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Introduction. It is well known fact that an $(n-1)$-dimensional totally um-
bilical submanifold with non-zero mean curvature of an n-dimensional Eucli-
dean space is isometric with a sphere.

In the previous paper [3], making use of Obata’s theorem, the author
proved that an ($n-$ l)-dimensional complete, simply connected totally umbilical
submanifold with non-zero constant mean curvature of an n-dimensional locally
product Riemannian manifold is isometric with a sphere.

Now it is natural to try to solve the similar problem in another Rieman-
nian manifold.

On the other hand there are many papers studying submanifolds of an
almost complex manifold. However, most of them deals with an invariant
submanifold with respect to the almost complex structure. So, this submani-
fold is necessarily a minimal submanifold. Thus it is expected to study another
submanifold of an almost complex manifold.

In this paper, from the above two points of view, the author discusses a
totally umbilical submanifold of a Kaehlerian manifold and prove that under
some conditions, a $2n$-dimensional totally umbilical submanifold of a $(2n+2)-$

dimensional Kaehlerian manifold is isometric with a sphere of $(2n+1)$ -dimen-
sional Euclidean space. To prove this we find a function satisfying a certain
differential equation. The discovery of such a function enables us to use a
famous theorem about an infinitesimal concircular transformation. Thus we
can prove the above mentioned theorem completely.

In \S 1 we state general properties of $2n$ -dimensional submanifold of a
\langle$2n+2$)-dimensional Kaehlerian manifold and in \S 2 we give preliminaries of
the theory of an infinitesimal concircular transformation.

Finally in \S 3 we prove the above theorem under the preparation of some
properties of the second fundamental tensor.

\S 1. Submanifolds of a Kaehlerian manifold.

An almost complex manifold $\tilde{M}$ is a differentiable manifold on which there
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exists a tensor field $J$ of (1.1)-type satisfying the condition

(1.1) $J^{2}=-I$ ,

where $I$ denotes the unit tensor field. Such a manifold $M$ is necessarily
orientable and even-dimensional.

In an almost complex manifold $\tilde{M}$, there always exists a positive definite
Riemannian metric tensor $\tilde{g}$ which is Hermitian, that is

(1.2) $\tilde{g}(J\tilde{X}, J\tilde{Y})=\tilde{g}(\tilde{X},\tilde{Y})$ ,

for all $\tilde{X},\tilde{Y}\in T(\tilde{M})$ , where $T(\tilde{M})$ denotes the tangent bundle of $\tilde{M}$.
Replacing $\tilde{Y}$ by $J\tilde{Y}$ in (1.2), we get easily

(1.3) $\tilde{g}(J\tilde{X},\tilde{Y})=-\tilde{g}(\tilde{X}, J\tilde{Y})$ .
An almost complex manifold with the Riemannian metric satisfying ( $ 1.2\rangle$

is called an almost Hermitian manifold.
A Kaehlerian manifold is an almost Hermitian manifold in which

(1.4) $\tilde{\nabla}_{\tilde{X}}J=0$ ,

for any $\tilde{X}\in T(\tilde{M})$ , where $\tilde{\nabla}_{\tilde{X}}$ denotes the covariant differentiation with respect
to the Riemannian metric $\tilde{g}$.

Let $M$ be a connected orientable real differentiable manifold of dimension
$2n$ which is a submanifold of a $(2n+2)$-dimensional Kaehlerian manifold $\tilde{M}$,

that is, there exists a differentiable mapping $\phi$ : $M\rightarrow\tilde{M}$ whose differential
$ d\phi$ : $T_{p}(M)\rightarrow T_{\phi(p)}(\tilde{M})$ is one-to-one at each point of $M$, where $T,(M)$ and
$T_{\phi(p)}(M)$ denote the tangent space of $M$ at $p$ and the tangent space of $\tilde{M}$ at
$\phi(p)$ respectively.

A Riemannian metric $g$ is naturally induced on $M$ by the immersion $\phi$ in
such a way that $g(X, Y)=\tilde{g}(d\phi(X), d\phi(Y))$ . In order to simplify the presenta-
tion we identify, for each $p\in M$, the tangent space $T_{p}(M)$ with $ d\phi(T_{p}(M)\rangle$

$\subset T_{\phi(p)}(\tilde{M})$ by means of $ d\phi$ .
A vector in $T_{\phi(p)}(\tilde{M})$ which is orthogonal, with respect to $\tilde{g}$, to the sub-

space $d\phi(T_{p}(M))$ is said to be normal to $M$ at $p$ . Let $U$ be a coordinate neigh-
bourhood of $M$, in which there exist two fields of unit normal vectors to $M$

which are mutually orthogonal at each point of $U$. We denote these two unit
normal vector fields by $C$ and $D$ . Then we have

(1.5) $\left\{\begin{array}{l}\tilde{g}(X,C)=\tilde{g}(X,D)=\tilde{g}(C,D)=0,\\\tilde{g}(C,C)=\tilde{g}(D,D)=1,\end{array}\right.$

where and throughout the paper $X,$ $Y$ denote either tangent vector fields to $M$

or vectors tangent to $M$ at a point $p\in M$.
If $X$ and $Y$ are tangent to $M$, we can write
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(1.6) $\tilde{\nabla}_{tl\phi^{(x)}}d\phi(Y)=\nabla_{X}Y+h(X, Y)C+k(X, Y)D$ ,

where $\nabla_{X}Y$ denotes the components of $\tilde{\nabla}_{a_{\Phi^{(X)}}}d\phi(Y)$ tangent to $M$.
It is easily verified that $\nabla_{X}Y$ is identical with the covariant differentiation

of $Y$ with respect to the induced Riemannian metric $g$ . Thus we write (1.6)
as

(1.7) $\nabla_{X}Y=\tilde{\nabla}_{X}Y-h(X, Y)C-k(X, Y)D$ ,

by means of the above identification.
On the other hand the identity $\tilde{g}(C, C)=1$ implies that $\tilde{g}(\tilde{\nabla}_{X}C, C)=0$ for

any tangent vector $X$ and so we can write

(1.8) $\tilde{\nabla}_{X}C=-A(X)+L(X)D$ ,

where $A(X)$ is tangent component of $\tilde{\nabla}{}_{X}C$ to $M$ and $L$ is the connection form
of the normal bundle to M. $ln$ the same way, from $g(D, D)=1$ and $\tilde{g}(C,$ $ D\rangle$

$=0$ , we have

(1.9) $\tilde{\nabla}_{X}D=-A^{\prime}(X)-L(X)C$ .
The curvature form $\Omega$ of the normal bundle to $M$ is given by

(1.10) $\Omega(X, Y)=\tilde{\nabla}_{Y}L(X)-\tilde{\nabla}_{X}L(Y)-L([Y, X])$ ,

and when $\Omega(X, Y)=0$ for any $X,$ $Y\in T(M)$ , the connection of the normal
bundle to $M$ is said to be flat.

PROPOSITION 1.1. Let $h(X, Y),$ $k(X, Y),$ $A(X)$ and $A^{\prime}(X)$ be as above. Then
we have

(1.11) $h(X, Y)=g(A(X), Y)$

(1.12) $k(X, Y)=g(A^{\prime}(X), Y)$ .

PROOF. From $\tilde{g}(Y, C)=0$ , we get

(1.13) $\tilde{g}(\tilde{\nabla}_{X}Y, C)+\tilde{g}(Y,\tilde{\nabla}{}_{x}C)=0$ .
Substituting (1.6) and (1.8) into the above equation, we get

$h(X, Y)=\tilde{g}(Y, A(X))=g(A(X), Y)$ .
In the same way, we get by (1.6), (1.9) and (1.13),

$k(X, Y)=g(A^{\prime}(X), Y)$ . Q. E. D.

Now consider the transform $JX$ of $X$ by $J$. Then we can put

(1.14) $JX=(JX)^{T}+\xi(X)C+\eta(X)D$ .

The coefficients $\xi(X)$ and $\eta(X)$ are given by
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(1.15) $\xi(X)=\tilde{g}(JX, C)$ ,

(1.16) $\eta(X)=\tilde{g}(JX, D)$ .
The transform $JC$ of $C$ by $J$ and $JD$ of $D$ by $J$ are respectively perpendicular
to $C$ and $D$ , and we get easily

(1.17) $JC=(JC)^{T}+fD$ ,

(1.18) $JD=(JD)^{T}-fC$ ,

where

(1.19) $f=\tilde{g}(JC, D)$ .
The function $f$ seems to depend of the choice of mutually orthogonal unit

vectors to the submanifold $M$. However we state the
LEMMA 1.2. The function $f$ is independent of the choice of mutually ortho-

gonal unit normal vectors to the submanifold $M$.
PROOF. Let $C^{\prime}$ and $D^{\prime}$ be mutually orthogonal unit normal vectors to the

submanifold $M$. Then they can be expressed as linear combinations of $C$ and
$D$ . So, we can write

(1.20) $\left\{\begin{array}{l}C^{\prime}=l_{1}C+l_{2}D,\\D^{\prime}=m_{1}C+m_{2}D.\end{array}\right.$

Thus we get

$f^{\prime}=\tilde{g}(JC^{\prime}, D^{\prime})=\tilde{g}(l_{1}JC+l_{2}JD, m_{1}C+m_{2}D)$

$=l_{1}m_{2}\tilde{g}(JC, D)+l_{2}m_{1}\tilde{g}(JD, C)$

$=(l_{1}m_{2}-l_{2}m_{1})\tilde{g}(JC, D)=(l_{1}m_{2}-l_{2}m_{1})f$ ,

because of (1.3) and (1.19). On the other hand the transformation (1.20) being
special orthogonal transformation, we get $l_{1}m_{2}-l_{2}m_{1}=1$ . This shows that
$f=f^{\prime}$ . This completes the proof.

In the discussions of the paragraph we use the vector fields defined on
some neighbourhood $U$ of $\phi(p)\in\tilde{M}$ . Let $U^{\prime}$ be another neighbourhood of
$\phi(p)\in\tilde{M}$ . Then we have, at each point of $U\cap U^{\gamma}$ , two orthonormal frames
$\{X_{1}, \cdots , X_{zn}, C, D\}$ and $\{Y_{1}, \cdots , Y_{2n}, C‘, D^{\prime}\}$ , with respect to $U$ and $U^{\prime}$ respec-
tively. However, at $\phi(q)\in U_{\cap}U^{\prime}$ , C’ and $D^{\prime}$ being expressed as linear com-
binations of $C$ and $D$ , from Lemma 1.2, we know that the function $f$ is identical
in both $U$ and $U^{\prime}$ . Thus $f$ is globally defined function over $M$.

Now consider the covariant derivatives of $(JC)^{T}$ and $(JD)^{T}$ in the direction
of $Y\in T(M)$ . Differentiating $(JC)^{T}$ covariantly and making use of (1.17), we
have
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$\nabla_{Y}(JC)^{T}=\nabla_{Y}(JC-fD)$

$=\tilde{\nabla}_{Y}(JC-fD)-h(Y, JC-fD)C-k(Y, JC-fD)D$

$=J\tilde{\nabla}_{Y}C-(\tilde{\nabla}_{Y}f)D-f\tilde{\nabla}_{Y}D-h(Y, JC-fD)C-k(Y, JC-fD)D$ .
Substituting (1.8) and (1.9) into the above, we get

(1.21) $\nabla_{Y}(JC)^{T}=-JA(Y)+fA^{\prime}(Y)+L(Y)JD+fL(Y)C$

$-h(Y, JC-fD)C-(\tilde{\nabla}_{Y}f)D-k(Y, JC-fD)D$ .
In entirely the same way, we have

(1.22) $\nabla_{Y}(JD)^{T}=-JA^{\prime}(Y)-fA(Y)+L(Y)JC+(\tilde{\nabla}_{Y}f)C-h(Y, JD+fC)C$

$+fL(Y)D-k(Y, JD+fC)D$ .

\S 2. Infinitesimal concircular transformations.

Let $M$ be an m-dimensional Riemannian manifold with positive definite
Riemannian metric $g$ . An infinitesimal transformation $X$ of $M$ is called a
gradient vector field and is denoted by $gradf$, if there exists a differentiable
function $f$ satisfying

(2.1) $g(X, Y)=df(Y)$ ,

for any vector field $Y$ on $M$.
PROPOSITION 2.1. For a gradient vector field $Z$, we have

(2.2) $g(\nabla_{x}Z, Y)=g(\nabla_{Y}Z, X)$ ,

where $X$ and $Y$ are any vector fields on $M$.
PROOF. Since $Z$ is a gradient vector field there exists a differentiable

function $f$ which satisfies (2.1). So we have

$g(\nabla_{X}Z, Y)-g(\nabla_{Y}Z, X)=\nabla_{X}(g(Z, Y))-g(Z, \nabla_{X}Y)-\nabla_{Y}(g(Z, X))+g(Z, \nabla_{Y}X)$

$=\nabla_{X}(df(Y))-\nabla_{Y}(df(X))-g(Z, \nabla_{X}Y-\nabla_{Y}X)$

$=\nabla_{X}(Yf)-\nabla_{Y}(Xf)-df(\nabla_{X}Y-\nabla_{Y}X)$

$=X(Yf)-Y(Xf)-(\nabla_{X}Y-\nabla_{Y}X)f$ .
On the other hand we have denoted by $\nabla$ the Riemannian connection and

so it is torsionless. This shows that

(2.3) $V_{X}Y-V_{Y}X=[X, Y]$ .
Substituting (2.3) into the above equation, we have (2.2). Q. E. D.
An infinitesimal transformation $Z$ of $M$ is called an infinitesimal conformal

transformation, if it satisfies the equation
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(2.4) $(X(Z)g)(X, Y)=2\psi g(X, Y)$ ,

for any vector fields $X$ and $Y$ on $M$, where $X(Z)$ denotes the operator of Lie
derivatives with respect to $Z$ and $\psi$ is a differentiable function defined over
$M$ . If an infinitesimal conformal transformation is a gradient vector field the
transformation is called an infinitesimal concircular transformation.

It is well known factsi) that an infinitesimal concircular transformation is
an infinitesimal conformal transformation preserving geodesic circles invariant
and that any infinitesimal conformal transformation of an Einstein space is an
infinitesimal concircular transformation.

PROPOSITION 2.2. In order that a gradient vector field $gradf$ be an infin-
itesimal concircular transformation, it is necessary and sufficient that the fol-
lowing condition be valid.

(2.5) $g(\nabla_{X}gradf, Y)=\psi g(X, Y)$ ,

where $X$ and $Y$ are any vector fields on $M$.
PROOF. By means of the definition of Lie derivatives, for any vector field

$Z$, we have

$(t(Z)g)(X, Y)=\nabla_{z}(g(X, Y))-g([Z, X], Y)-g(X, [Z, Y])$

$=g(\nabla_{Z}X, Y)+g(X, \nabla_{Z}Y)-g([Z, X], Y)-g(X, [Z, Y])$ .
This can be rewritten as

(2.6) $(X(Z)g)(X, Y)=g(\nabla_{X}Z, Y)+g(X, \nabla_{Y}Z)$ ,

because of (2.3). So, if $gradf$ is an infinitesimal concircular transformation
we have (2.5) because of (2.4) and Proposition 2.1.

Conversely if $gradf$ satisfies (2.5) we have

$(I(gradf)g)(X, Y)=2(\nabla_{X}gradf, Y)=2\psi g(X, Y)$ ,

by virtue of (2.4), (2.6) and Proposition 2.1. This completes the proof.
In (2.5), if the function $\psi$ is of the form $\psi=-cf$ with positive constant

coefficient $c$ , an infinitesimal concircular transformation is called an infinitesimal
special concircular transformation2). As to a Riemannian manifold admitting
an infinitesimal special concircular transformation we know the following

THEOREM 2.3 Let $M^{m}$ be a complete, connected Riemannian manifold of
dimension $m(\geqq 2)$ . In order for $M^{m}$ to admit a non-constant function $f$ with

\langle 2.6) $g(\nabla_{X}gradf, Y)=-cfg(X, Y)$ ,

1) K. Yano, [6].
2) Y. Tashiro, [5].
3) M. Obata, [2], Y. Tashiro, [5].
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for any $X$ and $Y$, it is necessary and sujficient that $M^{m}$ be isometric with a
sphere $S^{m}$ of radius $1/\sqrt{c}$ in the Euclidean $(m+1)$ -space.

\S 3. Totally umbilical submanifolds.

Let $M$ be a $2n$-dimensional submanifold of a $(2n+2)$-dimensional Rieman-
nian manifold $\tilde{M}$. The mean curvature vector field $H$ of $M$ in $\tilde{M}$ is defined by

(3.1) $H=\alpha C+\beta D$ ,

where $\alpha=\frac{1}{2n}\sum_{=\dot{t}1}^{2n}h(E_{i}, E_{i}),$ $\beta=\frac{1}{2n}\sum_{\hat{v}=1}^{2n}k(E_{i}, E_{i})$ and $\{E_{1}, E_{2n}\}$ is an ortho-

normal frame tangent to $M$. If the mean curvature vector field vanishes
identically the submanifold $M$ is called a minimal submanifold. The mean
curvature of $M$ in $\tilde{M}$ is the magnitude of the mean curvature vector field,
that is,

(3.2) $\mu=g(H, H)$ .
When at each point of the submanifold $M$ there exist differentiable functions
$\alpha$ and $\beta$ such that

(3.3) $h(X, Y)=\alpha g(X, Y)$ , $k(X, Y)=\beta g(X, Y)$ ,

for any $X,$ $Y\in T(M)$ , we call the submanifold a totally umbilical submanifold.
Differentiating (3.1) covariantly, we have

$\tilde{V}_{X}H=(\tilde{V}_{X}\alpha)C+\alpha(\tilde{\nabla}{}_{x}C)+(\tilde{\nabla}_{X}\beta)D+\beta(\tilde{V}_{X}D)$ .
Substituting (1.8) and (1.9) into the above equation, we have

(3.4) $\tilde{\nabla}{}_{x}H=(\tilde{\nabla}_{X}\alpha-\beta L(X))C+(\tilde{\nabla}_{X}\beta+\alpha L(X))D-\alpha A(X)-\beta A^{\prime}(X)$ .
Since $A(X)$ and $A^{\prime}(X)$ are both tangent to $M$, we have the

LEMMA 3.1. Let $M$ be a submanifold of a Riemannian manifold $\tilde{M}$ such
that $\dim\tilde{M}-\dim M=2$ . In order that the covariant derivative $\tilde{\nabla}{}_{x}H$ of the
mean curvature vector field be tangent to $M$, it is necessary and sufficient that

(3.5) $\tilde{\nabla}_{X}\alpha=\beta L(X)$ ,

and

(3.6) $\tilde{\nabla}_{X}\beta=-\alpha L(X)$

are both valid, where $\alpha=\frac{1}{2n}\sum_{\iota=1}^{2n}h(E_{i}, E_{i})$ and $\beta=\frac{1}{2n}\sum_{t=1}^{2}k(E_{i}, E_{i})$ .
THEOREM 3.2. Under the same assumptions of Lemma 3.1, $M$ has a con-

stant mean curvature.
PROOF. Substituting (3.1) into (3.2), we have
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$\mu=g(H, H)=g(\alpha C+\beta D, \alpha C+\beta D)=\alpha^{2}+\beta^{Z}$ .
Differentiating the above equation covariantly in the direction of $X$ and

making use of Lemma 3.1, we get

$\tilde{\nabla}_{X}\mu=2(\alpha\nabla_{X}\alpha+\beta\nabla_{X}\beta)=2(\alpha\beta L(X)-\beta\alpha L(X))=0$ .
This completes the proof.

THEOREM 3.3. Under the same assumptions of Lemma 3.1, the connection
of the normal bundle to a non-minimal submanifold $M$ is flat.

PROOF. Differentiating (3.5) covariantly in the direction of $Y$, we have

$\tilde{\nabla}_{Y}\tilde{\nabla}_{X}\alpha=\tilde{\nabla}_{Y}\beta L(X)+\beta\tilde{\nabla}_{Y}L(X)$ ,

from which, together with (3.6), we get

$\tilde{\nabla}_{Y}\tilde{\nabla}_{X}\alpha-\tilde{\nabla}_{X}\tilde{\nabla}_{Y}\alpha=\beta(\tilde{V}_{Y}L(X)-\tilde{\nabla}_{X}L(Y))$ .
Since the left hand members of the above equation is $[Y, X]\alpha$ , using (3.5)

again, we have

$\Omega(X, Y)=\tilde{V}_{X}L(X)-\tilde{V}_{X}L(Y)-L([Y, X])=0$ .
This shows that the connection of the normal bundle to $M$ is flat.

Next we consider a totally umbilical submanifold of a Kaehlerian manifold.
At first we prove the

LEMMA 3.4. Let $M$ be a $2n$-dimensional totally umbilical submanifold of a
$(2n+2)$-dimensional Kaehlerian manifold M. If the mean curvature vector
field $H$ of $M$ in $\tilde{M}$ does not vanish at any point of $M$, the function $f$ defined
by (1.19) is not constant over $M$.

PROOF. For any tangent vector $X$ to $M$, we have by (1.19)

$g(gradf, X)=\tilde{g}(gradf, X)=\tilde{\nabla}_{X}f=\tilde{V}_{X}(\tilde{g}(JC, D))$

$=\tilde{g}(J\tilde{\nabla}{}_{x}C, D)+\tilde{g}(JC,\tilde{\nabla}_{X}D)$ .

Making use of (1.3), (1.8) and (1.9), we get

$g(gradf, X)=\tilde{g}(A(X), JD)-\tilde{g}(A^{\prime}(X), JC)$ .
$A(X)$ and $A^{\prime}(X)$ being tangent to $M$, we have

$g(gradf, X)=g(A(X), (JD)^{T})-g(A^{\prime}(X), (JC)^{T})$ .
from which

(3.7) $g(gradf, X)=h(X, (JD)^{T})-k(X, (JC)^{T})$ ,

because of (1.11) and (1.12).
Since $M$ is a totally umbilical submanifold (3.3) and (3.7) imply that
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(3.8) $g(gradf, X)=\alpha g(X, (JD)^{T})-\beta g(X, (JC)^{T})$

$=g(X, \alpha(JD)^{T}-\beta(JC)^{T})$ .
Suppose that $f$ is a constant over $M$. As $X$ is any tangent vector to $M$, it
follows that

(3.9) $\alpha(JD)^{T}-\beta(JC)^{T}=0$ .
The Riemannian metric $\tilde{g}$ on $\tilde{M}$ being Hermitian, $JC$ and $JD$ are mutually

orthogonal and consequently $(JC)^{T}$ and $(JD)^{T}$ are also mutually orthogonal.
This fact and (3.9) mean that $(JC)^{T}=(JD)^{T}=0$ , because of our assump-

tions. So, from (1.17) and (1.18) we have

(3.10) $JC=fD$ , $JD=-fC$ .
Substituting (3.10) into (1.15) and (1.16), we have

(3.11) $\xi(X)=\tilde{g}(JX, C)=-\tilde{g}(X, JC)=-\tilde{g}(X, fD)=0$ ,

(3.12) $\eta(X)=\tilde{g}(JX, D)=-\tilde{g}(X, JD)=\tilde{g}(X, fC)=0$ .
Substituting (3.11) and (3.12) into (1.14), we get

(3.13) $JX=(JX)^{T}$ .
This shows that the submanifold $M$ is an invariant submanifold of a

Kaehlerian manifold. However we have known4) that an invariant submani-
fold of a Kaehlerian manifold is necessarily a minimal submanifold. This
contradicts to our assumptions. So, $f$ cannot be constant over $M$. This com-
pletes the proof.

THEOREM 3.5. Let $M$ be a $2n$-dimensional totally umbilical submanifold of
$a(2n+2)$-dimensional Kaehlerian manifold with non zero mean curvature.
Suppose that for any tangent vector $X$ to $M$ the covariant derivatives of the
mean curvature vector $\tilde{V}_{X}H$ be tangent to M. Then the vector field $gradf$ is
an infinitesimal concircular transformation over $M$.

PROOF. Differentiating (3.8) covariantly in the direction of $Y\in T(M)$ , we
have

(3.14) $g(\nabla_{Y}gradf, X)=-g(gradf, \nabla_{Y}X)+\nabla_{Y}\alpha g(X, (JD)^{T})+\alpha g(\nabla_{Y}X, (JD)^{T})$

$+\alpha g(X, \nabla_{Y}(JD)^{T})-\nabla_{Y}\beta g(X, (JC)^{T})$

$-\beta g(\nabla_{Y}X, (JC)^{T})-\beta g(X, \nabla_{Y}(JC)^{T})$ .
On the other hand, the submanifold $M$ being totally umbilical, we have

from (1.21)

4) J. A. Schouten and K. Yano, [4].
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$\nabla_{Y}(JC)^{T}=JA(Y)+fA^{\prime}(Y)+L(Y)JD+fL(Y)C$

$-\alpha g(Y, JC-fD)C-(\tilde{\nabla}_{Y}f)D-\beta g(Y, JC-fD)D$ .

As $Y$ and $JC-fD$ are both tangent to $M$, it follows that

$\nabla_{Y}(JC)^{T}=-JA(Y)+fA^{\prime}(Y)+L(Y)JD+fL(Y)C$

$-\alpha\tilde{g}(Y, JC)C-(\tilde{V}_{Y}f)D-\beta\tilde{g}(Y, JC)D$

$=-JA(Y)+fA^{\prime}(Y)+L(Y)JD+fL(Y)C$

$-\alpha g(Y, (JC)^{T})C-(\tilde{\nabla}_{Y}f)D-\beta g(Y, (JC)^{T})D$ .
Hence we have

$g(X, \nabla_{Y}(JC)^{T})=\tilde{g}(X, -JA(Y))+f\tilde{g}(X, A^{\prime}(Y))+L(Y)\tilde{g}(X, JD)$

$=\tilde{g}(JX, A(Y))+f\tilde{g}(X, A^{\prime}(Y))+L(Y)\tilde{g}(X, JD)$ .
Substituting (1.11) and (1.12) into the above, we get

$g(X, V_{Y}(JC)^{T})=h((JX)^{T}, Y)+fk(X, Y)+L(Y)\tilde{g}(X, JD)$ .
$M$ being totally umbilical, we get

(3.15) $g(X, \nabla_{Y}(JC)^{T})=\alpha g((JX)^{T}, Y)+f\beta g(X, Y)+L(Y)g(X, (JD)^{T})$ ,

because of the fact that $X$ is tangent to $M$.
In entirely the same method we can easily see that

(3.16) $g(X, V_{Y}(JD)^{T})=\beta g((JX)^{T}, Y)-f\alpha g(X, Y)-L(Y)g(X, (JC)^{T})$ .
Substituting (3.15) and (3.16) into (3.14) and using (3.8), we have

$g(\nabla_{Y}gradf, X)=-\alpha g(\nabla_{Y}X, (JD)^{T})+\beta g(\nabla_{Y}X, (JC)^{T})$

$+\nabla_{Y}\alpha g(X, (JD)^{T})+\alpha g(V_{Y}X, (JD)^{T})$

$+\alpha[\beta g((JX)^{T}, Y)-f\alpha g(X, Y)-L(Y)g(X, (JC)^{T})]$

$-\nabla_{Y}\beta g(X, (JC)^{T})-\beta g(\nabla_{Y}X, (JC)^{T})$

$-\beta[\alpha g((JX)^{T}, Y)+f\beta g(X, Y)+L(Y)g(X, (JD)^{T})]$

$=-(\alpha^{2}+\beta^{2})fg(X, Y)+(\nabla_{Y}\alpha-\beta L(Y))g(X, (JD)^{T})$

$-(\nabla_{Y}\beta+\alpha L(Y))g(X, (JC)^{T})$ .
By means of Lemma 3.1 we have under our assumptions

(3.18) $g(\nabla_{Y}gradf, X)=-(\alpha^{2}+\beta^{2})fg(X, Y)$ .
Thus we have, by Proposition 2.2, the vector field $gradf$ is an infinitesimal

concircular transformation. This completes the proof.
Furthermore, by means of Theorem 3.2, under our conditions $\alpha^{2}+\beta^{2}=const$ .
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And so, combinig Theorem 2.3, 3.4 and 3.5, we have the
THEOREM 3.5. Let $M$ be a complete, connected $2n$ -dimensional totally um-

bilical submanifold with non-zero mean curvature $\mu$ of a $(2n+2)$-dimensional
Kaehlerian manifold. Suppose that for any tangent vector $X$ to $M$ the covariant
derivatives of the mean curvature vector $\tilde{\nabla}_{X}H$ be tangent to M. Then $M$ is
isometric with a sphere $S^{2n}$ of radius $1/\sqrt{\mu}$ .
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