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Introduction.

A generator in the category (cf. [12]) of left (right) modules over a ring
$\Lambda$ will be called a completely faithful left (right) $\Lambda$ -module according to [4].

The complete faithfulness of modules is a Morita invariant property, which
plays an essential part for the categorical theory of rings.

B. M\"uller introduced in [19] the notion of a quasi-Frobeninus extension
$\Lambda$ of a ring $\Omega$ . In case $\Omega$ is in the center of $\Lambda$ , i. e., in case $\Lambda$ is a Q-algebra,
this coincides with that of a semi-Frobenius algebra in [15], and, in this
paper, we shall call this a quasi-Frobenius algebra. An algebra $\Lambda$ over a com-
mutative ring $R$ , which is a finitely generated projective R-module, will be
called a quasi-Frobenius R-algebra, if $\Lambda^{*}=Hom_{R}(\Lambda, R)$ is a completely faith-
ful left (and right) $\Lambda$ -module. The purpose of this paper is to show some
basic properties in quasi-Frobenius algebras.

As is well known, any completely faithful $\Lambda$ -module is faithful, but a
faithful $\Lambda$ -module is not always completely faithful, and if $\Lambda$ is commutative,
then any finitely generated, faithful, projective $\Lambda$ -module is completely faith-
ful. It is also known (cf. [3] or [9]) that, in case $\Lambda$ is a quasi-Frobenius
ring, any faithful $\Lambda$ -module is completely faithful, and it was proved in [1]
that, if $\Lambda$ is a maximal order over a Dedekind domain in a central simple
algebra, then any finitely generated projective $\Lambda$ -module is completely faithful.
However, it seems that such facts have not been treated systematically.
Recently, G. Azumaya gave in [4] a characterization of a ring $\Lambda$ with the
property: (G) Any faithful $\Lambda$ -module is completely faithful. Another purpose
of this paper is to examine the structure of a ring $\Lambda$ with each of the follow-
ing properties:

(FG) Any finitely generated, faithful $\Lambda$ -module is completely faithful.
(PFG) Any finitely generated, faithful, projective $\Lambda$ -module is completely

faithful.
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In \S 3 we prove a fundamental theorem for a quasi-Frobenius algebra,
which shows the strict connection with the classical one, and, in \S 4, we give
a characterization of a quasi-Frobenius algebra over a Noetherian ring which
is hereditary. As applications of these results we determine, in \S 5, the struc-
ture of algebras with (FG) over a Noetherian ring, and, in \S 6, we give a suf-
ficient condition for a ring to have (PFG). Furthermore, \S 7 is devoted to
establishing the commutor theory of quasi-Frobenius subalgebras of a central
separable algebra, and, finally, \S 8 is devoted to giving an affirmative answer
to a problem on semi-simple algebras in [15], in a special case.

Throughout this paper we shall only consider rings with a unit element
1 and modules over such rings on which 1 operates as identity. We shall
denote by $R$ a commutative ring and by $\Lambda$ a ring which is not always com-
mutative. An R-algebra will mean an algebra over a commutative ring $R$

which is a faithful R-module.

\S 1. Preliminaries.

First we refer to some well known facts, which will be freely used
throughout this paper (cf. [1], [4], [6], [11], [13], [18]).

For a left $\Lambda$ -module $M$ we denote by $\mathfrak{T}_{\Lambda}(M)$ the trace ideal of $M$ in $\Lambda$

(for definition see [1]).

PROPOSITION 1.1. For any left A-module $M$ the following statements are
equivalent:

(1) $M$ is $\Lambda$ -completely faithful.
(2) $\mathfrak{T}_{\Lambda}(M)=\Lambda$ .
(3) For any maximal two-sided (left) ideal $\mathfrak{M}$ of $\Lambda$ , there exists a $\varphi$

$\in Hom_{\Lambda}(M, \Lambda)$ such that ${\rm Im}\varphi\not\leqq \mathfrak{M}$ .
(4) $\Lambda$ is a direct summand of the direct sum of some copies of $M$.
PROPOSITION 1.2. Let $P$ be a projective left A-module. Then the following

statements are equivalent for $P$ :
(1) $P$ is A-completely faithful.
(2) For any maximal two-sided (left) ideal $\mathfrak{M}$ of $\Lambda$ , we have $Hom_{\Lambda}(P, \Lambda/\mathfrak{M})$

$\neq 0$ .
More generally, we have $P=\mathfrak{T}_{\Lambda}(P)P$ and $\mathfrak{T}_{\Lambda}(P)$ is an idempotent ideal of $\Lambda$ .
PROPOSITION 1.3. Let $\Lambda$ be a ring with the Jacobson radical En which is

the unique maximal two-sided ideal in A. Then any projective, non-zero left
$\Lambda$ -module is $\Lambda$ -completely faithful.

PROOF. Let $P$ be a projective non-zero left $\Lambda$ -module. Then, by (1.2),

we have $P=\mathfrak{T}_{\Lambda}(P)P$ . If $\mathfrak{T}_{\Lambda}(P)\subsetneqq\Lambda$ , then we have $\mathfrak{T}_{\Lambda}(P)\subseteqq \mathfrak{R}$ , hence $P=\mathfrak{R}P$ .
Thus we have $P=0$ . This is obviously a contradiction. Thus we must have
$\mathfrak{T}_{\Lambda}(P)=\Lambda$ .
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PROPOSITION 1.4. Let $\mathfrak{A}$ be a two-sided ideal of a ring $\Lambda$ .
(1) If $\mathfrak{A}^{2}=\mathfrak{A}$ , then $\mathfrak{T}_{\Lambda}(\mathfrak{A})=\mathfrak{A}$ .
(2) If $\mathfrak{T}_{\Lambda}(\mathfrak{A})=\mathfrak{A}$ and $\mathfrak{A}$ is left $\Lambda$ -projective, tnen $\mathfrak{A}^{2}=\mathfrak{A}$ .
PROPOSITION 1.5. Any finitely generated faithful, projective module over a

commutative ring is completely faithful.
PROPOSITION 1.6. Let $\Lambda,$ $\Gamma$ be rings such that $\Lambda\subseteqq\Gamma$ . If $\Gamma$ is a completely

faithful left A-module, lhen $\Lambda$ is the direct summand of $\Gamma$ as a left A-module.

\S 2. Faithful and completely faithful modules over an algebra.

Almost all of our results in this section may also be known. However, as
these are not given anywhere explicitely, we shall give them here in the ex-
plicit form.

Let $R$ be a commutative ring, $\Lambda$ an R-algebra and $M$ a left $\Lambda$ -module.
For any multiplicative system $S$ of $R$ which does not contain $0$ , we put $c_{s}(R)$

$=$ { $r\in R/sr=0$ for some $s\in S$ }, $c_{s}(\Lambda)=$ { $\lambda\in\Lambda/s\lambda=0$ for some $s\in S$ } and
$C_{l}s(M)=$ { $u\in M/su=0$ for some $s\in S$ }. Then $c_{s}(R)$ is an ideal of $R$ , and,
putting $\overline{S}=S+c_{s}(R)/c_{s}(R),\overline{S}$ is a multiplicative system of $R/c_{s}(R)$ consisting
of non-zero divisors in $R/c_{s}(R)$ . Therefore $R_{s}$ is contained in the total quoti-
ent ring of $R/c_{s}(R)$ . Also, $c_{s}(\Lambda)$ is a two-sided ideal of $\Lambda$ and $c_{s}(M)$ is a
left $\Lambda$ -submodule of $M$. As is well known, we have $\Lambda_{s}=(\Lambda/Cs(\Lambda))_{\overline{S}}\cong R_{s}\bigotimes_{t\iota}\Lambda$

as $R_{s}$ -algebras and $M_{s}\cong(M/c_{S}(M))_{\overline{S}}\cong R_{s}\bigotimes_{\ell t}M$ as left $\Lambda_{s}$ -modules. $E^{q}pecially$ ,

if $S$ is the complementary set of a prime ideal $\mathfrak{p}$ in $R$ , we use $R_{\mathfrak{p}},$ $\Lambda_{\mathfrak{p}},$ $M_{\mathfrak{p}}$ ,
$c_{\mathfrak{p}}(R),$ $c_{\mathfrak{p}}(\Lambda),$ $c_{\mathfrak{p}}(M)$ instead of $R_{s},$ $\Lambda_{s}$ , $M_{s}$ , $c_{S}(R),$ $c_{s}(\Lambda),$ $c_{s}(M)$ , respectively.
Throughout this paper we shall use these notations.

We begin with the well known
LEMMA 2.1. Let $\Lambda$ be an R-algebra which is a finftely generated R-module.

Then, for any maximal two-sided ideal $\mathfrak{M}$ of $\Lambda,$ $\mathfrak{M}\cap R$ is a maximal ideal of
R. Furthermore, for any maximal ideal $\mathfrak{m}$ of $R$ , we have $\mathfrak{m}\Lambda\cap R=\mathfrak{m}$ and there
exists only a finite number of maximal two-sided ideals of $\Lambda$ in which 111 is
contained.

PROOF. For example, see [11], V, \S 6.
PROPOSITION 2.2. Let $\Lambda$ be an R-algebra which is a flnitely generated R-

module and $M$ a finitely generated left $\Lambda$ -module. If $M$ is A-faithful, then $M_{s}$

is $\Lambda_{s}$-faithful for any multiplicative system $S(\ni\ni O)$ of R. Conversely, if $M_{\mathfrak{n}}$ is
$A_{\mathfrak{n}}$ -faithful for any maximal ideal $\mathfrak{m}$ of $R$ , then $M$ is.4-faithful.

PROOF. As this is easy, we omit it.
PROPOSITION 2.3. Let $\Lambda$ be an R-algebra which is a finitely generated R-

module and $M$ a finitely generated left A-module. Let $a$ be a proper ideal of $R$ .
If $M$ is $\Lambda$ -faithful, then Ann $\Lambda/\mathfrak{a}\Lambda M/\mathfrak{a}M$ is a nil ideal of $\Lambda/aA$ .
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PROOF. As $M$ is finitely generated over $R$ , we can put $M=\acute{\sum_{=l}}Ru_{f}$ . When

$\lambda M\subseteqq \mathfrak{a}M$ for some $\lambda\in\Lambda$ , we have $\lambda u_{i}=\sum_{J=1}^{t}a_{ij}u_{j}$ for some $a_{ij}\in \mathfrak{a}$ . If we put

$\Delta=|\delta_{ij}\lambda-a_{ij}|$ , then we have $\Delta u_{i}=0$ for each $i$. Since $M$ is $\Lambda$ -faithful, we
must have $\Delta=0$ . From this we can easily see $\lambda^{t}\in \mathfrak{a}\Lambda$ .

The following proposition is given in [1] in a special case (see the $pr$ ) $of$

of (3.9) in [1]).

PROPOSITION 2.4. Let $\Lambda$ be an R-algebra which is a finitely generated R-
module and $M$ a finitely generated left $\Lambda$ -module. If $M$ is $\Lambda$ -completely faith-
ful, then $M_{s}$ is $\Lambda_{s}$-completely faithful for any multiplicative system 5 ( $\exists\ni(\backslash ’)$ of
R. Further assume that, for any maximal ideal $\mathfrak{m}$ of $R,$ $c_{m}(\Lambda)$ is a fimtely
generated R-module. Then, if $M_{m}$ is $A_{m}$ -completely faithful for any maximal
ideal $\mathfrak{m}$ of $R,$ $M$ is $\Lambda$ -completely faithful.

PROOF. Since the first part of this proposition is obvious, we have only
to show the second part. By (1.1) it suffices to show that, for any maximal
two-sided ideal $\mathfrak{M}$ of $\Lambda$ , there is a $\varphi\in Hom_{\Lambda}(M, \Lambda)$ such that ${\rm Im}\varphi\not\leqq \mathfrak{M}$ . If we
put $\mathfrak{m}=\mathfrak{M}\cap R$ , then $\mathfrak{m}$ is a maximal ideal of $R$ according to (2.1), and $M_{\mathfrak{n}\iota}$ is
a maximal two-sided ideal of $\Lambda_{1!1}$ . As $M_{\mathfrak{m}}$ is A..-coInpletely faithful, there
exists, again by (1.1), a $\tilde{\varphi}\in Hom_{\wedge \mathfrak{m}}(M_{\mathfrak{n}\iota}, \Lambda_{\mathfrak{m}})$ such that ${\rm Im}\tilde{\varphi}^{\underline{g}}\mathfrak{M}_{\mathfrak{n}\downarrow}$ . If we put

$M=\sum_{i=1}^{t}Ru_{i}$ and we denote by $\overline{u}_{1},\overline{u}_{2}$ , $\cdot$ .. , $\overline{u}_{t}$ the residues of $u_{1},$ $u_{2}$ , $\cdot$ .. . $u$ , $\iota n$

$M/c.(M)$ , then we have $M_{\mathfrak{m}}=\sum_{i=1}^{t}R_{\mathfrak{m}}\overline{u}_{i}$ . Let $s$ be an element of $R-\mathfrak{m}$ such

that $s\tilde{\varphi}(\overline{u}_{i})\in\Lambda/c_{\mathfrak{n}\iota}(\Lambda)$ for all $1\leqq i\leqq t$ , and put $\varphi^{*}\overline{(u_{i}}$) $=s\tilde{\varphi}(\overline{u_{i}})$ for any $\iota$ . Then
$\varphi^{*}$ can be considered as an element of $Hom_{\Lambda/\mathfrak{c}_{\mathfrak{n}\iota^{}\Lambda}}(M/c_{tn}(M), \Lambda/c_{m}(\Lambda))$ and we
have ${\rm Im}\varphi^{*}\not\leqq \mathfrak{M}/c_{\mathfrak{m}}(\Lambda)$ . Since $c_{\iota \mathfrak{n}}(\Lambda)$ is finitely generated over $R$ by our as-
sumption, we can find some $t\in R-\mathfrak{m}$ such that $t\cdot c_{\mathfrak{m}}(\Lambda)=0$ . Let $\lambda_{1},$ $\lambda_{2}$ , $\cdot$ .. , $\lambda_{t}$

be the representatives of $s\tilde{\varphi}(\overline{u}_{1}),$ $s\tilde{\varphi}(\overline{u}_{2}),$ $\cdots$ , $s\tilde{\varphi}(\overline{u}_{t})$ in $\Lambda$ , respectively. Then, for

some $\mu_{1},$ $\mu_{2},$
$\cdots$ , $\mu_{t}\in\Lambda$ , we have $\sum_{i=1}^{t}\mu_{i}\tilde{\varphi}(\overline{u}_{i})=\overline{0}$ if and only if $t\sum_{i=1}^{f}\mu_{i}\lambda_{i}=\acute{\sum_{\tau=1}}\mu_{i}(t\lambda_{i})$

$=0$ . Therefore, putting $\varphi(\overline{u}_{i})’=t\lambda_{i}$ for each $i,\hat{\varphi}$ can be considered as an ele-
ment of $Hom(M/c_{\mathfrak{m}}(M), \Lambda)$ and we have ${\rm Im}\hat{\varphi}$ $ M. Let $\psi$ be a natural epi-
morphism of $M$ onto $M/c.(M)$ and put $\varphi=\hat{\varphi}\circ\psi$ . Then $\varphi$ is as is required.
This completes our proof.

We remark that the assumption in the second part of (2.4) is satisfied in
case $R$ is Noetherian or in case $R$ is an integral domain and $\Lambda$ is R-torsion-
free.

PROPOSITION 2.5. Let $\Lambda$ be an R-algebra which is a finitely generated R-
module. Then, for any projective left A-module $P$, the following statements are
equivalent:

(1) $P$ is A-completely faithful.
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(2) For any maximal ideal $\mathfrak{m}$ of $R,$ $P_{\mathfrak{m}}$ is $A_{\mathfrak{m}}$ -completely faithful.
(3) For any maximal ideal $\mathfrak{m}$ of $R,$ $P/\mathfrak{m}P$ is $\Lambda/\mathfrak{m}\Lambda$ -completely faithful.
PROOF. The implications (1) $\subset>(2)\subset>(3)$ are obvious. Hence it suffices to

show (3) $\subset>(1)$ . Suppose that $P$ satisfies (3). Let EM be a maximal two-sided
ideal of $\Lambda$ and put $\mathfrak{m}=\mathfrak{M}\cap R$ . Then, by (2.1), $\mathfrak{m}$ is a maximal ideal of $R$ .
Since $P/\mathfrak{m}P$ is $\Lambda/\mathfrak{m}\Lambda$ -completely faithful by our assumption, we have $Hom_{\Lambda/\mathfrak{m}A}$

$(P/\mathfrak{m}P, \Lambda/\mathfrak{M})\neq 0$ according to (1.2). As $P$ is $\Lambda$ -projective, we easily obtain
$Hom_{\Lambda}(P, \Lambda/\mathfrak{M})\neq 0$ . Again by (1.2) $P$ must be $\Lambda$ -completely faithful. This
implies (3) $\subset\gamma(1)$ .

PROPOSITION 2.6. Let $\Lambda$ be an R-algebra which is a finitely generated pro-
jective R-module. Then, for any finitely generated R-module $M$,

(1) $M$ is R-faithful if and only if $\Lambda\bigotimes_{R}M$ is $\Lambda$ -faithful.
(2) $M$ is R-completely faithful if and only if $\Lambda\bigotimes_{R}M$ is $\Lambda$ -completely faithful.
(3) $M$ is R-projective if and only if $\Lambda\bigotimes_{R}M$ is A-projective.

PROOF. (1) By (2.2) we may assume that $R$ is local. Hence we may also
suppose that $\Lambda$ is R-free. Then we can easily show $Ann_{\Lambda}(\Lambda\bigotimes_{1t}M)=\Lambda\cdot(Ann_{Jt}M)$ .
From this we obtain (1). (2) Since the only if part is obvious, we have only
to show the if part. This can be proved by using (1.1), (1.5) and (1.6). (3) is
also trivial.

\S 3. Quasi-Frobenius algebras over a commutative ring.

Let $\Lambda$ be an R-algebra and put $\Lambda\Lambda^{*}=Hom_{R}(\Lambda_{\Lambda}, R)$ . Then $\Lambda$ is said to be
a left quasi-Frobenius R-algebra if (1) $\Lambda$ is a finitely generated projective R-
module and (2) $\Lambda\Lambda^{*}$ is $\Lambda$ -completely faithful (cf. [19]). The condition (2) in
this definition can be replaced by $(2^{\prime})^{l}$ : $\Lambda\Lambda$ is $(\Lambda, R)$-injective or $(2^{\prime\prime})^{r}$ : $\Lambda_{\Lambda}^{*}$ is
$\Lambda$ -projective. Similarly we define a right quasi-Frobenius R-algebra, and an
R-algebra is called a quasi-Frobenius R-algebra if it is left and right quasi-
Frobenius. It is reported in [19] that Rosenberg and Chase proved the equi-
valence (2) and (2) under the assumption (1). In fact, in our main theorem
(3.3) in this section, we shall also see this. A quasi-Frobenius R-algebra $A$ is
said to be a locally Frobenius R-algebra, if, for any maximal ideal $\mathfrak{m}$ of $R$ ,

A.. is a Frobenius R..-algebra. If an R-algebra with (1) is separable ([2]),

semi-simple ([14]), Frobenius, or symmetric ([10]), it is quasi-Frobenius.
In this section we shall prove some basic results in quasi-Frobenius

algebras.
We begin with the following general
LEMMA 3.1. Let $\Lambda$ be an R-algebra which is a finitely generated projective

R-module and $M$ a finitely generated left $\Lambda$ -module which is R-projective.
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(1) For any commutative R-algebra $S$ , we have $dh_{S\bigotimes_{R}\Lambda}S\bigotimes_{R}M\leqq dh_{\Lambda}M$.
(2) We have $dh_{\Lambda}M=\sup_{\mathfrak{n}\iota}dh_{\Lambda \mathfrak{n}\iota}M_{tlt}=\sup_{\mathfrak{m}}dh_{\Lambda/))\iota\Lambda}M/\mathfrak{m}M$ where $\mathfrak{m}$ runs over

all maximal ideals of $R$ .
PROOF. By our assumption on $M$, we can find an R-split projective resolu-

tion of a $\Lambda$ -module $M$ :

$\rightarrow P_{n}\rightarrow\cdots\rightarrow P_{1}\rightarrow P_{0}\rightarrow M\rightarrow 0$

where each $P_{n}$ is $\Lambda$ -finitely generated. From this we obtain the projective
resolution of a $ S\bigotimes_{h}\Lambda$ -module $S\otimes M$ :

$\rightarrow S\bigotimes_{R}P_{n}\rightarrow\cdots\rightarrow S\bigotimes_{R}P_{1}\rightarrow S\bigotimes_{R}P_{0}\rightarrow S\bigotimes_{\{}M\rightarrow 0$ .

Hence we have $dh_{S\bigotimes_{R}\Lambda}S\bigotimes_{P}M\leqq dh_{\Lambda}M$ , which proves (1). By (1) we have $dh_{\Lambda}M$

$\geqq dh_{\Lambda\iota \mathfrak{n}}M_{\mathfrak{m}},$ $dh_{\Lambda/\mathfrak{m}\Lambda}M/\mathfrak{m}M$ for any maximal ideal ni of $R$ . On the other hand,

since each $P_{n}$ is a finitely generated projective $\Lambda$ -module and any $R_{\iota \mathfrak{n}}$ is R-flat,

we have $R_{\mathfrak{m}}\bigotimes_{R}Ext_{\Lambda}^{n}(M, N)\cong Ext_{\Lambda}^{n}$ .(M..., N..) for any left $\Lambda$ -module $N$, and so
we obtain $dh_{\Lambda}M\leqq\sup_{m}dh_{\Lambda \mathfrak{m}}$ M... Thus $dh_{\Lambda}M=\sup_{1\mathfrak{n}}dh_{\Lambda \mathfrak{m}}M_{\mathfrak{m}}$ . In order to com-
plete the proof of (2), it suffices to show $dh_{\Lambda \mathfrak{m}}M_{\mathfrak{m}}\leqq dh_{\Lambda/t\mathfrak{n}\Lambda}M/\mathfrak{m}M$ for any
maximal ideal $\mathfrak{m}$ of R. $Th^{\circ}.refore$ we may assume that $R$ is a local ring with
a maximal ideal $\mathfrak{m}$ . Let $\hat{R}$ be the Henselization of $R$ (cf. [21]). Then we also
have $\hat{R}\bigotimes_{l}Ext_{\Lambda}^{n}(M, N)\cong Ext_{\hat{\Gamma_{t}}\bigotimes_{p}^{n}\Lambda}(\hat{R}\bigotimes_{J\mathfrak{i}}M,\hat{R}\bigotimes_{t}N)$ for any left $\Lambda$ -module N. and so,

as $\hat{R}$ is R-faithfully flat, we obtain $dh_{\Lambda}M=dh_{\hat{R}\bigotimes_{R}\Lambda}\hat{R}\bigotimes_{H}M$. Since $R/\mathfrak{m}\hat{R}\cong R/\mathfrak{m}$ .
$\hat{R}\bigotimes_{l\iota}\Lambda/\mathfrak{n}\iota(\hat{R}\bigotimes_{R}\Lambda)\cong\Lambda/\mathfrak{m}\Lambda$ and $\hat{R}\bigotimes_{R}M/\mathfrak{m}(R\bigotimes_{1\iota^{\prime}}M)\cong M/\mathfrak{m}M$, we may further suppose

that $R$ is Henselian. Then, for a finitely generated projective left $\Lambda/\mathfrak{n}1\Lambda-$

module $\overline{P}$, there is a finitely generated projective left $\Lambda$ -module $P$ such that
$P/\mathfrak{m}P\cong\overline{P}$. Now let

$\rightarrow\overline{P}_{n}\rightarrow\cdots\rightarrow\overline{P}_{1}\rightarrow\overline{P}_{0}\rightarrow M/\mathfrak{m}M\rightarrow 0$

oe a projective resolution of $M/\mathfrak{m}M$ where each $P_{n}$ is $\Lambda/\mathfrak{m}\Lambda- finitely$ generated.
Then $w^{\circ}$. can find the projective resolution of $M$ :

$\rightarrow P_{n}\rightarrow\cdots\rightarrow P_{1}\rightarrow P_{0}\rightarrow M\rightarrow 0$

such that $P_{n}/\mathfrak{m}P_{n}\cong\overline{P}_{n}$ for any $n$ . From this we can easily see $dh_{\Lambda}M\leqq dh_{\Lambda/\mathfrak{m}A}$

$M/\mathfrak{m}M$, which completes our proof.
PROPOSITION 3.2. Let $\Lambda$ be a quasi-(locally) Frobenius R-algebra. Then,

for any commutative (not always faithful) R-algebra $S,$
$ S\bigotimes_{t}\Lambda$ is a quasi-(locally)

Frobenius S-algebra.
PROOF. As it is easy, we omit it.
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$\Gamma\backslash ^{\forall}\cup w$ we give
THEOREM 3.3. Let $\Lambda$ be an R-algebra which is a finitely generated projec-

tive R-module. Then the following statements are equivalent;
(1) $\Lambda$ is a left (right) quasi-Frobenius R-algebra.
(2) For any maximal ideal $\mathfrak{m}$ of $R,$ $\Lambda_{\iota \mathfrak{n}}$ is a left (right) quasi-Frobenius

$R_{\mathfrak{m}}$ -algebra.
(3) For any maximal ideal $\mathfrak{m}$ of $R,$ $\Lambda/\mathfrak{m}\Lambda$ is a quasi-Frobenius $R/\iota \mathfrak{n}$-algebra.
PROOF. This can be proved by applying (3.1), (2) to $M=\Lambda^{*}$ .
PROPOSITION 3.4. Let $\Lambda$ be an R-algebra which is a finitely generated pro-

jective R-module. Then $\Lambda$ is a locally Frobenius R-algebra if and only if, for
any maximal ideal $\mathfrak{m}$ of $R,$ $\Lambda/\mathfrak{m}\Lambda$ is a Frobenius $R/\mathfrak{m}$-algebra.

PROOF. Suppose that $\Lambda/\mathfrak{m}\Lambda$ is a Frobenius $R/\mathfrak{m}$-algebra for any maximal
ideal $\mathfrak{m}$ of $R$ . Then we have $\Lambda_{t11}/n\tau\Lambda_{t\mathfrak{n}}\cong(\Lambda_{111}/\mathfrak{m}\Lambda_{t\mathfrak{n}})^{*}\cong\Lambda_{\mathfrak{m}}^{*}/\mathfrak{m}\Lambda_{\mathfrak{m}}^{*}$ as left $A_{\mathfrak{m}^{-}}$

modules. Since A... and $\Lambda_{1t1}^{*}$ are $\Lambda_{\mathfrak{n}}$ -finitely generated projective, we obtain
$A_{11}\cong\Lambda_{n}^{*}$ , and so A.. is a Frobenius R..-algebra. Then, according to (3.3), $\Lambda$ is
a locally Frobenius R-algebra.

PROPOSITION 3.5. Let $\Lambda,$ $\Gamma$ be R-algebras which are finitely generated pro-
iective R-modules. Then $\Lambda\bigotimes_{R}\Gamma$ is a quasi-(localy) Frobenius R-algebra if and

only if both $\Lambda$ and $\Gamma$ are quasi-(locally) Frobenius R-algebras.
PROOF. The if part is evident and the only if part can be shown, for

example, by reducing this to the classical case by (3.3) and (3.4).

PROPOSITION 3.6. Let $\Lambda$ be an R-algebra which is a finitely generated pro-
jective R-module and $S$ a commutative R-algebra such that $\mathfrak{m}S\cap R=\mathfrak{m}$ for any
maximal ideal $\mathfrak{m}$ of R. Then $\Lambda$ is a quasi-(locally) Frobenius R-algebra if and
only if $ S\bigotimes_{It}\Lambda$ is a quasi-(locally) Frobenius S-algebra.

PROOF. We have only to show the if part. Assume that $ S\bigotimes_{R}\Lambda$ is a quasi-

Frobenius S-algebra, and let $\mathfrak{m}$ be a maximal ideal of $R$ . Then, by our as-
sumption, there exists a maximal ideal $\mathfrak{M}$ in $S$ containing $\mathfrak{n}\iota$ , such that $\mathfrak{M}\cap R$

$=\mathfrak{m}$ . Now we have $ S\bigotimes_{R}\Lambda/\mathfrak{M}(S\bigotimes_{R}\Lambda)\cong S/\mathfrak{M}\bigotimes_{li}\Lambda\cong S/\mathfrak{M}\bigotimes_{R/\mathfrak{m}}\Lambda/\mathfrak{m}\Lambda$ . Since $S/\mathfrak{M}$ is

the extension field of $R/\mathfrak{m}$ and $ S/\mathfrak{M}\bigotimes_{R/\mathfrak{m}}\Lambda/\mathfrak{m}\Lambda$ is a quasi-Frobenius $S/\mathfrak{M}$-algebra,
$\Lambda/\mathfrak{m}\Lambda$ is a quasi-Frobenius $R/\mathfrak{m}$-algebra, as is well known in the classical
theory. Hence, again by (3.3), $\Lambda$ must be a quasi-Frobenius R-algebra.

The assumption on $S$ in (3.6) can not be omitted.
PROPOSITION 3.7. Let $\Lambda$ be an R-algebra which is a finitely generated pro-

jective R-module. Then the following statements are equivalent:
(1) $R$ is a quasi-Frobenius ring and $\Lambda$ is a quasi-Frobenius R-algebra.
(2) $\Lambda$ is a quasi-Frobenius ring.
PROOF. (1) $\Rightarrow(2)$ was proved in [19], Satz 3 in a more general form. Sup-

pose that $\Lambda$ is a quasi-Frobenius ring. Then, as $\Lambda$ is left $\Lambda$ -injective, it is
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$(\Lambda, R)$-injective, and so $\Lambda$ is a quasi-Frobenius R-algebra. Since $R$ is an R-
direct $sumn^{\backslash _{1}}and$ of $\Lambda,$ $R$ is obviously Artinian. Let $M$ be a faithful left R-
module. By (2.6), $\Lambda\bigotimes_{l}M$ is $\Lambda$ -faithful, and then $\Lambda\bigotimes_{R}M$ is $\Lambda$ -completely faithful

$(cA. [4])$ . $Aga\iota n$ , by (2.6), $M$ is R-completely faithful. Therefore, according to
[4], Th. 6, $R\iota s$ also a quasi-Frobenius ring. This implies (2) $\Rightarrow(1)$ .

\S 4. Quasi-Frobenius algebras and hereditary rings.

In this section we shall determine the structure of a quasi-Frobenius al-
gebra which is a hereditary ring.

LEMMA 4.1. Let $R$ be a ring with the total quotient ring $K$ and $\Lambda$ an R-
finitely generated, torsion-free R-algebra which is semi-hereditary. Let $M$ be a
finitely generated left $\Lambda$ -module which is R-torsion-free. If $K\bigotimes_{R}M$ is $K\bigotimes_{t}\Lambda-$

projective, then $M$ is $\Lambda$ -projective.
PROOF. Since $\Lambda$ is semi-hereditary, it suffices to prove that $M$ is a sub-

module of some free left $\Lambda$ -module $F$ . As $M$ is finitely generated bver $R$ , we
can put $M=\sum_{i=1}^{l}Ru_{i}$ , and, as $M$ is R-torsion-free, $M$ can be regarded as a sub-

module of $K\otimes M$. Since $K\bigotimes_{1t}M$ is $ K\bigotimes_{R}\Lambda$ -projective, $K\bigotimes_{H}M$ is imbedded in

a free $ K\bigotimes_{R}\Lambda$ -module $F^{\prime}$ with a free basis $v_{1},$ $v_{2},$ $\cdots$ , $v_{m}$ . Then we have

$u_{i}=\sum_{11}^{m}(\frac{1}{t_{if}}\otimes\lambda_{ij})v_{j}$ for some non-zero divisors $t_{ij}$ of $R$ and some element $\lambda_{ij}$

of $\Lambda$ . If we put $t=\prod_{\tau=1}^{l}\prod_{J=1}^{m}t_{ij}$ and $w_{j}=(\frac{1}{t}\otimes 1)v_{j}$ for any $j$ , then $F=\sum_{J=1}\Lambda w_{\uparrow}m$

is as is required. This completes our proof.
PROPOSITION 4.2. Let $R$ be a ring with the total quotient ring $K$, and $\Lambda$

an R-algebra which is a finitely generated projective R-module. If $\Lambda$ is a semi-
hereditary ring and $ K\bigotimes_{R}\Lambda$ is a quasi-Frobenius K-algebra, then $R$ is a semi-

hereditary ring and $\Lambda$ is a quasi-Frobenius R-algebra.
PROOF. From (2.6) it follows that $R$ is also semi-hereditary. As $\Lambda$ is R-

projective, $\Lambda^{*}$ is also R-projective. By applying (4.1) to $\Lambda^{*}$ we can show that
$\Lambda$ is a quasi-Frobenius R-algebra.

COROLLARY 4.3. Let $R$ be a Noetherian integral domain with the quotient
field K. Let $\Sigma$ be a semi-simple K-algebra and $\Lambda$ an R-projective R-order in
$\Sigma$ . If $\Lambda$ is a hereditary ring, then $R$ is a Dedekind domain and $\Lambda$ is a quasi-
Frobenius R-algebra.

PROOF. This is an immediate consequence of (4.2).
LEMMA 4.4. Let $R$ be a Noetherian complete local integral domain which

is not a field, and $\Lambda$ an R-finitely generated torsion-free R-algebra. If $\Lambda$ is a
hereditary ring, then any finitely generated $\Lambda$-module which is R-torsion-free is
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$\Lambda$ .projective.
PROOF. See [13], (3.6).

PROPOSITION 4.5. Let $R$ be a Noetherian ring, and $\Lambda$ an R-finitely gener-
ated projective R-algebra which is a hereditary ring. Then

(1) $R$ is expressible as a direct sum of non-trivial Dedekind domains $D_{i}$ ,
$1\leqq i\leqq l$ , with the quotient fields $K_{\ell}$ and fields $F_{j},$ $1\leqq j\leqq m$ .

(2) Any $ K_{i}\bigotimes_{R}\Lambda$ is a semi-simple $K_{i}$-algebra.

(3) Any $ D_{i}\bigotimes_{R}\Lambda$ is a hereditary $D_{i}$-order in $ K_{i}\bigotimes_{1t}\Lambda$ .
(4) Any $ F_{j}\bigotimes_{R}\Lambda$ is a $F_{j}$-algebra which is hereditary.

(5) $\Lambda$ is expressible as a direct sum of $D_{i}\bigotimes_{R}\Lambda,$
$1\leqq i\leqq l$ and $F_{j}\bigotimes_{R}\Lambda,$

$1\leqq j\leqq m$ .

PROOF. (1) follows from (2.6) and (3), (4), (5) follows directly from (1), (2).
Hence we have only to show (2). Without loss of generality we may assume
that $R$ is a non-trivial discrete valuation ring. Let $\hat{R}$ be the completion of $R$

and put $\hat{\Lambda}=\hat{R}\bigotimes_{v}\Lambda$ . Then $\hat{R},\hat{\Lambda}$ satisfy the assumptions in (4.4). As $(\Lambda^{\wedge})^{*}$ is

$\hat{R}$ -projective, $(\Lambda)^{*}$ is $\hat{\Lambda}$ -projective by (4.4). Therefore, $\Lambda^{*}$ is A-projective, i.e.,
$\Lambda$ is a quasi-Frobenius R-algebra. Let $K$ be the quotient field of $R$ . By virtue
of (3.2), $ K\bigotimes_{A}\Lambda$ is also a quasi-Frobenius K-algebra. On the other hand, $K\bigotimes_{1t}A$

is hereditary, as $\Lambda$ is hereditary. Then $ K\bigotimes_{R}\Lambda$ must be a semi-simple K-algebra

by [10], Th. 16. This proves (2). Thus our proof is completed.
Our main result in this section is given in the following
THEOREM 4.6. Let $R$ be a Noetherian ring and $\Lambda$ an R-algebra which is a

finitely generated projective R-module. Then the following statements are equi-
valent:

(1) $\Lambda$ is a quasi-Frobenius R-algebra which is an hereditary ring.
(2) $R$ is expressible as the direct sum of Dedekind domains $D_{i},$ $1\leqq i\leqq l$

and $\Lambda$ is expressible as the direct sum of $D_{i}\bigotimes_{R}\Lambda,$
$1\leqq i\leqq l$ , each of $w/\iota ich$ is a

hereditary $D_{i}$-order in a semi-simple algebra over the quotient field of $D_{i}$ .
PROOF. (1) $=>(2)$ follows from (4.5) and (2) $\Rightarrow(1)$ was proved in (4.3).

In (4.6), replacing the words “ a hereditary ring “ and “ Dedekind domains “

by “ a regular ring” and “ regular domains “, (1) $\Rightarrow(2)$ can be shown similarly.
However, in this case, we did not succeed in proving (2) $\Rightarrow(1)$ .

PROPOSITION 4.7. Let $R$ be a Dedekind domain and $K$ the quotient field
of R. Let $\Sigma$ be a semi-simple K-algebra and $\Lambda$ an R-order in $\Sigma$ . If $\Lambda$ is a
maximal order, then it is locally Frobenius R-algebra.

PROOF. By (3.4) we may assume that $R$ is a discrete valuation ring. As
is easily $s_{\vee}^{\mathfrak{Q}}en$ , a maximal (, $rder$ over a discrete valuation ring is a principal
ideal ring (cf. [1]). Hence, for a maximal ideal $\mathfrak{m}$ of $R,$ $\Lambda/t1t\Lambda$ is a uni-serial
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$R/\mathfrak{m}$-algebra. Again by (3.4), $\Lambda$ is a Frobenius R-algebra.

\S 5. Rings with $(FG)$ .
In this section we shall determine the structure of an algebra with (FG)

over a Noetherian ring.
First we shall prove, as a special case,
THEOREM 5.1. A commutative Noetherian ring has (FG) if and only if it

is expressible as the direct sum of Dedekind domains and quasi-Frobenius local
rings.

It is well known that any finitely generated module over a Dedekind do-
main can be expressed as the direct sum of a projective module and a torsion
module. From this fact and [4] the if part of (5.1) follows immediately.

Now we shall prove the only if part of (5.1), step by step, in the following
lemmas and proposition.

LEMMA 5.2. Let $R$ be a commutative Noetherian ring, and suppose that
there is a prime divisor of $0$ with height $>1$ in R. Then $R$ has not (FG),

PROOF. Denote by $K$ the total quotient ring of $R$ and let $\mathfrak{p}$ be a maximal
prime divisor of $0$ such that $ht_{R}\mathfrak{p}>1$ . Then $\mathfrak{p}K$ is a maximal ideal of $K$ and

we have $R_{\mathfrak{p}}=K_{\mathfrak{p}R}$ . As $Ann_{Rp}pR_{\mathfrak{p}}\neq 0$ , there is a $a\in Ann_{R}\mathfrak{p}$ such that $\overline{0}\neq\overline{a}$ in
$R_{\mathfrak{p}}$ where $\overline{0},\overline{a}$ are the residues of $0,$ $a$ in $R_{0}$ . It is easily seen that $Ka$ is a

minimal ideal in $K$. Since $\bigcap_{\iota=1}^{\infty}\mathfrak{p}^{l}K_{\mathfrak{p}K}=0$ and $ht_{K}\mathfrak{p}K\geqq 1$ , we find some $b\in \mathfrak{p}$ such

that at $\overline{b}K_{\mathfrak{v}x},\overline{b}\neq\overline{0}$ , where $\overline{b}$ is the residue of $b$ in $R_{\mathfrak{p}}$ . From the minimality
of $Ka$ we obtain $Ka\cap Kb=0$ . Now let $F=Ru+Rv$ be a free R-module with
a free basis $\{u, v\}$ , and put $M=F/R(au-bv)$ . As $Ra\cap Rb=0,$ $M$ is clearly a
finitely generated faithful R-module. We shall show that $M$ is not R-completely
faithful. In order to prove this, it suffices, by (2.4), to show that $M$ is not
R-completely faithful. As $R_{\mathfrak{p}}=K_{\mathfrak{p}R}$ , we may assume $R=K$. Let $\overline{u},\overline{v}$ be the
residues of $u,$ $v$ and $u^{*},$ $v^{*}$ the residues of $\overline{u},\overline{v}$ in $M$, respectively. Then we
have $M_{\mathfrak{p}}=F_{\mathfrak{p}}/R_{\mathfrak{p}}\overline{(au}-\overline{bv}$) $=R_{\mathfrak{p}}u^{*}+R_{\mathfrak{p}}v^{*}$ and $\overline{a}u^{*}=\overline{b}v^{*}$ . Let $\varphi$ be an element of
$Hom_{R\mathfrak{p}}(M_{\mathfrak{p}}, R_{\mathfrak{p}})$ , and put $\varphi(u^{*})=\overline{c},$ $\varphi(v^{*})=\overline{d},\overline{c},\overline{d}\in R_{\mathfrak{p}}$ . Since $\overline{a}u^{*}=\overline{b}\iota)^{*}$ we have

$\overline{a}\overline{c}=\overline{b}\overline{d}$. If $\overline{c}\in \mathfrak{p}R_{\mathfrak{p}}$ . then $\overline{a}\in\overline{b}R_{\mathfrak{p}}$ which is obviously a contradiction, and so
we have $\overline{c}\in \mathfrak{p}R_{\mathfrak{p}}$ . From the fact that $\overline{a}\in Ann_{R}\mathfrak{p}R_{\mathfrak{p}}$ , we obtain $\overline{a}\overline{c}=\overline{b}\overline{d}=\overline{0}$ and,

then, as $\overline{b}\neq\overline{0}$, we have $\overline{d}\in \mathfrak{p}R_{0}$ . Therefore we have ${\rm Im}\varphi\subseteqq \mathfrak{p}R_{\mathfrak{p}}$ . Thus $M_{\mathfrak{p}}$ is
not $R_{\mathfrak{p}}$ -completely faithful. This proves that $R$ has not (FG).

LEMMA 5.3. Let $R$ be a commutative Noetherian ring. Suppose that the
zero ideal of $R$ is unmixed and that there is a prime ideal $\mathfrak{p}$ of $R$ with $ht_{R}0\geqq 1$

such that $R_{\mathfrak{p}}$ is not a discrete valuation ring. Then $R$ has not (FG).
PROOF. By our assumptions, $\mathfrak{p}$ is a finitely generated faithful R-module.
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Now we shall show that $\mathfrak{p}$ is not R-ccmpletely faithful. In order to prove this,
it suffices to show that $\mathfrak{p}R_{\mathfrak{p}}$ is not $R_{\mathfrak{p}}$ -completely faithful. Hence we may sup-
pose that $R$ is a local ring with a maximal ideal $\mathfrak{p}$ . Since $R$ is not a discrete
valuation ring, a minimal basis of $\mathfrak{p}$ contains at least two elements, and we
denote it by $\{p_{1}, p_{2}, \cdot.. , p_{t}\},$ $t\geqq 2$ . Let $\varphi$ be an element of $Hom_{R}(\mathfrak{p}, R)$ and put
$\varphi(p_{i})=a_{i}\in R$ for any $i$ . If, for some $i_{0},$

$a_{i_{0}}$ is a unit of $R$ , then we have
$p_{i}=a_{i_{0}}^{-1}a_{i}p_{i_{0}}\in Rp_{i_{0}}$ for any $i$ . This is obviously a contradiction. Thus we must
have ${\rm Im}\varphi\subseteqq \mathfrak{p}$ , which shows, by (1.1), that $\mathfrak{p}$ is not R-completely faithful. This
proves that $R$ has not (FG).

From lemmas (5.2) and (5.3) it follows directly that a ring $R$ with (FG) is
expressible as the direct sum of Dedekind domains and Artinian local rings.
Therefore the proof of the only if part of (5.1) is completed if the following
proposition is proved.

PROPOSITION 5.4. A commutative Artinian ring $R$ has (FG) if and only if
it is a quasi-Frobenius ring.

PROOF. The if part of this proposition is obvious ([4]). Hence we have
only to prove the only if part. Since a commutative Artini\^an ring can be
expressed as the direct sum of local rings, we may assume that $R$ is a local
ring with a maximal ideal $\mathfrak{m}$ . Suppose that $R$ is not quasi-Frobenius. Then
$Ann_{R}\mathfrak{m}$ is not a principal ideal of $R$ , and therefore there exist some $a,$ $b\in Ann_{R}\mathfrak{m}$

such that $a\not\in Rb$ and $b\not\in Ra$ . As $Ra$ and $Rb$ are minimal ideals of $R$ , we
have $Ra\cap Rb=0$ . Let $F=Ru+Rv$ be a free R-module with a free basis $u,$ $v$

and put $M=F/R(au-bv)$ . By using the same method as in the proof of (5.2),
we can show that $M$ is R-faithful but not R-completely faithful. Hence $R$

has not (FG). This proves the only if part of our proposition.
A ring $\Lambda$ is said tc have $(FG)^{l}((FG)^{r})$ if any finitely generated, faithful

left (right) $\Lambda$ -module is completely faithful.
Now we can conjecture that a left and right Artinian ring with $(FG)^{l}$

$((FG)^{r})$ is a quasi-Frobenius ring. However we did not succeed in proving
this in thc general case. We remark that the only if part of (5.4) can also be
proved by applying [17], (3.11) and (4.1).

Secondly we shall concern with orders in a semi-simple algebra. The
essential part of the proof of the following theorem was shown in [1] and
[13], though this is not given in [1] and [13] explicitely.

THEOREM 5.5. Let $R$ be a Noetherian integral domain and $K$ the quotient
field of R. Let $\Sigma$ be a semi-simple $K,alg\rho bra$ and $\Lambda$ an $R$ -projective R-order
in $\Sigma$ . Then $\Lambda$ is a hereditary, maximal R-order if and only if it has $(FG)^{l}$

$((FG)^{\gamma})$ .
PROOF. The only if part: Suppose that $\Lambda$ is a hereditary, maximal R-

order. Then, by [13], (2.2), the center of $\Lambda$ is a hereditary ring which contains
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all central idempotents in $\Sigma$ . Therefore we may assume that $R$ is a Dedekind
domain and that $\Sigma$ is a central simple K-algebra. By (2.2), (2.4) and [13], (1.5),
we may further assume that $R$ is a discrete valuation ring with a maximal
ideal $\mathfrak{m}$ . As $\Lambda$ is a maximal R-order, the Jacobson radical of $\Lambda$ is a unique
maximal two-sided ideal according to [1], (2.1). Hence, by (1.3), any non-zero
projective left $\Lambda$ -module is completely faithful. Since $\Lambda$ is hereditary and $\Sigma$

is simple, we see easily that any finitely generated, faithful left $\Lambda$ -module is
a direct sum of a non-zero projective left $\Lambda$ -module and a left $\Lambda$ -module which
is a torsicn R-module. Consequently any finitely generated faithful left $\Lambda-$

module is completely faithful, and so $\Lambda$ has $(FG)^{l}$ . This proves the only if
part of our theorem.

The if part: Suppose that $\Lambda$ has $(FG)^{l}$ . Then, by (2.6), $R$ has also (FG),

and so $R$ is a Dedekind domain by (5.1). Further assume that $\Lambda$ is not a
hereditary, maximal order. Since a maximal order over a Dedekind domain
is hereditary by [1], (2.3) and [13], (2.1), $\Lambda$ is not maximal under our assump-
tion, and therefore there exists an R-order $\Gamma$ which contains $\Lambda$ strictly. Let
$C(\Gamma)$ be the conductor of $\Gamma$ with respect to $\Lambda$ . Then $C(\Gamma)$ is a two-sided idtal
of $\Lambda$ which is a faithful left $\Lambda$ -module, and, by [13], (1.6), we have $\mathfrak{T}_{\Lambda}(C(\Gamma))$

$=C(\Gamma)$ . As $C(\Gamma)\neq\Lambda,$ $C(\Gamma)$ is not $\Lambda$-completely faithful. This contradicts the
assumption that $\Lambda$ has $(FG)^{l}$ . Thus $\Lambda$ must be a hereditary, maximal R-order.
This completes our proof.

Finally, combining (5.5) with (5.1), we obtain

THEOREM 5.6. Let $R$ be a Noetherian ring and $\Lambda$ an R-algebra which is a
finilely generated projective R-module. Then $\Lambda$ has $(FG)^{l}((FG)^{r})$ if and only if
it is the direct sum of a finite number of hereditary, maximal orders over
Dedekind domains in semi-simple algebras and quasi-Frobenius rings which are
finitely generated modules over commutative quasi-Frobenius local rings.

PROOF. The if part of our theorem follows from (5.5). Therefore we have
only to show the only if part. Suppose that $\Lambda$ has $(FG)^{l}$ . Since $\Lambda$ is a finitely
generated projective R-module, $R$ has (FG) by (2.6). According to (5.1) we can
put $R=D_{1}\oplus D_{2}\oplus\cdots\oplus D_{s}\oplus E_{1}\oplus E_{2}\oplus\cdots\oplus E_{t}$ where any $D_{i}$ is a non-trivial
Dedekind domain and any $E_{j}$ is a quasi-Frobenius local ring. If we put
$\Lambda_{i}=D_{i}\bigotimes_{R}\Lambda$ for any $i$ and $\Gamma_{j}=E_{j}\bigotimes_{R}\Lambda$ for any $j$ , then any $\Lambda_{i}(\Gamma_{j})$ is a $D_{i}(E_{\dot{J}})-$

-algebra which is a finitely generated projective $D_{i}(E_{j})$ -module. Since $\Lambda_{i}^{*}(\Gamma_{j}^{*})$

is $\Lambda_{i}(\Gamma_{j})$-finitely generated faithful, it is $\Lambda_{i}(\Gamma_{j})$ -completely faithful, and so
$\Lambda_{i}(\Gamma_{j})$ is a quasi-Frobenius $D_{i}(E_{j})$ -algebra. From (3.7) it follows directly that
any $\Gamma_{j}$ is a quasi-Frobenius ring. Hence we have only to show that any $\Lambda_{\iota}$

is a hereditary, maximal $D_{i}$-order in a semi-simple algebra. In order to sim-
plify our notation, we put $D=D_{i}$ and $\Lambda=\Lambda_{i}$ and denote by $K$ the quotient
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field of $D$ . By (5.5) it suffices to shcw that $ K\bigotimes_{D}\Lambda$ is a scmi-simple K-algebra.

If we assume that $ K\bigotimes_{D}\Lambda$ is not semi-simple, then the nil radical $\mathfrak{R}$ of $\Lambda$ is not

0. Without loss of generality we may assume that $D$ is a discrete valuation
ring with a maximal ideal $Dp(p\neq 0)$ . Since we have $\mathfrak{R}\neq 0$ and $\cap\infty\Lambda_{p}^{\iota}=0$ ,

$l=1$

there exists an integer $l_{0}$ such that $\mathfrak{R}\not\leqq\Lambda_{p^{l_{0}}}$ . Now put $\mathfrak{A}=\Lambda_{p^{l_{0}}}+\mathfrak{R}$ . Then $\mathfrak{A}$ is
a two-sided ideal of $\Lambda$ which is a faithful left $\Lambda$ -module, and so, as $\Lambda$ has
$(FG)^{l},$ $\mathfrak{A}$ is also $\Lambda$ -completely faithful. Therefore there exist some $\varphi_{1},$ $\varphi_{2},$ $\varphi_{m}$

$\in Hom_{\Lambda}(\mathfrak{A}, \Lambda)$ , some $u_{1},$ $u_{2}$ , $\cdot$ .. , $u_{m}\in \mathfrak{R}$ and some $\lambda_{1},$ $\lambda_{2},$ $\cdots$ , $\lambda_{m}\in\Lambda$ such that

$\sum_{i=1}^{m}\varphi_{i}(\lambda_{i}p^{l_{0}}+u_{i})=\sum_{?=1}^{m}\varphi_{i}(\lambda_{i}p^{\iota_{0}})+\sum_{i=1}^{m}\varphi_{i}(u_{i})=1$ . As $\Lambda$ is a quasi-Frobenius D-algebra,

$ K\bigotimes_{1i}\Lambda$ is also a quasi-Frobenius K-algebra (in the classical sense) by (3.2), and

so it is lef $t$ self-injective. Then we have $\underline{\tau}_{x_{D}}\otimes\Lambda(K\bigotimes_{D}\mathfrak{R})=K\bigotimes_{D}\mathfrak{R}$ . From this we
obtain $\mathfrak{T}_{\Lambda}(\mathfrak{R})=\mathfrak{R}$ , as $\mathfrak{R}$ is a nil ideal of $\Lambda$ . Hence we have $\varphi_{i}(\mathfrak{R})\subseteqq \mathfrak{R}$ for any
$i,$ $i$ . $e.,\sum_{i=1}^{m}\varphi_{i}(u_{i})\in \mathfrak{R}$ . Therefore $\sum_{i=1}^{m}\varphi_{i}(\lambda_{i}p^{\iota_{0}})$ is a unit of $\Lambda$ . Let $u$ be an element

of $\mathfrak{R}$ which is not contained in $\Lambda_{p^{l_{0}}}$ . However we have $\varphi_{i}(u\lambda_{i}p^{\iota_{0}})=u\varphi_{i}(\lambda_{i}p^{\iota_{0}})$

$=p^{\iota_{0}}\varphi_{i}(u\lambda_{i})\in\Lambda p^{\iota_{0}}$ for any $i$, and so $u\sum_{x=1}^{m}\varphi_{i}(\lambda_{i}p^{\iota_{0}})\in\Lambda p^{\iota_{0}}$ . Hence $u\in\Lambda p^{\iota_{0}}$ , which

is obviously a contradiction. Thus $ K\bigotimes_{D}\Lambda$ must be a semi-simple K-algebra.

This completes our proof.

\S 6. Rings with $(PFG)$ .
A fairly general sufficient condition for a ring to have (PFG) is given in

the following
THEOREM 6.1. Let $\Lambda$ be a ring and $C$ the center of $\Lambda$ . Suppose that there

exists a subring $R$ of $C$ satisfying the following two conditions:
(1) $\Lambda$ is a finitely generated R-module.
(2) For any maximal ideal $\mathfrak{m}$ of $R,$ $\Lambda/\mathfrak{m}\Lambda$ is the direct sum of primary

rings.
Then $\Lambda$ has (PFG).

PROOF. Let $P$ be a finitely generated, faithful, projective left (right) $\Lambda-$

module. By (2.5) it suffices to prove that, for any maximal ideal $\mathfrak{m}$ of $R,$ $P/\mathfrak{m}P$

is $\Lambda/\mathfrak{m}\Lambda$ -completely faithful. Put $\overline{\Lambda}=\Lambda/\mathfrak{m}\Lambda,$ $P=P/\mathfrak{m}P$ and $\overline{c}=Ann_{\overline{\Lambda}}\overline{P}$ . By

virtue of (2.3), $\overline{c}$ is contained in the Jacobson radical of $\overline{\Lambda}$ . By our assumption

we have $\Lambda=\overline{\Lambda}_{1}\oplus\overline{\Lambda}_{2}\oplus\cdots\oplus\overline{\Lambda}_{l}$ where any $\overline{\Lambda}_{i}$ is a primary ring. If we put
$\overline{P}_{i}=\overline{\Lambda}_{i}\overline{P}$ and $\overline{c}_{i}=\overline{\Lambda}_{i}\overline{c}$ for $1\leqq i\leqq l$ , then we have $\overline{P}=\overline{P}_{1}\oplus\overline{P}_{2}\oplus\cdots\oplus\overline{P}_{\iota}$ as 7-
modules and $\overline{c}=\overline{c}_{1}\oplus\iota_{2}^{\overline{\backslash }}\oplus\cdots\oplus\overline{c}_{l}$ as two-sided ideals of $\Lambda$ . Here any $\overline{c}_{i}$ is con-
tainbd in the Jacobson radical of $\overline{\Lambda}_{i}$ which is a unique maximal two-sided
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ideal of $\overline{\Lambda}_{i}$ , and we have also $\overline{c}_{i}=Ann_{\overline{\Lambda}_{i}}\overline{P}_{i}$ for any $i$ . Therefore any $\overline{P}_{i}$ is a
non-zero projective $\overline{\Lambda}_{i}$ -module. Hence any $\overline{P}_{i}$ is $\overline{\Lambda}_{i}$ -completely faithful by (1.3).

From this we see easily that $\overline{P}$ is A-completely faithful. This completes our
proof.

The assumption in (6.1) is satisfied in each of the following cases:
(1) $\Lambda$ is a commutative ring (cf. (1.5)).
(2) $\Lambda$ is a semi-simple R-algebra which is a finitely generated R-module

(cf. [14]).

(3) $\Lambda$ is a hereditary, maximal order over a Dedekind domain $R$ in a
semi-simple algebra (5.5).

(4) $\Lambda$ is an R-algebra which is a finitely generated R-module such that,
for any maximal ideal $\mathfrak{m}$ of $R,$ $\Lambda/\mathfrak{m}\Lambda$ is a uni-serial ring. (1), (2), (3) are special
cases of (4).

From (1.2) we obtain directly
PROPOSITION 6.2. Let $\Lambda$ be a ring and let $P$ be a finitely generated, faith-

ful, projective left $\Lambda$ -module which is not $\Lambda$ -completely faithful. Then $\mathfrak{T}_{\Lambda}(P)$ is
a proper idempotent two-sided ideal of $\Lambda$ which is $\Lambda$ -faithful. Especially, if $\Lambda$

is left Noetherian or if $\Lambda$ is a finitely generated module over the center $C$ of
it, then $\mathfrak{T}_{\Lambda}(P)$ is a finitely generated left $\Lambda$ -module.

PROOF. We have only to show the final assertion, under the assumption
that $\Lambda$ is C-finitely generated. Since $P$ and $Hom_{\Lambda}(P, \Lambda)$ are $\Lambda- finitely$ generated,
they are also C-finitely generated, and so $\underline{7}_{\Lambda}(P)$ is C-finitely generated. Hence
$\mathfrak{T}_{\Lambda}(P)$ is $\Lambda- finitely$ generated and this completes our proof.

COROLLARY 6.3. A left Noetherian, left hereditary ring $\Lambda$ has (PFG) if
and only if there is no proper idempotent two-sided ideal in $\Lambda$ which is $\Lambda-$

faithful.
PROOF. This can easily be derived from (1.4) and (6.2).

COROLLARY 6.4. Let $R$ be a Dedekind domain and $K$ the quotient field of
R. Let $\Sigma$ be a semi-simple K-algebra and $\Lambda$ a hereditary R-order in $\Sigma$ . Then
$\Lambda$ has (PFG) if and only if it is a maximal R-order.

It was shown in (4.3) that a hereditary order over a Dedekind $domai_{1_{1}}R$

in a semi-simple algebra is a quasi-Frobenius R-algebra. On the other hand,
by (6.4), a non-maximal hereditary R-order has not (PFG). Hence we have

PROPOSITION 6.5. A quasi-Frobenius algebra over a Dedekind domain has
not always (PFG).

\S 7. Quasi-Frobenius subalgebras of a central separable algebra.

Let $\Gamma$ be an R-algebra and $\Lambda$ an R-subalgebra of $\Gamma$ . Now we put $V_{\Gamma}(\Lambda)$

$=$ { $\gamma\in\Gamma|\gamma\lambda=\lambda\gamma$ for any $\lambda\in\Lambda$ }.
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A. Hattori proved in [14] the following basic results: Let $\Gamma$ be a central
separable R-algebra and $\Lambda$ an R-subalgebra of $\Gamma$ .

(I) If $\Gamma$ is $\Lambda$ -completely faithful, then there hold
(i) $\Gamma$ is $\Lambda\bigotimes_{A}\Gamma^{0}$ -completely faithful.

(ii) $\Gamma$ is $V_{\Gamma}(\Lambda)$-projective and $\Lambda\bigotimes_{It}\Gamma^{0}\cong Hom_{r_{\Gamma^{(\Lambda)}}}(\Gamma, \Gamma)$ .
(iii) $ V_{\Gamma}(V_{\Gamma}(\Lambda))=\Lambda$ .

(II) If $\Gamma$ is $\Lambda$ -projective and $\Lambda$ -completely faithful, then $\Gamma$ is $\Lambda\bigotimes_{R}\Gamma^{0_{-}}$

projective and $\Lambda\bigotimes_{R}\Gamma^{0}$-completely faithful, and so $V_{\Gamma}(\Lambda)^{0}$ is Morita equivalent

to $\Lambda\bigotimes_{1t}\Gamma^{0}$ .
In this section, as an application of the above mentioned results, we shall

establish the commutor theory of quasi-Frobenius subalgebras of a central
separable algebra.

First we give
PROPOSITION 7.1. Let $\Lambda,$ $\Omega$ be R-algebras which are finitely generated pro-

jective R-modules. Suppose that $\Omega$ is Morita equivalent to A. Then $\Omega$ is a
quasi-Frobenius R-algebra if and only if $\Lambda$ is a quasi-Frobenius R-algebra.

PROOF. By (3.3) it suffices to prove our proposition in case $R$ is a field.
However, as the property $(G)$ is obviously Morita invariant, our proposition
holds in this case.

Now we have
THEOREM 7.2. Let $\Gamma$ be a central separable R-algebra and $\Lambda$ a quasi-

Frobenius R-subalgebra of $\Gamma$ which is an R-direct summand of $\Gamma$ .
(1) We have $ V_{\Gamma}(V_{\Gamma}(\Lambda))=\Lambda$ .
(2) $V_{\Gamma}(\Lambda)$ is a quasi-Frobenius R-subalgebra of $\Gamma$ which is an R-direct

summand of $\Gamma$ if and only if $\Gamma$ is $\Lambda$ -projective.
PROOF. Since $\Lambda$ is $(\Lambda, R)$ -injective, $\Lambda$ is an R-direct summand of $\Gamma$ il and

only if $\Gamma$ is $\Lambda$ -completely faithful. From (I) it follows $ V_{\Gamma}(V_{\Gamma}(\Lambda))=\Lambda$ . Now
assume that $\Gamma$ is $\Lambda$ -projective. Then, according to (II), $V_{\Gamma}(\Lambda)^{0}$ is Morita equi-
valent to $\Lambda\bigotimes_{R}\Gamma^{0}$ . As $\Lambda\bigotimes_{1}\Gamma^{0}$ is quasi-Frobenius by (3.5), $V_{\Gamma}(\Lambda)$ is quasi-Fro-

benius by (3.3) and (7.1). Since $\Gamma$ is $\Lambda$ -projective, $\Gamma$ is also $\Lambda\bigotimes_{R}\Gamma^{0}$ -projective,

and so, by virtue of the Morita theorem, $\Gamma$ is $V_{\Gamma}(\Lambda)$-completely faithful. Con-
sequently $V_{\Gamma}(\Lambda)$ is an R-direct summand of $\Gamma$ . Conversely, suppose that
$V_{\Gamma}(\Lambda)$ is a quasi-Frobenius R-subalgebra which is an R-direct summand of $\Gamma$ .
Then $\Gamma$ is $V_{\Gamma}(\Lambda)$-projective and $V_{\Gamma}(\Lambda)$ -completely faithful, and therefore $V_{\Gamma}(\Lambda)^{0}$

is Morita equivalent to $\Lambda\bigotimes_{R}\Gamma^{0}\cong Hom_{\gamma_{\Gamma}(\Lambda)}(\Gamma, \Gamma)$ . Again, by the Morita theo-

rem, $\Gamma$ is $\Lambda\bigotimes_{R}\Gamma^{0}$-projective, and so $\Gamma$ is $\Lambda$ -projective. This completes our
proof.

For a commutative ring $R$ , we put $f$ . gl. $\dim R=Sup\{dh_{R}M|M$ is a finitely
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generated R-module with $dh_{R}M<\infty$ }.
COROLLARY 7.3. Let $R$ be a commutative ring with $f$ . gl. $\dim R=0$ . Let

$\Gamma$ be a central separable R-algebra and $\Lambda$ a quasi-Frobenius R-subalgebra of
$\Gamma$ .

(1) We have $ V_{\Gamma}(V_{\Gamma}(\Lambda))=\Lambda$ .
(2) $V_{\Gamma}(\Lambda)$ is a quasi-Frobenius R-subalgebra of $\Gamma$ if and only if $\Gamma$ is $\Lambda-$

projective.
PROOF. As $\Lambda$ and $\Gamma$ are R-projective, we have $dh,J\Gamma^{\prime}\Lambda\cong^{\prime}1$ . By our as-

sumption on $R,$ $\Gamma/\Lambda$ is R-projective, and therefore $\Lambda$ is an $R- dir_{\backslash ^{\backslash }}$ ct summand
of $\Gamma$ . Thus our corollary is an immediate consequence of (7.2).

The classical case is obviously included in (7.3). However it seems that
(2) has not been given in the classical theory.

COROLLARY 7.4. Let $\Gamma$ be a central separable R-algebra and $\Lambda$ a quasl-

Frobenius R-subalgebra with (PFG) of $\Gamma$ which is an R-direct summand $ cf\Gamma$

If $\Gamma$ is $\Lambda$ ,projective, then $V_{\Gamma}(\Lambda)$ is a quasi-Frobenius R-subalgebra with (PFG).

PROOF. The property (PFG) is evidently Morita invariant. Hence it suf-
fices to prove that $\Lambda\bigotimes_{R}\Gamma^{0}$ has (PFG). Let $P$ be a finitely generated, faithful,

prc je $.tive\Lambda\bigotimes_{R}\Gamma^{0}$-module. Then $P$ is , bviously $\Lambda- finitely$ generated, faithful.

projective. As $\Lambda$ has (PFG), $P$ is $\Lambda$ -completely faithful. Since $P$ is $\Lambda\bigotimes_{R}\Gamma^{0_{-}}$

projective, it suffices, according to (1.2), to show that, for any maximal two-
sided ideal $\mathfrak{M}^{\prime}$ of $\Lambda\bigotimes_{R}\Gamma^{0}$ , we have $P/\mathfrak{M}^{\prime}P\neq 0$ . Now we can find a maximak

two-sided ideal $\mathfrak{M}$ of $\Lambda$ such that $\mathfrak{M}^{\prime}=\mathfrak{Y}t\bigotimes_{4^{\prime}}\Gamma^{u}$ , as $\Gamma^{\iota)}$ is a central separable

R-algebra. However, since $P$ is $\Lambda$ -completely faithful, we havtr $P/\mathfrak{M}^{\prime}P=P/\mathfrak{M}P$

$\neq 0$ . Consequently $P$ is $\Lambda\bigotimes_{R}\Gamma^{0}$ -completely faithful.

LEMMA 7.5. Let $R$ be a commutative ring with the total quotient ring $K$

and $\Gamma$ an R-algebra which is a torsion-free R-module. Let $\Lambda$ be an R-subalgebra

of $\Gamma$ such that $ V_{K\bigotimes_{R}\Gamma}(V_{K\otimes\Gamma}(K\bigotimes_{1}\Lambda))=K\bigotimes_{R}\Lambda$ . Then we have $V_{\Gamma}(V_{\Gamma}(\Lambda))=\Lambda i$]

and only if $ K\bigotimes_{R}\Lambda\cap\Gamma=\Lambda$ .
PROOF. As it is easy, we omit it.
PROPOSITION 7.6. Let $R$ be a commutative ring with the total quotient ring

$K$ such that $f$ . gl. $\dim R\leqq 1$ and 1. gl. $\dim K=0$ . Let $\Gamma$ be a central separable
R-algebra and $\Lambda$ a quasi-Frobenius R-subalgebra of $\Gamma$ . Then the following
slatements are equivalent:

(1) We have $ V_{\Gamma}(V_{\Gamma}(\Lambda))=\Lambda$ .
(2) $\Gamma$ is A-completely faithful.
(3) $\Lambda$ is an R-direct summand of $\Gamma$ .

If $\Lambda$ satisfies these conditions, $V_{\Gamma}(\Lambda)$ is a quasi-Frobeniu $s$ R-subalgebra of $\Gamma$

when and only when $\Gamma$ is $\Lambda$ -projective.
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PROOF. For the first part, it suffices to show (1) $\Rightarrow(3)$ . Assume $V_{\Gamma}(V_{\Gamma}(\Lambda))$

$=\Lambda$ . Then we have $ V_{R\bigotimes_{R}\Gamma}(V_{R\bigotimes_{h}\Gamma}(K\bigotimes_{\kappa}\Lambda))=K\bigotimes_{J\iota}\Lambda$ , and therefcre, by (7.5), we
obtain $ K\bigotimes_{R}\Lambda_{\cap}\Gamma=\Lambda$ . Hence $\Gamma/\Lambda$ is R-torsion-free. Since both $ K\bigotimes_{R}\Lambda$ and

$ K\bigotimes_{R}\Gamma$ is K-projective and $f$ . gl. $\dim K=0,$ $ K\bigotimes_{R}\Gamma/\Lambda$ is K.projective. So $\Gamma/\Lambda$

is an R-submodule of a finitely generated free R-module. While, $\Lambda$ and $\Gamma$ are
R-projective, and so we have $dh_{R}\Gamma/\Lambda\leqq 1$ . As $f$ . gl. $\dim R\leqq 1$ , this shows that
$\Gamma/\Lambda$ is R-projective. Thus $\Lambda$ must be an R-direct summand of $\Gamma$ . The second
part of our proposition follows from (7.2), as we have $V_{\Gamma}(V_{\Gamma}(V_{\Gamma}(\Lambda)))=V_{\Gamma}(\Lambda)$ .

It is to be noted that there exists a quasi-Frobenius R-subalgebra $\Lambda$ of a
central separable R-algebra $\Gamma$ which is not an R-direct summand of $\Gamma$ .

THEOREM 7.7. Let $R$ be a Dedekind domain which is not a field and $\Gamma a$

central separable R-algebra. Let $\Lambda$ be an R-subalgebra of $\Gamma$ which is a here-
ditary ring.

(1) We have $ V_{\Gamma}(V_{\Gamma}(\Lambda))=\Lambda$ if and only if $\Gamma$ is A-completely faithful.
(2) $V_{\Gamma}(\Lambda)$ is an R-subalgebra of $\Gamma$ which is a hereditary ring.
PROOF. According to (4.5), $\Lambda$ is a quasi-Frobenius R-algebra and $ K\bigotimes_{R}\Lambda$ is

a semi-simple K-algebra, where $K$ denotes the quotient field of $R$ . Therefore,
by (7.6), we have (1). If we put $\Omega=K\bigotimes_{1\mathfrak{r}}\Lambda\cap\Gamma$ , then we have $V_{\Gamma}(\Lambda)=V_{\Gamma}(\Omega)$

and $ V_{\Gamma}(V_{\Gamma}(\Omega))=\Omega$ . Since $\Lambda$ is hereditary and $\Omega\supseteqq\Lambda,$ $\Omega$ is also hereditary by
[13], $(1, 4)$ . Hence, in order to prove (2), we may assume that $\Gamma$ is $\Lambda$ -com-
pletely faithful. As $ K\bigotimes_{R}\Lambda$ is semi-simple, $ K\bigotimes_{!i}\Gamma$ is $ K\bigotimes_{R}\Lambda$ -projective, and so
$\Gamma$ can be regarded as a $\Lambda$ -submodule of a finitely generated free $\Lambda$ -module.
Since $\Lambda$ is hereditary, this shows that $\Gamma$ is $\Lambda$ -projective. Consequently $V_{\Gamma}(\Lambda)$

is Morita equivalent to $\Lambda\bigotimes_{l}\Gamma^{0}$ . By [2], $(1, 8)$ we have gl. $\dim\Lambda\bigotimes_{\lrcorner i}\Gamma^{0}\leqq g1$ . $\dim\Lambda$ ,

and so $\Lambda\bigotimes_{R}\Gamma^{0}$ is hereditary. Hence $V_{\Gamma}(\Lambda)$ is also hereditary.

COROLLARY 7.8. Let $R,$ $\Gamma$ be as in Theorem 7.7 and Zl an R-subalgebra
with (PFG) of $\Gamma$ which is hereditary. Then $\Lambda$ is a maximal $\Gamma_{\tau}$ order in a semi-
simple K-algebra $ K\bigotimes_{1t}\Lambda$ , and $V_{\Gamma}(\Lambda)$ is a maximal R-order in $V_{IC\bigotimes_{1\backslash }\Gamma}(K\bigotimes_{R}\Lambda)$ .

PROOF. This follows directly from (6.4), (7.4) and (7.7).

\S 8. A remark on semi-simple algebras over Dedekind domains.

Finally we give, as a supplement to Hattori’s paper [14], the following
THEOREM 8.1. Let $R$ be a Dedekind domain and $\Lambda$ an R-algebra which is

a finitely generated projective R-module. Then $\Lambda$ is a semi-simple R-algebra if
and only if, for any maximal ideal $\mathfrak{m}$ of $R,$ $\Lambda/\mathfrak{m}\Lambda$ is a semi-simple $R/\mathfrak{m}$-algebra.

This is also an affirmative answer to Problem 7 in [15] in a special cc $\circ\lrcorner$

Tne only if part of our theorem was proved in [14], (2.7). Hence we have
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only to show the if part. Beforc $\cdot$ proving this we shall give $\circ.ome$ lemmas.
Let $\Lambda,$ $\Gamma b_{L}$ rings with the common unit element such that $\Lambda\subset\Gamma$ and

assume that $\Gamma$ is a finitely generated left (right) $\Lambda$ -module. Then $\Gamma 1S$ said
to be a left (right) semi-simple extension of $\Lambda$ if any finitely generated left
(right) $\Gamma$ -module is $(\Gamma, \Lambda)$-projective. This is a slight generalization of the
notion of semi-simple algebras in [14].

LEMMA 8.2 Let $\Lambda,$ $\Gamma,$ $\Omega$ be rings with the common unit element such that
$ A\subset\Gamma\subset\Omega$ .

(1) If $\Omega$ is a left (right) semi-simple extension of $\Lambda$ , then $\Omega$ is also a left
(right) semi-simple exlension of $\Gamma$ .

(2) If $\Gamma$ is a left (right) semi-simple extension of $\Lambda$ , and $\Omega$ is left (right)
semi-simple extension of $\Gamma$ , then $\Omega$ is also a left (right) semi-simple extension
of $\Lambda$ .

PROOF. For any left $\Omega$-module $M$, we define a $\Gamma$ -homomorphism $\Phi^{I_{1}}(M)$ :
$\Gamma\bigotimes_{\Lambda}M\rightarrow M$ by putting $\Phi_{\Lambda}^{\Gamma}(M)(\gamma\otimes u)=\gamma u,$ $\gamma\in\Gamma,$ $u\in M$, and similarly, we
define $\Omega$ -homomorphisms $\Phi_{\Lambda}^{\Omega}(M)$ and $\Phi_{\Gamma}^{9}(M)$ . Then we have the following
commutative diagram as left $\Omega$-modules:

$I_{\Omega}\bigotimes_{\Gamma}\Phi_{\Lambda}^{\Gamma}(M^{\Gamma})|\downarrow^{\Lambda}\Phi_{\Lambda}(M)\Omega\otimes\otimes\Lambda M_{\overline{\Phi_{\dot{\Gamma}}^{Q}}(\overline{M)}}--\Omega\bigotimes_{M\Omega\bigotimes_{\Gamma}^{\Gamma}M}M_{\Omega}$

From this we can easily obtain our lemma.
LEMMA 8.3. The full matrix algebra $M_{n}(\Lambda)$ of degree $n$ over a ring $\Lambda$ is a

left and right semi-sim $ple$ extension of $\Lambda$ .
PROOF. By using the same method as in the proof of [9], IX, (7.3), we

can show that $M_{n}(\Lambda)$ is $M_{n}(\Lambda)\bigotimes_{\Lambda}M_{n}(\Lambda)^{0}$-projective. Then we can prove, along

the same line as in the proof of [14], (2.3), that $M_{n}(\Lambda)$ is a left and right
semi-simple extension of $\Lambda$ .

LEMMA 8.4. Let $\Lambda$ be an R-algebra which is a finitely generated projective
R-module and $C$ be a subring of the center of $\Lambda$ such that $R\subseteqq C$ . If $\Lambda$ is C-
projective and, for any maximal ideal $\mathfrak{m}$ of $R,$ $\Lambda/\mathfrak{m}\Lambda$ is a semi-simple $R/n\iota-$

algebra, then $C$ is R-projective and, for any maximal ideal $\mathfrak{m}$ of $R,$ $C/\mathfrak{m}C$ is a
semi-simple $R/\mathfrak{m}$-algebra.

PROOF. Since $\Lambda$ is a finitely generated projective C-module, $C$ is a C-direct
summand of $\Lambda$ . As $\Lambda$ is R-projective, $C$ is also R-projective and we have

1) K. Hirata and K. Sugano gave also this in the following paper: On semi-simple
extensions and separable extensions over non $\cdot$ commutative rings, J. Math. Soc. Japan.
18 (1966), 360-373.
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$\mathfrak{m}\Lambda\cap C=\mathfrak{m}C$ for any maximal ideal $\mathfrak{m}$ of $R$ . Therefore $C/\mathfrak{m}C$ can be considered
as a subring of the center of a semi-simple ring $\Lambda/\mathfrak{m}\Lambda$ , and so $C/\mathfrak{m}C$ is also
semi-simple.

LEMMA 8.5. Let $\Lambda$ be an R-algebra and $a$ an ideal of R. Then $\Lambda/a\Lambda$ is
$(\Lambda, R)$ -projective as a left (right) A-module.

PROOF. Since $\Lambda/\alpha\Lambda\cong\Lambda\bigotimes_{R}R/\mathfrak{a}$ , this is obvious.

The proof of the if part of (8.1). By [14], $(2,14)$ , we may assume that $R$

is a discrete valuation ring with a maximal ideal $pR$ . Suppose that $\Lambda/p\Lambda$ is a
semi-simple $R/pR$-algebra. Then $\Lambda$ is a quasi-Frobenius R-algebra by (3.3),

and it is a hereditary ring by [13], (3.6), as $ p\Lambda$ is the Jacobson radical of $\Lambda$ .
Let $K$ be the quotient field of $R$ and put $\Sigma=K\bigotimes_{R}\Lambda$ . By (4.5), (6.1) and (6.2),

$\Sigma$ is a semi-simple K-algebra and $\Lambda$ is a hereditary maximal R-order in $\Sigma$ .
By virtue of [13], (2.2) and (2.3), the center $C$ of $\Lambda$ is a direct sum of $Dede$ .
kind domains $D_{1},$ $D_{2},$ $\cdots$ , $D_{l}$ , and, denoting by $F_{i}$ the quotient field of $D_{i}$ and

putting $\Lambda_{i}=D_{i}\bigotimes_{R}\Lambda,$ $\Sigma_{i}=F_{i}\bigotimes_{R}\Lambda$ , we have $\Lambda=\sum_{i=1}^{/}\oplus\Lambda_{i},$ $\Sigma=\sum_{i=1}^{l}\oplus\Sigma_{i}$ and any $\Lambda_{i}$

is an hereditary maximal $D_{i}$-order in a central simple $F_{i}$-algebra $\Sigma_{i}$ . As $\Lambda$ is
C-projective, $C/pc$ is a semi-simple $R/pR$-algebra by (8.4), and then $C$ is a
semi-simple R-algebra by [14], (4.4). Therefore it suffices, by (8.2), to prove
that $\Lambda$ is a semi-simple C-algebra, $i$ . $e.$ , that any $\Lambda_{i}$ is a semi-simple $D_{i}$-algebra.
Since any $\Lambda_{i}$ is $D_{i}$-projective and any $\Lambda_{i}/p\Lambda_{i}$ is a semi-simple $D_{i}/pD_{i}$-algebra,
it suffices to prove, under the assumption that $\Sigma$ is a central simple K-algebra,
that $\Lambda$ is a semi-simple R-algebra.

Now, by $[i],$ $(3.8),$ $A$ is a full matrix algebra over a maximal R-order $\Omega$

in a central division K-algebra. Then $\Omega$ is obviously an R-algebra with the

Jacobson radical $ p\Omega$ . Let $\hat{R}$ be the completion of $R$ and put $\hat{\Lambda}=\hat{R}\bigotimes_{1i}\Lambda$ . Then

we have $\hat{R}/p\hat{R}\cong R/pR$ and $\Lambda^{\wedge}/p\hat{\Lambda}\cong\Lambda/p\Lambda$ , and $\Lambda$ is a semi-simple R-algebra if

and only if $\hat{\Lambda}$ is a semi-simple $\hat{R}$ -algebra. Therefore we may further assume
that $R$ is complete. By [1], (3.11) and its corollary, then, any left (right) ideal
of $\Omega$ coincides with $ p^{k}\Omega$ for some integer $k\geqq 0$ . Since $\Omega$ is a principal ideal
ring (cf. [1], Corollary to (3.3)), $\Omega/p^{k}\Omega$ is a uniserial ring for $k>0$ . Then we
can easily show that any finitely generated left (right) $\Omega$ -module is expressible
as the direct sum of cyclic $\Omega$ -modules, each of which is isomorphic to $\Omega/p^{k}\Omega$

for some $k\geqq 0$ . Therefore $\Omega$ is a semi-simple R-algebra by (8.5). On the other
hand, $\Lambda$ is a left and right semi-simple extension of $\Omega$ according to (8.3).
Finally, by applying (8.2) to $R,$ $\Omega,$ $\Lambda$ , we can show that $\Lambda$ is a semi-simple
R-algebra. This completes our proof.

Tokyo University of Education
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