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Solvable groups with isomorphic group algebras
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1. Several authors have studied the interesting problem whether non-
isomorphic groups can have isomorphic integral group algebras. J. A. Cohn
and D. Livingstone [1], D. B. Coleman [2] and D. S. Passman [3] gave partial
answers in the case of nilpotent groups. Their results seem to be based
mainly on the fact that the center of a group is determined by its group
algebra.

In this paper we intend to show that the derived groups of a group are
determined by its group algebra. Thus for solvable groups we can prove

MAIN THEOREM. Let $\mathfrak{G}$ and $\mathfrak{H}$ be finite groups with isomorphic group
algebras over the ring of all integers in a finite algebraic number field. If $\mathfrak{G}$

is solvable, then $\mathfrak{H}$ is solvable with the same length of the derived series as that
of $\mathfrak{G}$ and the factor groups of their derived series are isomorphic.

Throughout this paper $R$ denotes the ring of all integers in a finite al-
gebraic number field and $Z$ the ring of rational integers. For an arbitray
finite group $\mathfrak{G}$ the group algebra $R(\mathfrak{G})$ (resp. $Z(\mathfrak{G})$) is the algebra over $R$

(resp. $Z$) with a free basis multiplicatively isomorphic with G. We shall often
identify the elements of this basis with the elements of $\mathfrak{G}$ .

2. Let $\mathfrak{G}$ be a finite group. Then the group algebra $R(\mathfrak{G})$ is an augmented
algebra with the unit augmentation $\eta_{\mathfrak{G}}$ and the augmentation ideal $I(\mathfrak{G})$ is a
two-sided ideal in $R(\mathfrak{G})$ with R-free basis $g-1,$ $g\neq 1,$ $g\in \mathfrak{G}$ , where 1 denotes
the identity element of $\mathfrak{G}$ .

LEMMA 1. Let $\mathfrak{G}$ and $\mathfrak{H}$ be finite groups. If $\varphi;R(\mathfrak{G})\cong R(\mathfrak{H})$ is an isomor-
phism as algebras, then there exists a group $\mathfrak{G}^{\prime}$ consisting of unit elements of
finite order in $R(\mathfrak{G})$ such that $\mathfrak{G}^{\prime}\cong \mathfrak{G},$ $R(\mathfrak{G}^{\prime})=R(\mathfrak{G})$ and $\eta_{\mathfrak{G}^{\prime}}=\eta_{\mathfrak{H}}\circ\varphi$ .

PROOF. For each $g\in \mathfrak{G},$ $\eta_{\mathfrak{H}}\circ\varphi(g)$ is a unit of finite order in $R$ . Then we
see easily that $\mathfrak{G}^{\prime}=\{g^{\prime}=(\eta_{\mathfrak{H}}\circ\varphi(g))^{-1}g\in R(\mathfrak{G});g\in \mathfrak{G}\}$ is the desired group.

In view of this lemma, we shall always assume implicitly that an isomor-
phism $\varphi;R(\mathfrak{G})\cong R(\mathfrak{H})$ of group algebras is compatible with augmentation maps;
$i.e.,$ $\eta_{\mathfrak{G}}=\eta_{\mathfrak{H}^{o}}\varphi$ .

PROPOSITION 1. Any algebra isomorphism $\varphi;R(\mathfrak{G})\cong R(\mathfrak{H})$ induces the ring
isomorphism $I(\mathfrak{G})\cong I(\mathfrak{H})$ .
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PROOF. This is immediate since $I(\mathfrak{G})$ and $I(\mathfrak{H})$ are the kernels of $\eta_{O}$ and
$\eta_{\mathfrak{H}}$ , respectively, and $\varphi$ is compatible with $\eta_{\mathfrak{G}}$ and $\eta_{\mathfrak{H}}$ .

PROPOSITION 2. Any algebra isomorphism $\varphi;R(\mathfrak{G})\cong R(\mathfrak{H})$ implies the group
isomorphism $\mathfrak{G}/[\mathfrak{G}, \mathfrak{G}]\cong \mathfrak{H}/[\mathfrak{H}, \mathfrak{H}]$ , where $[\mathfrak{G}, \mathfrak{G}]$ denotes the commutator of $\mathfrak{G}$ .

PROOF. The augmentation ideal $I_{Z}(\mathfrak{G})$ of $Z(\mathfrak{G})$ is a Z-submodule of $I(\mathfrak{G})$

and satisfies that $R\otimes_{Z}I_{Z}(\mathfrak{G})\cong I(\mathfrak{G})$ . Since $R$ is free over $Z$, we have
$I(\mathfrak{G})/I^{2}(\mathfrak{G})\cong R\otimes_{Z}(I_{Z}(\mathfrak{G})/I_{Z^{2}}(\mathfrak{G}))\cong(I_{Z}(\mathfrak{G})/I_{Z^{2}}(\mathfrak{G}))^{(k)}$

as abelian groups, where the last term is the direct sum of $k$ ( $=Z$-rank of $R$)

copies of $I_{Z}(\mathfrak{G})/I_{Z^{2}}(\mathfrak{G})$ . Similarly,

$I(\mathfrak{H})/I^{2}(\mathfrak{H})\cong(I_{Z}(\mathfrak{H})/I_{Z^{2}}(\mathfrak{H}))^{(k)}$ .
But Proposition 1 implies the isomorphism $I(\mathfrak{G})/I^{2}(\mathfrak{G})\cong I(\mathfrak{H})/I^{2}(\mathfrak{H})$ , which gives
the isomorphism of abelian groups

$(I_{Z}(\mathfrak{G})/I_{Z^{2}}(\mathfrak{G}))^{(k)}\cong(I_{2}(\mathfrak{H})/I_{Z^{9}}(\mathfrak{H}))^{(k_{J}}$ .

Hence by the fundamental theorem of abelian groups we obtain that $I_{Z}(\mathfrak{G})/I_{Z^{9}}(\mathfrak{G})$

$\cong I_{Z}(\mathfrak{H})/I_{Z^{2}}(\mathfrak{H})$ . On the other hand the natural map $g-1\rightarrow g,$ $g\in \mathfrak{G}$ , induces the
isomorphism $I_{Z}(\mathfrak{G})/I_{Z^{o}}(\mathfrak{G})\cong \mathfrak{G}/[\mathfrak{G}, \mathfrak{G}]$ . This shows that $\mathfrak{G}/[\mathfrak{G}, \mathfrak{G}]\cong \mathfrak{H}/[\mathfrak{H}. \mathfrak{H}]$ ,

and completes the proof
COROLLARY 1. ([1], [2] and [3]). If $\mathfrak{G}$ is abelian, then $R(\mathfrak{G})\cong R(\mathfrak{H})$ if

and only if $\mathfrak{G}\cong \mathfrak{H}$

REMARK. Coleman proved that if $Q$ is the rational number field, then
$Q(\mathfrak{G})\cong Q(\mathfrak{H})$ implies $\mathfrak{G}/[\mathfrak{G}, \mathfrak{G}]\cong \mathfrak{H}/[\mathfrak{H}, \mathfrak{H}]$ ([2], Th. 1.1, Cor. 1.1). Then, in
case $R=Z$, Proposition 2 follows directly from this result since $Z(\mathfrak{G})\cong Z(\mathfrak{H})$

yields $Q(\mathfrak{G})\cong Q(\mathfrak{H})$ .
3. Let $\mathfrak{G}$ and $\mathfrak{H}$ be finite groups with an isomorphism $\varphi:R(\mathfrak{G})\cong R(\mathfrak{H})$ of

group algebras. For each normal subgroup $\mathfrak{g}$ of $\mathfrak{G}$ and the natural homomor-
phism $\rho$ , of $R(\mathfrak{G})$ onto $R(\mathfrak{G}/\mathfrak{g})$ , the normal subgroup $\Phi(\mathfrak{g})$ of $\mathfrak{H}$ is defined (see

[1] and [3]) as follows:
$\Phi(\mathfrak{g})=\{h\in \mathfrak{H};\rho_{4}\circ\varphi^{-1}(h)=1\}$ .

We see easily
LEMMA 2. ([1] and [3]). $\Phi$ is an isomorphism of the lattice of normal

subgroups of $\mathfrak{G}$ onto the lattice of normal subgroups of $\mathfrak{H}$ , and $\varphi$ induces an
isomorphism $\overline{\varphi};R(\mathfrak{G}/\mathfrak{g})\cong R(\mathfrak{H}/\Phi(\mathfrak{g}))$ such that $\overline{\varphi}\circ\rho_{\delta}=\rho_{\Phi(\mathfrak{g})}\circ\varphi$ . In particular
$(\mathfrak{g}:1)=(\Phi(\mathfrak{g}):1)$ .

PROPOSITION 3. Let $\mathfrak{g}$ be any normal subgroup of $\mathfrak{G}$ and set $\mathfrak{h}=\Phi(\mathfrak{g})$ .
Then $\mathfrak{g}/[\mathfrak{g}, \{\{]\cong \mathfrak{h}/[\mathfrak{h}, \mathfrak{h}]$ .

$\zeta$

$\eta_{\mathfrak{G}}$

PROOF. The exact sequence $0\rightarrow I(\mathfrak{G})\rightarrow R(\mathfrak{G})\rightarrow R\rightarrow 0$ of $Z(\mathfrak{g})$ -modules,
where $\mathfrak{g}$ acts on $R$ trivially and $f$ is the inclusicn, gives rise to the exact
sequence of homology groups of $(\{$
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$f$ $\overline{\eta}_{\mathfrak{G}}$

$0\rightarrow H_{1}(\mathfrak{g}, R)\rightarrow H_{0}(\mathfrak{g}, I(\mathfrak{G}))\rightarrow H_{0}(\mathfrak{g}, R(\mathfrak{G}))\rightarrow H_{0}(\mathfrak{g}, R)\rightarrow 0$

$(H_{1}(\mathfrak{g}, R(\mathfrak{G}))=0$ since $R(\mathfrak{G})$ is free over $Z(\mathfrak{g}))$ . But $H_{0}(\mathfrak{g}, R)=R,$ $H_{0}(\mathfrak{g}, R(\mathfrak{G}))$

$=R(\mathfrak{G}/())$ and $\overline{\eta}_{\mathfrak{G}}=\eta_{\mathfrak{G}/\mathfrak{g}}$ . Then the image of -f is precisely the augmentation
ideal $I(\mathfrak{G}/\mathfrak{g})$ , and this is free over $Z$. Therefore $H_{0}(\mathfrak{g}, I(\mathfrak{G}))$ is isomorphic to the
direct sum of $H_{1}(\mathfrak{g}, R)$ and $I(\mathfrak{G}/\mathfrak{g})$ , so that the isomorphic image in $H_{0}(\mathfrak{g}, I(\mathfrak{G}))$

of $H_{1}(\mathfrak{g}, R)$ is the torsion part of $H_{0}(\mathfrak{g}, I(\mathfrak{G}))$ . Similarly $H_{1}(\mathfrak{h}, R)$ is isomorphic
to the torsion part of $H_{0}(\mathfrak{h}, I(\mathfrak{H}))$ . On the other hand, the commutativity
(Lemma 2) of the following diagram of exact sequences

$\rho_{\mathfrak{g}}$

$0\rightarrow R(\mathfrak{G})I(\mathfrak{g})\rightarrow R(\mathfrak{G})\rightarrow R(\mathfrak{G}/\mathfrak{g})\rightarrow 0$

$\downarrow|\varphi\rho_{Q}$
$\downarrow|\overline{\varphi}$

$0\rightarrow R(\mathfrak{H})I(\mathfrak{h})\rightarrow R(\mathfrak{H})\rightarrow R(\mathfrak{H}/\mathfrak{h})\rightarrow 0$

shows that $\varphi$ induces the isomorphism $R(\mathfrak{G})I(\mathfrak{g})\cong R(\mathfrak{H})I(\mathfrak{h})$ . Since $\varphi(I(\mathfrak{G}))=I(\mathfrak{H})$

by Proposition 1, it follows that
$\varphi(I(\mathfrak{G})I(\mathfrak{g}))=\varphi(I(\mathfrak{G})\cdot R(\mathfrak{G})I(\mathfrak{g}))=\varphi(I(\mathfrak{G}))\cdot\varphi(R(\mathfrak{G})I(\mathfrak{g}))$

$=I(\mathfrak{H})\cdot R(\mathfrak{H})I(\mathfrak{h})=I(\mathfrak{H})I(\mathfrak{h})$ .
Thus we have

$H_{0}(\mathfrak{g}, I(\mathfrak{G}))=I(\mathfrak{G})/I(\mathfrak{G})I(\mathfrak{g})\cong I(\mathfrak{H})/I(\mathfrak{H})I(\mathfrak{h})=H_{0}(\mathfrak{h}, I(\mathfrak{H}))$ ,
so that

$R\otimes_{Z}(I_{Z}(\mathfrak{g})/I_{Z^{2}}(\mathfrak{g}))=H_{1}(\mathfrak{g}, R)\cong H_{1}(\mathfrak{h}, R)=R\otimes_{Z}(I_{Z}(\mathfrak{h})/I_{z^{2}}(\mathfrak{h}))$

since $H_{1}(\mathfrak{g}, R)$ (resp. $H_{1}(\mathfrak{h},$ $R)$) is isomorphic to the torsion part of $H_{0}(\mathfrak{g}, I(\mathfrak{G}))$

(resp. $H_{0}(\mathfrak{h},$ $I(\mathfrak{H}))$). Consequently, the same method as in the proof of Proposi-
tion 2 gives an isomorphism $\mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]\cong \mathfrak{h}/[\mathfrak{h}, \mathfrak{h}]$ , which completes the proof.

COROLLARY 2. $\Phi$ gives $a$ one-to-one correspondence between the set of
normal abelian subgroups of $\mathfrak{G}$ and that of $\mathfrak{H}$ and corresponding groups are
isomorphic.

REMARK. This corollary is a generalization to arbitrary groups of the result
by Passman [3] in the case of nilpotent groups.

PROPOSITION 4. If $\mathfrak{G}$ is metabelian (resp. metacyclic), then $\mathfrak{H}$ is metabelian
(resp. metacyclic).

PROOF. Let $\mathfrak{g}$ be the normal abelian subgronp of $\mathfrak{G}$ such that $\mathfrak{G}/\mathfrak{g}$ is abelian
and set $\Phi(\mathfrak{g})=\mathfrak{h}$ . Then $\mathfrak{g}\cong \mathfrak{h}$ by Corollary 2 and $R(\mathfrak{G}/\mathfrak{g})\cong R(\mathfrak{H}/\mathfrak{h})$ by Lemma 2.
Since $\mathfrak{G}/\mathfrak{g}$ is also abelian, Corollary 1 implies that $\mathfrak{G}/\mathfrak{g}\cong \mathfrak{H}/\mathfrak{h}$ , which shows that
$\mathfrak{H}$ is metabelian. In particular, if $\mathfrak{G}$ is metacyclic, then $\mathfrak{H}$ is metacyclic.

PROPOSITION 5. If $\mathfrak{G}$ is supersolvable, then $\mathfrak{H}$ is also supersolvable.
PROOF. Let $\mathfrak{G}$ be supersolvable. Then there exists a normal series $\mathfrak{G}=\mathfrak{g}_{0}$

$\supset \mathfrak{g}_{1}\supset\cdots\supset \mathfrak{g}_{n}=\{1\}$ such that all factors $\mathfrak{g}_{i-1}/\mathfrak{g}_{i}$ are cyclic. Setting $\Phi(\mathfrak{g}_{i})=\mathfrak{h}_{i}$ ,

we have a normal series of $\mathfrak{H}$ :
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$\mathfrak{H}=\mathfrak{h}_{0}\supset \mathfrak{h}_{1}\supset\cdots\supset \mathfrak{h}_{n}=\{1\}$ ,

and
$R(\mathfrak{G}/\mathfrak{g}_{i})\cong R(\mathfrak{H}/\mathfrak{h}_{i})$ , $i=1,2,$ $\cdots$ , $n$ .

Since each $\mathfrak{g}_{i-1}/\{]_{?}$ is a normal cyclic subgroup of $\mathfrak{G}/\mathfrak{g}_{i}$ and $\Phi(\mathfrak{g}_{i-1}/\mathfrak{g}_{i})=\mathfrak{h}_{i-1}f\mathfrak{h}_{t^{(*)}}$ ,

Corollary 2 yields that $\mathfrak{h}_{i-1}/\mathfrak{h}_{j}$ is isomorphic to $\mathfrak{g}_{i-1}/\mathfrak{g}_{i}$ , so that cyclic. Thus $\mathfrak{H}$

is supersolvable.
LEMMA 3. Let $t1$ be any normal subgroup of $\mathfrak{G}$ and set $\Phi_{(}^{\prime}\mathfrak{g}$) $=\mathfrak{h}$ , then

$\Phi([\mathfrak{g}, \mathfrak{g}])=[\mathfrak{h}, \mathfrak{h}]$ .
PROOF. Set $\Phi([\mathfrak{g}, \mathfrak{g}])=\mathfrak{h}^{\prime}$ . We have seen in Lemma 2 that $R(\mathfrak{G}/[\mathfrak{g}, \mathfrak{g}])$

$\cong R(\mathfrak{H}/\mathfrak{h}^{\prime})$ . Then $\mathfrak{h}/\mathfrak{h}^{\prime}=\Phi(\mathfrak{g}/[tI, 0])$ is isomorphic to the normal abelian subgroup
$\mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ of $\mathfrak{G}/[\mathfrak{g}, \mathfrak{g}]$ (Corollary 2), which shows that $\mathfrak{h}^{\prime}\supset[\mathfrak{h}, \mathfrak{h}]$ and $(\mathfrak{h}^{\prime}$ : 1 $)$

$=([\mathfrak{g}, \mathfrak{g}]:1)$ . But it follows from Proposition 3 that $([\mathfrak{h}, \mathfrak{h}]:1)=([\mathfrak{g}, \mathfrak{g}]:1)$ .
Hence $(\mathfrak{h}^{\prime} : 1)=([\mathfrak{h}, \mathfrak{h}]:1)$ so that $\mathfrak{h}^{\prime}=[\mathfrak{h}, \mathfrak{h}]$ . This proves the lemma.

MAIN THEOREM. Let $\mathfrak{G}$ and $\mathfrak{H}$ be finite groups such that $R(\mathfrak{G})\cong R(\mathfrak{H})$ . If
$\mathfrak{G}$ is solvable with the length $n$ of the derived series, then so is $\mathfrak{H}$, and if $\{\mathfrak{g}_{i}\}$

and $\{\mathfrak{h}_{i}\}$ are the derived series of $\mathfrak{G}$ and $\mathfrak{H}$ , respectively, then $\mathfrak{g}_{i-1}/\mathfrak{g}_{i}\cong \mathfrak{h}_{i-1}/\mathfrak{h}_{i}$

for all $i$ .
PROOF. Since $\mathfrak{g}_{i}=[\mathfrak{g}_{i-1}, \mathfrak{g}_{i-1}]$ , Lemma 3 insures that $\Phi(\mathfrak{g}_{i})$ is precisely the

commutator $[\Phi(\mathfrak{g}_{i-1}), \Phi(\mathfrak{g}_{i-1})]$ . Then the induction process shows that $\Phi(\mathfrak{g}_{i})$ is
the i-th derived group $\mathfrak{h}_{i}$ of $\mathfrak{H}$ and $\mathfrak{h}_{n}=$

$\perp$ }. Furthermore $R(\mathfrak{G}/\mathfrak{g}_{i})\cong R(\mathfrak{H}/\mathfrak{h}_{i})$ ,
$\Phi(\mathfrak{g}_{i-1}/\mathfrak{g}_{i})=\mathfrak{h}_{i-1}/\mathfrak{h}_{i}$ , and $\mathfrak{g}_{i-1}/\mathfrak{g}_{i}$ is a normal abelian subgroup of $\mathfrak{G}/\mathfrak{g}_{i}$ . Therefore
$\mathfrak{g}_{i-1}/\mathfrak{g}_{i}\cong \mathfrak{h}_{i-1}/\mathfrak{h}_{i}$ for all $i$ by

COROLLARY 2. This shows the theorem.
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$(*)$ This follows directly from the definition of $\Phi$ .
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