(F_{i+1})_{C_{i}}$ .
Assume that $m\geqq e+2$ . Then it follows from the condition $(\alpha)$ that

$(m-e-1)KC_{i}+D_{i-1}C_{i}\geqq 1$ .
Hence, by Lemma 9, we have the inequality

$\dim H^{1}(S, \mathcal{O}((m-e)K))\geqq\dim H^{1}(S, \mathcal{O}(mK))$ .

Hence we infer readily the existence of an integer $m_{0}$ such that the equality
(11) holds for $m\geqq m_{0},$ $q$ . $e$ . $d$ .

For any point $x\in S$, we have the exact sequence

$0\rightarrow o(mK-x)\rightarrow \mathcal{O}(mK)\rightarrow C_{x}\rightarrow 0$

(see (1)) and the corresponding exact cohomology sequence

(12) $0\rightarrow H^{0}(S, G(mK-x))\rightarrow H^{0}(S, \mathcal{O}(mK))\rightarrow C$

$\rightarrow H^{1}(S, \mathcal{O}(mK-x))\rightarrow H^{1}(S, \mathcal{O}(mK))\rightarrow 0\rightarrow\cdots$ .
THEOREM 4. Let $e$ be a positive integer such that $P_{e}\geqq 2,$ $eK^{2}\geqq 2_{R}^{\neg}If$

$m\geqq e+2$ and if $m\geqq m_{0}$ , then, for every point $x\in S$ , the sequence

(13) $0\rightarrow H^{0}(S, \mathcal{O}(mK-x))\rightarrow H^{0}(S, \mathcal{O}(mK))\rightarrow C\rightarrow 0$
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is exact.
PROOF. Since $\dim|eK|=P_{e}-1\geqq 1$ , we find a divisor $D\in|eK|$ such that

$x\in D$ .
I) The case in which $x\not\in S$ . We choose a composition series: $D=\sum_{i=1}^{n}C_{i}$

satisfying the condition $(\alpha)$ and let

$--i^{=o(mK-Z_{i}-x)}$ .
We find an integer $h$ such that $x\in C_{h},$ $x\not\in Z_{h+1}$ . Since $C_{h}\{S$, we have $KC_{h}\geqq 1$ .
Moreover, we may assume that $KC_{h}\geqq 2$ if $h=1$ . In fact, since, by hypothesis,

$KD=eK^{2}\geqq 2$ ,

if $KC_{h}=1$ , then there exists an irreducible curve $\Theta\leqq D-C_{h}$ with $K\Theta\geqq 1$ . In
view of Lemma 5, we may assume that $ C_{1}=\Theta$ . It follows that $h\geqq 2$ .

Since $x\in Z_{i}$ for $i\leqq h$ , we have

$\Xi_{i}=O(mK-Z_{i})$ , for $i\leqq h$ .
We have the commutative diagram:

$O(mK-Z_{h})\subset O(mK-Z_{h+1}-x)$

$l||$ Zll
$O(F_{h+1}-C_{h})\subset O(F_{h+1}-x)$ .

Hence we obtain the isomorphism:

$--h+1/\Xi_{h}\cong O(F_{h+1}-x)_{G_{h}}$ .
Thus we infer that

$\Xi_{i+1}/\Xi_{i}\cong o(F_{i+1}-\delta_{ih}x)_{C_{i}}$ ,

where $\delta_{ih}$ denotes Kronecker’s delta. Since $m-e\geqq 2$ and $KC_{h}\geqq 1+\delta_{h1}$ , it fol-
lows from the condition $(\alpha)$ that

$(m-e-1)KC_{i}+D_{i- 1}C_{i}\geqq 1+\delta_{ih}$ .
Hence, by Lemma 9, we have the inequality

$\dim H^{1}(S, \mathcal{O}((m-e)K))\geqq\dim H^{1}(S, \mathcal{O}(mK-x))$ .
Combining this with (11) and (12), we infer the exactness of (13).

II) The case in which $x\in 8_{\lambda}$ . With the aid of Lemma 8, we choose a

composition series: $D=\sum_{\tau=1}^{n}C_{i}$ with $C_{n}<8_{\lambda}$ which satisfies the condition $(\beta)$

and let
$\Xi_{i}=o(mK-Z_{i})$ .

Since $-i+1-/\Xi_{i}\cong O(F_{i+1})_{C_{i}}$ and

$(m-e-1)KC_{i}+D_{i-1}C_{i}\geqq KC_{i}+D_{i-1}C_{i}\geqq 1$ ,

we have, by Lemma 9,
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$\dim H^{1}(S, \mathcal{O}((m-e)K))\geqq\dim H^{1}(S, E_{n})$ .
Combined with (11), this proves that

$\backslash (14)$ $\dim H^{1}(S, G(mK))\geqq\dim H^{1}(S, \mathcal{O}(mK-C_{n}))$ .
Since $K$ is trivial on $C_{n}$ , we have the exact sequence

$0\rightarrow O(mK-C_{n})\rightarrow O(mK)\rightarrow 0_{c_{n}}\rightarrow 0$ .
Moreover $C_{n}$ is a non-singular rational curve. Hence we obtain the exact
sequence

$0\rightarrow H^{0}(S, \mathcal{O}(mK-C_{n}))\rightarrow H^{0}(S, \mathcal{O}(mK))\rightarrow C$

$\rightarrow H^{1}(S, \mathcal{O}(mK-C_{n}))\rightarrow H^{1}(S, \mathcal{O}(mK))\rightarrow 0$ .
Combining this with (14), we infer that the sequence

$0\rightarrow H^{0}(S, \mathcal{O}(mK-C_{n}))\rightarrow H^{0}(S, O(mK))\rightarrow C\rightarrow 0$

is exact, while every holomorphic section $\varphi\in H^{0}(S, \mathcal{O}(mK))$ is reduced to a
constant on $\mathcal{E}_{\lambda}$ . Hence the exactness of (13) follows.

THEOREM 5. The cohomology group $H^{1}(S, \mathcal{O}(mK))$ vanishes for every integer
$m\geqq 2$ .

PROOF. Let $e$ be a positive integer such that $P_{e}\geqq 2,$ $eK^{2}\geqq 2$ . The exist-
ence of such an integer $e$ is obvious by the Riemann-Rock theorem. Let
$k=m-1$ and choose a positive integer $n$ such that $nk\geqq e+2+m_{0}$ . By Theo-
rem 4, the sequence

$0\rightarrow H^{0}(S, \mathcal{O}(nkK-x))\rightarrow H^{0}(S, \mathcal{O}(nkK))\rightarrow C\rightarrow 0$

is exact for every point $x\in S$ . It follows that the complete linear system
$|nkK|$ has no base point, while $(kK)^{2}=k^{2}K^{2}>0$ . Hence, by Theorem 2,

$H^{1}(S, \mathcal{O}(mK))=H^{1}(S, G(kK+K))=0$ ,

$q.e$ . $d$ .
COROLLARY. The pluri-genera $P_{m},$ $m\geqq 2$ , are given by the formula:

(15) $P_{m}=\frac{1}{2}m(m-1)K^{2}+p_{g}-q+1$ .

THEOREM 6. Let $e$ be a positive integer such that $P_{e}\geqq 2,$ $eK^{2}\geqq 2$ . If
$m\geqq e+2$, then the pluri-canonical system $|mK|$ has no base point and the map
$\Phi_{mK}$ is holomorphic.

PROOF. It follows from Theorem 5 that $m_{0}=e+2$ , where $m_{0}$ is the integer
appeared in (11). Hence we infer from Theorem 4 that, if $m\geqq e+2$, then $|mK|$

has no base point and, consequently, $\Phi_{mK}$ is a holomorphic map, $q.e$ . $d$ .
For any pair of distinct points $x$ and $y$ on $S$ , we have the exact sequence

$0\rightarrow \mathcal{O}(mK-x-y)\rightarrow \mathcal{O}(mK)\rightarrow C_{x}\oplus C_{y}\rightarrow 0$
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(see (1)) and the corresponding exact cohomology sequence

$...\rightarrow H^{0}(S, O(mK))\rightarrow C^{2}\rightarrow H^{1}(S, \mathcal{O}(mK-x-y))\rightarrow\cdots$ .
We shall say that $x$ and $y$ are distinct modulo 8 if $x$ and $y$ are distinct and
not contained in one and the same connected component of $\mathcal{E}$ .

THEOREM 7. Let $e$ be a positive integer such that $P_{e}\geqq 3,$ $eK^{2}\geqq 2$ . If
$m\geqq e+3$ , then, for any pair of points $x$ and $y$ on $S$ which are distinct modulo
8, the sequence

(16) $0\rightarrow H^{0}(S, O(mK-x-y))\rightarrow H^{0}(S, \mathcal{O}(mK))\rightarrow C^{2}\rightarrow 0$

is exact.
PROOF. Since $\dim|eK|=P_{e}-1\geqq 2$, we flnd a divisor $D\in|eK|$ such that

$x\in D,$ $y\in D$ .
I) The case in which $x,$ $y\not\in 8$ . With the aid of Lemma 5, we choose a

composition series: $D=\sum_{=1}^{n}C_{i}$ satisfying the condition $(\alpha)$ and let

$--i^{=O(mK-Z_{i}-x-y)}$ .
We find $h$ and $j$ such that $x\in C_{h},$ $\chi\not\in Z_{h+1},$ $y\in C_{j},$ $y\in\in Z_{j+1}$ . Then we have

$--i+1/--\iota\cong O(F_{i+1}-\delta_{ih}x-\delta_{ij}y)_{C_{i}}$ .

Since $C_{h}\{8,$ $C_{j}\{\mathcal{E}$ , we have $KC_{h}\geqq 1,$ $KC_{j}\geqq 1$ and, as was mentioned in the
proof of Theorem 4, we may assume that $KC_{1}\geqq 2$ if $h$ is equal to 1. The
condition $(\alpha)$ implies therefore that

$(m-e-1)KC_{i}+D_{i-1}C_{i}\geqq 1+\delta_{ih}+\delta_{ij}$ .

Hence, by Lemma 9 and Theorem 5, $H^{1}(S, \Xi_{n+1})$ vanishes. It follows that the
sequence (16) is exact.

II) The case in which $\chi\in c_{\lambda},$ $y\in 8_{\nu},$ $\lambda\neq\nu$ . With the aid of Lemma 7, we
choose a composition series: $D=\sum_{x=1}^{n}C_{i}$ with $C_{n-1}<8_{\lambda},$ $C_{n}<8_{\nu}$ which satisfies
the condition $(\beta)$ and let

$--i=G(mK-Z_{i})$ .
Since $-i+1-/\Xi_{i}\cong \mathcal{O}(F_{i+1})_{C_{i}}$ and

$(m-e-1)KC_{i}+D_{i-1}C_{i}\geqq KC_{i}+D_{i-1}C_{i}\geqq 1$ ,

we infer from Lemma 9 and Theorem 5 that

(17) $H^{1}(S, o(mK-C_{n-1}-C_{n}))=0$ .
Since $K$ is trivial on $C_{n-1}$ and on $C_{n}$ , we have the exact sequence

$0\rightarrow O(mK-C_{n-1}-C_{n})\rightarrow O(mK)\rightarrow 0_{c_{n-1}}\oplus 0_{c_{n}}\rightarrow 0$ .

Combining this with (17), we infer that the sequence
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$0\rightarrow H^{0}(S, O(mK-C_{n-1}-C_{n}))\rightarrow H^{0}(S_{-}^{\vee}O(mK))\rightarrow C^{2}\rightarrow 0$

is exact, while every holomorphic section $\varphi\in H^{0}(S, o(mK))$ is reduced to a
constant on each connected component of $\mathcal{E}$ . Hence the exactness of (16) fol-
lows.

III) The case in which $x\not\in \mathcal{E},$ $y\in\epsilon_{\lambda}$ . We choose a composition series:
$D=\sum_{i=1}^{n}C_{i}$ with $C_{n}<\mathcal{E}_{\lambda}$ satisfying the condition $(\beta)$ and let

$--i=o(mK-Z_{i}-x)$ .
We find $h$ such that $x\in C_{h},$ $xGZ_{h+1}$ . Then we have

$--i+1/\Xi_{i}\cong o(F_{i+1}-\delta_{ih}x)_{C_{i}}$ .
Moreover, since $KC_{h}\geqq 1$ , we have

$(m-e-1)KC_{i}+D_{i-1}C_{i}\geqq 1+\delta_{i\hslash}$ .
Hence, by Lemma 9 and Theorem 5, we get

$H^{1}(S, O(mK-C_{n}-x))=0$ .
Combining this with the exact sequence

$0\rightarrow O(mK-C_{n}-x)\rightarrow O(mK)\rightarrow O_{c_{n}}\oplus C_{x}\rightarrow 0$ ,

we infer that the sequence

$0\rightarrow H^{0}(S, O(mK-C_{n}-x))\rightarrow H^{0}(S, O(mK))\rightarrow C^{2}\rightarrow 0$

is exact. Hence the exactness of (16) follows, $q$ . $e$ . $d$ .
Now we consider the exact sequence

$0\rightarrow o(mK-2x)\rightarrow O(mK)\rightarrow C_{x}^{\theta}\rightarrow 0$ .
THEOREM 8. Let $e$ be a positive integer such that $P_{e}\geqq 4,$ $eK^{2}\geqq 2$ . If

$m\geqq e+3$ and if $xG8$, then the sequence

(18) $0\rightarrow H^{0}(S, \mathcal{O}(mK-2x))\Rightarrow H^{0}(S, \mathcal{O}(mK))\rightarrow C\rightarrow 0$

is exact.
PROOF. Since, by hypothesis, $\dim|eK|=P_{e}-1\geqq 3$ , we find a divisor $D\in|eK|$

such that $x$ is a multiple point of $D$ . We choose a composition series: $D=\sum_{i=1}^{n}C_{i}$

satisfying the condition $(\alpha)$ and let

$--i=O(mK-Z_{i}-2x)$ .
We find $h$ such that $x\in C_{h},$ $x\in EZ_{h+1}$ . As was mentioned in the proof of
Theorem 4, we may assume that $KC_{h}\geqq 2$ if $h=1$ . To prove the exactness of
(18) it suffices to show the vanishing of $H^{1}(S, \Xi_{n+1})$ .

i) If $x$ is a multiple point of $C_{h}$ , then
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$--i=o(mK-Z_{i})$ , for $i\leqq h$ ,

and therefore
$\Xi_{i+1}/--i\cong \mathcal{O}(F_{i+1}-2\delta_{i\hslash}x)_{c_{i}}$ .

Since $m-e\geqq 3$ and $KC_{1}\geqq 1+\delta_{h1}$ , it follows from the condition $(\alpha)$ that

$(m-e-1)KC_{i}+D_{i-1}C_{i}\geqq 1+2\delta_{ih}$ .
Hence, by Lemma 9 and Theorem 5, $H^{1}(S, --n+1)$ vanishes.

ii) If $x$ is a simple point of $C_{h}$ , then we find an integer $j<h$ such that

$x\in C_{j}$ , $x\not\in C_{j+1}+C_{j+2}+$ $+C_{h- 1}$ .
Since $x$ is a simple point of $Z_{j+1}$ , we have the isomorphism:

$o(mK-Z_{j+1}-2x)\cong O(F_{j+1}-x)$ .
Moreover we have the commutative diagram:

$\mathcal{O}(mK-Z_{j})\subset \mathcal{O}(mK-Z_{j+1}-2x)$

Zll Zll
$\mathcal{O}(F_{j+1}-C_{j})\subset \mathcal{O}(F_{j+1}-x)$ .

Hence $-j+1/-j$ is isomorphic to $o(F_{j+1}-x)_{C_{j}}$ . Thus we see that

$--t+1/--i\cong \mathcal{O}(F_{i+1}-(\delta_{ij}+2\delta_{ih})x)_{c_{i}}$ .
Moreover, since $KC_{j}\geqq 1,$ $KC_{h}\geqq 1$ , the condition $(\alpha)$ implies that

$(m-e-1)KC_{i}+D_{i-}{}_{1}C_{i}\geqq 1+\delta_{ij}+2\delta_{ih}$ .
Hence, by Lemma 9 and Theorem 5, $H^{1}(S, --n+1)$ vanishes, $q$ . $e$ . $d$ .

Let $\Phi$ be a holomorphic map of $S$ into a complex manifold. We shall say
that $\Phi$ is one-to-one modulo $\mathcal{E}$ if any only if

$\Phi^{-1}\Phi(z)=\left\{\begin{array}{l}z, forz\in S-\mathcal{E}_{\prime}\\8_{\lambda} forz\in 8_{\lambda}.\end{array}\right.$

Moreover we say that $\Phi$ is biholomorphic modulo $\mathcal{E}$ if $\Phi$ is one-to-one modulo
8 and biholomorphic on $S-8$ .

THEOREM 9. Let $e$ be a positive integer such that $P_{e}\geqq 3,$ $eK^{2}\geqq 2$ . For
every integer $m\geqq e+3$ , the map $\Phi_{mK}$ is holomorphic and one-to-one modulo $\mathcal{E}$ .

PROOF. We infer from Theorem 7 that $\Phi_{mR}$ is holomorphic and $\Phi_{mK}(x)$

$\neq\Phi_{mK}(y)$ for any pair of points $x,$ $y$ on $S$ which are distinct modulo $\mathcal{E}$ . More-
over the image $\Phi_{mK}(\epsilon_{\lambda})$ of each component $\mathcal{E}_{\lambda}$ is a point, since $K$ is trivial on
$e_{\lambda},$ $q$ . $e$ . $d$ .

The exactness of the sequence (18) implies that $\Phi_{mK}$ is biholomorphic in a
neighborhood of $x$ on $S$ . Hence we infer from Theorems 8 and 9 the following

THEOREM 10. Let $e$ be a positive integer such that $P_{e}\geqq 4,$ $eK^{2}\geqq 2$ . For
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every integer $m\geqq e+3$ , the map $\Phi_{mK}$ is holomorphic and biholomorphic modulo $\mathcal{E}$ .
LEMMA 11. If $p_{g}=0$ , then $q=0$ .
PROOF. We have the Noether formula:

$8q+K^{2}+b_{2}=12p_{g}+10$ ,

where $b_{2}$ denotes the second Betti number of $S$ . Since $K^{2}\geqq 1$ , this formula
proves that, if $p_{g}=0$ , then $q\leqq 1$ . Suppose that $q=1$ . Then there exists a
holomorphic map $\Psi$ of $S$ onto an elliptic curve $\Delta$ such that the inverse image
$C=\Psi^{-1}(u)$ of any general point $ u\in\Delta$ is an irreducible non-singular curve.
Since $C^{2}=0,$ $C$ and $K$ are homologically independent. It follows that $b_{2}\geqq 2$ .
This contradicts the Noether formula. Thus we infer that $q=0,$ $q$ . $e$ . $d$ .

LEMMA 12. If $K^{2}=1$ , then $p_{g}\leqq 2$ and $q\leqq 1$ .
PROOF. i) Assume that $p_{g}\geqq 2$ . Any general member of $|K|$ is an irre-

ducible non-singular curve of genus 2. To prove this we let $D$ denote a
general member of $|K|$ . The general member $D$ has an irreducible component
$C$ with $C^{2}\geqq 0$ . Since $KD=K^{2}=1$ , we have

$D=C+X$ , $X\geqq 0$ , $KC=1$ , $KX=0$ ,

while
$C^{2}=2\pi(C)-2-KC$ , $C^{2}+CX=KC$ .

Hence we infer that $CX=0$ and therefore, by Lemma 4, $X=0$ . Thus we see
that $D=C$ . If follows that $\pi(C)=2$ . By a theorem of Bertini, $C$ has no sin-
gular point outside the base points of $|K|$ , while, since $C^{2}=1$ , any base point
of $|K|$ is a simple point of $C$ . Hence $C$ is a non-singular curve. It is clear
that

$\dim H^{0}(C, \mathcal{O}([C])_{C})\leqq 1$ .
Combining this with the exact sequence

$ 0\rightarrow H^{0}(S, 0)\rightarrow H^{0}(S, \mathcal{O}(C))\rightarrow H^{0}(C, o([C])_{C})\rightarrow\cdots$

we obtain the inequality

$p_{g}=\dim H^{0}(S_{\nearrow}\mathcal{O}(C))\leqq 2$ .
ii) Since $P_{2}\geqq p_{g}$ , we infer from (15) that

$q=K^{2}+1+p_{g}-P_{2}\leqq 2$ .
iii) Now we assume that $q=2$ and derive a contradiction. There exist

on $S$ two linearly independent holomorphic l-forms $\varphi_{1}$ and $\varphi_{2}$ .
If $\varphi_{1}\Lambda\varphi_{2}=0$ , then there exists a holomorphic map $\Psi$ of $S$ onto a non-

singular algebraic curve $\Delta$ of genus 2 such that the inverse image $\Theta_{u}=\Psi^{-1}(u)$

of any general point $ u\in\Delta$ is an irreducible non-singular curve. Since, by
Lemma 11, $p_{g}\geqq 1$ , the canonical system $|K|$ contains a positive divisor $D$ .
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Since $KD=K^{2}=1$ , we have a composition series:

$D=C+\sum_{i=2}^{n}E_{i}$ , $KC=1,$ $KE_{i}=0$ .

Since $\Theta_{u}^{2}=0,$ $K\Theta_{u}$ is positive, while $K\Theta_{u}=2\pi(\Theta_{u})-2$ is even. Moreover the
projection $\Psi(E_{i})$ of each rational curve $E_{i}$ is a point on $\Delta$ . Hence $C\Theta_{u}=K\Theta_{u}\geqq 2$

and therefore $C$ is a covering of $\Delta$ with at least two sheets. It follows that

$2\pi(C)-2\geqq 4\pi(\Delta)-4\geqq 4$ .
This contradicts that

$2\pi(C)-2=C^{2}+KC=2KC-\sum_{\ell}CE_{i}\leqq 2$ .

If $\varphi_{1}\wedge\varphi_{2}\neq 0$ , then $\varphi_{1}$ and $\varphi_{2}$ define a holomorphic map $\Phi$ of $S$ onto the
Albanese variety $A$ attached to $S$ . The canonical divisor $(\varphi_{1}\Lambda\varphi_{2})$ is an irre-
ducible non-singular curve of genus 2. To prove this we let

$(\varphi_{1}\wedge\varphi_{2})=C+X$ , $X\geqq 0,$ $KC=1,$ $KX=0$ .

Suppose that the restrictions $\varphi_{1C}$ and $\varphi_{2C}$ of $\varphi_{1}$ and $\varphi_{2}$ to $C$ are linearly depen-
dent. Then $\Phi(C)$ is either a point or an elliptic curve on $A$ . If $X>0$ , then
$X$ is composed of non-singular rational curves $E_{i}<\mathcal{E}$ . Hence $\Phi(X)$ consists of
a finite number of points on $A$ . Consequently, there exists an irreducible non-
singular curve $\Gamma$ on $A$ which meets neither $\Phi(C)$ nor $\Phi(X)$ . It follows that
$K\Phi^{-1}(\Gamma)=0$ and therefore $\Phi^{-1}(\Gamma)$ is composed of rational curves. This con-
tradicts that $\pi(\Gamma)\geqq 1$ .

Thus $\varphi_{1C}$ and $\varphi_{2C}$ are linearly independent and therefore the genus of the
non-singular model of $C$ is not smaller than 2, while

$2\pi(C)-2=C^{2}+KC=2-CX$

and, by Lemma 4, $CX$ is positive if $X>0$ . Hence we infer that $C$ is a non-
singular curve of genus 2 and $X=0$ . It follows that $(\varphi_{1}\Lambda\varphi_{2})=C$ .

The Euler number of $S$ is equal to the sum of the indices of the singular
points of the covariant vector field $\varphi_{1}$ . Since $(\varphi_{1}\Lambda\varphi_{2})=C$ , the vector field $\varphi_{1}$

has no singular point outside $C$ . We may assume that $\varphi_{1C}$ has two simple
zeros $x$ and $y$ on $C$ . Since $\varphi_{2C}$ does not vanish at $x$ , we can choose a local
coordinate $(w, z)$ of the center $x$ on $S$ such that

$\varphi_{2}=dz$ , $\varphi_{1}\wedge\varphi_{2}=wdw\wedge dz$ .
It follows that

$\varphi_{1}=wdw+\rho zdz$ , $\rho\neq 0$ ,

where $\rho$ is a holomorphic function of $z$ . This shows that $x$ is a singular point
of $\varphi_{1}$ of index 1. Thus the vector field $\varphi_{1}$ has exactly two singular points of
index 1 and therefore the Euler number $\chi(S)$ of $S$ is equal to 2. This con-
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tradicts the Noether formula:

$\chi(S)+K^{2}=12(p_{g}-q+1)$ ,

$q$ . $e$ . $d$ .
THEOREM 11. The bigenus of $S$ is not smaller than two: $P_{2}\geqq 2$ .
PROOF. i) If $p_{g}\geqq 2$ , then it is obvious that $P_{2}\geqq p_{g}\geqq 2$ .
ii) If $p_{g}=1$ , then, by the Noether formula, $q\leqq 2$ . If, moreover, $K^{2}=1$ ,

then, by Lemma 12, $q\leqq 1$ . Hence, using (15), we obtain

$P_{2}=K^{2}+p_{g}-q+1\geqq 2$ .

iii) If $p_{g}=0$ , then, by Lemma 11, $q=0$ and therefore

$P_{2}=K^{2}+1\geqq 2$ .

Thus we see that $P_{2}\geqq 2$ . Moreover, using (15), we get

$P_{3}=2K^{2}+P_{2}\geqq 4$ .
Hence we infer from Theorems 6 and 10 the following

THEOREM 12. For every integer $m\geqq 4$ , the pluricanonical system $|mK|$ has
no base point and the map $\Phi_{mK}$ is holomorphic. For every integer $m\geqq 6$, the
map $\Phi_{mK}$ is holomorphic and biholomorphic modulo 8.

If $p_{g}\geqq 4$, then, by Lemma 12, $K^{2}\geqq 2$ . Hence we infer from Theorem 10
the following

THEOREM 13. If $p_{g}\geqq 4$ , then, for every integer $m\geqq 4$, the map $\Phi_{mK}$ is holo-
morphic and biholomorphic modulo $\mathcal{E}$ .

\S 5. Birational embeddings.

It has been shown by \v{S}afarevi\v{c} [8] that, if $p_{g}\geqq 4$ , then $\Phi_{8K}$ is a birational
map. In this section we prove in the context of this paper that, if $p_{g}\geqq 4$ , then
$|3K|$ has no base point and $\Phi_{3K}$ is a holomorphic birational map.

Let $\Lambda$ denote the set of those irreducible curves $C$ on $S$ which satisfy the
inequality: $KC\leqq 1$ .

LEMMA 13. If $K^{2}\geqq 2$ , then $\Lambda$ is a finite set.
PROOF. In view of Theorem 3 it suffices to consider the subset $\Lambda_{1}$ of $\Lambda$

tconsisting of irreducible curves $C$ with $KC=1$ . We choose a base { $K,$ $B_{1},$ $\cdots$ ,
$B_{i},$ $\cdots$ , $B_{h}$ } of divisorial cycles on $S$ such that $B_{1}$ , $\cdot$ .. , $B_{i},$ $\cdots$ are divisors satis-
fying the conditions

$B_{i}^{2}<0$ , $KB_{i}=0$ , $B_{i}B_{k}=0$ for $i\neq k$ .
For each curve $C\in\Lambda_{1}$ , we have a homology

$C\sim r_{0}K+\sum_{r=1}^{h}r_{i}B_{i}$ , $r_{0}=1/K^{2}$ , $r_{i}=B_{i}C/B_{i}^{2}$ .
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We have

$C^{2}=1/K^{2}+\sum_{i=l}^{h}r_{i}^{2}B_{i}^{2}\leqq 1/K^{2}\leqq 1/2$

and
$C^{2}=2\pi(C)-2-KC=2\pi(C)-3$ .

Hence we infer that $C^{2}=-1$ or $-3$ and that

(19) $-\sum_{\iota=1}^{n}r_{i}^{2}B_{i}^{2}<4$ .

The homology class of $C$ contains no irreducible curve other than $C$ . In fact,

if $0$ is an irreducible curve on $S$ and if $\Theta\sim C$, then $\Theta C=C^{2}<0$ and therefore
$0$ coincides with $C$ . Moreover $r_{i}B_{i}^{2}=B_{i}C,$ $i=1,2,$ $\cdots$ , $h$ , are rational integers.
Hence we infer from (19) the finiteness of the set $A_{1},$ $q.e.d$ .

THEOREM 14. If $p_{g}\geqq 4$ , then the tri-canonical system $|3K|$ has no base
point and $\Phi_{3R}$ is a holomorphic birational map.

PROOF. Since, by hypothesis, $p_{g}\geqq 4$ , we have, by Lemma 12, $K^{2}\geqq 2$ . Hence,

by Theorem 6, the tri-canonical system $|3K|$ has no base point and $\Phi_{3I\mathcal{L}}$ is a
holomorphic map. Moreover, by Lemma 13, $\Lambda$ is a finite set. Let $C$ denote
the union of the curves $ C\in\Lambda$ . To prove that $\Phi_{3K}$ is a birational map, it suf-
fices to show that, for any pair of distinct points $x,$ $y\in S-C$, the sequence

(20) $0\rightarrow H^{0}(S, o(3K-x-y))\rightarrow H^{0}(S, \mathcal{O}(3K))\rightarrow C^{2}\rightarrow 0$

is exact.
We denote by $|K-x-y|$ the linear subsystem of $|K|$ consisting of those

divisors $D\in|K|$ which pass through $x$ and $y$ in the sense that $x\in D,$ $y\in D$ .
It is obvious that

$\dim|K-x-y|\geqq p_{g}-3\geqq 1$ .
Let $D$ be a general member of $|K-x-y|$ . We choose a composition series:
$D=\sum_{i=1}^{n}C_{i}$ satisfying the condition $(\alpha)$ and let

$--i^{=o(3K-Z_{i}-x-y)}$ .
We find $h$ and $j$ such that $x\in C_{h},$ $xGZ_{h+1},$ $y\in C_{j},$ $yGZ_{j+1}$ . Since, by hypothesis,
$x\not\in C,$ $y\not\in C$, we have $KC_{h}\geqq 2,$ $KC_{j}\geqq 2$ . Moreover, we may assume that $KC_{1}\geqq 3$

if $h=j=1$ . To show this we suppose that $h=j=1$ for every composition

series: $D=\sum_{i=1}^{n}C_{i}$ satisfying the condition $(\alpha)$ . Then, in view of Lemma 5, $KC_{i}$

vanishes for $i\geqq 2$ . Thus the composition series has the form

$D=C+E_{2}+\cdots+E_{i}+$ $+E_{n}$ , $E_{i}<\mathcal{E}$ ,

where $C=C_{1}$ . Since $D$ is a general member of $|K-x-y|$ and since $E_{i}^{2}=-2$,
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the sum: $\sum_{i=2}^{n}E_{i}$ is the fixed component of $|K-x-y|$ . Let $C^{\prime}+\sum_{i=2}^{n}E_{i}$ be another

general member of $|K-x-y|$ . Then $C$ and C’ intersect at $x$ and $y$ and there-
fore

$KC=C^{2}+\sum_{i=2}^{n}E_{i}C\geqq C^{2}=CC^{\prime}\geqq 2$ .

Suppose that $KC=2$ . Then $C^{2}=CC^{\gamma}=2$ , and, by Lemma 4, $D=C$ . It follows
that $C\cap C^{\prime}=xUy$ . By a theorem of Bertini, the general member $C$ has no
singular point outside the base points $x$ and $y$ , while, since $CC^{\prime}=2,$ $x$ and $y$

are simple points of $C$ . Thus $C$ is a non-singular curve. It is clear that $\pi(C)$

$=3$ . Thus $C$ is non-rational and therefore

$\dim H^{0}(C, o(K)_{C})\leqq KC=2$ .
Since, by hypothesis, $p_{g}\geqq 4$ , this contradicts the exact sequence

$ 0\rightarrow C\rightarrow H^{0}(S, o(K))\rightarrow H^{0}(C, o(K)_{C})\rightarrow\cdots$ .
Thus we see that $KC_{1}\geqq 3$ .

We have
$--i+1/\Xi_{i}\cong o(3K-\delta_{ih}x-\delta_{ij}y)_{C_{i}}$ .

Since $KC_{h}\geqq 2,$ $KC_{j}\geqq 2$ and $KC_{1}\geqq 3$ if $h=j=1$ , the condition $(\alpha)$ implies that

$KC_{i}+D_{i-1}C_{i}\geqq 1+\delta_{ih}+\delta_{ij}$ .
Hence, by Lemma 9 and Theorem 5, $H^{1}(S, \Xi_{n+1})$ vanishes and, consequently,
the sequence (20) is exact, $q$ . $e$ . $d$ .
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