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1. Several authors have studied the interesting problem whether non-
isomorphic groups can have isomorphic integral group algebras. J.A. Cohn
and D. Livingstone [I], D.B. Coleman [2] and D.S. Passman gave partial
answers in the case of nilpotent groups. Their results seem to be based
mainly on the fact that the center of a group is determined by its group
algebra.

In this paper we intend to show that the derived groups of a group are
determined by its group algebra. Thus for solvable groups we can prove

MAIN THEOREM. Let & and 9 be finite groups with isomorphic group
algebras over the ring of all integers in a finite algebraic number field. If &
1s solvable, then £ is solvable with the same length of the derived series as that
of & and the factor groups of their derived series are isomorphic.

Throughout this paper R denotes the ring of all integers in a finite al-
gebraic number field and Z the ring of rational integers. For an arbitray
finite group & the group algebra R(S) (resp. Z(®)) is the algebra over R
(resp. Z) with a free basis multiplicatively isomorphic with &. We shall often
identify the elements of this basis with the elements of &.

2. Let ® be afinite group. Then the group algebra R(®) is an augmented
algebra with the unit augmentation 7y and the augmentation ideal I(®) is a
two-sided ideal in R(®) with R-free basis g—1, g+ 1, g ®, where 1 denotes
the identity element of @.

LEMMA 1. Let & and  be finite groups. If ¢; R(®) = R(D) is an isomor-
phism as algebras, then there exists a group &' consisting of unit elements of
finite order in R(®) such that & =@, R(E) = R(®) and ns =1s° ¢.

ProOOF. For each g @, 9s-¢(g) is a unit of finite order in R. Then we
see easily that &' = {g’'=s-0(g)'ge R(©); g =G} is the desired group.

In view of this lemma, we shall always assume implicitly that an isomor-
phism ¢; R(®) = R(9) of group algebras is compatible with augmentation maps;
i.e, ng="nNp° Q.

PRrROPOSITION 1. Any algebra isomorphism ¢ ; R(®) = R(D) induces the ring
isomorphism I(®) = [(D).
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Proor. This is immediate since /(&) and I($) are the kernels of 7g and
7, respectively, and ¢ is compatible with s and 7s.

PropPOSITION 2. Any algebra isomorphism ¢ ; R(®) = R(D) implies the group
isomorphism G/[G, 8= H/[D, 1, where [®, 8] denotes the commutator of ®.

Proor. The augmentation ideal [,(®) of Z(®) is a Z-submodule of I(®)
and satisfies that RQ,[;(®) = [(®). Since R is free over Z, we have

1®)/FF(®) = RQ, (8)/158)) = ([:(®)/IHE)™®

as abelian groups, where the last term is the direct sum of k2 (=Z-rank of R)
copies of I,(®)/I%(S). Similarly,

1(9)/I*(D) = (I5(D)/15(DN™ .

But Proposition 1 implies the isomorphism /(®&)/71%(®) = I(£)/1%(9), which gives
the isomorphism of abelian groups

LS/ IZE)® = (T(D)/ D)™ .

Hence by the fundamental theorem of abelian groups we obtain that /,(®)/I}(S)
= [(9)/149). On the other hand the natural map g—1—g, g @, induces the
isomorphism I,(®)/[;(©®)=&/[G, &]. This shows that G/[E, &= H/[H, H],
and completes the proof

CoroLLARY 1. ([1], [2] and [3]). If © is abelian, then R(®)= R(D) if
and only if & =$9.

REMARK. Coleman proved that if @ is the rational number field, then
Q) = Q(®) implies G/[S, &]=D/[H, D] (2], Th. 1.1, Cor. 1.1). Then, in
case R=Z, Proposition 2 follows directly from this result since Z(®)= Z(9)
yields Q(®) = Q(9).

3. Let @ and $ be finite groups with an isomorphism ¢: R(®) = R(D) of
group algebras. For each normal subgroup g of & and the natural homomor-
phism p, of R(®) onto R(&/g), the normal subgroup @(g) of $ is defined (see
and as follows:

O)=1{he; p.co()=1}.
We see easily

LEMMA 2. ([1] and [3]). @ is an isomorphism of the lattice of normal
subgroups of & onto the lattice of normal subgroups of 9, and ¢ induces an
isomorphism &; R(&/g) = R(O/P()) such that $op,=ppee@. In particular
@:D=@@:D.

PROPOSITION 3. Let g be any mormal subgroup of & and set §=Q(q).
Then g/[g, aJ=b/0h, b

Ne

4
Proor. The exact sequence 0—I(®)— R(&)— R—0 of Z(g)-modules,
where ¢ acts on R trivially and ¢ is the inclusion, gives rise to the exact
sequence of homology groups of g
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0 — H,(g, R) — H,(8, I(®)) — H,(g, R(®)) — Hyg, R) — 0

(H/(g, R(®)=0 since R(®) is free over Z(g). But Hy(g, R)= R, Hy(g, R(®))
= R(®/g) and 7g=17%gs. Then the image of 7 is precisely the augmentation
ideal I(/g), and this is free over Z. Therefore H,(g, I(®)) is isomorphic to the
direct sum of H,(g, R) and I(8/g), so that the isomorphic image in Hyg, I(®))
of Hy(g, R) is the torsion part of H,(g, I[(®)). Similarly H,(, R) is isomorphic
to the torsion part of H,(9, I(§)). On the other hand, the commutativity
(Lemma 2) of the following diagram of exact sequences

0 — R(®)I(@) — R(®) £, RG/9)— 0

“go Oy USB

00— RO — RO) — R(®/H —0

shows that ¢ induces the isomorphism R(®)I(g) = R(D)I()). Since o(®))=I(D)
by [Proposition 1}, it follows that

PU&)I@) = ¢(®) - RG)I(®)) = ¢U(®)) - p(R(&)I(9))
=1(9) - RO)I(0) = I(D)I) .

Thus we have

Hy(a, I(®)) = I(®)/I(&)I(g) = 1(D)/I(D)(H) = H,(h, 1(D)),
so that

R®7(IA8)/12®) = Hi(8, R) = H,(h, R) = R Q- ()/13(5))
since H,(g, R) (resp. H,(§, R)) is isomorphic to the torsion part of H,(a, I(®))
(resp. H,(9, I(H))). Consequently, the same method as in the proof of Proposi-
tion 2 gives an isomorphism g/[q, ¢]=5/[h, b1, which completes the proof.

COROLLARY 2. @ gives a one-to-one correspondence between the set of
normal abelian subgroups of & and that of © and corresponding groups are
isomorphic.

REMARK. This corollary is a generalization to arbitrary groups of the result
by Passman [3] in the case of nilpotent groups.

PROPOSITION 4. If & is metabelian (resp. metacyclic), then 9 is metabelian
(resp. metacyclic).

Proor. Let g be the normal abelian subgronp of & such that &/g is abelian
and set @(@)=9. Then g=Y by Corollary 2 and R(®/q) = R(H/)) by Lemma 2.
Since §/g is also abelian, Corollary 1 implies that &/g = /5, which shows that
$ is metabelian. In particular, if & is metacyclic, then § is metacyclic.

PROPOSITION 5. If & is supersolvable, then © is also supersolvable.

Proor. Let & be supersolvable. Then there exists a normal series & =g,
gy D - Dg,= {1} such that all factors g,_,/g; are cyclic. Setting @(g;) =19,
we have a normal series of $:
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=020 Dh,= {1},
and
RS/a) = R®/b), 1=1,2,--,n.

Since each g¢;—,/n; is a normal cyclic subgroup of &/g; and @(g;_,/8;) = 6;—./6:,
Corollary 7 yields that b,_,/b, is isomorphic to g;,/g; so that cyclic. Thus
is supersolvable.

LEMMA 3. Let g be any normal subgroup of & and set Q{g) =Y, then
O([s, gD =1LH, H1.

Proor. Set @(g,g])=10’. We have seen in Lemma 2 that R(S/[g, q])
=~ R(H/Y). Then §/% =@(g/[g, gJ) is isomorphic to the normal abelian subgroup
a/la, 0] of &/[g,4] (Corollary 2), which shows that ¥ D[}, §] and ¢ :1)
=([g,6]:1). But it follows from Proposition 3 that (9, §]1:1)=(g,a]:1).
Hence (¢ : D)= (H, 6]:1) so that § =[%, §]. This proves the lemma.

MAIN THEOREM. Let & and  be finite groups such that R(®)= R(®). If
® is solvable with the length n of the derived series, then so is 9, and if {g;}
and {9} are the derived series of & and 9, respectively, then @; ,/a; = %;—./b;
for all 1.

Proor. Since g;=1[g;-;, 3;-,], Lemma 3 insures that @(g,) is precisely the
commutator [@(g,_,), D(g,—,)]. Then the induction process shows that @(g,) is
the ¢-th derived group %; of 9 and §,= 1}. Furthermore R(®/g,) = R(H/H,),
D(a;-./8:) = 9s-1/:, and g,-,/g; is a normal abelian subgroup of &/g;. Therefore

§i-1/0; = 9;-,/0; for all i by
COROLLARY 2. This shows the theorem.
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&) This follows directly from the definition of @.
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