# Nonlinear semigroups and evolution equations 

By Tosio KATO*

(Received May 2, 1967)

## Introduction

This paper has been motivated by a recent paper by Y. Kōmura [3], in which a general theory of semigroups of nonlinear contraction operators in a Hilbert space is developed. Owing to the generality of the problem, Kōmura is led to consider multi-valued operators as the infinitesimal generators of such semigroups, which makes his theory appear somewhat complicated.

The object of the present paper is to restrict ourselves to single-valued operators in a Banach space $X$ and to construct the semigroups generated by them in a more elementary fashion. Furthermore, we are able to treat, without essential modifications, time-dependent nonlinear equations of the form

$$
\begin{equation*}
d u / d t+A(t) u=0, \quad 0 \leqq t \leqq T, \tag{E}
\end{equation*}
$$

where the unknown $u(t)$ is an $X$-valued function and where $\{A(t)\}$ is a family of nonlinear operators with domains and ranges in $X$. In particular we shall prove existence and uniqueness of the solution of (E) for a given initial condition.

The basic assumptions we make for (E) are that the adjoint space $X^{*}$ is uniformly convex and that the $A(t)$ are m-monotonic operators (see below), together with some smoothness condition for $A(t)$ as a function of $t$. We make no explicit assumptions on the continuity of the operators $A(t)$.

Here an operator $A$ with domain $D(A)$ and range $R(A)$ in an arbitrary Banach space $X$ is said to be monotonic if

$$
\begin{equation*}
\|u-v+\alpha(A u-A v)\| \geqq\|u-v\| \quad \text { for every } u, v \in D(A) \text { and } \alpha>0 . \tag{M}
\end{equation*}
$$

This implies that $(1+\alpha A)^{-1}$ exists and is Lipschitz continuous provided $\alpha>0$, where $1+\alpha A$ is the operator with domain $D(A)$ which sends $u$ into $u+\alpha A u$. It can be shown (see Lemma 2,1) that $(1+\alpha A)^{-1}$ has domain $X$ either for every $\alpha>0$ or for no $\alpha>0$; in the former case we say that $A$ is m-monotonic.

The monotonicity thus defined can also be expressed in terms of the duality

[^0]map $F$ from $X$ to $X^{*}$. (Here $X^{*}$ is defined to be the set of all bounded semilinear forms on $X$, and the pairing between $x \in X$ and $f \in X^{*}$ is denoted by $(x, f)$, which is thus linear in $x$ and semilinear in $f$. If $X$ is a Hilbert space, $X^{*}$ is identified with $X$ and (,) with the inner product in $X$.) $F$ is in general a multi-valued operator; for each $x \in X, F x$ is by definition the (nonempty) set of all $f \in X^{*}$ such that $(x, f)=\|x\|^{2}=\|f\|^{2}$. (Thus we employ a special " gauge function" for $F$.)
(M) is now equivalent to the following condition (see Lemma 1.1) :
(M ${ }^{\prime}$ )
$$
\text { For each } u, v \in D(A) \text {, there is } f \in F(u-v) \text { such that }
$$
$$
\operatorname{Re}(A u-A v, f) \geqq 0 .
$$

Note that the inequality is not required to hold for every $f \in F(u-v)$. If $X$ is a Hilbert space, ( $\mathrm{M}^{\prime}$ ) is equivalent to the monotonicity of $A$ in the sense of Minty [4] and Browder [1].

The main results of this paper are stated in $\S 3$ and the proofs are given in $\S 4$. $\S \S 1$ and 2 contain some preliminary results for the duality map $F$ and for m-monotonic operators.

The crucial step in our existence proof is the proof of convergence for the approximate solutions $u_{n}(t)$ of ( E ), which is a straightforward generalization of an ingenious proof given in [3], The author is indebted to Professor Y. Kōmura for having a chance to see his paper before publication and to Professor K. Yosida for many stimulating conversations.

## 1. The duality map

We first consider an arbitrary Banach space $X$. The duality map $F$ from $X$ to $X^{*}$ was defined in Introduction.

Lemma 1.1. Let $x, y \in X$. Then $\|x\| \leqq\|x+\alpha y\|$ for every $\alpha>0$ if and only if there is $f \in F x$ such that $\operatorname{Re}(y, f) \geqq 0$.

Proof. The assertion is trivial if $x=0$. So we shall assume $x \neq 0$ in the following. If $\operatorname{Re}(y, f) \geqq 0$ for some $f \in F x$, then $\|x\|^{2}=(x, f)=\operatorname{Re}(x, f)$ $\leqq \operatorname{Re}(x+\alpha y, f) \leqq\|x+\alpha y\|\|f\|$ for $\alpha>0$. Since $\|f\|=\|x\|$, we obtain $\|x\| \leqq\|x+\alpha y\|$.

Suppose, conversely, that $\|x\| \leqq\|x+\alpha y\|$ for $\alpha>0$. For each $\alpha>0$ let $f_{\alpha}$ $\in F(x+\alpha y)$ and $g_{\alpha}=f_{\alpha} /\left\|f_{\alpha}\right\|$ so that $\left\|g_{\alpha}\right\|=1$. Then $\|x\| \leqq\|x+\alpha y\|=\left(x+\alpha y, g_{\alpha}\right)$ $=\operatorname{Re}\left(x, g_{\alpha}\right)+\alpha \operatorname{Re}\left(y, g_{\alpha}\right) \leqq\|x\|+\alpha \operatorname{Re}\left(y, g_{\alpha}\right)$. Thus

$$
\begin{equation*}
\underset{\alpha \not 0}{\liminf ^{\inf }\left(x, g_{\alpha}\right) \geqq\|x\| \quad \text { and } \operatorname{Re}\left(y, g_{\alpha}\right) \geqq 0 . . ~} \tag{1.1}
\end{equation*}
$$

Since the closed unit ball of $X^{*}$ is compact in the weak* topology, the net $\left\{g_{\alpha}\right\}$ (with the index set $\{\alpha\}$ directed as $\alpha \downarrow 0$ ) has a cluster point $g \in X^{*}$ with $\|g\| \leqq 1$. In view of (1.1), however, $g$ satisfies $\operatorname{Re}(x, g) \geqq\|x\|$ and $\operatorname{Re}(y, g) \geqq 0$.

Hence we must have $\|g\|=1$ and $(x, g)=\|x\|$. On setting $f=\|x\| g$, we see that $f \in F x$ and $\operatorname{Re}(y, f) \geqq 0$.

It is known (and is easy to prove) that $F$ is single-valued if $X^{*}$ is strictly convex. One would need somewhat stronger condition to ensure that $F$ is continuous. A convenient sufficient condition is given by

Lemma 1.2. If $X^{*}$ is uniformly convex, $F$ is single-valued and is uniformly continuous on any bounded set of $X$. In other words, for each $\varepsilon>0$ and $M>0$, there is $\delta>0$ such that $\|x\|<M$ and $\|x-y\|<\delta$ imply $\|F x-F y\|<\varepsilon$.

Proof. It suffices to show that the assumptions

$$
\left\|x_{n}\right\|<M,\left\|x_{n}-y_{n}\right\| \rightarrow 0,\left\|F x_{n}-F y_{n}\right\| \geqq \varepsilon_{0}>0, n=1,2, \cdots,
$$

lead to a contradiction. If $x_{n} \rightarrow 0$ (we denote by $\rightarrow$ strong convergence), then $y_{n} \rightarrow 0$ and so $\left\|F x_{n}\right\|=\left\|x_{n}\right\| \rightarrow 0$ and similarly $\left\|F y_{n}\right\| \rightarrow 0$, hence $\left\|F x_{n}-F y_{n}\right\| \rightarrow 0$, a contradiction. Thus we may assume that $\left\|x_{n}\right\| \geqq \alpha>0$, replacing the given sequences by suitable subsequences if necessary. Then $\left\|y_{n}\right\| \geqq \alpha / 2$ for sufficiently large $n$. Set $u_{n}=x_{n} /\left\|x_{n}\right\|$ and $v_{n}=y_{n} /\left\|y_{n}\right\|$. Then $\left\|u_{n}\right\|=\left\|v_{n}\right\|=1$ and $u_{n}-v_{n}$ $=\left(x_{n}-y_{n}\right) /\left\|x_{n}\right\|+\left(\left\|x_{n}\right\|^{-1}-\left\|y_{n}\right\|^{-1}\right) y_{n}$ so that $\left\|u_{n}-v_{n}\right\| \leqq 2\left\|x_{n}-y_{n}\right\| /\left\|x_{n}\right\| \rightarrow 0$.

Since $\left\|F u_{n}\right\|=\left\|u_{n}\right\|=1$ and similarly $\left\|F v_{n}\right\|=1$, we thus obtain $\operatorname{Re}\left(u_{n}, F u_{n}\right.$ $\left.+F v_{n}\right)=\left(u_{n}, F u_{n}\right)+\left(v_{n}, F v_{n}\right)+\operatorname{Re}\left(u_{n}-v_{n}, F v_{n}\right) \geqq 1+1-\left\|u_{n}-v_{n}\right\| \rightarrow 2$. Hence $\lim \inf \left\|F u_{n}+F v_{n}\right\| \geqq \liminf \operatorname{Re}\left(u_{n}, F u_{n}+F v_{n}\right) \geqq 2$. Since $\left\|F u_{n}\right\|=\left\|F v_{n}\right\|=1$ and $X^{*}$ is uniformly convex, it follows that $F u_{n}-F v_{n} \rightarrow 0$.

Since $F x_{n}=F\left(\left\|x_{n}\right\| u_{n}\right)=\left\|x_{n}\right\| F u_{n}$ and similarly $F y_{n}=\left\|y_{n}\right\| F v_{n}$, we now obtain $F x_{n}-F y_{n}=\left\|x_{n}\right\|\left(F u_{n}-F v_{n}\right)+\left(\left\|x_{n}\right\|-\left\|y_{n}\right\|\right) F v_{n} \rightarrow 0$ by $\left\|x_{n}\right\|<M$. Thus we have arrived at a contradiction again.

In this paper the usefulness of the duality map depends mainly on the following lemma.

Lemma 1.3. Let $x(t)$ be an $X$-valued function on an interval of real numbers. Suppose $x(t)$ has a weak derivative $x^{\prime}(s) \in X$ at $t=s$ (that is, $d(x(t), g) / d t$ exists at $t=s$ and equals $\left(x^{\prime}(s), g\right)$ for every $\left.g \in X^{*}\right)$. If $\|x(t)\|$ is also differentiable at $t=s$, then

$$
\begin{equation*}
\|x(s)\|(d / d s)\|x(s)\|=\operatorname{Re}\left(x^{\prime}(s), f\right) \tag{1.2}
\end{equation*}
$$

for every $f \in F x(s)$.
PRoof. Since $\operatorname{Re}(x(t), f) \leqq\|x(t)\|\|f\|=\|x(t)\|\|x(s)\|$ and $\operatorname{Re}(x(s), f)=\|x(s)\|^{2}$, we have

$$
\operatorname{Re}(x(t)-x(s), f) \leqq\|x(s)\|(\|x(t)\|-\|x(s)\|) .
$$

Dividing both sides by $t-s$ and letting $t \rightarrow s$ from above and from below, we obtain $\operatorname{Re}\left(x^{\prime}(s), f\right) \leqq\|x(s)\|(d / d s)\|x(s)\|$. Thus we must have the equality (1.2).

## 2. Monotonic operators in $X$

Monotonic operators $A$ in $X$ have been defined by the equivalent conditions $(\mathrm{M})$ and ( $\mathrm{M}^{\prime}$ ) given in Introduction. Their equivalence follows immediately from Lemma 1.1.

If $X$ is a Hilbert space, the inverse of an invertible monotonic operator is also monotonic, but it might not be true in the general case.

If $A$ is monotonic, $1+\alpha A$ is invertible for $\alpha>0$ and the inverse operator $(1+\alpha A)^{-1}$ is Lipschitz continuous:

$$
\begin{equation*}
\left\|(1+\alpha A)^{-1} x-(1+\alpha A)^{-1} y\right\| \leqq\|x-y\|, \quad x, y \in D\left((1+\alpha A)^{-1}\right) . \tag{2.1}
\end{equation*}
$$

This follows directly from (M).
Lemma 2.1. Let $A$ be monotonic. If $D\left((1+\alpha A)^{-1}\right)=R(1+\alpha A)$ is the whole of $X$ for some $\alpha>0$, the same is true for all $\alpha>0$.

Proof. $R(1+\alpha A)=X$ is equivalent to $R(A+\lambda)=X$ where $\lambda=1 / \alpha$. Thus it suffices to show that $R(A+\lambda)=X$ for all $\lambda>0$ if it is true for some $\lambda>0$. But this is proved essentially in [3].

As stated in Introduction, we say that $A$ is m-monotonic if the conditions of Lemma 2.1 are satisfied. Here we do not assume that $D(A)$ is dense in $X$. If $A$ is a linear operator in a Hilbert space, the m-monotonicity of $A$ implies that $D(A)$ is dense, but we do not know whether or not the same is true in the general case.

For an m-monotonic operator $A$, we introduce the following sequences of operators $(n=1,2, \cdots)$ :

$$
\begin{gather*}
J_{n}=\left(1+n^{-1} A\right)^{-1},  \tag{2.2}\\
A_{n}=A J_{n}=n\left(1-J_{n}\right), \tag{2.3}
\end{gather*}
$$

where $A J_{n}$ denotes the composition of the two maps $A$ and $J_{n}$. The $J_{n}$ and $A_{n}$ are defined everywhere on $X$. The identity given by (2,3), which is easy to verify, is rather important in the following arguments.

Lemma 2.2. Let $A$ be m-monotonic. $J_{n}$ and $A_{n}$ are uniformly Lipschitz continuous, with

$$
\begin{equation*}
\left\|J_{n} x-J_{n} y\right\| \leqq\|x-y\|, \quad\left\|A_{n} x-A_{n} y\right\| \leqq 2 n\|x-y\|, \tag{2.4}
\end{equation*}
$$

where $2 n$ may be replaced by $n$ if $X$ is a Hilbert space.
Proof. The first inequality of (2.4) is a special case of (2.1). The second then follows from (2.3). The assertion about the case of $X$ a Hilbert space is easy to prove and the proof is omitted (it is not used in the following).

Lemma 2.3. Let $A$ be m-monotonic. The $A_{n}$ are also monotonic. Furthermore, we have

$$
\begin{equation*}
\left\|A_{n} u\right\| \leqq\|A u\| \quad \text { for } u \in D(A) \tag{2.5}
\end{equation*}
$$

Proof. Let $x, y \in X$ and $f \in F(x-y)$. Then

$$
\begin{aligned}
& \operatorname{Re}\left(A_{n} x-A_{n} y, f\right)=n \operatorname{Re}(x-y, f)-n \operatorname{Re}\left(J_{n} x-J_{n} y, f\right) \\
& \quad \geqq n\|x-y\|^{2}-n\left\|J_{n} x-J_{n} y\right\|\|f\| \geqq n\|x-y\|^{2}-n\|x-y\|^{2}=0,
\end{aligned}
$$

where we have used (2.3) and (2.4), Thus $A_{n}$ is monotonic by ( $\mathrm{M}^{\prime}$ ). If $u \in D(A)$, we have $A_{n} u=n\left(u-J_{n} u\right)=n\left[J_{n}\left(1+n^{-1} A\right) u-J_{n} u\right]$ by (2.3) and so $\left\|A_{n} u\right\|$ $\leqq n\left\|u+n^{-1} A u-u\right\|=\|A u\|$ by (2.4).

Lemma 2.4. If $u \in[D(A)]$ (the closure of $D(A)$ in $X$ ), $J_{n} u \rightarrow u$ as $n \rightarrow \infty$.
Proof. If $u \in D(A)$, then $u-J_{n} u=n^{-1} A_{n} u \rightarrow 0$ since the $\left\|A_{n} u\right\|$ are bounded by (2.5). The result is extended to all $u \in[D(A)]$ since the $J_{n}$ are Lipschitz continuous uniformly in $n$.

Lemma 2.5. Let $X^{*}$ be uniformly convex and let $A$ be m-monotonic in $X$.
(a) If $u_{n} \in D(A), n=1,2, \cdots, u_{n} \rightarrow u \in X$ and if the $\left\|A u_{n}\right\|$ are bounded, then $u \in D(A)$ and $A u_{n} \rightarrow A u$ (we denote by $\rightarrow$ weak convergence).
(b) If $x_{n} \in X, n=1,2, \cdots, x_{n} \rightarrow u \in X$ and if the $\left\|A_{n} x_{n}\right\|$ are bounded, then $u \in D(A)$ and $A_{n} x_{n} \rightarrow A u$.
(c) $A_{n} u \rightharpoonup A u$ if $u \in D(A)$.

Proof. In this case the duality map $F$ is single-valued and is continuous (see Lemma 1.2).
(a) The monotonicity condition ( $\mathrm{M}^{\prime}$ ) gives

$$
\begin{equation*}
\operatorname{Re}\left(A v-A u_{n}, F\left(v-u_{n}\right)\right) \geqq 0 \tag{2.6}
\end{equation*}
$$

for any $v \in D(A)$. Since $X$ is reflexive with $X^{*}$ and the $\left\|A u_{n}\right\|$ are bounded, there is a subsequence $\left\{u_{n^{\prime}}\right\}$ of $\left\{u_{n}\right\}$ such that $A u_{n^{\prime}}-x \in X$. Since $v-u_{n^{\prime}} \rightarrow v-u$ and hence $F\left(v-u_{n^{\prime}}\right) \rightarrow F(v-u)$ by the continuity of $F$, we obtain from (2.6) the inequality $\operatorname{Re}(A v-x, F(v-u)) \geqq 0$.

Using Lemma 1.1 with $\alpha=1$, we then have $\|v-u+A v-x\| \geqq\|v-u\|$. On setting $v=J_{1}(u+x)$ so that $v \in D(A)$ and $v+A v=u+x$, we see that $\|v-u\| \leqq 0$, hence $u=v$ and $A u=x$. Thus $A u_{n^{\prime}} \rightarrow x=A u$.

Since we could have started with any subsequence of $\left\{u_{n}\right\}$ instead of $\left\{u_{n}\right\}$ itself, the result obtained shows that $A u_{n}$ converges weakly to $A u$.
(b) Set $u_{n}=J_{n} x_{n} \in D(A)$. Then $A u_{n}=A_{n} x_{n}$ and the $\left\|A u_{n}\right\|$ are bounded. Also $x_{n}-u_{n}=\left(1-J_{n}\right) x_{n}=n^{-1} A_{n} x_{n} \rightarrow 0$ so that $u_{n} \rightarrow u$. Thus the result of (a) is applicable, with the result that $u \in D(A)$ and $A_{n} x_{n}=A u_{n} \rightarrow A u$.
(c) It suffices to set $x_{n}=u$ in (b); note that $\left\|A_{n} u\right\| \leqq\|A u\|$ by Lemma 2.3.

## 3. The theorems

We now consider the Cauchy problem for the nonlinear evolution equation (E). We introduce the following conditions for the family $\{A(t)\}$.
I. The domain $D$ of $A(t)$ is independent of $t$.
II. There is a constant $L$ such that for all $v \in D$ and $s, t \in[0, T]$,

$$
\begin{equation*}
\|A(t) v-A(s) v\| \leqq L|t-s|(1+\|v\|+\|A(s) v\|) \tag{3.1}
\end{equation*}
$$

III. For each $t, A(t)$ is m-monotonic.
(3.1) implies that $A(t) v$ is continuous in $t$ and hence is bounded. Then (3.1) shows that $A(t) v$ is uniformly Lipschitz continuous in $t$. It further shows that the Lipschitz continuity is uniform for $v \in D$ in a certain metric.

On the other hand, we do not make any assumptions on the continuity of the maps $v \rightarrow A(t) v$, except those implicitly contained in the m-monotonicity.

The main results of this paper are given by the following theorems.
Theorem 1 (existence theorem). Assume that $X^{*}$ is uniformly convex and that the conditions I, II, III are satisfied. For each $a \in D$, there exists an $X$ valued function $u(t)$ on $[0, T]$ which satisfies (E) and the initial condition $u(0)$ $=a$ in the following sense. (a) $u(t)$ is uniformly Lipschitz continuous on $[0, T]$, with $u(0)=a$. (b) $u(t) \in D$ for each $t \in[0, T]$ and $A(t) u(t)$ is weakly continuous on $[0, T]$. (c) The weak derivative of $u(t)$ exists for all $t \in[0, T]$ and equals $-A(t) u(t)$. (d) $u(t)$ is an indefinite integral of $-A(t) u(t)$, which is Bochner integrable, so that the strong derivative of $u(t)$ exists almost everywhere and equals $-A(t) u(t)$.

Theorem 2 (uniqueness and continuous dependence on the initial value). Under the assumptions of Theorem 1, let $u(t)$ and $v(t)$ satisfy conditions (a), (b), (c) with the initial conditions $u(0)=a$ and $v(0)=b$, where $a, b \in D$. Then $\|u(t)-v(t)\| \leqq\|a-b\|$ for all $t \in[0, T]$.

Theorem 3. In addition to the assumptions of Theorem 1, assume that $X$ is uniformly convex. Then the strong derivative $d u / d t=-A(t) u(t)$ exists and is strongly continuous except at a countable number of values $t$.

Remarks. 1. Conditions (a) to (d) in Theorem 1 are not all independent. (a) follows from (b) and (c) (except, of course, $u(0)=a$ ).
2. When $A(t)=A$ is independent of $t$, these results give a partial generalization of the Hille-Yosida theorem to semigroups of nonlinear operators. Suppose $X^{*}$ is uniformly convex and $A$ is m-monotonic in $X$. Since $T>0$ is arbitrary in this case, on setting $u(t)=U(t) a$ we obtain a family $\{U(t)\}, 0 \leqq t<\infty$, of nonlinear operators $U(t)$ on $D(A)$ to itself. Obviously $\{U(t)\}$ forms a semigroup generated by $-A$. It is a contraction semigroup on $D(A)$, for $\| U(t) a$ $-U(t) b\|\leqq\| a-b \|$, and it can be extended by continuity to a contraction semi-
group on $[D(A)]$ (the closure of $D(A)$ in $X$ ). It should be noted, however, that we have not been able to prove the strong differentiability of $U(t) a$ at $t=0$ for all $a \in D(A)$.
3. If the $A(t)$ are linear operators, the above theorems contain very little that is new. But their proofs are independent of the earlier ones, such as are given by [2], and are even simpler (of course under the restriction on $X$ ).
4. The assumptions I to III could be weakened to some extent. For example, it would suffice to assume, instead of III, that for each $t \in[0, T]$ there is a norm $\left\|\|_{t}\right.$, equivalent to the given norm of $X$ and depending on $t$ "smoothly", with respect to which $A(t)$ is m-monotonic. I and II could be replaced by the condition that there is a function $Q(t)$, depending on $t$ "smoothly", such that $Q(t)$ and $Q(t)^{-1}$ are bounded linear operators with domain and range $X$ and that $\bar{A}(t)=Q(t)^{-1} A(t) Q(t)$ satisfies I and II. We want to deal with such generalizations in later publications.
5. III could also be weakened to the condition that $A(t)+\lambda$ be m-monotonic for some $\lambda>0$. It should be noted that this is not a trivial generalization. If $A(t)$ were linear, the transformation $u(t)=e^{\lambda t} v(t)$ would change (E) into $d v / d t$ $+(A(t)+\lambda) v=0$. But the same transformation does not always work in the nonlinear case, for the transformed equation involves the operator $e^{-\lambda t}[A(t)+\lambda] e^{\lambda t}$, the domain of which may depend on $t$ when $D(A(t))$ does not.

## 4. Proofs of the theorems

To construct a solution of (E), we introduce the operators

$$
\begin{equation*}
J_{n}(t)=\left(1+n^{-1} A(t)\right)^{-1}, \quad A_{n}(t)=A(t) J_{n}(t), n=1,2, \cdots, \tag{4.1}
\end{equation*}
$$

for which the results of $\S 2$ are available, and consider the approximate equations

$$
\begin{equation*}
d u_{n} / d t+A_{n}(t) u_{n}=0, \quad u_{n}(0)=a \tag{n}
\end{equation*}
$$

To solve $\left(\mathrm{E}_{n}\right)$ and prove the convergence of $\left\{u_{n}(t)\right\}$, we need some estimates for the $A_{n}(t)$.

Lemma 4.1. For all $n$ and $v \in D$, we have

$$
\begin{equation*}
\left\|A_{n}(t) v-A_{n}(s) v\right\| \leqq L|t-s|\left(1+\|v\|+\left(1+n^{-1}\right)\left\|A_{n}(s) v\right\|\right) . \tag{4.2}
\end{equation*}
$$

Proof. Since $A_{n}(t)=n\left(1-J_{n}(t)\right)$ by (2.3), we have

$$
\begin{aligned}
& A_{n}(t) v-A_{n}(s) v=n J_{n}(s) v-n J_{n}(t) v \\
& \quad=n J_{n}(t)\left[1+n^{-1} A(t)\right] J_{n}(s) v-n J_{n}(t)\left[1+n^{-1} A(s)\right] J_{n}(s) v .
\end{aligned}
$$

Using the Lipschitz continuity (2.4) of the operator $J_{n}(t)$, we obtain

$$
\begin{aligned}
\left\|A_{n}(t) v-A_{n}(s) v\right\| & \leqq n\left\|\left[1+n^{-1} A(t)\right] J_{n}(s) v-\left[1+n^{-1} A(s)\right] J_{n}(s) v\right\| \\
& =\left\|[A(t)-A(s)] J_{n}(s) v\right\|,
\end{aligned}
$$

and using (3.1),

$$
\begin{equation*}
\left\|A_{n}(t) v-A_{n}(s) v\right\| \leqq L|t-s|\left(1+\left\|J_{n}(s) v\right\|+\left\|A(s) J_{n}(s) v\right\|\right) \tag{4.3}
\end{equation*}
$$

Here $\left\|J_{n}(s) v\right\|$ is estimated by (2.3) as $\left\|J_{n}(s) v\right\| \leqq\|v\|+n^{-1}\left\|A_{n}(s) v\right\|$. Since $A(s) J_{n}(s)$ $=A_{n}(s)$, (4.3) gives (4.2),
(4.2) shows that $A_{n}(t) v$ is Lipschitz continuous in $t$ for each $v \in X$. On the other hand, the map $v \rightarrow A_{n}(t) v$ is Lipschitz continuous for fixed $t$, uniformly in $v$ and $t$ (see (2.4)). Thus $\left(\mathrm{E}_{n}\right)$ has a unique solution $u_{n}(t)$ for $t \in[0, T]$, for any initial condition $u_{n}(0)=a \in X$. We shall now deduce some estimates for $u_{n}(t)$.

Lemma 4.2. Let $a \in D$. Then there is a constant $K$ such that $\left\|u_{n}(t)\right\| \leqq K$, $\left\|u_{n}^{\prime}(t)\right\|=\left\|A_{n}(t) u_{n}(t)\right\| \leqq K$, for all $n=1,2, \cdots$ and $t \in[0, T]$. (We write $d u_{n} / d t$ $=u_{n}^{\prime}$.)

Proof. We apply Lemma 1.3 to $x_{n}(t)=u_{n}(t+h)-u_{n}(t)$, where $0<h<T$. Since $x_{n}(t)$ is differentiable with $x_{n}^{\prime}(t)=-\left[A_{n}(t+h) u_{n}(t+h)-A_{n}(t) u_{n}(t)\right]$, (1.2) gives

$$
\begin{equation*}
\left\|x_{n}(t)\right\|(d / d t)\left\|x_{n}(t)\right\|=-\operatorname{Re}\left(A_{n}(t+h) u_{n}(t+h)-A_{n}(t) u_{n}(t), F x_{n}(t)\right) \tag{4.4}
\end{equation*}
$$

for each $t$ where $\left\|x_{n}(t)\right\|$ is differentiable; note that the duality map $F$ is singlevalued because $X^{*}$ is uniformly convex (see Lemma 1.2).

The first factor in the scalar product on the right of (4.4) can be written

$$
\left[A_{n}(t+h) u_{n}(t+h)-A_{n}(t+h) u_{n}(t)\right]+\left[A_{n}(t+h) u_{n}(t)-A_{n}(t) u_{n}(t)\right],
$$

of which the first term contributes to (4.4) a nonpositive value by the monotonicity of $A_{n}(t+h)$ (see Lemma 2.3). The second term can be estimated by (4.2); it is thus majorized in norm by $L h\left(1+\left\|u_{n}(t)\right\|+\left(1+n^{-1}\right)\left\|u_{n}^{\prime}(t)\right\|\right)$, where we have used $A_{n}(t) u_{n}(t)=-u_{n}^{\prime}(t)$. In this way we obtain from (4.4), using the Schwarz inequality and the norm-preserving property of $F$,

$$
\begin{equation*}
\left\|x_{n}(t)\right\|(d / d t)\left\|x_{n}(t)\right\| \leqq \operatorname{Lh}\left(1+\left\|u_{n}(t)\right\|+\left(1+n^{-1}\right)\left\|u_{n}^{\prime}(t)\right\|\right)\left\|x_{n}(t)\right\| . \tag{4.5}
\end{equation*}
$$

Since $\left\|x_{n}(t)\right\|$ is Lipschitz continuous with $x_{n}(t)$, it is differentiable almost everywhere, where (4.5) is true as shown above. Let $N$ be the set of $t$ for which $x_{n}(t)=0$. If $t$ is not in $N$, we can cancel $\left\|x_{n}(t)\right\|$ in (4.5) to obtain

$$
\begin{equation*}
(d / d t)\left\|x_{n}(t)\right\| \leqq L h\left(1+\left\|u_{n}(t)\right\|+\left(1+n^{-1}\right)\left\|u_{n}^{\prime}(t)\right\|\right) . \tag{4.6}
\end{equation*}
$$

If $t$ is a cluster point of $N$, then $(d / d t)\left\|x_{n}(t)\right\|=0$ as long as it exists, so that (4.6) is still true. Since there are only a countable number of isolated points of $N$, it follows that (4.6) is true almost everywhere. Since $\left\|x_{n}(t)\right\|$ is absolutely continuous, we obtain finally

$$
\begin{equation*}
\left\|x_{n}(t)\right\| \leqq\left\|x_{n}(0)\right\|+L h \int_{0}^{t}\left(1+\left\|u_{n}(s)\right\|+\left(1+n^{-1}\right)\left\|u_{n}^{\prime}(s)\right\|\right) d s \tag{4.7}
\end{equation*}
$$

Since $x_{n}(t)=u_{n}(t+h)-u_{n}(t)$, by dividing (4.7) by $h$ and letting $h \downarrow 0$ we obtain

$$
\begin{equation*}
\left\|u_{n}^{\prime}(t)\right\| \leqq\left\|u_{n}^{\prime}(0)\right\|+L t+L \int_{0}^{t}\left(\left\|u_{n}(s)\right\|+\left(1+n^{-1}\right)\left\|u_{n}^{\prime}(s)\right\|\right) d s \tag{4.8}
\end{equation*}
$$

Since $\left\|u_{n}^{\prime}(0)\right\|=\left\|A_{n}(0) a\right\| \leqq\|A(0) a\|$ by (2.5), we have

$$
\left\|u_{n}^{\prime}(t)\right\| \leqq K+2 L \int_{0}^{\iota}\left(\left\|u_{n}(s)\right\|+\left\|u_{n}^{\prime}(s)\right\|\right) d s
$$

where $K$ is a constant independent of $n$. On the other hand, $u_{n}(t)=a+\int_{v}^{t} u_{n}^{\prime}(s) d$ so that

$$
\left\|u_{n}(t)\right\| \leqq\|a\|+\int_{0}^{t}\left\|u_{n}^{\prime}(s)\right\| d s
$$

Adding the two inequalities, we obtain

$$
\left\|u_{n}(t)\right\|+\left\|u_{n}^{\prime}(t)\right\| \leqq K+(2 L+1) \int_{0}^{t}\left(\left\|u_{n}(s)\right\|+\left\|u_{n}^{\prime}(s)\right\|\right) d s
$$

with a different constant $K$. Solving this integral inequality, we see that $\left\|u_{n}(t)\right\|+\left\|u_{n}^{\prime}(t)\right\|$ is bounded for all $n$ and $t$.

Lemma 4.3. The strong limit $u(t)=\lim _{n \rightarrow \infty} u_{n}(t)$ exists uniformly for $t \in[0, T]$. $u(t)$ is Lipschitz continuous with $u(0)=a$.

Proof. We apply Lemma 1.3 to $x_{m n}(t)=u_{m}(t)-u_{n}(t)$. As above we obtain for almost all $t$

$$
\begin{equation*}
\frac{1}{2}(d / d t)\left\|x_{m n}(t)\right\|^{2}=-\operatorname{Re}\left(A_{m}(t) u_{m}(t)-A_{n}(t) u_{n}(t), F x_{m n}(t)\right) \tag{4.9}
\end{equation*}
$$

Since $A_{m}(t) u_{m}(t)=A(t) J_{m}(t) u_{m}(t)$ etc. and since $A(t)$ is monotonic, we have

$$
\begin{equation*}
0 \leqq \operatorname{Re}\left(A_{m}(t) u_{m}(t)-A_{n}(t) u_{n}(t), F y_{m n}(t)\right), \tag{4.10}
\end{equation*}
$$

where $y_{m n}(t)=J_{m}(t) u_{m}(t)-J_{n}(t) u_{n}(t)$. Addition of (4.9) and (4.10) gives

$$
\begin{aligned}
\frac{1}{2}(d / d t)\left\|x_{m n}(t)\right\|^{2} & \leqq \operatorname{Re}\left(A_{m}(t) u_{m}(t)-A_{n}(t) u_{n}(t), F y_{m n}(t)-F x_{m n}(t)\right) \\
& \leqq 2 K\left\|F y_{m n}(t)-F x_{m n}(t)\right\| \quad \text { for almost all } t
\end{aligned}
$$

where we have used Lemma 4.2.
Since $\left\|x_{m n}(t)\right\|^{2}$ is absolutely continuous and $x_{m n}(0)=a-a=0$, we obtain

$$
\begin{equation*}
\left\|x_{m n}(t)\right\|^{2} \leqq 4 K \int_{0}^{t}\left\|F y_{m n}(s)-F x_{m n}(s)\right\| d s \tag{4.11}
\end{equation*}
$$

We want to prove that $\left\|x_{m n}(t)\right\| \rightarrow 0$ uniformly in $t$, by showing that the irte-
grand in (4.11) tends to zero uniformly in $s$. Now $\left\|x_{m n}(s)\right\|=\left\|u_{m}(s)-u_{n}(s)\right\| \leqq 2 K$ by Lemma 4.2. Also

$$
\begin{aligned}
\left\|y_{m n}(s)-x_{m n}(s)\right\| & \leqq J_{m}(s) u_{m}(s)-u_{m}(s)\|+\| J_{n}(s) u_{n}(s)-u_{n}(s) \| \\
& \leqq m^{-1}\left\|A_{m}(s) u_{m}(s)\right\|+n^{-1}\left\|A_{n}(s) u_{n}(s)\right\| \leqq\left(m^{-1}+n^{-1}\right) K \rightarrow 0
\end{aligned}
$$

as $m, n \rightarrow \infty$, where we have used (2.3) and Lemma 4.2. It follows from Lemma 1.2 that for any $\varepsilon>0$, we have $\left\|F y_{m n}(s)-F x_{m n}(s)\right\|<\varepsilon, 0 \leqq s \leqq T$, for sufficiently large $m, n$, as we wished to show. Thus $u(t)=\lim u_{n}(t)$ exists uniformly in $t$.

Since $u_{n}(t)$ is Lipschitz continuous uniformly in $t$ and $n$ by $\left\|u_{n}^{\prime}(t)\right\| \leqq K$, the limit $u(t)$ is also Lipschitz continuous uniformly in $t$, with $u(0)=a$.

Lemma 4.4. $u(t) \in D$ for all $t \in[0, T]$, and $A(t) u(t)$ is bounded and is weakly continuous.

Proof. For each $t$ we have $u_{n}(t) \rightarrow u(t)$ and $\left\|A_{n}(t) u_{n}(t)\right\| \leqq K$. It follows from Lemma 2.5, (b), that $u(t) \in D(A(t))=D$ and $A_{n}(t) u_{n}(t) \rightarrow A(t) u(t)$. Thus $\|A(t) u(t)\| \leqq K$, too.

To prove the weak continuity of $A(t) u(t)$, let $t_{k} \rightarrow t$ : we have to show that $A\left(t_{k}\right) u\left(t_{k}\right) \rightarrow A(t) u(t)$. Now

$$
\begin{align*}
\left\|\left[A(t)-A\left(t_{k}\right)\right] u\left(t_{k}\right)\right\| & \leqq L\left|t-t_{k}\right|\left(1+\left\|u\left(t_{k}\right)\right\|+\left\|A\left(t_{k}\right) u\left(t_{k}\right)\right\|\right)  \tag{4.12}\\
& \leqq L\left|t-t_{k}\right|(1+2 K) \rightarrow 0 .
\end{align*}
$$

This implies, in particular, that $\lim \sup \left\|A(t) u\left(t_{k}\right)\right\|=\lim \sup \left\|A\left(t_{k}\right) u\left(t_{k}\right)\right\| \leqq K$. Since $u\left(t_{k}\right) \rightarrow u(t)$, it follows from Lemma 2.5, (a), that $A(t) u\left(t_{k}\right) \rightarrow A(t) u(t)$. Using (4.12) once more, we see that $A\left(t_{k}\right) u\left(t_{k}\right)-A(t) u(t)$.

Lemma 4.5. For each $f \in X^{*},(u(t), f)$ is continuously differentiable on $[0, T]$, with $d(u(t), f) / d t=-(A(t) u(t), f)$.

Proof. Since $u_{n}(t)$ satisfies $\left(\mathrm{E}_{n}\right)$, we have

$$
\left(u_{n}(t), f\right)=(a, f)-\int_{0}^{t}\left(A_{n}(s) u_{n}(s), f\right) d s
$$

Since $u_{n}(t) \rightarrow u(t), A_{n}(s) u_{n}(s) \rightarrow A(s) u(s)$, and $\left|\left(A_{n}(s) u_{n}(s), f\right)\right| \leqq K\|f\|$ by Lemma 4.2, we obtain

$$
\begin{equation*}
(u(t), f)=(a, f)-\int_{0}^{1}(A(s) u(s), f) d s \tag{4.13}
\end{equation*}
$$

by bounded convergence. Since the integrand is continuous in $s$ by Lemma 4.4, the assertion follows.

Lemma 4.6. $A(t) u(t)$ is Bochner integrable, and $u(t)$ is an indefinite integral of $-A(t) u(t)$. The strong derivative $d u(t) / d t$ exists almost everywhere and equals $-A(t) u(t)$.

Proof. Let $X_{0}$ be the smallest closed linear subspace of $X$ containing all the values of the $A_{n}(t) u_{n}(t)$ for $t \in[0, T]$ and $n=1,2, \cdots$. Since the $A_{n}(t) u_{n}(t)$
are continuous, $X_{0}$ is separable. Since $A_{n}(t) u_{n}(t) \rightarrow A(t) u(t)$ as shown above in the proof of Lemma 4.4 and since $X_{0}$ is weakly closed, $A(t) u(t) \in X_{0}$ too. Thus $A(t) u(t)$ is separably-valued. Since it is weakly continuous, it is strongly measurable (see e.g. Yosida [5], p. 131) and, being bounded, it is Bochner integrable (see [5], p. 133). Then (4.13) shows that $u(t)$ is an indefinite integral of $-A(t) u(t)$. The last statement of the lemma is a well-known result for Bochner integrals (see [5], p. 134).

Lemma 4.7. Let $u(t)$ and $v(t)$ be any functions satisfying the conditions of Lemma 4.5 and the initial conditions $u(0)=a \in D, v(0)=b \in D$. Then $\|u(t)-v(t)\|$ $\leqq\|a-b\|$.

Proof. $x(t)=u(t)-v(t)$ has weak derivative $-A(t) u(t)+A(t) v(t)$, which is weakly continuous and hence bounded. Thus $x(t)$ is Lipschitz continuous and so $\|x(t)\|$ is differentiable almost everywhere. It follows from Lemma 1.3 that

$$
\frac{1}{-}-(d / d t)\|x(t)\|^{2}=-\operatorname{Re}(A(t) u(t)-A(t) v(t), F x(t)) \leqq 0
$$

almost everywhere. Since $\|x(t)\|^{2}$ is absolutely continuous, it follows that $\|x(t)\|$ $\leqq\|x(0)\|=\|a-b\|$.

The lemmas proved above give complete proof to Theorems 1 and 2. In particular we note that the solution $u(t)$ of the Cauchy problem is unique.

Lemma 4.8. For sufficiently large $M>0,\|A(t) u(t)\|-M t$ is monotonically decreasing in $t$. (Hence $\|A(t) u(t)\|$ is continuous except possibly at a countable number of points t.)

Proof. Returning to (4.8) and noting that the integrand is uniformly bounded by Lemma 4.2, we obtain

$$
\begin{equation*}
\left\|u_{n}^{\prime}(t)\right\| \leqq\|A(0) a\|+M t \tag{4.14}
\end{equation*}
$$

where $M$ is a constant independent of $t$ and $n$ (note that $\left\|u_{n}^{\prime}(0)\right\|=\left\|A_{n}(0) a\right\|$ $\leqq\|A(0) a\|$ as shown before). Since $u_{n}^{\prime}(t)=-A_{n}(t) u_{n}(t) \rightarrow-A(t) u(t)$, going to the limit $n \rightarrow \infty$ in (4.14) gives

$$
\begin{equation*}
\|A(t) u(t)\| \leqq\|A(0) u(0)\|+M t \tag{4.15}
\end{equation*}
$$

If we consider ( E ) on the interval $[s, T]$ with the initial value $u(s)$, the solution must coincide with our $u(t)$ on $[s, T]$ owing to the uniqueness of the solution. If we apply (4.15) to the new initial value problem, we see that $\|A(t) u(t)\| \leqq\|A(s) u(s)\|+M(t-s)$ for $t>s$. Thus $\|A(t) u(t)\|-M t$ is monotonically nonincreasing.

Lemma 4.9. If $X$ is uniformly convex, then $\hat{A}(t) u(t)$ is strongly continuous except possibly at a countable number of points $t$.

Proof. Since $A(t) u(t)$ is weakly continuous, it is strongly continuous at each point $t$ where $\left\|A(t) u\left(t^{t}\right)\right\|$ is continuous. Thus the assertion follows from

## Lemma 4.8

Lemma 4.9 immediately leads to Theorem 3.
University of California, Berkeley

## Bibliography

[1] F.E. Browder, The solvability of non-linear functional equations, Duke Math. J., 30 (1963), 557-566.
[2] T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan, 5 (1953), 208-234.
[3] Y. Kōmura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507.
[4.] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 541-546.
[5] K. Yosida, Functional analysis, Springer, 1965.
(Notes added in proof) 1. In a recent paper by F. E. Browder, Nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc., 73 (1967), 470-476, the notion of accretive operators $A$ in a Banach space $X$ is introduced, which is almost identical with that of monotonic operators defined in the present paper. There is a slight difference that he requires $\operatorname{Re}(A u-A v, f) \geqq 0$ for every $f \in F(u-v)$ whereas we require it only for some $f \in F(u-v)$. Of course the two definitions coincide if $F$ is single-valued.
2. Browder has called the attention of the writer to a paper by S. Ôharu, Note on the representation of semi-groups of non-linear operators, Proc. Japan Acad., 42 (1967), 1149-1154, which contains, among others, a proof of Lemma 2.1.
3. Browder remarked also that the condition (3.1) can be weakened to

$$
\|A(t) v-A(s) v\| \leqq|t-s| L(\|v\|)(1+\|A(s) v\|),
$$

where $L(r)$ is a positive, nondecreasing function of $r>0$. In this case the proof of the theorems needs a slight modification. First, it is easily seen that we have, instead of (4.2),
(4.2')

$$
\left\|A_{n}(t) v-A_{n}(s) v\right\| \leqq|t-s| L_{1}(\|v\|)\left(1+\left\|A_{n}(s) v\right\|\right),
$$

where $L_{1}(r)=L\left(r+K_{1}\right)$ for some constant $K_{1}>0$ (we may choose $K_{1}=2\|a\|+\sup _{0 \leqq t \leqq T}\|A(t) a\|$ ). Lemma 4.2 is seen to remain true, but to prove it we first prove the uniform boundedness for $\left\|u_{n}(t)\right\|$, independently of $\left\|u_{n}{ }^{\prime}(t)\right\|$. This can be done easily by estimating $(d / d t)\left\|u_{n}(t)-a\right\|^{2}$ in the manner similar to the estimate for $\left\|x_{n}(t)\right\|$, with the result

$$
\left\|u_{n}(t)-a\right\| \leqq \int_{0}^{l}\left\|A_{n}(s) a\right\| d s \leqq \int_{0}^{1}\|A(s) a\| d s \leqq K_{2}
$$

Then the estimate for $\left\|u_{n}{ }^{\prime}(t)\right\|$ can be obtained from (the analogue of) (4.8) by solving an integral inequality for $\left\|u_{n}{ }^{\prime}(t)\right\|$. The proof of the remaining lemmas are unchanged.
4. The proof of Lemma 4.6 was unnecessarily long. It is sufficient to notice that a weakly continuous function of $t$ is separably-valued.
5. Our theorems are rather weak when applied to regular equations ( E ), in which
the $A(t)$ are continuous operators defined everywhere on $X$, for it is known that we then need much less continuity of $A(t)$ as a function of $t$. The theorems could be strengthened by writing $A(t)=A_{0}(t)+B(t)$ in which $A_{0}(t)$ is assumed to satisfy Conditions I to III and $B(t)$ to be "regular" with a milder continuity condition as a function of $t$.


[^0]:    * This work represents part of the results obtained while the author held a Miller Research Professorship.

