Groups with a certain type of Sylow 2-subgroups¹)

By Koichiro HARADA

(Received Nov. 28, 1966)

1. The purpose of this paper is to prove the following theorem:

THEOREM. Let G be a finite group. If a Sylow 2-group S of G has the following form

$$S = A \times B$$

where A is a non trivial cyclic 2-group and B is a 2-group with a cyclic subgroup of index 2. Then one of the following possibilities holds:

- (a) S is an elementary abelian 2-group of order 4 or 8.
- (b) The index [G:G'] is even, where G' is the commutator subgroup of G.
- (c) The group $G/0_{2'}(G)$ has a normal 2-subgroup, where $0_{2'}(G)$ is the maximal normal subgroup of G of odd order.

In particular, a 2-group S satisfying the assumption of the theorem can be a Sylow 2-subgroup of a simple group only when S is an elementary abelian group of order 4 or 8. Using the argument in proving our theorem, we shall get next proposition.

PROPOSITION. Let G be a finite group and τ a central involution of a Sylow 2-subgroup of G. If the centralizer of $\tau C_{\mathbf{q}}(\tau)$ is isomorphic to the group $\langle \tau \rangle \times PSL(2, q)$ where $q \geq 5$, then one of the following possibilities holds:

- (a) S is an elementary abelian 2-group.
- (b) The factor group $G/0_{2'}(G)$ is isomorphic to the group $\langle \tau \rangle \times PSL(2, q)$. In particular the index [G:G']=2.

This proposition generalizes more or less the following theorem of Z. Janko and J.G. Thompson [5]:

THEOREM. Let G be a finite group with the following properties:

- (i) 2-Sylow subgroups are abelian,
- (ii) the index [G:G'] is odd,
- (iii) G has an element τ of order 2 such that

 $C_{G}(\tau) = \langle \tau \rangle \times PSL(2, q), where q > 5.$

Then G is a non-abelian simple group with $q=3^{2n+1}$ $(n \ge 1)$.

NOTATION. All the groups considered are finite.

¹⁾ The author thanks to Dr. T. Kondo for pointing out a gap in an original proof of the Theorem.

Z(X)......the center of a group X.
D(X).....the Frattini subgroup of a group X.
Ω₁(X)the group generated by all the elements of order p of a p-group X.
o(X).....the order of an element X.
⟨a, b, ...⟩...the group generated by the elements a, b,
X < Ya set X is properly contained in a set Y.
Next theorem due to G. Glauberman [3] is very useful in our proof.

THEOREM. Let G be a finite group of even order. Assume that a Sylow 2-subgroup S of G contains an involution τ which is not conjugate in G to any involution σ ($\neq \tau$) of S. Then τ is contained in the center of $G/0_{2'}(G)$.

2. Let B be a 2-group with a cyclic subgroup of index 2. Then B has one of the following forms (see M. Hall [4]).

- (I) Cyclic 2-group.
- (II) Abelian group of type (2, 2^n), $n \ge 1$.
- (III) Generalized quaternion group.
- (IV) $n \ge 4$, $B = \langle a, b | a^{2^{n-1}} = b^2 = 1$, $bab = a^{1+2^{n-2}} \rangle$.
- (V) $n \ge 4$, $B = \langle a, b | a^{2^{n-1}} = b^2 = 1$, $bab = a^{-1+2^{n-2}} \rangle$.
- (VI) Dihedral group of order ≥ 8 .

We call a group G a group of type (N) $(N = I \sim VI)$, if a Sylow 2-subgroup of G has the form $S = A \times B$ where A is a non trivial cyclic 2-group and B is a 2-group of type (N) in the above list. We shall prove our theorem in each case of type (N) $(N = I \sim VI)$. In the rest of this note we assume that S is not an elementary abelian 2-group.

3. Let G be one of the groups of type (I). Then S is an abelian group of type $(2^m, 2^n)$ $(m \ge n)$. If m > n, then $N_G(S) = C_G(S)$. The theorem of Burnside shows that G has a normal 2-complement. If $m = n \ge 2$, by a theorem [1] of R. Brauer [1] we have

$$G/O_{2'}(G) \triangleright S \cdot O_{2'}(G)/O_{2'}(G)$$
.

Hence we have proved the theorem in this case.

4. Let G be one of the groups of type (II). Then S is an abelian 2-group of type $(2^m, 2^n, 2)$ $(m \ge n \ge 1)$. If m > n > 1, then $N_G(S) = C_G(S)$. The theorem of Burnside shows that G has a normal 2-complement. Assume m = n > 1 or m > n = 1. We shall show that the group $Z(N_G(S)) \cap S$ is non-trivial. If so, the transfer theorem shows that the index [G:G'] is even. Form the group $N_G(S)/C_G(S)$. Then the group $N_G(S)/C_G(S)$ is a subgroup of the automorphism group of S of odd order. Since S is an abelian group of type $(2^m, 2^m, 2)$ or

304

 $(2^m, 2, 2)$ where m > 1, we can conclude the order of $N_G(S)/C_G(S)$ is 1 or 3. If $N_G(S) = C_G(S)$, we have $Z(N_G(S)) \cap S = S$. Assume $|N_G(S)/C_G(S)| = 3$. Let x be an element of $N_G(S)$ which is not contained in $C_G(S)$. Then x induces an automorphism \bar{x} of S of order 3. Since $|\mathcal{Q}_1(S)| = 8$, \bar{x} has a fixed point τ in $\mathcal{Q}_1(S)$. Hence $\tau \in Z(N_G(S)) \cap S$. Thus we have proved our theorem in this case.

5. Let G be one of the groups of type (III), of type (IV) or of type (V). Then $\Omega_1(Z(S))$ is an abelian group of type (2, 2), and $\Omega_1(S')$ is a group of order 2. Therefore if $x \in N_G(S)$, x centralizes $\Omega_1(S')$. Since $\Omega_1(S') \subset \Omega_1(Z(S))$, x centralizes $\Omega_1(Z(S))$. Hence by the argument of Burnside, any two central involutions of S are not conjugate to each other in G. Comparing the structure of B, we conclude that S has at most 2 classes of non-central involutions. Therefore a certain involution of $\Omega_1(Z(S))$ is not conjugate to any involution of S. By the theorem of Glauberman [3], we have our theorem in this case.

6. Let G be one of the groups of type (VI). In this case the proof of the theorem is a little complicated. We need several lemmas.

LEMMA 1. Any two central involutions of a Sylow 2-subgroup of G are not conjugate to one another in G.

PROOF. As in the previous section, this lemma is easy to prove. We omit the proof.

Put $A = \langle \eta \rangle$, $B = \langle \rho, \sigma | \rho^{2^{n-1}} = \sigma^2 = 1$, $\sigma \rho \sigma = \rho^{-1}$, $(n > 2) \rangle$, $\rho^{2^{n-2}} = \pi$ and $\Omega_1(Z(S)) = \langle \tau, \pi \rangle$. S has 7 conjugate classes (in S) of involutions. The representatives of 7 classes are $\pi, \sigma, \sigma \rho, \tau, \tau \pi, \tau \sigma, \tau \sigma \rho$. We first consider the fusion of involutions of S. Assume $Z^* = Z(G/O_{2'}(G)) = \langle 1 \rangle$. We write $a \stackrel{s}{\sim} b$ or $a \sim b$ if two elements a, b are conjugate to each other in S or in G respectively.

LEMMA 2. If we choose the suitable elements τ , ρ , σ , we can set

- (a) $\pi \sim \sigma, \ \tau \sim \sigma \rho, \ \tau \pi \sim \tau \sigma, \ or$
- (b) $\pi \sim \sigma, \ \tau \sim \sigma \rho, \ \tau \pi \sim \tau \sigma \rho$.

PROOF. By the theorem of Glauberman and Lemma 1, π is conjugate to a non central involution of S. Any non central involution of S has the form $\alpha \sigma \rho^{j}$, $\alpha \in \mathcal{Q}_{1}(A)$, $j \geq 0$. Therefore, if we choose a direct factor B, we can assume $\pi \sim \sigma$. Since π , τ , $\tau\pi$ are not conjugate to one another and by the assumption $Z^{*} = \langle 1 \rangle$, there are the following six possibilities for the fusion of τ , $\tau\pi$:

- (1) $\tau \sim \sigma \rho$, $\tau \pi \sim \tau \sigma$,
- (2) $\tau \sim \sigma \rho$, $\tau \pi \sim \tau \sigma \rho$,
- (3) $\tau \sim \tau \sigma$, $\tau \pi \sim \sigma \rho$,

(4)
$$\tau \sim \tau \sigma$$
, $\tau \pi \sim \tau \sigma \rho$,

(5)
$$\tau \sim \tau \sigma \rho$$
, $\tau \pi \sim \sigma \rho$,

(6) $\tau \sim \tau \sigma \rho$, $\tau \pi \sim \tau \sigma$.

If we replace τ by $\tau\pi$, (3) goes to (1); (6) to (4); (5) to (2). If we replace ρ by $\rho\tau$, (4) goes to (1). Thus we have proved the lemma.

LEMMA 3. Choosing the suitable elements τ , ρ , σ , the fusion of involutions of (a), (b) in Lemma 2 do not occur except the following one²⁾.

 $\pi \sim \sigma \sim \tau \sigma \rho, \quad \tau \sim \sigma \rho, \quad \tau \pi \sim \tau \sigma.$

PROOF. Assume that $\pi \sim \sigma$, $\tau \sim \sigma \rho$, $\tau \pi \sim \tau \sigma$. A group $C_G(\sigma \rho)$ contains an elementary 2-group $\langle \pi, \tau, \sigma \rho \rangle$. Let S_1 be a Sylow 2-subgroup of $C_G(\sigma \rho)$ which contains $\langle \pi, \rho, \sigma \rho \rangle$. Since $\tau \sim \sigma \rho$, S_1 is a Sylow 2-subgroup of G. By the structure of S_1 , $\Omega_1(Z(S_1))$ is contained in $\langle \pi, \tau, \sigma \rangle$. Put $\langle \pi_1 \rangle = \Omega_1(S_1')$. Then $\pi \sim \pi_1$. Since $\pi_1 \in \langle \pi, \tau, \sigma \rangle$, we have, by Lemma 2.(a),

$$\pi_1 = \pi$$
, $\tau \sigma \rho$ or $\tau \pi \sigma \rho$.

If $\pi_1 = \pi$ then $\Omega_1(Z(S_1)) = \langle \pi, \sigma \rho \rangle$. Since $\sigma \rho \stackrel{s}{\sim} \pi \sigma \rho$, two central involutions of S_1 are conjugate. This is impossible by Lemma 1. Similarly $\pi_1 \neq \tau \sigma \rho$. Hence we get

$$\pi_1 = \tau \pi \sigma \rho$$
 and $\pi \sim \sigma \sim \tau \pi \sigma \rho \stackrel{s}{\sim} \tau \sigma \rho$.

Next assume $\pi \sim \sigma$, $\tau \sim \sigma \rho$, $\tau \pi \sim \tau \sigma \rho$. Let S_2 be a Sylow 2-group of $C_G(\sigma \rho)$ and $\langle \pi_2 \rangle$ the group $\Omega_1(S_2')$. Then $\pi \sim \pi_2$ and $\pi_2 \in \langle \pi, \tau, \sigma \rho \rangle$. By the assumption $\pi \sim \sigma$, $\tau \sim \sigma \rho$, $\tau \pi \sim \tau \sigma \rho$ we conclude $\pi_2 = \pi$. By the same argument as in the case (a) this is impossible.

LEMMA 4. If an element $\alpha \in S$ is conjugate to ρ^i with $o(\rho^i) \ge 4$, then $\alpha = \rho^i$ or ρ^{-i} .

PROOF. Assume $\alpha \sim \rho^i$ and $o(\rho^i) \geq 4$. Then we can conclude $\alpha = \beta \cdot \rho^j$ where $\beta \in A$ and $o(\beta) < o(\rho^j)$ because any two central involutions are not conjugate to each other. $S_1 = \langle \eta \rangle \times \langle \rho \rangle = S \cap C_G(\alpha) = S \cap C_G(\rho^i)$. Since an element ρ^i does not conjugate to a central element of S, S_1 is a 2-Sylow group of $C_G(\rho^i)$. Let $\alpha^x = \rho^i$. Then there exist an element $y \in C_G(\rho^i)$ and $S_1^{xy} = S_1$, $\alpha^{xy} = \rho^i$ hold. Since any two involutions of $\Omega_1(S_1)$ are not conjugate to each other, we conclude $|N_G(S_1)/C_G(S_1)| = 2$. Therefore the element xy is contained in $\langle \sigma \rangle \cdot C_G(S_1)$. Hence we have $\alpha = \rho^i$ or ρ^{-i} .

Now we shall prove our theorem in this case. Denote the focal subgroup of S by S*. If |A|=2, then $S^*=\langle \tau\rho, \sigma \rangle$ (by Lemma 3 and Lemma 4). Hence

306

²⁾ The group $G = S_6$ or S_7 , symmetric group of degree 6 or 7 has this fusion of involutions.

 $S > S^*$. By the transfer theorem, we have [G:G'] = even. Thus we have proved the theorem. Next, assume $|A| \ge 4$. We consider the fusion of elements of order ≥ 4 . Let an element α of S has the order larger than 4, then α is written in the from

 $\alpha = \eta^i, \eta^j \sigma \rho^k, \eta^l \rho^s, \rho^t$, where *i*, *j*, *k*, *l*, *s*, *t* are suitable integers.

In order to prove $S > S^*$, we can assume $\alpha \neq \rho^i$ by Lemma 4. If $\alpha = \eta^i \sim \eta^j \sigma \rho^k$ then $o(\eta^i) = o(\eta^j)$. Therefore $o(\eta^{-i}\eta^j \sigma \rho^k) = \max \{o(\eta^{-i}\eta^j), o(\sigma \rho^k)\} < o(\eta^i)$. If $\alpha = \eta^i \sim \eta^l \rho^s$, we have $o(\eta^i) = o(\eta^l) > o(\rho^s)$ because any two central involutions are not conjugate to each other. Therefore $o(\eta^{-i}\eta^l \rho^s) = \max \{o(\eta^{-i}\eta^l), o(\rho^s)\} < o(\eta^i)$. If $\alpha = \eta^j \sigma \rho^k \sim \eta^l \rho^s = \beta$ we have $o(\eta^j \sigma \rho^k) = o(\eta^l \rho^s) > o(\rho^s)$. Therefore $o(\alpha^{-1}\beta) < o(\eta^j)$. In any cases $\eta \in S^*$. Hence the transfer theorem show that the index [G:G'] is even.

7. Next we shall prove the proposition stated in Section 1. Let G be a finite group satisfying the assumption of our proposition. Furthermore assume that Sylow 2-subgroups of G are not abelian. Then G is one of the groups of type (VI). Since the group PSL(2, q), where $q \ge 5$, has one class of involutions, the involution τ is not conjugate to any involution $\sigma \ (\neq \tau)$ of $\langle \tau \rangle \times PSL(2, q)$. Hence τ is contained in $Z(G/O_{2'}(G))$. Hence $G = C_G(\tau) \cdot O_{2'}(G)$. Clearly $C_G(\tau) \cap O_{2'}(G) = \langle 1 \rangle$. Thus we have proved our proposition.

Nagoya University

References

- [1] R. Brauer, Some applications of the theory of blocks of characters of finite groups II, J. Algebra, 1 (1964), 307-334.
- W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029.
- [3] G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420.
- [4] M. Hall, The Theory of Groups, MaCmillan, New York, 1959.
- [5] Z. Janko and J.G. Thompson, On a class of finite simple groups of Ree, J. Algebra, 3 (1966), 274-292.