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This formula states

(1) $e^{A}\cdot e^{B}=e^{Z}$ , $Z=\sum_{n=1}^{\infty}F_{n}(A, B)$

for noncommuting indeterminates $A,$ $B$ with homogeneous polynomials $F.(A, B)$

of degree $n$ which have the essential property that they are formed from $A$ ,
$B$ by Lie multiplication, except for $F_{1}(A, B)=A+B$ . We shall briefly speak
of Lie polynomials. The usual proofs $(e$ . $g$ . [1], [2] $)$ employ preliminary
theorems by Finkelstein or Friedrichs characterizing Lie polynomials by formak
properties (see also [3]). In the following lines I give a short proof which
needs no preparations.

It is evident that polynomials $F.(A, B)$ exist satisfying (1). We only have
to prove that they are Lie polynomials. The first two are

$F_{1}(A, B)=A+B$ , $F_{2}(A, B)=_{2^{-}}^{1}-(AB-BA)$ .

Now let $n>2$ and assume that all $F,(A, B)$ with $\nu<n$ are Lie polynomials.
With 3 indeterminates we express

$(e^{A}e^{B})e^{C}=e^{A}(e^{B}e^{C})$ :

$W=\sum_{i=1}^{\infty}F_{i}(\sum_{J=1}^{\infty}F_{j}(A, B),$ $C)=\sum_{\tau=1}^{\infty}F_{i}(A,\sum_{J=1}^{\infty}F_{j}(B, C))$

and compare the homogeneous terms of degree $n$ on both sides, using the
following 2 facts : 1) If $F(A, B, ),$ $X(A, B, ),$ $Y(A, B, )$ , $\cdot$ .. are Lie polyno-
mials then also $G(A, B, \cdots)=F(X(A, B, \cdots), Y(A, B, \cdots), \cdots)$ is one. 2) If $F(A, B, \cdots)$

is a Lie polynomial then the homogeneous summands into which $F$ splits up
are Lie polynomials. The induction assumption implies that all homogeneous.
terms of degree $n$ in both expressions for $W$ are Lie polynomials with the
possible exceptions of $F.(A, B)+F.(A+B, C)$ on the left side and $F_{n}(A, B+C)$

$+F_{n}(B, C)$ on the right. In other words, the difference is a Lie polynomial.
We can abbreviate this as
(2) $F(A, B)+F(A+B, C)\sim F(A, B+C)+F(B, C)$
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with $F=F_{n}$ (for sake of simplicity we drop the subscript $n$ from now on).
A second property is evident:

(3) $F(\lambda A, \mu A)=0$

where $\lambda,$

$\mu$ are commuting variables. The properties (2) and (3) sutfice to show
$F(A, B)\sim 0$ , and the proof yields a recursive scheme for their computation.

First we insert $C=-B$ in (2) and observe (3) :
(4) $F(A, B)\sim-F(A+B, -B)$ .

Similarly we insert $A=-B$ , but write $A,$ $B$ instead of $B,$ $C$ :
(5) $F(A, B)\sim-F(-A, A+B)$ .
Applying in order (5), (4), (5) we get

(6) $F(A, B)\sim-(-1)^{n}F(B, A)$ ,

because $F(A, B)$ is homogeneous of degree $n$ .
1Secondly we insert $C=---B2$ in (2):

(7) $F(A, B)\sim F(A,$ $-12-B)-F(A+B,$ $--12-B)$

and similarly with $A=---B21$ and $A,$ $B$ instead of $B,$ $C$ :

(8) $F(A, B)\sim F(-12-A,$ $B)-F(--21-A,$ $A+B)$ .

Application of (7) to both terms on the right of (8) yields

$F(A, B)\sim F(\frac{1}{2}A,$ $-12-B)-F(--12A,$ $-1-A+-1-B)$

$-F(-12-A+B,$ $--12-B)+F(-2-A+B1-12-A\frac{1}{2}B)$ .

Here we employ (5) in the 2nd term on the right and (4) in the 3rd and 4th,
remembering the homogeneity:

$F(A, B)\sim 2^{1- n}F(A, B)+2^{-n}F(A+B, B)-2^{-n}F(B, A+B)$ .

and by (6)
$(1-2^{1- n})F(A, B)\sim 2^{-n}(1+(-1)^{n})F(A+B, B)$ .

For odd $n$ this is already the contention. For even $n$ we insert $A-B$ for $A$

and apply (4) for a last time:

$-F(A, -B)\sim F(A-B, B)\sim 2^{-n}(1+(-1)^{n})(1-2^{1- n})^{-1}F(A, B)$ .
Iteration of this formula gives

$F(A, B)\sim 2^{-2n}(1+(-1)^{n})^{2}(1-2^{1-n})^{-2}F(A, B)$ ,
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and the factor on the right is $\neq 1$ because $n>2$ . This finishes the proof.

The University, Basel
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