Distance, holomorphic mappings and the Schwarz lemma

By Shoshichi Kobayashi*)

(Received Nov. 29, 1966)
(Revised March 13, 1967)

1. Introduction

According to Pick the classical Schwarz lemma can be stated in the following invariant manner. Every holomorphic map f of the open unit disk D into itself is distance-decreasing with respect to the Poincaré metric $d s^{2}$, i. e., $f^{*}\left(d s^{2}\right) \leqq d s^{2}$, and if the equality holds at one point of D, then f is biholomorphic. Bochner and Martin proved in their book [2] the following generalization of the Schwarz lemma to higher dimension. Let D_{n} be the open unit ball in \boldsymbol{C}^{n},

$$
D_{n}=\left\{z=\left(z^{1}, \cdots, z^{n}\right) ;\|z\|^{2}=\Sigma\left|z^{j}\right|^{2}<1\right\} .
$$

If f is a holomorphic mapping of D_{m} into D_{n} such that $f(0)=0$, then $\|f(z)\|$ $\leqq\|z\|$ for every $z \in D_{m}$. Using the fact that D_{m} and D_{n} are homogeneous, we can formulate this in the following invariant manner. Every holomorphic mapping $f: D_{m} \rightarrow D_{n}$ is distance-decreasing with respect to the Bergman metrics $d s_{D_{m}}^{2}$ and $d s_{D_{n}}^{2}$ of D_{m} and D_{n}, i.e., $f *\left(d s_{D_{n}}^{2}\right) \leqq d s_{D_{m}}^{2}$.

Recently Korányi [7] obtained the following generalization of the Schwarz lemma. If M is a hermitian symmetric space of non-compact type with the Bergman metric $d s^{2}$, then every holomorphic map $f: M \rightarrow M$ satisfies $f^{*}\left(d s^{2}\right)$ $\leqq l \cdot d s^{2}$, where l is the rank of M.

On the other hand, Ahlfors exposed in his generalization of the Schwarz lemma the essential rôle played by the curvature. Let M be a Riemann surface with hermitian metric $d s_{M}^{2}$ whose Gaussian curvature is bounded above by a negative constant $-B$. Let D be the unit disk in \boldsymbol{C} with an invariant metric $d s_{D}^{2}$ whose Gaussian curvature is a negative constant $-A$. (If we take $d z d \bar{z} /\left(1-|z|^{2}\right)^{2}$ for $d s_{D}^{2}$, then its curvature is equal to -4.) Then the generalized Schwarz lemma by Ahlfors says that every holomorphic mapping $f: D$ $\rightarrow M$ satisfies $f^{*}\left(d s_{M}^{2}\right) \leqq \frac{A}{B^{-}} d s_{D}^{2}$.

The main purpose of this paper is to generalize the results above in the following form:

[^0]Theorem. Let D be a bounded symmetric domain with an invariant Kähler metric ds ${ }_{D}^{2}$ whose holomorphic sectional curvature is bounded below by a negative constant $-A$. Let M be a Kähler manifold with metric ds whose holomorphic sectional curvature is bounded above by a negative constant $-B$. Then every holomorphic mapping $f: D \rightarrow M$ satisfies $f^{*}\left(d s_{M}^{2}\right) \leqq \frac{A}{B} d s_{D}^{2}$.

Although the theorem above can be generalized to the case when M is a hermitian manifold (with a suitable definition of holomorphic sectional curvature) we shall restrict ourselves to the Kähler case in this paper.
2. The case $\operatorname{dim} D=1$.

Let D_{a} be the open disk of radius a in $\boldsymbol{C}, D_{a}=\{z \in \boldsymbol{C} ;|z|<a\}$. Then the metric

$$
d s_{a}^{2}=\frac{4 a^{2} d z d \bar{z}}{A\left(a^{2}-z \bar{z}\right)^{2}}
$$

on D_{a} has the curvature $-A$. Let M be a Kähler manifold with metric $d s_{m}^{2}$ whose holomorphic sectional curvature is bounded above by $-B$. Let u be the non-negative function on D_{a} defined by

$$
f^{*}\left(d s_{M}^{2}\right)=u \cdot d s_{a}^{2} .
$$

We want to prove that $u \leqq \frac{A}{B}$ on D_{a}. Although u may not attain its maximum in (the interior of) D_{a} in general, we shall show that we have only to consider the case when u attains its maximum in D_{a}. Let r be a positive number smaller than a. Let z_{0} be an arbitrary point of D_{a}. Taking r sufficiently close to a, we may assume that $z_{0} \in D_{r}$. From the explicit expression for $d s_{a}^{2}$ given above, we see that $\left(d s_{r}^{2}\right)_{z_{0}} \rightarrow\left(d s_{a}^{2}\right)_{z_{0}}$ as $r \rightarrow a$. If we define a nonnegative function u_{r} on D_{r} by $f *\left(d s_{\mu}^{2}\right)=u_{r} \cdot d s_{r}^{2}$, then $u_{r}\left(z_{0}\right) \rightarrow u\left(z_{0}\right)$ as $r \rightarrow a$. Hence it suffices to prove that $u_{r} \leqq \frac{A}{B}$ on D_{r}. If we write $f *\left(d s_{M}^{2}\right)=h d z d \bar{z}$ on D_{a}, then h is bounded on D_{r}. On the othen hand, the coefficient of $d s_{r}^{2}$ approaches infinity at the boundary of D_{r}. Hence, the function u_{r} defined on D_{r} goes to zero at the boundary of D_{r}. In particular, u_{r} attains its maximum in D_{r}. The problem is thus reduced to the case where u attains its maximum in D_{a}.

We shall now prove that $u \leqq \frac{A}{B}$ on D_{a} under the assumption that u attains its maximum in D_{a}, say at $z_{0} \in D_{a}$. If $u\left(z_{0}\right)=0$, then $u \equiv 0$ and there is nothing to prove. Assume that $u\left(z_{0}\right)>0$. Then the mapping $f: D_{a} \rightarrow M$ is non-degenerate in a neighborhood of z_{0} so that f gives a holomorphic imbedding of a neighborhood U of z_{0} into M.

We claim that the curvature of the (1-dimensional) complex submanifold $f(U)$ of M is bounded above by $-B$. This is a consequence of the following general fact. Let S be a complex submanifold of a Kaehler manifold M. Let R_{M} and R_{S} denote the Riemannian curvature tensors of M and S respectively. Let α denote the second fundamental form of S; it is a symmetric bilinear map of the tangent space $T_{p}(S)$ into the normal space at p. From the equations of Gauss-Codazzi we obtain

$$
R_{S}(X, J X, X, J X)=R_{M}(X, J X, X, J X)-2\|\alpha(X, X)\|^{2} .
$$

See O'Neill [8] for the detail of calculation leading to the formula above. The formula implies that the holomorphic sectional curvature of S does not exceed that of M. (This fact is true for a hermitian manifold M and a complex submanifold S of M. But the proof is more technical and will be given in a forthcoming paper.)

Since u attains its maximum at $z_{0}, \partial^{2} \log u / \partial z \partial \bar{z}$ is non-positive at z_{0}. We shall now express $\partial^{2} \log u / \partial z \partial \bar{z}$ in terms of the curvatures of D_{a} and $f(U)$. Since $f: U \rightarrow f(U)$ is a biholomorphic mapping, we define the coordinate system w in $f(U)$ by $w \circ f=z$. Identifying $f(U)$ with U by the mapping f, we shall identify w with z. Then we can consider $f *\left(d S_{M}^{2}\right)=h d z d \bar{z}$ as the induced metric on $f(U)$ as well as on U. If we write $d s_{a}^{2}=g d z d \bar{z}$, then

$$
u=h / g .
$$

Hence

$$
\partial^{2} \log u / \partial z \partial \bar{z}=\partial^{2} \log h / \partial z \partial \bar{z}-\partial^{2} \log g / \partial z \partial \bar{z} .
$$

If we denote by k the curvature of the metric $h d z d \bar{z}$, then

$$
k=-\frac{1}{2 h}\left(\partial^{2} \log h / \partial z \partial \bar{z}\right) .
$$

Since the curvature of the metric $g d z d \bar{z}$ is equal to $-A$, we have

$$
-A=-\frac{1}{2 g}\left(\partial^{2} \log g / \partial z \partial \bar{z}\right) .
$$

Since $k \leqq-B$ as we have seen above, we have

$$
\partial^{2} \log u / \partial z \partial \bar{z}=-2 k h-2 A g \geqq 2 B h-2 A g .
$$

Since the left hand side is non-positive at z_{0}, so is the right hand side. Hence, $A / B \geqq h / g$ at z_{0}. Since $u=h / g$ attains its maximum at z_{0}, it follows that $A / B \geqq u$ everywhere. This completes the proof of Theorem for the case $\operatorname{dim} D=1$.

This case is closely related with Aussage 3 in Grauert-Reckziegel [4]. Instead of assuming that the holomorphic sectional curvature of M is bounded
by $-B$, they assume that the curvature of every 1 -dimensional complex submanifold of M is bounded by $-B$.
3. The case where $D=D_{a}^{\iota}=D_{a} \times \cdots \times D_{a}$.

Let $\alpha=\left(\alpha_{1}, \cdots, \alpha_{l}\right)$ be an l-tuple of complex numbers such that $\sum_{i=1}^{i}\left|\alpha_{i}\right|^{2}=1$. Let $j: D_{a} \rightarrow D_{a}^{\prime}$ be the imbedding defined by

$$
j(z)=\left(\alpha_{1} z, \cdots, \alpha_{l} z\right)
$$

Let $d s_{D}^{\prime \prime}$ be the product metric in $D=D_{a}^{l}$. From the explicit expression of $d s_{\text {; }}^{\prime}$ given in Section 2, we see that $j: D_{a} \rightarrow D_{a}^{\iota}$ is isometric at the origin of D_{a}, i. e., $\left(d s_{a}^{2}\right)_{0}=\left(j^{*} d s_{D}^{2}\right)_{0}$.

Let X be a tangent vector of D_{a}^{\prime} at the origin. For a suitable $\alpha=\left(\alpha_{1}, \cdots, \alpha_{l}\right)$, we can find a tangent vector Y of D_{a} at the origin such that $j_{*}(Y)=X$. Then, for any holomorphic mapping $f: D_{a}^{l} \rightarrow M$, we have

$$
\left\|f_{*} X\right\|^{2}=\left\|f_{*} j_{*} Y\right\|^{2} \leqq-\frac{A}{B}\|Y\|^{2}=\frac{A}{B}\|X\|^{2},
$$

where the inequality follows from the special case of Theorem proved in Section 2 (applied to $f \circ j: D_{a} \rightarrow M$) and the last equality follows from the fact that j is isometric at the origin. Since D_{a}^{l} is homogeneous, the inequality $\left\|f_{*} X\right\|^{2} \leqq{ }_{B}^{A}\|X\|^{2}$ holds for all tangent vectors X of D_{a}^{l}. This completes the proof of Theorem in the case $D=D_{a}^{l}$.

4. The case where D is a symmetric bounded domain of rank l

Let D be a symmetric bounded domain of rank l. With respect to a canonical metric, its holomorphic sectional curvature lies between $-A$ and $-A / l$. For every tangent vector X of D, there is a (totally geodesic) complex submanifold D_{a}^{l} of D such that X is tangent to D_{a}^{l}. (It is a complex submanifold of D. More precisely, write $D=G / H$ and $\mathfrak{g}=\mathfrak{b}+\mathfrak{p}$ in the usual manner. Let a be a maximal abelian subalgebra contained in ψ so that $\operatorname{dim} a=\operatorname{rank} D=l$. We may assume that X is an element of \mathfrak{a} under the usual identification. Let $J: \mathfrak{p} \rightarrow \mathfrak{p}$ be the complex structure tensor. Then the manifold generated by $\mathfrak{a}+J \mathfrak{a}$ is the desired submanifold D_{a}^{l}). Now our theorem in its full generality follows from the special case considered in Section 3.

Corollary. Let D be a symmetric bounded domain with holomorphic sectional curvature $\geqq-A$. Let M be a symmetric bounded domain of rank l so that its holomorphic sectional curvature lies between $-l B$ and $-B$. Then every holomorphic mapping $f: D \rightarrow M$ satisfies $f^{*}\left(d s_{M}^{2}\right) \leqq \begin{aligned} & A \\ & B\end{aligned} d s_{D}^{3}$.

This corollary is in Korányi [7],

5. Concluding remarks

In the case where $\operatorname{dim} D=\operatorname{dim} M=1$, a holomorphic mapping $f: D \rightarrow M$ is distance-decreasing if and only if it is volume decreasing. Under a suitable assumption on the Ricci tensor of M every holomorphic mapping f of the unit ball D in \boldsymbol{C}^{n} into an n-dimensional complex manifold M is volume-decreasing. See Dinghas [5] for the case where M is a Kähler-Einstein, Chern [3] for the case M is a hermitian-Einstein and Kobayashi [6] for a further generalization.

University of California, Berkeley

Bibliography

[1] L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
[2] S. Bochner and W.T. Martin, Several complex variables, Princeton University Press, 1948.
[3] S.S. Chern, On holomorphic mappings of hermitian manifolds of the same dimension, to appear in Proc. Summer Inst. on entire functions.
[4] H. Grauert and H. Reckziegel, Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z., 89 (1965), 108-125.
[5] A. Dinghas, Ein n-dimensionales Analogon des Schwarz-Pickschen Flächensatzes fur holomorphe Abbildungen der komplexen Einheitskugel in eine Kähler-Mannigfaltigkeit, Arbeitsgemeinschaft für Forschung des Landes Nordrhein-Westfalen, Bd. 33 (1965), 477-494.
[6] S. Kobayashi, Volume elements, holnmorphic mappings and Schwarz's lemma, to appear in Proc. Summer Inst. on entire functions.
[7] A. Korányi, A Schwarz lemma for bounded symmetric domains, Proc. Amer. Math. Soc., 17 (1966), 210-213.
[8] B. O'Neill, Isotropic and Kähler immersions, Canad. J. Math., 17 (1965), 907-915.

[^0]: *) Partially supported by NSF Grant GP-5798.

