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On the exponential decay of solutions for some
partial differential equations

By Kytya MASUDA

(Received Sept. 9, 1966)

In C. Morawetz has shown, using the energy integrals (the a-b-c
method initiated by K. Friedrichs), that a solution of the wave equation

uy—du+au=0, a>0,
which vanishes in the forward light cone |x| <t (¢ >0) and has finite energy

[ drul+utaudy < oo,
t=0

vanishes identically.

The purpose of the present note is to show that the above result can be
extended in the following sharpened form to the case of partial differential
equations of more general type: Let u be a solution for the evolution equa-
tions of certain types, e.g. the Klein-Gordon wave equation or the Schrédinger
wave equation. If this solution u decays exponentially with time on any
compact set, then the solution u must vanish identically. The author wishes
to express his hearty thanks to Professor K. Yosida who kindly pointed out
mistakes in the manuscript and gave him many valuable advices, and also to
Professor H. Fujita for his many valuable suggestions.

§1. Notations and results.

We denote by G a whole space E” or the exteriors (or interiors) of
bounded (n—1)-dimensional hypersurfaces which are locally of class C* Let

x=(x, -+, x,) be the generic point of E" whose length +/x¥+ -~ +x2 is

denoted by |x|, D*=Dft --- D%» be a general derivative where Djz—a%~ and
j

« stands for the multi-index a =(«,, -+ , &,) Whose length a,-+ -+ +«, is also

denoted by |a|. Let |-|| be the norm of L%G), (-, -) be the scalar product in

L*G) and |-|z2x be the norm of L*K). Let H; be the totality of those

complex-valued functions » in L2G) for which the distribution derivatives
D v also lie in L*G) for |«|<j. Then H, is a Hilbert space under the norm

lwly={ 2 D]} ® .

=7
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Let I;(j be the completion of C°(G) under the norm of H,, BG) be the totality
of those functions in CY(G) for which the derivatives D% are bounded con-
tinuous on G for |a|<j, where G means the closure of G.

Let us consider the equation

5 Y B 0%u n 0%u ou
(l) P(—g;, fa—-t—>u—— aOO(X)"a*ﬁ“‘{“Zanj(x) axjat +a0(x> ot

< 0%u n ou B
20O g, B ) Gy Fa@u=0
satisfying conditions:
@) a;=a;< BXG), a;€BY(G), aeBYG), (for i,7=0,1, -, n).

There exists a positive constant d, > 0 such that

® |3 au(DE 2 8:1¢1°

7=

for any x€ G and any £=(§, -, &) € E™
@) If n=2, a;(x) is real-valued for 7, =1, 2.
Let us also consider operators A(z) and A’(z) in L%*G), defined as follows:

D(AGR)={v; ve H,, v=0 on the boundary of G}; and

0 . » 0? 2o 0
A(Z)U:P<W, ""lZ)U =— aijfawvxj“‘i" > aj~3;}‘j+av

i5=1 =1
. .2 ov .
+@2)2a,v—21z 3 aoja—— —12a,V,
i=1 Xy
DA (2)={v; ve H,, v=0 on the boundary of G}; and

, . n 62 - n a _ _
A= _i,]z":;é}c;axhj (@sv)— ]Ezl ox, @mw)+av

+(E)Za00v+21?i3%— (aoV)—1zav .
J=1 J

Here 9(B) denotes the domain of an operator B, and b the complex conjugate
of b. We shall summarize some properties of A(z).

®) DAE@) = DA =H, N\ B,

6) A’(2)* = A(z), where A’(z)* is the adjoint operator of A’(z) in L¥G).
There exists a positive constant ¢,, depending on z, such that

) vl = c.{lA@viI+-lvl}  for ve D(A(2)).

The reader will find the proof in e.g. F. Browder [2], [3]

We shall prove the following

THEOREM. Assume that there exist a complex number z, with Im z,=0 and
a curve y connecting z, and —z, such that for any z on y the resolvent set of
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A(2) contains the origin. Let u be a solution of (1) with the zero Dirichlet
boundary condition, such that for some positive constant ¢, and for any t in
(—'OO: oo),

(8) ”u(,’ t)” é Czelm 2p ¢ 12} .

Let U be a non-empty (not necessarily bounded) open subset of G. If u
satisfies the following condition, then u must vanish in UX(—co, 00): For
any compact set K in U, there exist positive constants c¢,=cy,(K) and e =¢e(K)
such that

©) | u(s, Dllzeao = cge™Tm a0l t=0.

Here and in the following, 7 =#(X) means that » depends on K.

By a solution of (1) with the zero Dirichlet boundary condition, we mean
a function u with the following properties.

(1 u(-,t) takes values in L2G) and is continuously differentiable for
—oo < t<co in the norm of L%G).

(i) wu(-, t) takes values in I—Z and is continuous for —co<t< oo in the
norm of H,.

(iii) u(-, t) satisfies the variational equation :

R SR Y

+5 o (g (aw@)juza, @+a@]dxdt

) ou(x, t
'I‘jaaoo au(gt tg)‘@(x: tz)dx_j‘aaoo’—u*(gt ) O(x, t)dx=0

for any ¢, ¢, with —co <f,<t,<oo and any @ & H,(G X (—oo, co)).
Of special interest are the following equations:

(10) %Ztizﬁ_”é:l _a%_(aij(x) g%)—}—a(x)u =0, where inf a(x) > 0.
a 30

(11) - — 2 e (ai,(x) o, ® ) tau=0.
1 n

a2 T 2 % o, (0519 31 ;) Ta(u=0.

Let us assume that the coefficients a;;(x) and a(x) in [(I0), [I1) and [(12) are
real-valued, then we have a series of corollaries.

COROLLARY 1. Let u be a solution of the Klein-Gordon wave equation (10)
with the zero Divichlet boundary condition, which has finite energy

a3 [f( 2 00ge 9o +(5) +au)dx]_ <oo.
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Let U be a non-empty (not necessarily bounded) open subset of G. If u satisfies
the following condition, then u must vanish in UX(—oo, 00): For any compact
set K in U, there exist positive constants c¢,= c,(K) and ¢ =¢e(K) such that

Hu<: t){IL2(K) = C4e—5t ’ t=0.
Proor. Let us take z,=0 and a curve y shrinking to the origin. By
the definition and (5), we have @(A(O)):Hzmﬁl,

A = —-él —3% (a:x() 3@%) ta(y  for ve DCAO)

and inf a(x) >0, so that A(0) is a positive self-adjoint operator in L*G), (see
(6) and (7)). Hence the resolvent set of A(0) contains the origin. By (13), it
follows from the conservation of energy that

_Sgtgoofa[i,géﬂﬁ gﬁlctz 3891; +< %llf >2+au2]a'x <o,

so that sup |u(-,t)] <oco in view of infa(x)>0. Hence u satisfies the
— oot o0

estimate (8) with z,=0. Moreover, by the assumption, u satisfies the estimate
(9) with z,=0. Thus, applying the theorem to the present case, we obtain
Corollary 1.

COROLLARY 2. Let u be a solution of (10) with the zero Dirichlet boundary
condition which has finite energy (13). If there exists a monotone increasing
Sunction ¢(s) on [0, 00) such that u vanishes in the interior of the forward cone
{(x, t); ¢(|x]) <t (¢t >0)}, then u vanishes identically.

Proor. Corollary 2 is an immediate consequence of Corollary 1.

REMARK 1. The result obtained by C. Morawetz [1], is a special case of
Corollary 2.

COROLLARY 3. Let u be a solution of the heat equation (11) with the zero
Dirichlet boundary condition such that for some positive constants ¢; and B
and for any t in (—oo, 00)

u, D<= ez

Let U be a non-empty (not necessarily bounded) open subset of G. If u satisfies
the following condition, then u must vanish in UX(—oo, c0): For any compact
set K in U, there exist positive constants co=c(K) and e =¢(K) such that
Nu(-, Dllza = cee™ @1t t=0.
PRrROOF. In order to apply the theorem to the present case, we have only
to show that there exist a complex number z, with Imz,=p8 (>0) and a
curve y connecting z, and —z, such that for z on y the resolvent set of A(2)

contains the origin. The resolvent set of A(z) contains the origin if and only
if the resolvent set of A(0) contains iz. Moreover, the spectral set of A(0)
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is contained in [r, o) for some real . Hence it is clear that there exist a
z, and a curve y with required properties.

COROLLARY 4. Let u be a solution of the Schridinger wave equation (12)
with the zero Dirichlet boundary condition. Let U be a non-empty (not
necessarily bounded) open subset of G. If u satisfies the following condition,
then u must vanish in UX(—oo0, ): For any compact set K in U, there exist
positive constants ¢, =c,(K) and e =¢e(K) such that
(14) (s Dllean = cre™, t=0.

PROOF. Let u;=e¢ "y for a real number A, then u,; is a solution of the
equation
P( g 50)m= 5 o B o, (0600 g ) et =0

Hence |u;(-, t)|| is uniformly bounded in f. Moreover, u,; decays in the same
manner as the solution u (see (14)). Let us define A;(z), corresponding to
the above equation, in the same way as before. Then, by the definition,

D(ALO) = Hy~\H, and A,0w=P( 2, 0)v. Hence the resolvent set of A,(0)

contains the origin for large 4. Therefore, by the same reason as in Corollary
1, u; vanishes in UX(—oo, c0). Thus u vanishes in UX(—o0, c0).

§2. Some lemmas for the proof of the theorem.

LEMMA 1. Let us assume that for z, on y the resolvent set of A(z,)
contains the origin. Then there exists a neighborhood 4 of y such that for z
in 4 the resolvent set of A(2) contains the origin and A(z)~! is holomorphic
in 4.

Proor. 1f ve 9(A(2))=H, N\ H,, we have
A5)  A@— A= (2F—(z))a—2iz—iz) B by o —z—iz)ap

j=1 J
so that
ICA(@)—A(zpIv | = |22 —21| (sup |ag() D v ]
+212—2] $i(sup la@ )| 4|
Jj=1 J
+lz—z|(sup [a,(0)|v] .
Hence, by putting ¢;=2max {squ{aoo(x)], sug!aoj(x)[, sup |a,(x)|} and ¢,=
rE e TEF
[ A(z))"'|l, we obtain, for z, &7,
[CAR)—A@EDIV ] = |z—2|(|z+2:| +3)cs] v |1,
= lz—z (242 | +3ese,(| AGv I+ v ), (Erom (7)),
= |z—z|(|z+ 2| +3)csei(14-c9) A2V
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where ¢, and ¢, depend on z, =y. Let us take a d(z,) such that
|e—2 (|22 +Descsle) < - Tor all z in |z—z,] <3z,
then we have, for each z, =y and for any z in |z—2,| < d(zy),
ILA@ =A@ ] <5 | AGw] .

Since 7y is a compact set, there exists a finite covering 4= U{z |z—27
<0z, zf =y} of y such that

ILA@—AENIvI < ‘12‘ I AGTv |

for any z in 4 and some zf. Hence, we see that for any z in 4, A(2)! exists
as a bounded operator in L2(G) and
(16) 1A =2 AD1) for some z¥.

From (15), we have, for ve 9(A(2)) and any z, in 4,

a7 }ﬂ{);ﬁ(}}) V—2i2,040+21 2 Y o 8 -Haov

Z'_Zl

= |z—z) (sup | ap(0 DIV ] .

Since the right hand side of (17) tends to zero as z—z,

s-lim A(Z;__A(Zl) v exists for ve D(A(z))= Hzr\l;fl.
z2-2)
Thus
(18 s-lim A(z) A<Z‘) A(z)"'w exists for any z, in 4 and any w in L*(G).

z=2y

We see, by (18), that
19 s-lim (A(2)A(z)"'w—w)=0.
z2-2]

By and [19), we have
20) s-lim (A(2)"'w— A(z)"w) = —s- hm AR AR A(z) w—w)=0

22zy

for any z, in 4 and any w in L%G). From (18) and [20), it follows that

wiim A2 T —utim ey AGZHE
—wlim [AQZ) " — A(z,)]- @ A(zl) Az)'w

2oz
exists for any z, in 4 and any w in L*G), proving that A(z)~1 is holomorphic
in 4.
LEMMA 2. Let us define the Fourier-Laplace transforms of u(x, t) satisfying
the conditions in the theorem, as follows:



88 K. Masupa
v (2)=a%(x, 2)= f ” e~y (x, t)dt,
0

() =a"(x, z):fi}meﬂu(x, bdt .
We have
(@) a*(z) and 4-(z) belong to L¥G) for Im z < —Im z,,
(b) for any ¢ in Cy(U),
(1=(2), go):j‘ome"z‘(u, ©)dt is holomorphic in the lower half-plane {z; Im z <

—Im z,} and (4*(2), go):fooo e ®(u, ©)dt is holomorphic in the lower half-plane

{z; Im z <Im z,+e} for some positive constant ¢ =e(p),
(©) 2*(2) € D(A(—2), A(—2)0*(2)=f(—2),
and
2~(2) € D(A(2), Al)a ()= —[(2)
for z with Im z< —Im z, and for the function f(z) defined by

@)= F(x, 2) = () 245 0.
Mx 0)

.7

+2 an(x

Proor. By (8), we have

lemuCe, )| S e u, )] S uetme-tetman-a,

—1z2a,(X)ulx, 0)+a,(x)ulx, 0).

so that
f‘” le#u(-, )dt <oco  for Imz< —Im z,,
0
which shows that 2*%(z) € L¥(G) for Imz< —Imz, Similarly we have 4-(z)

e L*G) for Im z< —Im z,. Thus we have proved (a). Let ¢ be any function
in C&(U). Then we have, by (8), |(u, ©)| = c.e”™=t|p| for some ¢, >0 and
any t<0. Hence fo e®(u, ¢)dt is holomorphic in Im z< —Im z,. By (9), we
have |(u, )| = c3e‘“:“m;0+5)c lel for some c¢;=1c,(¢) >0 and e=¢e(p) >0 and for
any t=0. Hence j:o e~%(u, @)dt is holomorphic in {z; Im z < Im z,+¢}. Thus

we have proved (b). Let A(s) be a real-valued function in C{(EY) such that
h(s)=1 for |s|<1 and A(s)=0 for |s|>2. Let A, s)=~h(;"%s). For any v in
D(A'(—z2)=H,NH, and any z with Im z< —Im z,, we have

@@, A(—2w)=| 0°° ooy, A'(—Z))dt
=tim { " e=h (0w, A'(—2)dt

=lim :’ (4, A(—2) (@R (D) .
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Remembering that e~#h,(t)v & (Hgmlfll)(Gx(—oo, co)) and that u is a solu-
tion of (1) with the zero Dirichlet boundary condition, we have

@, A=) = (20252042800, ﬁ“a(%; O tizawuC, O+ag(-, 0, v) .
In other words,
@+, A'(—2v)=(f(—2),v)
for any z with Im z< —Im z, and any ve 9(A’(—z)). Since 4*(z) and f(—2z)
lie in L*G) for z with Im z< —Im z, we have, by A/(—z2)* = A(—2), 2*(2)
€ 9(A(—2)) and A(—2)u=f(—z) for Imz< —Imz, Similarly we have the
latter part of (c¢).

§3. Proof of the theorem.

Let us fix an arbitrary function ¢ in C3?(U). Consider the equation in
LG :
1) CA(—2w=f(—z) for z with —z in 4,
where 4 is a neighborhood of 7, defined in [Lemma 1, and f(—z) is defined
in Then we have, by the assumption, f(—z) =f(x, —z) € L¥G) and
by Lemma 1, the resolvent set of A(—z) for z with —z in 4 contains the

origin, so that the equation has a unique solution »(2) in L*G) for z
with —z in 4. By we know that

127(2) € D(A(—2)) and A(—2)2*(2) =f(—z) for z with Im z< —Im z,.
Hence
(22) A*(2) =v(2) for any z with Imz< —Im z, and —z in 4.
Such a z really exists since 4 is an open set and z, is contained in 4. By
(@*(2), ¢) is holomorphic in the lower half-plane {z; Imz<Im gz,
+e(p)}, and, by Lemma 1, (v(2), ¢) =(A(—2)f(—z), ¢) is holomorphic in —4.
It follows from and the unique continuation theorem in the complex
analysis that

(23) (@*(2), ) =@(2), )

for any z with Im z<Im z,+¢(¢) and —z in 4. Let us define 4(z) =v(—2)
+2-(2) for ze€ 2, where 2={z; Imz< —Im z, ze 4}. Then, remembering
that 2-(2) € 9(A(2)) and A(R)i~(2) = —f(2) by we have

1(2) e D(A(z)) and A)i(z)=0 for z in Q2.
By Lemma 1, the resolvent set of A(z) for z in £ contains the origin, so that
(24) Wz2)=0 for z in 2.
Hence, we have, by and (24),
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(25) @ (—2)+u(2), @)= W(—2)+ 4 (2), @)
=(@(z), ¢)
=0

for z with z in @ and —Imz,—e(p)<Imz< —Imz,. By (t+(—2)
+4-(2), ¢) is holomorphic in the strip {z; —Im z;—e(p) <Im z < —Im z,}.
Therefore, it follows from that

(i (—2)+7(2), 9) =0

for any z in the strip {z; —Im z,—e(p) <Im z < —Im z.}.
Hence,

@) @D P @, 9= e, D, @)t e, De)dl
= [ e, v, @)t

:j‘oo et Rez-te—Imz-t(u<,, t), QD)dlL

=0

for any z in the strip {z; —Im z,—e(p) <Im 2z < —Im z,}.

On the other hand, we have, by (8), the estimate [(u(-, #), @)| < c,e™ 2! @]
for any t=<0, and, by (9), the estimate [(u(-, ), ¢)|= c,e~Tm20%9| || for any
t =0, where ¢, c;=c,(¢) and ¢ =¢(¢p) are positive constants in #. Thus, for
any z in the strip {z; —Imz,—e(p) <Im z< —Im 2z}, e I™=(y(., 1), ¢) is a
square integrable function of # on (—oo, c0). Therefore, by [26), it follows
from the uniqueness of the Fourier transformation that e-Tmz!(y(-,?), ¢)=0
so that (u(-, t), ¢)=0. Since ¢ is an arbitrary function in C°(U), u(-, t) must
be 0 in UX(—oo, c0). Thus the theorem is proved.

University of Tokyo
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