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1. Introduction

The classical Schwarz lemma, in its invariant form formulated by Pick,
states that every holomorphic mapping of the unit disk into itself is distance-
decreasing with respect to the Poincar\’e-Bergman metric. It has been since
generalized to higher dimensions in various forms, [1, 2, 10, 12, 16, 17, 20, 21
etc.]. Most of these generalizations originate from Ahlfors’s generalization of
Schwarz lemma [1]. The essence of these generalizations is that, given com-
piex manifolds $M$ and $N$ endowed with either metrics or volume elements,
every holomorphic mapping $f:M\rightarrow N$ is distance- or volume-decreasing under
the conditions that $M$ is a ball or a symmetric domain in $C^{m}$ and that $N$ has
negative curvature in one sense or other. In this way we get some control
over the family of holomorphic mappings $f:M\rightarrow N$.

In [18] I announced a canonical way of constructing a new pseudo-distance
$d_{M}$ on each complex manifold $M$. In this paper we prove basic properties of
these pseudo-distances and apply them to the study of holomorphic mappings.
Tne two most important properties of $d_{M}$ are that every holomorphic mapping
$f:M\rightarrow N$ is distance-decreasing with respect to $d_{M}$ and $d_{N}$ and that these
pseudo-distances are often true distances. For instance, if $M$ is a Riemann
surface covered by a disk or more generally a complex manifold covered by
a bounded domain, then $d_{M}$ is a true distance. We call a complex manifold
hyperbolic if its invariant pseudo-distance is a distance. If $N$ is $hyp_{\vee}^{\circ}rbolic$ ,

we can therefore draw useful conclusion on the value distribution of a holo-
morphic mapping $f:M\rightarrow N$. The first basic question in the study of holo-
morphic mappings from this view point is therefore to decide whether the
image manifold is hyperbolic and also complete with respect to its invariant
distance. From Ahlfor’s generalized Schwarz lemma we can prove that if a
complex manifold admits a (complete) hermitian metric of strongly negative
curvature or a (complete) differential metric of strongly negative curvature in
the sense of Grauert-Reckziegel, then it is (complete) hyperbolic. But there
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are instances where it is easier to verify directly that a manifold is (complete)

hyperbolic than to check whether it admits a (complete) hermitian metric of
strongly negative curvature. For example, if $M$ is (complete) hyperbolic, then
its quotient manifold by a properly discontinuous group is also (complete)
hyperbolic. But a similar statement for a hermitian manifold of strongly
negative curvature is not clear. We shall show that the class of (complete)
hyperbolic manifolds is closed under many basic operations on manifolds.

In a recent paper [26] Wu introduced the notion of taut manifold. A
hermitian manifold $N$ is said to be taut if the set of holomorphic mappings
$f:M-N$ is a normal family for every complex manifold M. (Actually it suf-
fices to consider the case where $M$ is the unit disk in $C.$) This notion is
essentially equivalent to our notion of complete hyperbolic manifold whereas
the condition that the set of holomorphic mappings $f:M\rightarrow N$ is equi-continuous
for everv $M$ (or the unit disk $M$) is essentially equivalent to the condition that
$N$ is hyperbolic. But the use of the pseudo-distances $d_{M}$ and $d_{N}$ in proving
results on the family of holomorphic mappings $f:M\rightarrow N$ makes proofs more
$transpar^{n}.nt$ in general.

In $S_{\backslash }^{\wedge}ctions1$ through 8 only two theorems (Theorems 3.8 and 5.8) are
differential geometric and their proofs are given in the last section of the
paper. The reader unfamiliar with hermitian differential geometry may com-
pletely ignore these two theorems.

In preparing this paper I had many valuable conversations with H. Wu
who has obtained some of the results in Sections 5 and 6 using the notion of
normal family [26]. It is a pleasure to express my thanks to him.

2. Invariant distances

Let $D$ denote the upen unit disk in the complex plane $C,$ $i$ . $e.$ ,

$D=\{z\in Cj|z|<1\}$ .

The Poincar\’e-Bergman metric of $D$ defines the distance $\rho$ given by

$\tanh\frac{1}{2}\rho(z, z^{\prime})=|z-z^{\prime}|/|1-\overline{z}z^{\prime}|$ for $z,$
$z^{\prime}\in D$ .

Let $M$ be a complex manifold of complex dimension $n$ . The Carath\’eodcry
pseudo-di-tance $c=c_{M}$ of $M$ is defined by [5, 6, 7]

$c(p, p^{\prime})=\sup\rho(f(p), f(p^{\prime}))$ for $0,$ $p^{\prime}\in M$ ,

where the supremum is taken with respect to the family of holomorphic map-
pings of $M$ into the unit disk D. (It $follow^{c}$’ from Proposition 2.3 below that
$c(p, \rho^{\prime})<\infty.1$ If we admit temporarily that $ c(p, \beta^{\prime})<\infty$ , then it followc easily
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that $c$ is continuous on $M\times M$ and satisfies the axioms for pseudo-distance:

$c(p, q)\geqq 0$ , $c(p, q)=c(q, p)$ , $c(p, q)+c(q, r)\geqq c(p, r)$ .
A necessary and sufficient condition for $c$ to be a (true) distance is that there
are sufficiently many bounded holomorphic functions on $M$ to separate the
point of $M$, that is, given two distinct points $p,$ $q\in M$, there is a bounded
holomorphic function $f$ on $M$ such that $f(p)\neq f(q)$ . For instance, if $M$ is a
bounded domain in $C^{n}$ , then $c$ is a distance on $M$. On the other hand, if $M$

is compact or is the complex Euclidean space $C^{n}$ , then $c(p, q)=0$ for all points
$p,$ $q\in M$.

We shall now define a new pseudo-distance $d$ on a complex manifold $M$.
Given two points $p,$ $q\in M$ we choose points $p=p_{0},$ $p_{1},$ $\cdots$ , $p_{k-1},$ $p_{k}=q$ of $M$,
points $a_{1},$ $\cdots$ , $a_{k},$ $b_{1},$ $\cdots$ , $b_{k}$ of the unit disk $D$ and holomorphic mappings $f_{1},$ $f_{k}$

of $D$ into $M$ such that $ f_{i}(a_{i})=p_{i-\tau}\wedge$ and $f_{i}(b_{i})=p_{i}$ for $i=1$ , $\cdot$ .. , $k$ . For each
choice of points and mappings thus made, we consider the number

$\rho(a_{1}, b_{1})+\cdots+\rho(a_{k}, b_{k})$ .
Let $d(p, q)$ be the infimum of the numbers obtained in this manner for all
possible choices. It is also easy to verify that $d$ is a pseudo-distance on $M$.
As we shall see (cf. Proposition 2.3), $d$ is a distance whenever the Carath\’eodory
pseudo-distance $c$ is a distance. Even for some compact manifolds, $d$ is a dis-
tance. A differential geometric condition on $M$ which makes $d$ a distance will
be given later. On the other hand, we have $d(p, q)=0$ for all $p$ and $q$ in $C^{n}$ .

PROPOSITION 2.1. Let $M$ and $N$ be two complex manifolds, $c_{M}$ and $c_{N}$ the
Carath\’eodory pseudo-distances of $M$ and $N$, and $d_{M}$ and $d_{N}$ the new pseudo-
distances of $M$ and $N$ defined above. Then every holomorphic mapping $f:M\rightarrow N$

is distance-decreasing in the sense that

$c_{M}(p, q)\geqq c_{N}(f(p), f(q))$ and $d_{M}(p, q)\geqq d_{N}(f(p), f(q))$ for $p,$ $q\in M$ .
COROLLARY. Every biholomorphic mapping $f:M\rightarrow N$ is an isometry, $i.e.$,

$c_{M}(p, q)=c_{N}(f(p), f(q))$ and $d_{M}(\phi, q)=d_{N}(f(p), f(q))$ for $p,$ $q\in M$.
The proof is trivial.
PROPOSITION 2.2. For the open unit disk $D$ , both $c$ and $d$ coincide with the

distance $\rho$ defined by the Poincar\’e-Bergman metric of $D$ .
PROOF. The classical Schwarz lemma, invariantly formulated by Pick,

states that every holomorpoic mapping $f:D\rightarrow D$ is distance-decreasing with
respect to $\rho$ . From the very definitions of $c$ and $d$, we obtain

$d(p, q)\geqq\rho(p, q)\geqq c(p, q)$ $f\prime rp,$ $q\in D$ .

Considering the identity transformation of $D$ , we obtain the equalities $d(p, q)$

$=\rho(p, q)=c(p, q)$ . QED.



Invariant distances on complex manifolds 463

REMARK. Similarly, it can be shown that for the unit open ball in $C^{n}$

both $c$ and $d$ coincide with the distance defined by the Bergman metric.
PROPOSITION 2.3. For any complex manifold $M$, we have $d\geqq c,$ $i$ . $e.$ ,

$d(p, q)\geqq c(p, q)$ for $p,$ $q\in M$ .
PROOF. Let $p$ and $q$ be points of $M$. As in the definition of $d$ , choose

points $p=p_{0},$ $p_{1},$ $p_{k-1},$ $p_{k}=q$ of $M$ and points $a_{1},$ $\cdots$ , $a_{k},$ $b_{1},$ $\cdots$ , $b_{k}$ of the unit
disk $D$ and also holomorphic mappings $f_{1},$ $\cdots$ , $f_{k}$ of $D$ into $M$ such that $f_{i}(a_{i})$

$=p_{i-1}$ and $f_{i}(b_{i})=p_{i}$ . Let $f$ be a holomorphic mapping of $M$ into $D$ . Then

$\rho(a_{1}, b_{1})+\cdots+\rho(a_{k}, b_{k})\geqq\rho(ff_{1}(a_{1}), ff_{1}(b_{1}))+\cdots+\rho(ff_{k}(a_{k}), ff_{k}(b_{k}))$

$\geqq\rho(ff_{1}(a_{1}), ff_{k}(b_{k}))$

$=\rho(f(p), f(q))$ ,

where the first inequality follows from the Schwarz lemma and the second
inequality is a consequence of the triangular axiom. Hence

$d(p, q)=\inf(\rho(a_{1}, b_{1})+\cdots+\rho(a_{k}, b_{k}))\geqq\sup\rho(f(p), f(q))=c(p, q)$ .
QED.

More generally, we have
PROPOSITION 2.4. Let $M$ be a complex manifold. Let $c^{\prime}$ be any pseudo-

distance on $M$ such that

$c^{\prime}(p, q)\geqq\rho(f(p), f(q))$ $p,$ $q\in M$

for every holomorphic mapping $f$ of $M$ into the unit disk D. Let $d^{\gamma}$ be any
tseudo-distance on $M$ such that

$d^{f}(h(a), h(b))\leqq\rho(a, b)$ $a,$ $b\in D$

for every holomorphic mapping $h$ of $D$ into M. Then

$c(p, q)\leqq c^{\gamma}(p, q)$ and $d(p, q)\geqq d^{\prime}(p, q)$ for $p,$ $q\in M$ .

PROOF. The first assertion is trivial. To prove the second assertion, let
$p_{0},$ $p_{1},$ $\cdots$ , $p_{k-1},$ $p_{k},$ $a_{1},$ $\cdots$ , $a_{k},$ $b_{1}$ , , , $b_{k},$ $f_{1},$ $\cdots$ , $f_{k}$ be as in the proof of Proposition
2.3. Then

$d^{\prime}(p, q)\leqq\sum_{=1}^{k}d^{\prime}(p_{i-1}, p_{i})=\sum_{\iota=1}^{k}d^{J}(f_{i}(a_{t}), f_{i}(b_{i}))$

$\leqq\sum_{?=1}^{k}\rho(a_{i}, b_{l})$ .

Hence, $d^{\gamma}(p, q)\leqq\inf\sum_{i=1}^{k}\rho(a_{i}, b_{i})=d(p, q)$ . QED.

Note that Proposition 2.4 together with Propositions 2.1 and 2.2 implies
Proposition 2.3.
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PROPOSITION 2.5. Let $M$ and $M^{\prime}$ be two complex manifolds. Then
$c_{M}(p, q)+c_{M^{\prime}}(p^{\prime}, q^{\prime})\geqq c_{M\times M^{\prime}}((p, p^{\prime}),$ $(q, q^{\prime}))\geqq{\rm Max}(c_{M}(p, q),$ $c_{M^{\prime}}(p^{\prime}, q^{\prime}))$

and
$d_{M}(p, q)+d_{M}(p^{J}, q^{\prime})\geqq d_{M\times M’}((p, p^{\prime}),$ $(q, q^{\prime}))\geqq{\rm Max}(d_{M}(p, q),$ $d_{M^{\prime}}(p^{\prime}, q^{\prime}))$

for $(p, p^{J}),$ $(q, q^{\prime})\in M\times M^{\prime}$ .
PROOF. We have

$c_{M}(\phi, q)+c_{M^{\prime}}(p^{\gamma}, q^{\prime})\geqq c_{MxM^{\prime}}((p, p^{J}),$ $(q, p^{J}))+c_{M\times M^{\prime}}((q, p^{\prime}),$ $(q, q^{\prime}))$

$\geqq c_{M\times M^{\prime}}((p, p^{\prime}),$ $(q, q^{\prime}))$ ,

where the first inequality follows from the fact that the mappings $f:J/f\rightarrow M\times M^{\prime}$

and $f^{\prime}$ : $M^{\prime}\rightarrow M\times M^{\prime}$ defined by $f(x)=(x, p^{\gamma})$ and $f^{\prime}(x^{\prime})=(q, x^{\prime})$ are distance-
decreasing by Proposition 2.1 and the second inequality is a consequence of the
triangular axiom. The inequality $c_{M\times M},((p, p^{\prime}),$ $(q, q^{\prime}))\geqq{\rm Max}(c_{M}(p, q),$ $c_{M},(p^{\prime}, q^{\prime}))$

follows from the fact that the projections $M\times M^{\prime}\rightarrow M$ and $M\times M^{\prime}\rightarrow M^{\prime}$ are
both distance-decreasing by Proposition 2.1. The proof for $d$ is similar. QED.

PROPOSITION 2.6. $LeiM$ be a complex manifold and $\tilde{M}$ a covering manifold
of $M$ with covering projection $\pi$ . Let $p,$ $q\in M$ and $p,\tilde{q}\in\tilde{M}$ such that $\pi(\tilde{\rho})=p$

and $\pi(\tilde{q})=q$ . Then
$ d_{M}(p, q)=\inf_{q}d_{\tilde{M}}(\tilde{p}.\tilde{q})\sim$ ’

where the infimum is taken over all $\tilde{q}\in\tilde{M}$ such that $q=\pi(\tilde{q})$ .
PROOF. Since $\pi;\tilde{M}\rightarrow M$ is distance-decreasing by Proposition 2.1, we have

$ d_{M}(p, q)\leqq\inf_{q}d_{\tilde{M}}(\tilde{p},\tilde{q})\sim$ . Assuming the strict inequality, let $ d_{M}(p, q)+\epsilon<\inf_{q}d_{\tilde{M}}(\beta,\tilde{q})\sim$

where $\epsilon$ is a positive number. By the very definition of $d_{M}$ there exist points
$a_{1},$

$\cdots$ , $a_{k},$ $b_{1},$ $b_{k}$ of the unit disk $D$ and holomorphic mappings $f_{1},$ $\cdots$ , $f_{k}$ of
$D$ into $M$ such that

$p=f_{1}(a_{1}),$ $f_{1}(b_{1})=f_{2}(a_{2}),$ $f_{k-1}(b_{k-1})=f_{k}(a_{k}),f_{k}(b_{k})=q$

and

$d_{M}(p, q)+\epsilon>\sum_{t=1}^{k}\rho(a_{i}, b_{i})$ .

Then we can lift $f_{1},$ $\cdots$ , $f_{k}$ to holomorphic mappings $\tilde{f}_{1},$
$\cdots$ , $\tilde{f}_{k}$ of $D$ into $\tilde{M}$ in

such a way that $\tilde{p}=\tilde{f}_{1}(a_{1})$ and $\tilde{f}_{l}=(b_{i})=\tilde{f}_{i+1}(a_{i+1})$ for $i=1$ , $\cdot$ .. , $k-1$ and that
$\pi\circ\tilde{f}_{i}=f_{i}$ for $i=1,$ $k$ . If we set $\tilde{q}=\tilde{f}_{k}(b_{k})$ , then $\pi(\tilde{q})=q$ and $d_{\tilde{M}}(\tilde{p},\tilde{q})\leqq\sum_{i=1}^{k}\rho(a_{i}, b_{i})$ .
Hence $ d_{\tilde{M}}(\tilde{p},\tilde{q})<d_{M}(p, q)+\epsilon$ , which contradicts our assumption. QED.

It is not clear whether $\inf_{q}d_{\overline{M}}(\beta.\tilde{q})\sim$ is really attained by some $\tilde{q}$ .
Proposition 2.6 does not hold for the Carath\’eodory distance. In fact, let

$\tilde{M}$ be the unit disk and $M$ a compact Riemann surface of genus greater than
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1. Then $c_{\tilde{M}}$ coincides with the Poincar\’e-Bergman distance of $D$ by Proposition
2.2. But $c_{M}(p, q)\Leftrightarrow 0$ for $p,$ $q\in M$ since $M$ is compact. Proposition 2.5 makes
$d_{M}$ more useful than $c_{M}$ .

3. Hyperbolic manifolds

Let $M$ be a complex manifold and $d=d_{M}$ the new pseudo-distance on $M$

defined in Section 2. If $d$ is a distance, $i$ . $e.,$ $d(p, q)>0$ for $p\neq q$ , then we
shall call $M$ a hyperbolic manifold.

PROPOSITION 3.1. A complex manifold $M$ is hyperbolic if its Carath\’eodory
pseudo-distance $c_{M}$ is a distance.

$CoROLLARY$ . Every bounded domain in $C^{n}$ is hyperbolic.
PROOF. Proposition 3.1 follows from Proposition 2.3. QED.
PROPOSITION 3.2. If a complex manifold $M$ admits a distance d’ for which

every holomorphic mapping $f$ of the urit disk $D$ into $M$ is distance-decreasing
($i$ . $e.,$ $d^{\prime}(f(a),\acute{J}(b))\leqq\rho(a,$ $b)$ for $a,$ $b\in D$), then it is hyperbolic.

PROOF. This follows from Proposition 2.4. QED.

PROPOSITION 3.3. If $M$ and $M^{\prime}$ are hyperbolic manifolds, then their direct
product $M\times M^{\prime}$ is also hyperbolic.

PROOF. This follows from Proposition 2.5. QED.

THEOREM 3.4. Let $M$ be a complex manifold and $\tilde{M}$ a covering manifold
of M. Then $\tilde{M}$ is hyperbolic if and $onl_{J}$ if $M$ is hyperbolic.

COROLLARY. If $M$ is a complex manifcld having a bounded domain of $C^{l}$

as a covering manifold, then $M$ is hyperbolic.
PROOF. Assume that $M$ is hyperbolic. Let $\tilde{p},\tilde{q}\in\tilde{M}$ and assume $d_{\tilde{M}}(\tilde{p},\tilde{q})$

$=0$ . Since the projection $\pi;\tilde{M}\rightarrow M$ is distance-decreasing, $d_{M}(\pi(\tilde{p}), \pi(\tilde{q}))=0$

and hence $\pi(\tilde{p})=\pi(\tilde{q})$ . Let $\tilde{U}$ be a neighborhood of $\tilde{p}$ in $\tilde{M}$ such that $\pi;\tilde{U}\rightarrow$

$\pi(U)*$ is a diffeomorphism and $\pi(\tilde{U})$ is an $\epsilon$ -neighborhood of $\pi(\tilde{p})$ with respect
to $d_{M}$ . In particular, $\tilde{U}$ does not centain $\tilde{q}$ unless $\tilde{p}=\tilde{q}$ . Since $d_{i\psi}^{\sim}(\tilde{p},\tilde{q})=0$ by
assumption, there exist points $a_{1},$ $\cdots$ , $a_{k},$ $b_{1},$ $\cdots$ , $b_{k}$ of $D$ and holomorphic map-
pings $f_{1},$ $\cdots$ , $f_{k}$ of $D$ into $\tilde{M}$ such that $\tilde{p}=f_{1}(a_{1}),$ $f_{i}(b_{i})=f_{i+1}(a_{i+1})$ for $\dot{\iota}=1,$ $\cdots$

$k-1$ and $f_{k}(b_{k})=\tilde{q}$ and that $\sum_{1=1}^{k}\rho(a_{i}, b_{i})<\epsilon$ . Let $a_{i}^{\wedge}b_{i}$ denote the geodesic arc

from $a_{i}$ to $b_{t}$ in $D$ . Joining the curves $ f_{1}(a_{1}b_{1})\wedge$ , $\cdot$ , $ f_{k}(a_{k}b_{k})\wedge$ in $\tilde{M}$, we obtain a
curve, say $\tilde{C}$, from $\tilde{p}$ to $\tilde{q}$ in $\tilde{M}$. Since $\pi\circ f_{1},$ $\cdots$ , $\pi\circ f_{k}$ are distance-decreasing

mappings of $D$ into $M$ and $a_{1}b_{1}\wedge,$
$\cdots$ , $a_{k}^{\wedge}b_{\iota}$ are geodesics in $D$ , every point of

the curve $\pi(\check{C})$ remains in } he $\epsilon$ -neighborhood $\pi(\tilde{U})$ of $\pi(\tilde{p})$ . Hence the end
point $\tilde{q}$ must coincide with $\tilde{p}$ .

Conversely assume that $\tilde{M}$ is hyperbolic. Let $p,$ $q\in M$ and assume $d_{M}(p, q)$

$=0$ . Let $p$ be a point of $\tilde{M}$ such that $\pi(\tilde{p})=p$ . By Proposition 2.6, there exists
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a sequence of points $\tilde{q}_{1},$ $\cdots$ , $\tilde{q}_{i},$ $\cdots$ of $\tilde{M}$ such that $\pi(\tilde{q}_{i})=q$ and $\lim d_{\overline{M}}(\tilde{p},\tilde{q}_{i})=0$.
Then the sequence $\{\tilde{q}_{i}\}$ converges to $\tilde{p}$. Hence $\pi(\tilde{q}_{i})$ converges to $p$ . Since
$\pi(\tilde{q}_{i})=q$ , we obtain $p=q$ . QED.

A complex manifold $\tilde{M}$ is called a spread (domaine etal\’e in French) over
a complex manifold $M$ with projection $\pi$ if every point $\tilde{p}\in\tilde{M}$ has a neigh-
borhood $\tilde{U}$ such that $\pi$ is a holomorphic diffeomorphism of $\tilde{U}$ onto the open
set $\pi(\tilde{U})$ of $M$. The first half of the proof of Theorem 3.4 gives the following

THEOREM 3.5. A spread $\tilde{M}$ over a hyperbolic manifold $M$ is also hyperbolic.
The following theorem is immediate from Proposition 2.1.
THEOREM 3.6. If a complex manifold $M^{\prime}$ is immersed in a hyperbolic mani-

fold $M$, then $M^{\prime}$ is also hyperbolic.
The proof of the following theorem will be given in Section 6.
THEOREM 3.7. Let $E$ be a complex analytic fibre bundle over $M$ with fibre

F. If $M$ is hyperbolic and $F$ is compact hyperbolic, then $E$ is hyperbolic.
The proof of the following theorem will be given in Section 9.
THEOREM 3.8. A hermitian manifold $M$ whose holomorphic sectional curva-

ture is bounded above by a negative constant is hyperbolic.

4. Completeness with respect to Carath\’eodory distance

In general we say that a metric space $M$ is complete if for each point
$p\in M$ and each positive number $r$ the closed ball of radius $r$ around $p$ is a
compact subset of $M$. If $M$ is complete in this sense, then every Cauchy
sequence of $M$ converges, but not conversely in general. It will be shown in
Section 8 that for a hyperbolic manifold the usual completeness with respect
to $d_{\ovalbox{\tt\small REJECT}}$ implies this strong completeness defined here.

THEOREM 4.1. If $M$ is a complex manifold with complete Carath\’eodory dis-
tance $c_{M}$, then $M$ is a complete hyperbolic manifold.

This is immediate from Proposition 2.3 and from the following trivial
LEMMA. Let $c$ and $d$ be two distances on a topological space $M$ such that

$c(p, q)\leqq d(p, q)$ for $p,$ $q\in M$. If $M$ is c-complete, it is d-complete.
THEOREM 4.2. Let $M$ and $M_{i},$ $i\in I$, be a family of complex submanifolds

of a complex manifold $N$ such that $M=\bigcap_{i}M_{i}$ .
(1) If each $M_{i}$ is complete with respect to its Carath\’eodory distance, $so$

is $M$ ;
(2) If each $M_{i}$ is complete hyperbolic, so is $M$.
This follows from the fact that each injection $M\rightarrow M_{i}$ is distance-decreas-

ing by Proposition 2.1 and from the following trivial
LEMMA. Let $M$ and $M_{i},$ $i\in I$, be subsets of a topological space $N$ such that

$M=\cap M_{i}$ . Let $d$ and $d_{i}$ be distances on $M$ and $M_{i}$ . If $d(p, q)\geqq d_{i}(p, q)$ for
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$p,$ $q\in M$ and if each $M_{t}\iota s$ complete with respect to $d_{i}$ , then $M$ is complete with
respect to $d$ .

Horstmann $\ulcorner\llcorner 14$] has shown that a domain in $C^{n}$ which is complete with
respect to its Carath\’eodory distance is a domain of holomorphy. We shall
give a generalization of Horstmann’s result. Let $F$ be a family of holomorphic
functions on a complex manifold $M$. Let $K$ be a subset of $M$ . Denote by
$\sup|f(K)|$ the supremum of $|f(q)|$ for $q\in K$. We set

$\hat{K}_{F}=$ { $p\in M;|f(p)|\leqq\sup|f(K)|$ for all $f\in F$ }.

In general, whether $K$ is closed or not, $\hat{K}_{F}$ is a closed subset of $M$ containing
$K$ and is called the convex hull of $K$ with respect to $F$. The convex hull of
$\hat{K}_{p}$ with respect to $F$ coincides with $\hat{K}_{F}$ itself. If $K_{/}$ , is compact for every
compact subset $K$ of $M$, then $M$ is said to be convex with respect to $F$ . If
$F^{\prime}\subset F$ , then $\hat{K}_{F’}\supset\hat{K}_{F}$ . Hence if $M$ is convex with respect to $F^{\prime}$ and if $F^{\prime}\subset F$,
then $M$ is convex with respect to $F$ . If $M$ is convex with respect to the
family of all holomorphic functions, then $M$ is said to be holomorphically con-
vex.

THEOREM 4.3. Let $M$ be a complex manifold with Carath\’eodory distance $c_{M}$ .
Fix a point $0$ of $M$ and let $F$ be the set of holomorphic mappings $f$ of $M$ into
the open unit disk $D$ such that $f(0)=0$ . If $M$ is complete with respect to $c_{M}$ ,
then $M$ is convex with respect to $F$ and hence holomorphically convex.

PROOF. Let $a$ be a positive number and $B$ the closed ball of radius $a$

around $0,$
$i$ . $e.$ ,

$B=\{p\in M;c_{M}(0, p)\leqq a\}$ .
Since $M$ is complete, $B$ is compact. Since every compact subset $K$ of $M$ is
contained in $B$ for a sufficiently large $a$ , it suffices to show that $\hat{B}_{F}$ is compact.
We shall actually prove that $\hat{B}_{F}=B$ . In fact,

$B,---$ { $p\in M;|f(p)|\leqq\sup|f(B)|$ for $f\in F$ }

$=$ { $p\in M;\rho(0,$ $f(p))\leqq\sup_{q\in B}\rho(0,$
$f(q))$ for $f\in F$ }

$\subset\{p\in M;\rho(0, f(p))\leqq\sup_{q\in l}c_{M}(0, q)\}$

$=\{p\in M;\rho(0, f(p))\leqq a\}$

$=B$ .
Since $\hat{B}_{F}$ contains $B$ , we conclude that $B_{F}=B$ . QED.

It is not clear if the converse to Theorem 4.3 holds. Let $M$ be a complex
manifold of complex dimension $n$ and $A$ an analytic subset of $dimension\leqq n-1$ .
Since every bounded holomorphic function on $M-A$ can be extended to a
bounded holomorphic function on $M$, it follows that $M-A$ can not be convex
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with respect to the family of bounded holomorphic functions if $A$ is non-empty
and that $c_{M}$ coincides with $c_{M-A}$ on $M-A$ . In this way we obtain many ex-
amples of holomorphically convex manifolds which are not convex with respect
to the family of bounded holomorphic functions and not complete with respect
to their Carath\’eodory distances. The punctured disk $D-\{0\}$ is the simplest
example. In connection with this example, we have the following theorem
whose proof is more or less direct.

THEOREM 4.4. Let $M$ be a complex manifold with Carath\’eodory distance
$c_{M}$. If $M$ is complete with respect to $C_{M}$, then every holomorphic mapping $f$

from the punctured disk $D-\{0\}$ into $M$ can be extended to a holomorphic map-
ping of $D$ into $M$.

We shall now give a large class of bounded domains which are complete
with respect to their Carath\’eodory distances. Let $M$ be a domain in $C^{n}$ and

$f_{1},$ $\cdots$ , $f_{k}$ holomorphic functions defined in $M$. Let $P$ be a connected component
of the open subset of $M$ defined by

$|f_{\iota}(z)|<1,$ $\cdots$ $|f_{k}(z)|<1$ .
Assume that the closure of $P$ is compact and is contained in $M$. Then $P$ is
called an analytic polyhedron.

THEOREM 4.5. An analytic polyhedron $P$ is complete with respect to its
Carath\’eodory distance $c_{P}$ .

PROOF. Let $F$ be the set of holomorphic mappings of $P$ into the unit disk
$D$ . Let $0$ be a point of $P$ . Given a positive number $a$ , choose a positive num-
ber $b,$ $0<b<1$ , such that

{ $z\in D;\rho(f_{i}(0),$ $z)\leqq a$ for $i=1,$ $\cdots$ , $k$ } $\subset\{z\in D;|z|\leqq b\}$ .
Then

$\{p\in P_{i}c_{P}(0, p)\leqq a\}=$ { $p\in P;\rho(f(0),$ $f(p))\leqq a$ for $f\in F$ }

$\subset$ { $p\in P;\rho(f_{i}(0),$ $f_{i}(p))\leqq a$ for $i=1,$ $\cdots$ , $k$ }

$\subset\{p\in P;|f_{i}(p)|\leqq b\}$ .
Since $\{p\in P;|f_{i}(p)|\leqq b\}$ is compact, $\{p\in P;c_{P}(0, p)\leqq a\}$ is compact. QED,

COROLLARY. Let $M$ be a domain in $C^{n}$ which can be written as an inter-
section of a family of analytic polyhedrons $\{P\}$ . Then $M$ is complete with
respect to its Carath\’eodory distance $c_{M}$ .

This is a direct consequence of Theorems 4.2 and 4.5.
The following proposition is immediate from Proposition 2.5.
PROPOSITION 4.6. If $M$ and $M^{\prime}$ are complex manifolds with complete Cara-

th\’eodory distance, then $M\times M^{\prime}$ is also complete with respect to its Carath\’eodory

distance.
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5. Complete hyperbolic manifolds

Theorem of Van Dantzig and Van der Waerden [11 and 19; p. 46] states:
The group $G$ of isometries of a connected, locally compact metric space $M$

is locally compact with respect to the compact-open topology and its isotropy
subgroup $G_{p}$ is compact for every $p\in M$. If $M$ is moreover compact, then $G$ is
compact.

In fact, it is shown [19; p. 49] that, for any point $p\in M$ and for any
compact subset $K$ of $M$, the set $\{f\in G;f(p)\in K\}$ is a compact subset of $G$ .
Postponing applications of this theorem to the following section, we shall con-
sider here the following lemma.

LEMMA. Let $M$ be a concected, locally compact space with pseudo-distance
$d_{M}$ and $N$ a connected, locally compact, complete metric space with distance $d_{N}$ .
Then the set $F$ of distance-decreasing mappings $f:M\rightarrow N$ is locally compact
with respect to the compact open topology. In fact, if $p$ is a point of $M$ and
$K$ is a compact subset of $N$, then the subset $F(p, K)=\{f\in F;f(p)\in K\}$ of $F$ is
compact.

The proof of this lemma is very similar to that of Theorem of Van Dan-
tzig and Van der Waerden but is easier since a closed ball of any radius in
$N$ is compact by definition of completeness. Leaving the details to the proof
of Theorem Van Dantzig and Van der Waerden as given in [19; pp. 46-49]

wt shall sketch the proof of Lemma.
Let $\{f_{n}\}$ be a sequence of mappings belonging to $F(p, K)$ . We shall show

that a suitable subsequence converges to an element of $F(p, K)$ . We take a
countable set $\{p_{i}\}$ of points which is dense in $M$. We set $K_{i}=\{q\in N;d_{N}(q, K)$

$\leqq d_{M}(p, p_{i})\};K_{i}$ is a closed $(d_{M}(p, p_{i}))$ -neighborhood of $K$ and hence is compact.
Since each $f_{n}$ is distance-decreasing, we have $d_{N}(f_{n}(p), f_{n}(p_{i}))\leqq d_{M}(p, p_{i})$ . Since
$f_{n}(p)\in K$, this shows that $f_{n}(p_{i})$ is contained in the compact set $K_{i}$ . By the
standard argument, we can choose a subsequence $\{f_{n_{k}}\}$ such that $\{f_{n},.(p_{i})\}$

converges to some point of $K_{i}$ for each $p_{i}$ as $k$ tends to infinity. Then the
mapping $f$ defined by $f(p_{i})=\lim_{k}f_{n_{k}}(p_{i})$ is the desired element of $F(p, k)$ .

As an application of Lemma we have
THEOREM 5.1. Let $M$ be a complex manifold and $\wedge\Gamma$ a complete hyperbolic

manifold. Then the set $F$ of holomorphic mappings $f:M\rightarrow N$ is locally compact
with respect to the compact-open topology. For a point $p$ of $M$ and a compact
subset $K$ of $N$, the subset $F(p, K)=\{f\in F;f(p)\in K\}$ of $F$ is compact.

This theorem follows from Lemma, Proposition 2.1 and the fact that if a
sequence of holomorphic mappings $f_{n}$ converges to a continuous mapping $f$

(with respect to the compact-open topology), then $f$ is holomorphic.
Theorem 5.1 is essentially equivalent to Theorem of Grauert and $R_{\vee}^{2}ck-$
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ziegel [13] which says that if $N$ admits a differential metric of strongly nega-
tive curvature for which $N$ is complete, then $F$ is a normal family, (see [13]

for undefined terms).
Let $M$ be a domain in $C^{n}$ (or more generally in another complex mnaifold)

and $\overline{D}$ the closed unit disk in $C$. According to Oka [22], $M$ is said to be
pseudo-convex if every continuous mapping $f:\overline{D}\times[0,1]\rightarrow C^{n}$ such that

1) for each $t\in[0,1]$ the mapping $f_{f}$ defined by $f_{t}(z)=f(z, t)$ is holomorphic
and
2) $f(z, t)\in M$ unless $|z|<1$ and $t=1$ ,

maps $\overline{D}\times[0,1]$ necessarily into $M$. Let $D_{a}$ denote the open disk of radius $a$

in $C$. Then for a suitable $a<1,$ fmaps $(\overline{D}-D_{a})\times[0,1]$ into $M$ and the image
$f((\overline{D}-D_{a})\times[0,1])$ is compact. Hence $f_{t}(\overline{D}-D_{a})$ is contained in a compact
subset $K$ of $M$ which is independent of $t$ . Applying Theorem 5.1 to the family
of holomorphic mappings $f_{t},$ $t\in[0,1$), of $D$ into $M$, we obtain

THEOREM 5.2. If a domain $M$ is a complete hyperbolic manifold, then $M$

is pseudo-convex.
In contrast to Theorem 4.4, the punctured disk $D-\{0\}$ is a complete hyper-

bolic manifold. In fact, the universal covering space of the punctured disk is
a disk and hence is a complete hyperbolic manifoldl). From Proposition 2.6, it
follows that the punctured disk is also a complete hyperbolic manifold. More
generally we have

THEOREM 5.3. Let $M$ be a complete hyperbolic manifold and $f$ a bounded
holomorphic function on M. Then the open submanifold $M^{\prime}=\{p\in M;f(p)\neq 0\}$

of $M$ is also a complete hyperbolic manifold.
PROOF. We may assume that $f$ is a holomorphic mapping of $M$ into the

unit disk $D$ . We denote by $D^{\prime}$ the punctured disk $D-\{0\}$ . Let $0$ be a point
of $M^{\gamma}$ and $a$ and $b$ positive numbers. Since $D^{\prime}$ is a complete hyperbolic mani-
fold, for a given positive number $a$ we can choose a small positive number $b$

such that
$\{z\in D;|z|\geqq b\}\supset\{z\in D^{\prime};d_{D},(f(0), z)\leqq a\}$ .

We set

$A=\{p\in M;d_{M}(0, p)\leqq a\}$ , $A^{\prime}=\{p\in M^{\prime};d_{M’}(0, p)\leqq a\}$ ,

$B=\{p\in M;|f(p)|\geqq b\}$ , $B^{\prime}=\{p\in M^{\prime} ; |f(p)|\geqq b\}$ .

Since $d_{M},(0, p)\geqq d_{M}(0, p)$ by Proposition 2.1, we have
$A\supset A^{\prime}$ .

Since $b$ is positive and $M^{\prime}=\{p\in M;f(p)\neq 0\}$ , we have

1) Either by Theorem 3.8 or by Theorem 5.5 below.
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$B=B^{\prime}$ .

Since $f:M^{\prime}\rightarrow D^{\prime}$ is distance-decreasing by Proposition 2.1, we have

$A^{\prime}\subset\{p\in M^{\prime} ; d_{D},(f(0), f(p))\leqq a\}\subset\{p\in M^{\prime} ; |f(p)|\geqq b\}=B^{\prime}=B$ .

Since $A$ is a compact subset of $M$ by the completeness of $M$ and $B$ is closed
in $M$, the intersection $A\cap B$ is compact. Since $B=B^{\prime},$ $A\cap B$ is in $M^{\prime}$ . Since
$A\cap B$ is a compact subset of $M^{\prime}$ and $A^{\prime}$ is closed in $M^{\prime}$ , the intersection
$A^{\prime}\cap(A\cap B)$ is a compact subset of $M^{\prime}$ . Since both $A$ and $B$ contain $A^{\prime},$ $A^{\prime}$

coincides with $A^{\prime}\cap(A\cap B)$ and hence is a compact subset of $M^{\prime}$ . This proves
the completeness of $M^{\prime}$ . QED.

From Proposition 2.5 and 3.3 we obtain
PROPOSITION 5.4. If $M$ and $M^{\prime}$ are complete hyperbolic, so is $M\times M^{\prime}$ .
THEOREM 5.5. Let $\tilde{M}$ be a covering manifold of M. Then $\tilde{M}$ is complete

hyperbolic if and only if $M$ is so.
PROOF. Assume thatM is complete hyperbolic. $Let\tilde{o}\in\tilde{M}and0=\pi(\tilde{0})\in M$.

Let $\tilde{U}_{r}$ and $\tilde{B}_{r}$ be the open and the closed balls of radius $r$ around $\tilde{0}$ . Similarly,
let $U_{\gamma}$ and $B_{r}$ be the open and the closed balls of radius $r$ around $0$ . By Pro-
position 2.6, we have $\tilde{U}_{r}=\pi^{-1}(U_{r})$ . Hence,

$\pi(B_{r})=\pi(\bigcap_{\delta>0}\tilde{U}_{r+\delta})=\bigcap_{\delta>0}U_{r+\delta}=B_{r}$ .

Since $\acute{B}_{r}$ is compact by assumption, its image $B_{r}=\pi(B_{r})$ is $comp_{J}\wedge ct$ .
Conversely, assume that $M$ is complete hyperbolic. It seems to $b^{a}$. dithcult

to prove directly that $\tilde{M}$ is complete in the strong $s^{\circ}.ns^{2}$. we defined in $Sec_{\llcorner}:on$

4. We shall prove here that $\tilde{M}$ is complete in the usual sense. $Th_{\vee}\cap\epsilon$ qui-
valence between the two definitions of completeness will be proved in Section
8. Let $\{\tilde{p}_{i}\}$ be a Cauchy sequence in $\tilde{M}$. Since $\pi$ : $\tilde{M}\rightarrow M$ is distance-decreas-
ing, $\pi(\tilde{p}_{i})$ is a Cauchy sequence in $M$ and hence converges to a point $p\in M$.
Let $\epsilon$ be a positive number and $U$ the 26-neighborhood of $p$ in $M$. Taking $\epsilon$

small we may assume that $\pi$ induces a homeomorphism of each connected
component of $\pi^{-1}(U)$ onto $U$. Let $N$ be a large integer such that $\pi(p_{i})$ is
within the $\epsilon$ -neighborhood of $p$ for $i>N$. Then every point outside $U$ is of
distance at least $\epsilon$ from $\pi_{\backslash }^{\prime}\tilde{p}_{i}$). Let $\tilde{U}_{i}$ be the connected component of $\pi^{-\rceil}(U)$

containing $\pi(\tilde{p}_{i})$ . We shall show that the 6-neighborhood of $\tilde{p}_{i}$ lies in $\tilde{U}_{i}$ for
$i>N$. The proof is similar to that of Theorem 3.4. Let $\tilde{q}$ be a point of $\grave{M}$

with $ d_{\tilde{M}}(\tilde{p}_{i},\tilde{q})<\epsilon$ . We choose points $a_{1}$ , $\cdot$ .. , $a_{k},$ $b_{1}$ , $\cdot$ .. , $b_{k}$ of the unit disk $D$ and
holomorphic mappings $f_{1},$ $\cdots$ , $f_{k}$ of $D$ into $M$ in the usual manner so that

$\sum_{J=\iota}\rho(a_{j}, b_{j})k<\epsilon$ . Let $ a_{j}b_{j}\wedge$ be the geodesic arc from $a_{j}$ to $b_{j}$ in $D$ . Joining the

curves $ f_{1}(a_{1}b_{1})\wedge$ , $\cdot$ .. $f_{k}(a_{k}^{\wedge}b_{k})$ in $M$, we obtain a curve, say $\check{C}$ , from $\beta_{i}$ to $\tilde{q}$ . Let
$C=\pi(\tilde{C})$ . From the construction of $C$ we see that every point of $C$ is in tbe
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$\epsilon$-neighborhood of $\pi(p_{i})$ and hence in $U$. It follows that $\tilde{C}$ lies in $U_{i}$ . Let $\tilde{p}$

be the point of $0_{i}$ defined by $p=\pi(\tilde{p})$ . Then $\{\tilde{p}_{j}\}$ converges to $\tilde{p}$. QED.
PROPOSITION 5.6. A closed complex submanifold $M^{\prime}$ of a complete hyper-

bolic manifold $M$ is complete hyperbolic.
PROOF. This is immediate from the fact that the injection $M^{\prime}\rightarrow M$ is dis-

tance-decreasing by Proposition 2.1. QED.
THEOREM 5.7. Let $E$ be a complex analytic fibre bundle over $M$ with fibre

F. If $M$ is complete hyperbolic and $F$ is compact hyperbolic, then $E$ is complete
hyperbolic.

PROOF. By Theorem 3.7 whose proof will be given later, $E$ is hyperbolic.
Let $p$ be a point of $E$ and $B$ the closed ball of radius $r$ around $p$ . Let $p^{\prime}$ be
the image of $p$ under the projection $\pi:E\rightarrow M$ and $B^{\prime}$ the closed ball of radius
$r$ around $p^{\prime}$ . Since $\pi$ is distance-decreasing, $\pi^{-1}(B^{\prime})$ contains $B$ . Since $B^{\prime}$ is
compact and the fibre is also compact, $\pi^{-1}(B^{\prime})$ is compact. Hence $B$ is compact.

QED.
THEOREM 5.8. A complete hermitian manifold $M$ whose holomorphic sec-

tional curvature is bounded above by a negative constant is complete hyperbolic.
PROOF. By Theorem 3.8 whose proof will be given later, $M$ is hyperbolic.

In the proof of Theorem 3.8 it will be shown that, when multiplied by a sui-
table positive constant, the hermitian metric defines a distance function $d_{M}^{\prime}$

such that $d_{M}^{\prime}(p, q)\leqq d_{M}(p, q)$ for $p,$ $q\in M$. Since $M$ is complete with respect to
$d_{M}^{\prime}$ by assumption, $M$ is complete with respect to $d_{M}$ . (Note that the equi-
valence of the two definitions of completeness in the Riemannian case is well
known [25], [19; p. 172].) QED.

6. The automorphism group of a hyperbolic manifold

First we prove the following theorem which is of independent interest.
THEOREM 6.1. Let $M$ be a hyperbolic manifold. Then every holomorphic

mappmg $f$ of $C^{m}$ into $M$ is a constant map.
PROOF. This is an immediate consequence of Proposition 2.1. The only

property of $C^{m}$ used here is that the distance $d_{c^{m}}$ of $C^{m}$ is trivial, $i.e.,$ $d_{c^{m}}(p, q)$

$=0$ for all $p,$ $q\in C^{m}$. QED.
Theorem 6.1 is related to Picard Theorem, which states that every holo-

morphic mapping $f$ of $C$ into $C-\{0,1\}$ is a constant map. The universal
covering space of $C-\{0,1\}$ is biholomorphic to the unit disk and hence is
hyperbolic by Proposition 3.4. To prove that the universal covering space of
$C-\{0,1\}$ is biholomorphic with the disk $D$ or rather with the upper half plane,
one usually makes use of the modular function. In [13] Grauert and Reck-
ziegel construct a Kahler metric of strongly negative curvature on $C-\{0,1\}$ .
This, combined with Theorems 3.7 and 6.1, yields Picard Theorem.
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THEOREM 6.2. Let $M$ be a hyperbolic manifold. Then the group $H(M)$ of
holomorphic transformations of $M$ is a Lie transformation group and its iso-
tropy subgroup $H_{p}(M)$ at $p\in M$ is compact. If $M$ is moreover compact, then
$H(M)$ is finite.

PROOF. Let $I(M)$ be the group of isometries of $M$ with respect to the
distance $d_{M}$ . Since $H(M)$ is a closed subgroups of $I(M)$ , Theorem of Van
Dantzig and Van der Waerden quoted at the beginning of Section 5 implies
that $H(M)$ is a Lie transformation group with compact $H_{p}(M)$ and that $H(M)$

is compact if $M$ is compact. (Of course, one makes use of Theorem of Bochner-
$Montgcm^{a}\vee ry$ which states that a locally compact group of differentiable trans-
formations of a manifold is a Lie transformation group, [3]). Another theorem
of Bochner-Montgomery [4] says that the group of holomorphic transformations
of a compact complex manifold is a complex Lie group. The last assertion of
Theorem 6.2 follows from the following theorem:

THEOREM 6.3. A connected complex Lie group of holomorphic transforma-
tions acting effectively on a hyperbolic manifold $M$ reduces to the identity ele-
ment only.

PROOF. Assume the contrary. Then a complex one-parameter subgroup
acts effectively and holomorphically on $M$. Its universal covering group $C$

then acts (not necessarily effectively but essentially effectively) on $M$. For
each point $p$ we obtain a holomorphic mapping $z\in C\rightarrow z(p)\in M$ from this
action. By Theorem 6.1 this holomorphic mapping must be a constant map.
Since the identity element $1\in C$ maps $p$ into $p$ , every element $z$ of $C$ maps $p$

into $p$ . Since $p$ is an arbitrary point of $M$, the action of $C$ on $M$ is trivial.
This is absurd. QED.

Theorem 6.2 has been proved by Wu [26] under the assumption which
amounts to saying that $M$ is hyperbolic complete. His method relies on the
notion of normal family of holomorphic mappings. Theorem 6.2 generalizes
Theorem of H. Cartan [8] on the group of holomorphic transformations of a
bounded domain in $C^{n}$ . A similar theorem has been obtained by the author
for a complex manifold admitting Bergman metric, [15].

Making use of the last assertion of Theorem 6.2 we shall give

PROOF OF THEOREM 3.7. Let $H(F)$ be the group of holomorphic transfor-
mations of the compact fibre $F$ . By Theorem 6.2 $H(F)$ is finite. Let $P$ be the
principal fibre bundle over $M$ with group $H(F)$ associated with the bundle $E$.
Since $H(F)$ is finite, $P$ is a (not necessarily connected) covering space of $M$.
By Theorem 5.5 $P$ is complete hyperbolic. By Proposition 5.4 $P\times F$ is com-
plete hyperbolic. Since $E$ is the quotient space of $P\times F$ by the action of $H(F)$ ,
$P\times F$ is a covering space of $E$ . By Theorem 5.5 $E$ is complete hyperbolic.

QED.
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In Theorem 6.1 the only property of $C^{m}$ needed is that the pseudo-distance
$d_{Cm}$ is trivial. If $V$ is a complex manifold with $d_{V}=0$ and $M$ is a hyperbolic
manifold, then every holomorphic mapping $f:V\rightarrow M$ is a constant map. It is
therefore of some interest to find other manifolds $V$ with $d_{V}=0$ .

THEOREM 6.4. For a homogeneous complex manifold $G/H$ of a complex
Lie group $G$ , the pseudo-distance $d_{G/H}$ is trivial.

PROOF. Let $p\in G/H$ and $U$ a small neighborhood of $p$ such that every
element $q$ of $U$ lies on the orbit of a complex l-parameter subgroup of $G$

through $p$ . Hence, for every point $q\in U$ we have a holomorphic mapping $f:C$

$\rightarrow G/H$ whose image contains both $p$ and $q$ . Since $f$ is distance-decreasing and
$d_{c}$ is trivial, it follows that $d_{G/H}(p, q)=0$ . To prove that the pseudo-distance
between any two points of $G/H$ is zero, we connect the two points by a chain
of small open sets $U$ and apply the triangular axiom. QED.

The reasoning in the proof of Theorem 6.1 may be applied to a holomor-
phic mapping of one fibre space into another. By a complex fibre space we
shall mean here a triple $(E, \pi, M)$ consisting of a holomorphic mapping $\pi$ from
a complex manifold $E$ onto a complex manifold $M$ such that each fibre $\pi^{-1}(p)$ ,

$p\in M$, is a complex submanifold of $E$ .
THEOREM 6.5. Let $(E, \pi, M)$ and $(E^{\prime}, \pi^{\prime}, M^{\prime})$ be two complex fibre spaces

in the sense defined above. If each fibre $\pi^{-1}(p),$ $p\in M$, of $E$ is connected and
its pseudo-distance $d_{\pi-1}\mathfrak{c}_{p)}$ is trivial and if $M^{\prime}$ is hyperbolic, then every holomor-
phic mapping $f:E\rightarrow E^{\gamma}$ is fibre-preserving.

PROOF. The restriction of $\pi$
‘ of to each fibre $\pi^{-1}(p)$ is a holomorphic map-

ping of a complex manifold with trivial pseudo-distance into a hyperbolic
manifold and hence is a constant map. QED.

7. Cross-sections in a family of complete hyperbolic manifolds

Let $V$ and $T$ be complex manifolds and let $\pi$ be a holomorphic mapping
of $V$ onto $T$ which is regular in the sense that the rank of the differential of
$\pi$ is equal to the dimension of $T$ at every point of $V$. For each $t\in T$, let $M_{t}$

denote the regularly imbedded complex submanifold $\pi^{-1}(t)$ of $V$ . Let $\tilde{M}$ denote
a simply connected complex manifold. Assum that every point $t$ of $T$ has a
neighborhood $U$ biholomorphic to the open unit ball in $C^{k},$ $(k=\dim T)$ , such
that $U\times\tilde{M}$ is the universal covering space of $\pi^{-1}(U)$ in such a way that the
diagram

$U\times\tilde{M}-\pi^{-1}(U)$

$\tilde{\pi}\backslash _{\searrow}$ $\nearrow\pi$

$U$

is commutative, where the horizontal arrow is the covering projection and
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$\sim_{\overline{t}}$ : $U\times\grave{M}\rightarrow U$ is the obvious projection. Then we say that $V$ is a family of
complex manifolds $\{M_{t} ; f\in T\}$ uniformisable by $\tilde{M}$.

THEOREM 7.1. Let $V=\{M_{t} ; t\in T\}$ be a family of complex manifolds uni-
formisable by a complete hyperbolic manifold M. Then for any domain $Gi\gamma!T$

the set of holomorphic cross-sections $s:G\rightarrow V(i$ . $e.$ , mappings $s$ satisfying $\pi\circ s(t)$

$=t$ for $t\in G$) is locally compact with respect to the compact-open topology. If
$M_{t}$ is compact, then the set of holomorphic cross-section $s:G\rightarrow V$ is compact.

PROOF. It suffices to prove the theorem in the case where the domain $G$

is a small open ball $U$ which is biholomorphic to the open unit ball in $C^{k}$ and
$U\times\tilde{M}$ is the universal covering space of $\pi^{-1}(U)$ as explained above. Since
both $U$ and $\tilde{M}$ are complete hyperbolic manifolds, their product $U\times\tilde{M}$ is also
complete hyperbolic by Proposition 5.4. By Theorem 5.5 $\pi^{-1}(U)$ is complete
hyperbolic. Now our assertion follows from Theorem 5.1. QED.

The case where $T$ is a Riemann surface and each $M_{t}$ is a compact Rie-
mann surface of genus greater than 1 so that $\tilde{M}$ is a disk in $C$ has been
already considered by Grauert and Reckziegel [13].

8. Invariant metric and completeness

In Section 2 we defined the pseudo-distance $d_{M}(p, q)$ from $p$ to $q$ . We shal}

now define an infinitesimal analogue of $d_{M}$ .
Let $D$ be the open unit disk in $C$ and $ds^{2}$ the Poincar\’e-Bergman metric in

$D$ . Let $M$ be a complex manifold, $p$ a point of $M$ and $X$ a tangent vector at
$p$ . Choose a point $a\in D$ and a tangent vector $A$ at $a$ together with a holo-
morphic mapping $f:D\rightarrow M$ such that $f(a)=p$ and $f_{*}(A)=X$ . Let $F_{M}(X)$ denote
the infimum of the length of $A$ with respect to $ds^{2}$ for all possible choices of
$a,$ $A$ and $f$. Then $F_{M}$ is a function defined on the tangent bundle $T(M)$ of $M$

and satisfies

$F_{M}(0)=0$ ,

$F_{M}(X)\geqq 0$ for $X\in T(M)$ ,

$F_{M}(cX)=cF_{M}(X)$ for $X\in T(M)$ and for a positive number $c$ .
We shall call $F_{M}$ the invariant pseudo-metric on $M$. If $F_{M}(X)>0$ for every
nonzero vector $X$, then we call it the invariant metric on $M$. I do not know
which of the conditions for Finsler metric are satisfied by the invariant metric
$F_{M}$ . Since every point of $M$ has a neighborhood which is biholomorphic with
the unit ball of $C^{n}$ , it follows easily that $F_{M}$ is bounded on each compact sub-
set of $T(M)$ . But I do not know if $F_{M}$ is continuous or not. Let $C$ be a
piecewise differentiable curve in $M$ and $C^{\prime}$ the tangent vector field along $C$

defined by $C^{\prime}(t)=dC(t)/dt$ . I do not know if the integral
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$L(C)=\int_{c}F_{M}(C^{\prime}(t))dl$

$exis^{k_{\vee}}s$ or not. Let $p$ and $q$ be points of $M$ and consider all piecewise differ-
entiable curves $C$ from $p$ to $q$ for which $L(C)$ exist. Then it is easy to verify
$\inf L(C)\leqq d_{M}(p, q)$ . I do not know if the equality holds or not. An $infinite\rightarrow$

simal analogue of Carath\’eodory distance has been systematically investigated
by Reiffen [24].

Our pseudo-distance $d_{M}$ enjoys the following property which seems to be
peculiar to the pseudo-distance defined from an infinitesimal pseudo-metric by
integration, for example, the distance defined by a Riemannian metric. Given
a subset $A$ of $M$ and a positive number $r$ , we set

$U(A;r)=\{p\in M;d_{M}(p, a)<r\}$ for some point $a\in A$ }. Then for any point
$o\in M$ and any positive numbers $r$ and $r^{\prime}$ , we have

$U(U(0;r);r^{\prime})=U(0;r+r^{\prime})$ .
The proof is straightforward. The inclusion in one direction is true for any
pseudo-distance and makes use of the triangular axiom. But the inclusion in
the other direction comes from the fact that $d_{M}$ is essentially defined by a
method of integration.

We shall now show that the completeness of a hyperbolic manifold in the
strong sense defined in Section 4 is equivalent to the completeness in the usual
sense as a metric space. More generally, we prove

THEOREM 8.1. Let $M$ be a locally compact metric space with distance $d$

satisfying the equality $U(U(0;r);r^{\prime})=U(0;r+r^{\prime})$ as above for every $0\in M$ and
all positive numbers $r$ and $r^{\prime}$ . Then $M$ is complete in the sense that every
Cauchy sequence converges if and only if the closure $\overline{U}(0;r)$ of $U(0;r)$ is com-
pact for all $0\in M$ and all positive numbers $r$ .

PROOF. We have only to prove that if $M$ is complete then $\overline{U}(0;r)$ is com-
pact, since the implication in the opposite direction is trivial.

LEMMA. $\overline{U}(0;r)$ is compact if there exists a positive number $b$ such that
$\overline{U}(p;b)$ is compact for every $p\in U(0;r)$ .

PROOF OF LEMMA. Let $s<r$ be a positive constant such that $\overline{U}(0js)$ is

compact. It suffices to show that $\overline{U}(0;s+-b2-)$ is compact. Let $p_{1},$ $p_{2},$ $\cdots$ be

points of $\overline{U}(0;s+\frac{b}{2})$ . Choose points $q_{1},$ $q_{2},$
$\cdots$ of $\overline{U}(0;s)$ such that $d(p_{i}, q_{t})$

$<\frac{3}{4}b$ . Since $\overline{U}(0;s)$ is compact, we may assume (by choosing a subsequence

if necessary) that $q_{1},$ $q_{2},$ $\cdots$ converges to some point, say $q$ , of $\overline{U}(0;s+\frac{b}{2})$ .
Then $\overline{U}(q;b)$ contains all $p_{i}$ for large $i$ . Since it is compact, a suitable sub-
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sequence of $p_{1},$ $p_{a},$ $\cdots$ converges to some point $p$ in $\overline{U}(q;b)$ . Since $\overline{U}(0;s+b2)$

is closed, $p$ is in $\overline{U}(0;s+\frac{b}{2})$ . This completes the proof of Lemma.

To complete the proof of Theorem 8.1 we shall show that there exists a
positive number $b$ such that $\overline{U}(p;b)$ is compact for every point $p\in M$. Assume

the contrary. Then there exists a point $p_{1}\in M$ such that $\overline{U}(p_{1}$ ; $\frac{1}{2})$ is non-

compact. Apply Lemma to $\overline{U}$ ( $p_{1}$ ; $\frac{1}{2}$) and we see that there exists a point

$p_{2}\in\overline{U}(p_{1};\frac{1}{2})$ such that $\overline{U}(p_{2}:_{2}-\frac{1}{2})$ is non-compact. Apply Lemma to

$\overline{U}(p_{2}$ ; $\frac{1}{2^{2}})$ and we see that there exists a point $p_{8}\in\overline{U}(p_{2}$ ; $\frac{1}{2^{a}})$ such that

$\overline{U}$ ( $p_{a}$ ; $-2\frac{1}{3}$) is non-compact. In this way we obtain a Cauchy sequence $p_{1},$ $p_{2}$ ,

$p_{3},$ $\cdots$ Let $p$ be its limit point. Since $M$ is locally compact, there exists a
positive number $c$ such that $\overline{U}(p;c)$ is compact. For a sufficiently large $i$,

$\overline{U}(p_{i}$ ; $\frac{1}{2^{i}})$ is contained in $\overline{U}(p;c)$ and hence must be compact. This is a

contradiction. QED.
Let $M$ be a hyperbolic manifold and $M^{*}$ its completion with respect to

distance $d_{M}$ . I do not know if $M^{*}$ is complete in the strong sense that every
closed ball of radius $r$ in $M^{*}$ is compact. If it is so, $M^{*}$ is necessarily locally
compact. Conversely, if $M^{*}$ is locally compact, the proof above implies that
$M^{*}$ is complete in the strong sense. The question whether $M^{*}$ is locally com-
pact or not seems to be very delicate in view of the following example due
to D. Epstein of a Riemannian manifold $M$ whose completion $M^{*}$ (with respect
to the distance defined by the Riemannian metric) is not locally compact.
Let $M$ be the open subset of the xy-plane obtained by deletion of the set

$\{(x,$ $\frac{1}{n});x\geqq 0,$ $n=1,$ 2, $\}$ and the set $\{(x, y);x\geqq 0, y\leqq 0\}$ and make it into
a Riemannian manifold by taking the induced flat metric.

9. Curvature of a hermitian manifold

Let $M$ be a hermitian manifold. The hermitian connection of $M$ is a uni-
que affine connection such that both the metric tensor And the complex struc-
ture tensor are parallel and that the torsion tensor is pure in the sense des-
cribed in the structure equations below, cf. [9].

$d\theta^{A}=-\Sigma\omega_{B}^{A}\wedge\theta^{B}+\Theta^{A}$ , $\Theta^{A}=21\Sigma T_{BC}^{A}\theta^{B}\wedge\theta^{c}$ ,

$d\omega_{B}^{A}=-\Sigma\omega_{C}^{A}\wedge\omega^{c_{B}}+\Omega_{B}^{A},$ $\Omega^{A_{B}}=\Sigma R_{BC\overline{D}}^{A}\theta^{c}\wedge\overline{\theta}^{D}$ .
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As in the Riemannian case or the K\"ahlerian case, we define the hermitian
curvature tensor which is a covariant tensor of degree 4 and denote it by $R$ .
The sectional curvature $K(\sigma)$ of a plane $\sigma$ with orthonormal basis $X,$ $Y$ is
given by $K(\sigma)=R(X, Y, X, Y)$ . If $JX=Y$ (where $J$ denotes the complex struc-
ture tensor) so $\llcorner hat\sigma$ is a complex line, then $K(\sigma)$ is called the holomorphic
sectional curvature of $\sigma$ .

Let $V$ be a complex submanifold of $M$. Letting $n=\dim M$ and $k=\dim V$,
we shall use the following convention on the ranges of indices:

$1\leqq A,$ $B,$ $C,$ $\cdots\leqq n$ ; $1\leqq a,$ $b,$ $c,$ $\cdots\leqq k$ ; $k+1\leqq p,$ $q,$ $r,$ $\cdots\leqq n$ .
With respect to frames adapted to $V$, we then have

$\theta^{p}=0$ ,

$d\theta^{A}=-\Sigma\omega_{b}^{A}\wedge\theta^{b}+\Theta^{A}$ , $\Theta^{A}=\frac{1}{2}\Sigma T_{bc}^{A}\theta^{b}\wedge\theta^{\theta}$ .

Since $d\theta^{p}=0$ and $\Theta^{p}$ is pure ($i$ . $e.$ , does not contain $\theta^{B}$)
$-$

, we may write
$\omega^{p_{b}}=\Sigma A^{p_{bc}}\theta^{c}$ .

Then
$d\omega_{b}^{a}=-\Sigma\omega^{a_{C}}\wedge\omega^{c_{b}}+\Omega^{a_{b}}$

$=-\Sigma\omega_{c}^{a}$ A $\omega^{c_{b}}+\Sigma\omega_{a}^{p}\wedge\omega^{p_{b}}+\Omega^{a_{b}}$

$=-\Sigma\omega_{c}^{a}\wedge\omega^{c_{b}}+\Sigma(R_{bc\overline{a}}^{a}-\Sigma_{p}A^{p_{bc}}\overline{A}^{p_{atl}})\theta^{c}\wedge\overline{\theta}^{t}$ .
Hence,

THEOREM 9.1. Let $V$ be a complex submanifold of a hermitian manifold
M. Then the holomorphic sectional curvature $K_{V}(\sigma)$ of $V$ is less than or equal
$lo$ the holomorphic sectional curvature $K_{M}(\sigma)$ of $M$.

It is also clear from the formula above that $K_{V}(\sigma)=K_{M}(\sigma)$ if and only if
$A_{bc}^{p}=0$ . In the K\"ahlerian case, Theorem 9.1 has been obtained by O’Neill [23].

THEOREM 9.2. Let $D$ be the open unit disk in $C$ with the invariant metric
$ds^{2}$ with sectional curvature -A. Let $M$ be a hermitian manifold with metric
$ds_{M}^{2}$ and holomorphic sectional curvature bounded above by a negative constant

-B. Then every holomorphic mapping $f:D\rightarrow M$ satisfies $f^{*}(ds_{M}^{2})\leqq A_{-ds^{2}}\overline{B}$

Because of Theorem 9.1. the proof of Lemma 9 in my previous paper [17]

( $i$ . $e.$ , the proof in the K\"ahlerian case) is valid in the hermitian case also and
gives Theorem 9.2. Theorem 9.2 may be also derived with the help of Theorem
9.1 from Ahlfors’s generalized Schwarz lemma [1], cf. also the paper of
Grauert-Reckziegel [13].

Multiplying the metric $ds_{M}^{2}$ by a suitable constant, we may assume that
$A=B$ in Theorem 9.2. Then Theorem 9.2 states that every holomorphic map-
ping $\int;D\rightarrow M$ is distance-decreasing. If we denote by d’ $th_{\vee}^{\circ}$ distance $l$ unction
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on $M$ defined by $ds_{M}$ , then every holomorphic mapping $f:(D, \rho)\rightarrow(M, d^{\prime})$ is
distance-decreasing (where $\rho$ is the distance function defined by $ds^{2}$). By Pro-
position 2.4, $d_{M}(p, q)\geqq d^{\prime}(p, q)$ for $p,$ $q\in M$, which proves that $M$ is hyperbolic
(Theorem 3.8).

University of California, Berkeley
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