Groups with a certain type of Sylow 2-subgroups ${ }^{1)}$

By Koichiro Harada

(Received Nov. 28, 1966)

1. The purpose of this paper is to prove the following theorem:

Theorem. Let G be a finite group. If a Sylow 2-group S of G has the following form

$$
S=A \times B
$$

where A is a non trivial cyclic 2-group and B is a 2-group with a cyclic subgroup of index 2. Then one of the following possibilities holds:
(a) S is an elementary abelian 2 -group of order 4 or 8.
(b) The index $\left[G: G^{\prime}\right]$ is even, where G^{\prime} is the commutator subgroup of G.
(c) The group $G / 0_{z^{\prime}}(G)$ has a normal 2 -subgroup, where $0_{2^{\prime}}(G)$ is the maximal normal subgroup of G of odd order.
In particular, a 2 -group S satisfying the assumption of the theorem can be a Sylow 2 -subgroup of a simple group only when S is an elementary abelian group of order 4 or 8 . Using the argument in proving our theorem, we shall get next proposition.

Proposition. Let G be a finite group and τ a central involution of a Sylow 2-subgroup of G. If the centralizer of $\tau C_{G}(\tau)$ is isomorphic to the group $\langle\tau\rangle \times \operatorname{PSL}(2, q)$ where $q \geqq 5$, then one of the following possibilities holds:
(a) S is an elementary abelian 2-group.
(b) The factor group $G / 0_{2^{\prime}}(G)$ is isomorphic to the group $\langle\tau\rangle \times \operatorname{PSL}(2, q)$. In particular the index $\left[G: G^{\prime}\right]=2$.
This proposition generalizes more or less the following theorem of Z . Janko and J. G. Thompson [5]:

Theorem. Let G be a finite group with the following properties:
(i) 2-Sylow subgroups are abelian,
(ii) the index $\left[G: G^{\prime}\right]$ is odd,
(iii) G has an element τ of order 2 such that

$$
\left.C_{G}(\tau)=\langle\tau\rangle \times \operatorname{PSL}(2, q), \text { where } q\right\rangle 5 .
$$

Then G is a non-abelian simple group with $q=3^{2 n+1}(n \geqq 1)$.
Notation. All the groups considered are finite.

1) The author thanks to Dr. T. Kondo for pointing out a gap in an original proof of the Theorem.
$Z(X) \cdots \cdots$.the center of a group X.
$D(X) \cdots \cdots \cdots$ the Frattini subgroup of a group X.
$\Omega_{1}(X) \quad \cdots .$. the group generated by all the elements of order p of a p-group X.
$o(X) \cdots \cdots$.......the order of an element X.
$\langle a, b, \cdots\rangle \cdots$ the group generated by the elements a, b, \cdots.
$X<Y \cdots \cdots$ a set X is properly contained in a set Y.
Next theorem due to G. Glauberman [3] is very useful in our proof.
Theorem. Let G be a finite group of even order. Assume that a Sylow 2 -subgroup S of G contains an involution τ which is not conjugate in G to any involution $\sigma(\neq \tau)$ of S. Then τ is contained in the center of $G / 0_{2^{\prime}}(G)$.
2. Let B be a 2 -group with a cyclic subgroup of index 2 . Then B has one of the following forms (see M. Hall [4]).
(I) Cyclic 2-group.
(II) Abelian group of type ($2,2^{n}$), $n \geqq 1$.
(III) Generalized quaternion group.
(IV) $n \geqq 4, B=\left\langle a, b \mid a^{2^{n-1}}=b^{2}=1, b a b=a^{1+2^{n-2}}\right\rangle$.
(V) $n \geqq 4, B=\left\langle a, b \mid a^{2 n-1}=b^{2}=1, b a b=a^{-1+2^{n-2}}\right\rangle$.
(VI) Dihedral group of order $\geqq 8$.

We call a group G a group of type $(N)(N=$ I VI), if a Sylow 2-subgroup of G has the form $S=A \times B$ where A is a non trivial cyclic 2 -group and B is a 2 -group of type (N) in the above list. We shall prove our theorem in each case of type (N) ($N=\mathrm{I} \sim \mathrm{VI}$). In the rest of this note we assume that S is not an elementary abelian 2-group.
3. Let G be one of the groups of type (I). Then S is an abelian group of type $\left(2^{m}, 2^{n}\right)(m \geqq n)$. If $m>n$, then $N_{G}(S)=C_{G}(S)$. The theorem of Burnside shows that G has a normal 2 -complement. If $m=n \geqq 2$, by a theorem [1] of R. Brauer [1] we have

$$
G / O_{2^{\prime}}(G) \triangleright S \cdot O_{2^{\prime}}(G) / O_{2^{\prime}}(G) .
$$

Hence we have proved the theorem in this case.
4. Let G be one of the groups of type (II). Then S is an abelian 2-group of type ($2^{m}, 2^{n}, 2$) ($m \geqq n \geqq 1$). If $m>n>1$, then $N_{G}(S)=C_{G}(S)$. The theorem of Burnside shows that G has a normal 2-complement. Assume $m=n>1$ or $m>n=1$. We shall show that the group $Z\left(N_{G}(S)\right) \cap S$ is non-trivial. If so, the transfer theorem shows that the index [$G: G^{\prime}$] is even. Form the group $N_{G}(S) / C_{G}(S)$. Then the group $N_{G}(S) / C_{G}(S)$ is a subgroup of the automorphism group of S of odd order. Since S is an abelian group of type ($2^{m}, 2^{m}, 2$) or
($2^{m}, 2,2$) where $m>1$, we can conclude the order of $N_{G}(S) / C_{G}(S)$ is 1 or 3 . If $N_{G}(S)=C_{G}(S)$, we have $Z\left(N_{G}(S)\right) \cap S=S$. Assume $\left|N_{G}(S) / C_{G}(S)\right|=3$. Let x be an element of $N_{G}(S)$ which is not contained in $C_{G}(S)$. Then x induces an automorphism \bar{x} of S of order 3. Since $\left|\Omega_{1}(S)\right|=8, \bar{x}$ has a fixed point τ in $\Omega_{1}(S)$. Hence $\tau \in Z\left(N_{G}(S)\right) \cap S$. Thus we have proved our theorem in this case.
5. Let G be one of the groups of type (III), of type (IV) or of type (V). Then $\Omega_{1}(Z(S))$ is an abelian group of type (2,2), and $\Omega_{1}\left(S^{\prime}\right)$ is a group of order 2. Therefore if $x \in N_{G}(S), x$ centralizes $\Omega_{1}\left(S^{\prime}\right)$. Since $\Omega_{1}\left(S^{\prime}\right) \subset \Omega_{1}(Z(S))$, x centralizes $\Omega_{1}(Z(S))$. Hence by the argument of Burnside, any two central involutions of S are not conjugate to each other in G. Comparing the structure of B, we conclude that S has at most 2 classes of non-central involutions. Therefore a certain involution of $\Omega_{1}(Z(S))$ is not conjugate to any involution of S. By the theorem of Glauberman [3], we have our theorem in this case.
6. Let G be one of the groups of type (VI). In this case the proof of the theorem is a little complicated. We need several lemmas.

Lemma 1. Any two central involutions of a Sylow 2-subgroup of G are not conjugate to one another in G.

Proof. As in the previous section, this lemma is easy to prove. We omit the proof.

Put $A=\langle\eta\rangle, B=\left\langle\rho, \sigma \mid \rho^{2^{n-1}}=\sigma^{2}=1, \sigma \rho \sigma=\rho^{-1},(n>2)\right\rangle, \rho^{2^{n-2}}=\pi$ and $\Omega_{1}(Z(S))=\langle\tau, \pi\rangle . \quad S$ has 7 conjugate classes (in S) of involutions. The representatives of 7 classes are $\pi, \sigma, \sigma \rho, \tau, \tau \pi, \tau \sigma, \tau \sigma \rho$. We first consider the fusion of involutions of S. Assume $Z^{*}=Z\left(G / O_{2^{\prime}}(G)\right)=\langle 1\rangle$. We write $a \stackrel{\mathcal{S}}{\sim} b$ or $a \sim b$ if two elements a, b are conjugate to each other in S or in G respectively.

Lemma 2. If we choose the suitable elements τ, ρ, σ, we can set
(a)
(b)

$$
\pi \sim \sigma, \tau \sim \sigma \rho, \tau \pi \sim \tau \sigma, \text { or }
$$

$\sigma, \tau \sim \sigma \rho, \tau \pi \sim \tau \sigma \rho$
Proof. By the theorem of Glauberman and Lemma $1, \pi$ is conjugate to a non central involution of S. Any non central involution of S has the form $\alpha \sigma \rho^{j}, \alpha \in \Omega_{1}(A), j \geqq 0$. Therefore, if we choose a direct factor B, we can assume $\pi \sim \sigma$. Since $\pi, \tau, \tau \pi$ are not conjugate to one another and by the assumption $Z^{*}=\langle 1\rangle$, there are the following six possibilities for the fusion of $\tau, \tau \pi$:
(1)

$$
\begin{array}{ll}
\tau \sim \sigma \rho, & \tau \pi \sim \tau \sigma, \\
\tau \sim \sigma \rho, & \tau \pi \sim \tau \sigma \rho, \\
\tau \sim \tau \sigma, & \tau \pi \sim \sigma \rho, \tag{3}
\end{array}
$$

$$
\begin{align*}
\tau & \sim \tau \sigma, & \tau \pi \sim \tau \sigma \rho \tag{4}\\
\tau & \sim \tau \sigma \rho, & \tau \pi \sim \sigma \rho \tag{5}\\
\tau & \sim \tau \sigma \rho, & \tau \pi \sim \tau \sigma \tag{6}
\end{align*}
$$

If we replace τ by $\tau \pi$, (3) goes to (1); (6) to (4); (5) to (2). If we replace ρ by $\rho \tau$, (4) goes to (1). Thus we have proved the lemma.

Lemma 3. Choosing the suitable elements τ, ρ, σ, the fusion of involutions of (a), (b) in Lemma 2 do not occur except the following one ${ }^{2)}$.

$$
\pi \sim \sigma \sim \tau \sigma \rho, \quad \tau \sim \sigma \rho, \quad \tau \pi \sim \tau \sigma
$$

Proof. Assume that $\pi \sim \sigma, \tau \sim \sigma \rho, \tau \pi \sim \tau \sigma$. A group $C_{G}(\sigma \rho)$ contains an elementary 2 -group $\langle\pi, \tau, \sigma \rho\rangle$. Let S_{1} be a Sylow 2 -subgroup of $C_{G}(\sigma \rho)$ which contains $\langle\pi, \rho, \sigma \rho\rangle$. Since $\tau \sim \sigma \rho, S_{1}$ is a Sylow 2-subgroup of G. By the structure of $S_{1}, \Omega_{1}\left(Z\left(S_{1}\right)\right)$ is contained in $\langle\pi, \tau, \sigma\rangle$. Put $\left\langle\pi_{1}\right\rangle=\Omega_{1}\left(S_{1}{ }^{\prime}\right)$. Then $\pi \sim \pi_{1}$. Since $\pi_{1} \in\langle\pi, \tau, \sigma\rangle$, we have, by Lemma 2.(a),

$$
\pi_{1}=\pi, \tau \sigma \rho \text { or } \tau \pi \sigma \rho
$$

If $\pi_{1}=\pi$ then $\Omega_{1}\left(Z\left(S_{1}\right)\right)=\langle\pi, \sigma \rho\rangle$. Since $\sigma \rho \stackrel{S}{\sim} \pi \sigma \rho$, two central involutions of S_{1} are conjugate. This is impossible by Lemma 1. Similarly $\pi_{1} \neq \tau \sigma \rho$. Hence we get

$$
\pi_{1}=\tau \pi \sigma \rho \quad \text { and } \quad \pi \sim \sigma \sim \tau \pi \sigma \rho \stackrel{S}{\sim} \tau \sigma \rho
$$

Next assume $\pi \sim \sigma, \tau \sim \sigma \rho$, $\tau \pi \sim \tau \sigma \rho$. Let S_{2} be a Sylow 2-group of $C_{G}(\sigma \rho)$ and $\left\langle\pi_{2}\right\rangle$ the group $\Omega_{1}\left(S_{2}{ }^{\prime}\right)$. Then $\pi \sim \pi_{2}$ and $\pi_{2} \in\langle\pi, \tau, \sigma \rho\rangle$. By the assumption $\pi \sim \sigma, \tau \sim \sigma \rho, \tau \pi \sim \tau \sigma \rho$ we conclude $\pi_{2}=\pi$. By the same argument as in the case (a) this is impossible.

Lemma 4. If an element $\alpha \in S$ is conjugate to ρ^{i} with $o\left(\rho^{i}\right) \geqq 4$, then $\alpha=\rho^{i}$ or ρ^{-i}.

Proof. Assume $\alpha \sim \rho^{i}$ and $o\left(\rho^{i}\right) \geqq 4$. Then we can conclude $\alpha=\beta \cdot \rho^{j}$ where $\beta \in A$ and $o(\beta)<o\left(\rho^{j}\right)$ because any two central involutions are not conjugate to each other. $S_{1}=\langle\eta\rangle \times\langle\rho\rangle=S \cap C_{G}(\alpha)=S \cap C_{G}\left(\rho^{i}\right)$. Since an element ρ^{i} does not conjugate to a central element of S, S_{1} is a 2-Sylow group of $C_{G}\left(\rho^{i}\right)$. Let $\alpha^{x}=\rho^{i}$. Then there exist an element $y \in C_{G}\left(\rho^{i}\right)$ and $S_{1}{ }^{x y}=S_{1}$, $\alpha^{x y}=\rho^{i}$ hold. Since any two involutions of $\Omega_{1}\left(S_{1}\right)$ are not conjugate to each other, we conclude $\left|N_{G}\left(S_{1}\right) / C_{G}\left(S_{1}\right)\right|=2$. Therefore the element $x y$ is contained in $\langle\sigma\rangle \cdot C_{G}\left(S_{1}\right)$. Hence we have $\alpha=\rho^{i}$ or ρ^{-i}.

Now we shall prove our theorem in this case. Denote the focal subgroup of S by S^{*}. If $|A|=2$, then $S^{*}=\langle\tau \rho, \sigma\rangle$ (by Lemma 3 and Lemma 4). Hence

[^0]$S>S^{*}$. By the transfer theorem, we have [$\left.G: G^{\prime}\right]=$ even. Thus we have proved the theorem. Next, assume $|A| \geqq 4$. We consider the fusion of elements of order $\geqq 4$. Let an element α of S has the order larger than 4 , then α is written in the from
$$
\alpha=\eta^{i}, \eta^{j} \sigma \rho^{k}, \eta^{l} \rho^{s}, \rho^{t}, \quad \text { where } i, j, k, l, s, t \text { are suitable integers. }
$$

In order to prove $S>S^{*}$, we can assume $\alpha \neq \rho^{t}$ by Lemma 4. If $\alpha=\eta^{i} \sim \eta^{j} \sigma \rho^{k}$ then $o\left(\eta^{i}\right)=o\left(\eta^{j}\right)$. Therefore $o\left(\eta^{-i} \eta^{j} \sigma \rho^{k}\right)=\max \left\{o\left(\eta^{-i} \eta^{j}\right), o\left(\sigma \rho^{k}\right)\right\}<o\left(\eta^{i}\right)$. If α $=\eta^{i} \sim \eta^{l} \rho^{s}$, we have $o\left(\eta^{i}\right)=o\left(\eta^{l}\right)>o\left(\rho^{s}\right)$ because any two central involutions are not conjugate to each other. Therefore $o\left(\eta^{-i} \eta^{l} \rho^{s}\right)=\max \left\{o\left(\eta^{-i} \eta^{l}\right), o\left(\rho^{s}\right)\right\}<o\left(\eta^{i}\right)$. If $\alpha=\eta^{j} \sigma \rho^{k} \sim \eta^{l} \rho^{s}=\beta$ we have $o\left(\eta^{j} \sigma \rho^{k}\right)=o\left(\eta^{l} \rho^{s}\right)>o\left(\rho^{s}\right)$. Therefore $o\left(\alpha^{-1} \beta\right)$ $<o\left(\eta^{j}\right)$. In any cases $\eta \notin S^{*}$. Hence the transfer theorem show that the index [$G: G^{\prime}$] is even.
7. Next we shall prove the proposition stated in Section 1 . Let G be a finite group satisfying the assumption of our proposition. Furthermore assume that Sylow 2-subgroups of G are not abelian. Then G is one of the groups of type (VI). Since the group $\operatorname{PSL}(2, q)$, where $q \geqq 5$, has one class of involutions, the involution τ is not conjugate to any involution $\sigma(\neq \tau)$ of $\langle\tau\rangle \times$ $\operatorname{PSL}(2, q)$. Hence τ is contained in $Z\left(G / O_{2^{\prime}}(G)\right)$. Hence $G=C_{G}(\tau) \cdot O_{2^{\prime}}(G)$. Clearly $C_{G}(\tau) \cap O_{2^{\prime}}(G)=\langle 1\rangle$. Thus we have proved our proposition.

Nagoya University

References

[1] R. Brauer, Some applications of the theory of blocks of characters of finite groups II, J. Algebra, 1 (1964), 307-334.
[2] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 775-1029.
[3] G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403-420.
[4] M. Hall, The Theory of Groups, MaCmillan, New York, 1959.
[5] Z. Janko and J. G. Thompson, On a class of finite simple groups of Ree, J. Algebra, 3 (1966), 274-292.

[^0]: 2) The group $G=S_{6}$ or S_{7}, symmetric group of degree 6 or 7 has this fusion of involutions.
