Distance, holomorphic mappings and the Schwarz lemma

By Shoshichi KOBAYASHI*)

(Received Nov. 29, 1966) (Revised March 13, 1967)

1. Introduction

According to Pick the classical Schwarz lemma can be stated in the following invariant manner. Every holomorphic map f of the open unit disk D into itself is distance-decreasing with respect to the Poincaré metric ds^2 , i. e., $f^*(ds^2) \leq ds^2$, and if the equality holds at one point of D, then f is biholomorphic. Bochner and Martin proved in their book [2] the following generalization of the Schwarz lemma to higher dimension. Let D_n be the open unit ball in \mathbb{C}^n ,

$$D_n = \{z = (z^1, \dots, z^n); \|z\|^2 = \sum |z^j|^2 < 1\}.$$

If f is a holomorphic mapping of D_m into D_n such that f(0) = 0, then $||f(z)|| \le ||z||$ for every $z \in D_m$. Using the fact that D_m and D_n are homogeneous, we can formulate this in the following invariant manner. Every holomorphic mapping $f: D_m \to D_n$ is distance-decreasing with respect to the Bergman metrics $ds_{D_m}^2$ and $ds_{D_n}^2$ of D_m and D_n , i. e., $f^*(ds_{D_n}^2) \le ds_{D_m}^2$.

Recently Korányi [7] obtained the following generalization of the Schwarz lemma. If M is a hermitian symmetric space of non-compact type with the Bergman metric ds^2 , then every holomorphic map $f: M \to M$ satisfies $f^*(ds^2) \leq l \cdot ds^2$, where l is the rank of M.

On the other hand, Ahlfors exposed in his generalization of the Schwarz lemma the essential rôle played by the curvature. Let M be a Riemann surface with hermitian metric ds_M^2 whose Gaussian curvature is bounded above by a negative constant -B. Let D be the unit disk in C with an invariant metric ds_D^2 whose Gaussian curvature is a negative constant -A. (If we take $dzd\bar{z}/(1-|z|^2)^2$ for ds_D^2 , then its curvature is equal to -4.) Then the generalized Schwarz lemma by Ahlfors says that every holomorphic mapping f: D $\rightarrow M$ satisfies $f^*(ds_M^2) \leq -\frac{A}{B} - ds_D^2$.

The main purpose of this paper is to generalize the results above in the following form:

^{*)} Partially supported by NSF Grant GP-5798.

S. Kobayashi

THEOREM. Let D be a bounded symmetric domain with an invariant Kähler metric ds_D^2 whose holomorphic sectional curvature is bounded below by a negative constant -A. Let M be a Kähler manifold with metric ds_M^2 whose holomorphic sectional curvature is bounded above by a negative constant -B. Then every holomorphic mapping $f: D \to M$ satisfies $f^*(ds_M^2) \leq \frac{A}{B} ds_D^2$.

Although the theorem above can be generalized to the case when M is a hermitian manifold (with a suitable definition of holomorphic sectional curvature) we shall restrict ourselves to the Kähler case in this paper.

2. The case dim D = 1.

Let D_a be the open disk of radius a in C, $D_a = \{z \in C; |z| < a\}$. Then the metric

$$ds_a^2 = \frac{4a^2 dz d\bar{z}}{A(a^2 - z\bar{z})^2}$$

on D_a has the curvature -A. Let M be a Kähler manifold with metric ds_M^2 whose holomorphic sectional curvature is bounded above by -B. Let u be the non-negative function on D_a defined by

$$f^*(ds^2_M) = u \cdot ds^2_a$$

We want to prove that $u \leq -\frac{A}{B}$ on D_a . Although u may not attain its maximum in (the interior of) D_a in general, we shall show that we have only to consider the case when u attains its maximum in D_a . Let r be a positive number smaller than a. Let z_0 be an arbitrary point of D_a . Taking r sufficiently close to a, we may assume that $z_0 \in D_r$. From the explicit expression for ds_a^2 given above, we see that $(ds_r^2)_{z_0} \rightarrow (ds_a^2)_{z_0}$ as $r \rightarrow a$. If we define a nonnegative function u_r on D_r by $f^*(ds_M^2) = u_r \cdot ds_r^2$, then $u_r(z_0) \rightarrow u(z_0)$ as $r \rightarrow a$. Hence it suffices to prove that $u_r \leq \frac{A}{B}$ on D_r . If we write $f^*(ds_M^2) = hdzd\bar{z}$ on D_a , then h is bounded on D_r . On the othen hand, the coefficient of ds_r^2 approaches infinity at the boundary of D_r . In particular, u_r attains its maximum in D_r . The problem is thus reduced to the case where u attains its maximum in D_a .

We shall now prove that $u \leq \frac{A}{B}$ on D_a under the assumption that u attains its maximum in D_a , say at $z_0 \in D_a$. If $u(z_0) = 0$, then $u \equiv 0$ and there is nothing to prove. Assume that $u(z_0) > 0$. Then the mapping $f: D_a \to M$ is non-degenerate in a neighborhood of z_0 so that f gives a holomorphic imbedding of a neighborhood U of z_0 into M.

We claim that the curvature of the (1-dimensional) complex submanifold f(U) of M is bounded above by -B. This is a consequence of the following general fact. Let S be a complex submanifold of a Kaehler manifold M. Let R_M and R_S denote the Riemannian curvature tensors of M and S respectively. Let α denote the second fundamental form of S; it is a symmetric bilinear map of the tangent space $T_p(S)$ into the normal space at p. From the equations of Gauss-Codazzi we obtain

$$R_{S}(X, JX, X, JX) = R_{M}(X, JX, X, JX) - 2 \|\alpha(X, X)\|^{2}.$$

See O'Neill [8] for the detail of calculation leading to the formula above. The formula implies that the holomorphic sectional curvature of S does not exceed that of M. (This fact is true for a hermitian manifold M and a complex submanifold S of M. But the proof is more technical and will be given in a forthcoming paper.)

Since u attains its maximum at z_0 , $\partial^2 \log u/\partial z \partial \bar{z}$ is non-positive at z_0 . We shall now express $\partial^2 \log u/\partial z \partial \bar{z}$ in terms of the curvatures of D_a and f(U). Since $f: U \rightarrow f(U)$ is a biholomorphic mapping, we define the coordinate system w in f(U) by $w \circ f = z$. Identifying f(U) with U by the mapping f, we shall identify w with z. Then we can consider $f^*(ds_M^2) = hdzd\bar{z}$ as the induced metric on f(U) as well as on U. If we write $ds_a^2 = gdzd\bar{z}$, then

$$u = h/g$$
.

Hence

$$\partial^2 \log u / \partial z \, \partial \bar{z} = \partial^2 \log h / \partial z \, \partial \bar{z} - \partial^2 \log g / \partial z \, \partial \bar{z}$$
.

If we denote by k the curvature of the metric $hdzd\bar{z}$, then

$$k = -\frac{1}{2h} (\partial^2 \log h / \partial z \, \partial \bar{z}) \, .$$

Since the curvature of the metric $gdzd\bar{z}$ is equal to -A, we have

$$-A = -\frac{1}{2g} (\partial^2 \log g / \partial z \, \partial \bar{z}).$$

Since $k \leq -B$ as we have seen above, we have

$$\partial^2 \log u / \partial z \ \partial \bar{z} = -2kh - 2Ag \ge 2Bh - 2Ag$$
.

Since the left hand side is non-positive at z_0 , so is the right hand side. Hence, $A/B \ge h/g$ at z_0 . Since u = h/g attains its maximum at z_0 , it follows that $A/B \ge u$ everywhere. This completes the proof of Theorem for the case dim D = 1.

This case is closely related with Aussage 3 in Grauert-Reckziegel [4]. Instead of assuming that the holomorphic sectional curvature of M is bounded

by -B, they assume that the curvature of every 1-dimensional complex submanifold of M is bounded by -B.

3. The case where $D = D_a^l = D_a \times \cdots \times D_a$.

Let $\alpha = (\alpha_1, \dots, \alpha_l)$ be an *l*-tuple of complex numbers such that $\sum_{i=1}^{i} |\alpha_i|^2 = 1$. Let $j: D_a \to D_a^{i}$ be the imbedding defined by

$$j(z) = (\alpha_1 z, \cdots, \alpha_l z).$$

Let ds_D be the product metric in $D = D_a^t$. From the explicit expression of ds_a given in Section 2, we see that $j: D_a \to D_a^t$ is isometric at the origin of D_a , i.e., $(ds_a^2)_0 = (j^*ds_D^2)_0$.

Let X be a tangent vector of D_a^i at the origin. For a suitable $\alpha = (\alpha_1, \dots, \alpha_l)$, we can find a tangent vector Y of D_a at the origin such that $j_*(Y) = X$. Then, for any holomorphic mapping $f: D_a^i \to M$, we have

$$\|f_*X\|^2 = \|f_*j_*Y\|^2 \leq \frac{A}{B} \|Y\|^2 = \frac{A}{B} \|X\|^2$$

where the inequality follows from the special case of Theorem proved in Section 2 (applied to $f \circ j: D_a \to M$) and the last equality follows from the fact that j is isometric at the origin. Since D_a^i is homogeneous, the inequality $\|f_*X\|^2 \leq \frac{A}{B} \|X\|^2$ holds for all tangent vectors X of D_a^i . This completes the proof of Theorem in the case $D = D_a^i$.

4. The case where D is a symmetric bounded domain of rank l

Let D be a symmetric bounded domain of rank l. With respect to a canonical metric, its holomorphic sectional curvature lies between -A and -A/l. For every tangent vector X of D, there is a (totally geodesic) complex submanifold D_a^l of D such that X is tangent to D_a^l . (It is a complex submanifold of D. More precisely, write D = G/H and $g = \mathfrak{h} + \mathfrak{p}$ in the usual manner. Let \mathfrak{a} be a maximal abelian subalgebra contained in \mathfrak{p} so that dim $\mathfrak{a} = \operatorname{rank} D = l$. We may assume that X is an element of \mathfrak{a} under the usual identification. Let $J:\mathfrak{p} \to \mathfrak{p}$ be the complex structure tensor. Then the manifold generated by $\mathfrak{a}+J\mathfrak{a}$ is the desired submanifold D_a^l). Now our theorem in its full generality follows from the special case considered in Section 3.

COROLLARY. Let D be a symmetric bounded domain with holomorphic sectional curvature $\geq -A$. Let M be a symmetric bounded domain of rank l so that its holomorphic sectional curvature lies between -lB and -B. Then every holomorphic mapping $f: D \to M$ satisfies $f^*(ds^2_M) \leq -\frac{A}{B} - ds^2_D$. This corollary is in Korányi [7].

5. Concluding remarks

In the case where dim $D = \dim M = 1$, a holomorphic mapping $f: D \to M$ is distance-decreasing if and only if it is volume decreasing. Under a suitable assumption on the Ricci tensor of M every holomorphic mapping f of the unit ball D in \mathbb{C}^n into an *n*-dimensional complex manifold M is volume-decreasing. See Dinghas [5] for the case where M is a Kähler-Einstein, Chern [3] for the case M is a hermitian-Einstein and Kobayashi [6] for a further generalization.

University of California, Berkeley

Bibliography

- [1] L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
- [2] S. Bochner and W.T. Martin, Several complex variables, Princeton University Press, 1948.
- [3] S.S. Chern, On holomorphic mappings of hermitian manifolds of the same dimension, to appear in Proc. Summer Inst. on entire functions.
- [4] H. Grauert and H. Reckziegel, Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z., 89 (1965), 108-125.
- [5] A. Dinghas, Ein n-dimensionales Analogon des Schwarz-Pickschen Flächensatzes fur holomorphe Abbildungen der komplexen Einheitskugel in eine Kähler-Mannigfaltigkeit, Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen, Bd. 33 (1965), 477-494.
- [6] S. Kobayashi, Volume elements, holomorphic mappings and Schwarz's lemma, to appear in Proc. Summer Inst. on entire functions.
- [7] A. Korányi, A Schwarz lemma for bounded symmetric domains, Proc. Amer. Math. Soc., 17 (1966), 210-213.
- [8] B. O'Neill, Isotropic and Kähler immersions, Canad. J. Math., 17 (1965), 907-915.