A new proof of the Baker-Campbell-Hausdorff formula

Dedicated to Professor Shôkichi Iyanaga on his 60th birthday

By M. Eichler

(Received Jan. 11, 1967)

This formula states

$$
\begin{equation*}
e^{A} \cdot e^{B}=e^{Z}, \quad Z=\sum_{n=1}^{\infty} F_{n}(A, B) \tag{1}
\end{equation*}
$$

for noncommuting indeterminates A, B with homogeneous polynomials $F_{n}(A, B)$ of degree n which have the essential property that they are formed from A, B by Lie multiplication, except for $F_{1}(A, B)=A+B$. We shall briefly speak of Lie polynomials. The usual proofs (e.g. [1], [2]) employ preliminary theorems by Finkelstein or Friedrichs characterizing Lie polynomials by formal properties (see also [3]). In the following lines I give a short proof which needs no preparations.

It is evident that polynomials $F_{n}(A, B)$ exist satisfying (1). We only have to prove that they are Lie polynomials. The first two are

$$
F_{1}(A, B)=A+B, \quad F_{2}(A, B)=\frac{1}{2}(A B-B A) .
$$

Now let $n>2$ and assume that all $F_{\nu}(A, B)$ with $\nu<n$ are Lie polynomials. With 3 indeterminates we express

$$
\begin{aligned}
\left(e^{A} e^{B}\right) e^{C} & =e^{A}\left(e^{B} e^{C}\right): \\
W & =\sum_{i=1}^{\infty} F_{i}\left(\sum_{j=1}^{\infty} F_{j}(A, B), C\right)=\sum_{i=1}^{\infty} F_{i}\left(A, \sum_{j=1}^{\infty} F_{j}(B, C)\right)
\end{aligned}
$$

and compare the homogeneous terms of degree n on both sides, using the following 2 facts: 1) If $F(A, B, \cdots), X(A, B, \cdots), Y(A, B, \cdots), \cdots$ are Lie polynomials then also $G(A, B, \cdots)=F(X(A, B, \cdots), Y(A, B, \cdots), \cdots)$ is one. 2) If $F(A, B, \cdots)$ is a Lie polynomial then the homogeneous summands into which F splits up. are Lie polynomials. The induction assumption implies that all homogeneous. terms of degree n in both expressions for W are Lie polynomials with the possible exceptions of $F_{n}(A, B)+F_{n}(A+B, C)$ on the left side and $F_{n}(A, B+C)$. $+F_{n}(B, C)$ on the right. In other words, the difference is a Lie polynomial. We can abbreviate this as

$$
\begin{equation*}
F(A, B)+F(A+B, C) \sim F(A, B+C)+F(B, C) \tag{2}
\end{equation*}
$$

with $F=F_{n}$ (for sake of simplicity we drop the subscript n from now on). A second property is evident:

$$
\begin{equation*}
F(\lambda A, \mu A)=0 \tag{3}
\end{equation*}
$$

where λ, μ are commuting variables. The properties (2) and (3) suffice to show $F(A, B) \sim 0$, and the proof yields a recursive scheme for their computation.

First we insert $C=-B$ in (2) and observe (3):

$$
\begin{equation*}
F(A, B) \sim-F(A+B,-B) \tag{4}
\end{equation*}
$$

Similarly we insert $A=-B$, but write A, B instead of B, C :

$$
\begin{equation*}
F(A, B) \sim-F(-A, A+B) . \tag{5}
\end{equation*}
$$

Applying in order (5), (4), (5) we get

$$
\begin{equation*}
F(A, B) \sim-(-1)^{n} F(B, A), \tag{6}
\end{equation*}
$$

because $F(A, B)$ is homogeneous of degree n.
Secondly we insert $C=-\frac{1}{2} B$ in (2):

$$
\begin{equation*}
F(A, B) \sim F\left(A, \frac{1}{2} B\right)-F\left(A+B,-\frac{1}{2} B\right) \tag{7}
\end{equation*}
$$

and similarly with $A=-\frac{1}{2} B$ and A, B instead of B, C :

$$
\begin{equation*}
F(A, B) \sim F\left(\frac{1}{2} A, B\right)-F\left(-\frac{1}{2} A, A+B\right) \tag{8}
\end{equation*}
$$

Application of (7) to both terms on the right of (8) yields

$$
\begin{aligned}
& F(A, B) \sim F\left(\frac{1}{2} A, \frac{1}{2} B\right)-F\left(-\frac{1}{2} A, \frac{1}{2} A+\frac{1}{2} B\right) \\
& \quad-F\left(\frac{1}{2} A+B,-\frac{1}{2} B\right)+F\left(\frac{1}{2} A+B,-\frac{1}{2} A-\frac{1}{2} B\right) .
\end{aligned}
$$

Here we employ (5) in the 2nd term on the right and (4) in the 3rd and 4th, remembering the homogeneity:

$$
F(A, B) \sim 2^{1-n} F(A, B)+2^{-n} F(A+B, B)-2^{-n} F(B, A+B) .
$$

and by (6)

$$
\left(1-2^{1-n}\right) F(A, B) \sim 2^{-n}\left(1+(-1)^{n}\right) F(A+B, B)
$$

For odd n this is already the contention. For even n we insert $A-B$ for A and apply (4) for a last time:

$$
-F(A,-B) \sim F(A-B, B) \sim 2^{-n}\left(1+(-1)^{n}\right)\left(1-2^{1-n}\right)^{-1} F(A, B) .
$$

Iteration of this formula gives

$$
F(A, B) \sim 2^{-2 n}\left(1+(-1)^{n}\right)^{2}\left(1-2^{1-n}\right)^{-2} F(A, B),
$$

and the factor on the right is $\neq 1$ because $n>2$. This finishes the proof.
The University, Basel

References

[1] N. Jacobson, Lie algebras, New York, 1962, p. 170.
[2] W. Magnus, On the exponential solutions of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), 649-673.
[3] W.v. Waldenfels, Zur Charakterisierung Liescher Elemente in freien Algebren, Arch. Math., 12 (1966), 44-48.

