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Introduction

An isometric immersion $M\rightarrow M^{\prime}$ of a Riemannian manifold $M$ in anothet
manifold $M^{\prime}$ is called to be minimal, if each of its mean curvatures vanishes.
In this paper we shall deal with minimal immersions of Riemannian manifolds
in a space of constant curvature.

In \S 1 we shall summarize notations and formulas concerning immersions
which are all well-known, and give a criterion for a Riemannian manifold to
be immersed minimally in a space of constant curvature (Theorem 1).

In \S 2 we shall deal with an immersion $x:M\rightarrow R^{m+k}$ of a Riemannian m-
manifold in an $(m+k)$-dimensional Euclidean space $R^{m+k}$ . If the image $x(M)$

of $M$ by $x$ is contained in an $(m+k-1)$ -dimensional sphere $S^{m+k-1}$ in $R^{m+k}$ , we
shall call that the immersion $x$ realizes an immersion in a sphere. Since the
immersion $x$ can be considered as a vector valued function on $M$, we can
apply Laplace-Beltrami operator $\Delta$ to $x$ . Theorem 2 asserts that the immer-
sion $x$ is minimal if and only if $\Delta x=0$ , and Theorem 3 asserts that the im-
mersion $x$ realizes a minimal immersion in a sphere if and only if $\Delta x=\lambda x$

for some constant $\lambda\neq 0$ and the radius of the sphere is completely determined
by $\lambda$ . Theorem 2 has been obtained by J. Eells and J. H. Sampson [1].

In \S 3 we shall give an example of a Riemannian manifold which admits
an immersion $\chi$ in a Euclidean space satisfying $\Delta x=\lambda x$ , and prove that the
compact homogeneous Riemannian manifold with irreducible linear isotropy
group admits a minimal immersion in a sphere. This example is motivated
by a work of T. Nagano [2]. The author is grateful to Professors T. Nagano
and M. Obata for their many valuable suggestions in this research.

\S 1. Notations and formulas

Let $M$ and $M^{\prime}$ be Riemannian manifolds of dimension $m$ and $m+k$ respec-
tively and $\varphi:M\rightarrow M^{\prime}$ be an isometric immersion of $M$ in $M^{\prime}$ . In terms of
local coordinates $(\xi^{1}, \cdots , \xi^{m})$ of $M$ and $(\eta^{1}, \cdots \eta^{m+k})$ of $M^{\prime}$ , the immersion $\varphi$ is

$*)$ This research was partially supported by the Sakko-kai Foundation.
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locally represented by

$\eta^{A}=\eta^{A}(\xi^{1}, \xi^{m})$ $(A=1, m+k)$ .
If we denote $\partial_{i}\eta^{\Lambda}$ by $B^{A}$ where $\partial_{i}=\partial/\partial\xi^{i}$ , we have

(1.1) $g_{ji}=B_{j}^{B}B_{i}^{A}g_{1?A}^{l**1}$

where $g_{ji}$ and $g_{AB}^{\prime}$ are the metric tensors of $M$ and $M^{\prime}$ respectively. Let $n$

$\alpha$

( $\alpha=1,$ $\cdots$ , k) be mutually orthogonal unit normals, $H_{a^{ji}}$ ($\alpha=1,$ $\cdots$ , k) be the

second fundamental tensor and
$ H_{\beta^{j}}\alpha$

( $\alpha,$ $\beta=1,$ $\cdots$ , k) be the third fundamental

tensor of the immersion. Then the following formulas are well-known [3].

(1.2) $\nabla_{j}B_{t}^{A}=\sum_{a=1}^{k}H_{a^{ji}}N_{y}^{A}$

(1.3) $\nabla_{j}N_{\alpha}^{A}=-H_{j}^{i}B_{?}^{A}+\Sigma^{k}HN_{\beta}^{A}\alpha\beta=1a\beta^{j}$ $(\alpha=1, k)$

(1.4) $ K_{kjih}=B_{k}^{D}B_{j}^{C}B_{i}^{B}B_{h}^{A}K_{I)CBA}^{\prime}+\sum_{1^{\Rightarrow 1}}^{h}(H_{k}{}_{h}H_{ji}-H_{k}{}_{ij\hslash}H_{\alpha})\alpha\alpha\alpha$

where $N^{A}a$ are the components of
$ n\alpha$

with respect to the coordinates $(\eta^{A})$ in
$M^{\prime},$ $K_{kjih}$ and $K_{DCBA}^{\prime}$ are the curvature tensors of $M$ and $M^{\prime}$ and $\nabla_{J}$ is the so-
called van der Waerden-Bortolotti operator of covariant differentiation. If we
denote the Christoffel symbols of $M$ and $M^{\prime}$ by $\{_{k^{i}j}\}$ and $\{_{c^{A_{B}}}\}^{\prime}$ respectively,
$\nabla_{j}B_{i}^{A}$ and $\nabla_{j}Na$

’ are given by

$V_{J}B_{i}^{A}=\partial_{j}B_{i}^{A}-\{j^{h}i\}B_{h}^{A}+\{B^{A}C\}^{\prime}B_{j}^{c}B_{i}^{B}$

$\nabla_{J}N^{A}\alpha=\partial_{j}N^{A}+a\left\{\begin{array}{l}A\\CB\end{array}\right\}B_{j}^{c}N^{B}\alpha$ $(\alpha=1, k)$ .

$ha$ $(\alpha=1, \cdots , k)$ , which are by definition $ H_{ji}g^{ji}\alpha$ are called the mean cur-
vatures of the immersion and the immersion is called to be minimal if and
only if $h=0$ $(\alpha=1, \cdots , k)$ .

$\alpha$

If $M^{\prime}$ is a space of constant curvature $c$ , the curvature tensor of $M^{\prime}$ has
the form

(1.5) $K_{DCBA}^{\prime}=c(g_{DA}^{\prime}g_{BC}^{\prime}-g_{DB}^{\prime}g_{CA}^{\prime})$ ,

and so from (1.4) and (1.5) the formula (1.4) are written by

$**)$ In the sequel, we use the summation convention for the Latin indices $h,$ $i,j,$ $k$ ,
$...=1$ , $\cdot$ .. , $m$ [and $A,$ $B,$ $C,$ $D$ , $\cdot$ . $=1$ , ... , $m+k$ . For the Greek indices their values are
indicated in each equation.
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(1.6) $ K_{kjih}=c(g_{kh}g_{ji}-g_{ki}g_{jh})+\sum_{\alpha=1}^{k}(H_{kh}H_{ji}-H_{k}{}_{i}H_{jh})\alpha\alpha\alpha\alpha$

Tranvecting (1.6) with $g^{kh}$ , we obtain

$K_{ji}=c(m-1)g_{ji}-\sum_{\alpha=1}^{\kappa}H_{\alpha^{jk}}H_{\alpha^{ih}}g^{kh}$ ,

where $K_{ji}$ is Ricci tensor of $M$. Thus we have

$c(m-1)g_{ji}-K_{ji}=\sum_{\alpha=1}^{k}H_{a^{jk}}H_{\alpha^{ih}}g^{k\hslash}$ .

The right hand member of this equation is positive semi definite. Thus we
have the theorem.

THEOREM 1. If a Riemannian m-manifold $M$ admits a minimal immersion
in a space of constant curvature $c$ , the tensor $c(m-1)g-K$ is positive semi-
definite where $g$ is metric tensor and $K$ is Ricci tensor of $M$.

Now let $M^{\prime\prime}$ be a third Riemannian manifold of dimension $m+k^{\prime}$ , and
assume that there exist isometric immersions $\varphi^{\prime}$ : $M-\lrcorner lI^{\prime\prime}$ and $\varphi^{\prime\prime}$ : $M^{\prime\prime}-M^{\prime}$

such that $\varphi=\varphi^{\prime\prime}\circ\varphi^{\prime}$ . If we take the unit normals $ n^{\prime}\alpha$ $(\alpha=1, \cdot.. , k^{\prime})$ for the

immersion $\varphi^{\prime}$ and
$\beta n$

( $\beta=k^{\prime}+1,$ $\cdots$ , k) for the immersion $\varphi^{\prime\prime}$ , then denoting

$n_{a}=d\varphi^{\prime\prime}(n^{\prime}a)(\alpha=1, \cdots , k^{J}),$
$n$ ($\gamma=1,$ $\cdots$ , k) are considered as the unit normals

for the immersion $\varphi$ . $The^{\gamma}$ following lemma is easily verified.
LEMMA. Notations being as above, let $ H_{ji}^{\prime}\alpha$ $(\alpha=1, \cdots , k^{\prime})$ be the secona

fundamental tensor of the immersion $\varphi^{\prime}$ with respect to the unit normals $n_{\alpha}^{\prime}$ ,

we have $ H_{ji}^{\prime}\alpha=H_{ji}\alpha$ $(\alpha=1, \cdots , k^{\gamma})$ .

\S 2. The minimal immersion in a sphere

Let $M$ be a Riemannian m-manifold and $x:M\rightarrow R^{m+k}$ be an isometric im-
mersion of $M$ in a Euclidean $(m+k)$ -space $R^{m+k}$ . Let $(\xi^{1}, , \xi^{m})$ be a local
coordinates in $M$ and $n\alpha(\alpha=1, \cdots, k)$ be mutually orthgonal unit normals.

Then the formulas (1.2) and (1.3) are written in the vector forms as follows.

(2.1) $\nabla_{j}x_{i}=\partial_{j}x_{t}-\{jhi\}x_{h}=\Sigma^{k}H_{ji}n\alpha=1\alpha\alpha$

(2.2) $\nabla_{J_{a}}n=\partial_{J_{\alpha}}n=-HHn\alpha^{j^{t_{\chi_{i}+\sum_{\theta=I\alpha\beta^{j}\theta}^{k}}}}$ $(\alpha=1, \cdots, k)$

where $x_{i}=\partial_{i}x$.
By definition $\Delta x=-g^{ji}\nabla_{j}x_{i}$ and therefore from (2.1) we have

(2.3) $\Delta x=-\sum_{\alpha=1}^{k}h_{\alpha}n_{\alpha}$ .
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The formula (2.3) implies that $\Delta x=0$ if and only if $h=0$ ($\alpha=1$ , $\cdot$ .. , k)
$\alpha$

which means that the immersion $x$ is minimal. Thus we have the theorem.
THEOREM 2. An isometric immersion $x:M\rightarrow R^{m+k}$ of a Riemannian m-

manifold $M$ in $a$ Euclidean $(m+k)$ -space $R^{m+k}$ is minimal if and only if $\Delta x=0$ .
From this theorem it might be natural to ask what the immersion $x$

satisfying $\Delta x=\lambda x(\lambda\neq 0)$ is. The answer is, roughly speaking, that such an
immersion realizes a minimal immersion in a sphere and conversely. More
precisely,

THEOREM 3. If an isometric immersion $x:M\rightarrow R^{m+k}$ of a Riemannian m-
manifold $M$ in $a$ Euclidean $(m+k)$ -space satisfies $\Delta x=\lambda x$ for some constant
$\neq 0$, then $\lambda$ is necessarily positive and $x$ realizes a minimal immersion in a
sphere $S^{m+k+1}$ of a radius $\sqrt{m}/\lambda$ in $R^{m+k}$ : Conversely if $x$ realizes a minimal
immersion in a sphere of radius $a$ in $R^{m+k}$, then $x$ satisfies $\Delta x=\lambda x$ up to a
parallel displacement in $R^{m+k}$ and $\lambda=m/a^{2}$ .

PROOF. Assume $\Delta x=\lambda x(\lambda\neq 0)$ . Then from (2.3) we have

1 $k$

(2.4)
$x=\overline{\lambda}\sum_{\alpha=I}t_{\alpha}^{n}$ .

Differentiating (2.4) by $\xi^{j}$ and using (2.2) we obtain

$x_{j}=_{\lambda}^{1}--\sum_{\alpha=1}^{k}hH_{J^{i}}x_{i}-\frac{1}{\lambda}\sum_{\alpha\alpha\alpha=1}^{k}(\partial_{J_{\alpha}}h+_{\beta=1\theta\beta\alpha\alpha}\sum^{k}hH_{j})n$ .
Thus we have

(2.5) $\frac{1}{\lambda}\Sigma^{\kappa}hH_{ji}=g_{ji}\alpha=1\alpha\alpha$

Transvecting this equation with $g^{jl}$ , we have

\langle 2.6) $-1_{-\sum_{\alpha=1}^{k}(h)^{2}=m}\lambda\alpha$

from which it follows that $\lambda$ must be positive. From (2.4) the length $|x|$ of

the position vector $x$ is given by $-1\lambda-\sqrt{\sum_{\alpha--1}^{k}(h)^{2}0}$ hence we have

$|x|=\sqrt{m}/\lambda=const$ . $=a$ .

Therefore the image $x(M)$ of $M$ is contained in a sphere of radius $a$ centred
at the origin of $R^{m+k}$ which means the immersion $x$ realizes an immersion in
a sphere.

Since the vector $x$ is normal to $M$ (precisely $x(M)$)
$n_{k}$

can be chosen as
\langle $1/a$) $x$ and then $n_{\alpha}(\alpha=1, \cdots , k-1)$ are tangent to the sphere. Then the
$form\iota\ddagger la(2.2)$ gives
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(2.7) $-H_{j^{l}}x_{i}+\sum^{k-1}H_{j}n=\frac{\perp}{a}x_{f}k\alpha=1k\alpha\alpha$

which implies

(2.8) $H_{ji}k=-\frac{1}{a}g_{fi}$ and $k\alpha H_{j}=0$
$(\alpha=1, \cdots , k-1)$

and from which we know $hk=-m/a=-\sqrt{\lambda m}$ Substituting this in (2.6) we

find $\sum_{\alpha=1}^{k-1}(h_{a})^{2}=0$ and hence we get $\alpha h=0$ for $\alpha=1$ , $\cdot$ .. , $k-1$ . Since from the

Lemma in \S 1, $H_{\alpha^{jt}}$ $(\alpha=1, \cdot.. , k-1)$ are equal to the second fundamental ten-

sor of the immersion in $S^{m+k-1}$ induced from $x$ . Thus $x$ realizes a minimal
immersion in a sphere.

Conversely assume that $x$ realizes a minimal immersion in a sphere $S^{m+k-1}$

of radius $a$ . By a parallel displacement in $R^{m+k},$ $S^{m+k-1}$ may be assumed to be
centred at the origin of $R^{m+k}$ . Then we can take mutually orthogonal unit
normals $n$ ( $\alpha=1$ , $\cdot$ .. . k) of the immersion such as $n=(1/a)x$ which is normal

$\alpha$ $k$

to $S^{m+k-1}$ . In our case the equation (2.7) and therefore (2.8) are automatically
satified, and since $H_{ji}a(\alpha=1, \cdots, k-1)$ are considered as the second funda-

mental tensor of the induced immersion in $S^{m+k-1}$ . we have $h_{a}=0(\alpha=1,$
$\cdots$ ,

$k-1)$ by the assumption. Then we have

$\Delta x=-\Sigma^{k}hn\alpha=1\alpha\alpha=-hnkk=-(h/a)xk$

From (2.8), we know $hk=-(m/a)$ and therefore we obtain

$\Delta x=(m/a^{2})x$ .

This completes the proof of Theorem 3.

\S 3. Application

Let $M$ be a compact homogeneous Riemannian manifold, and assume that
the linear isotropy group is irreducible on the tangent space.

For a constant $\lambda\neq 0$ we shall denote by $V_{\lambda}$ the set of all functions on $M$

satisfying $\Delta f=\lambda f$. Since $M$ is compact, each $V_{\lambda}$ is a finite dimensional vector
space over the reals. Assume $\dim V\neq 0$ (such a $V$ necessarily exists). The
isometries of $M$ act on the space of functions on $M$ in a natural way and
leave $V_{\lambda}$ invariant. The group $G$ of isometries of $M$ which is transitive on
$M$ is compact, and therefore there exists an inner product in $V_{\lambda}$ invariant by
$G$ . We fix one of them. Let $f_{1},$ $\cdots$ , $f_{n}(n=\dim V_{\lambda})$ be an orthonormal basis
of $V_{\lambda}$ with respect to the inner product. We have a mapping $\tilde{x};M\rightarrow R^{n}$ of
$M$ in $R$“ by $x(p)=(f_{1}(p), \cdot.. , f.(p))$ for $p\in M$. We have a covariant tensor
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field $g=\sum_{i=1}^{n}df_{i}\cdot df_{l}$ on $M$. For an isometry $\sigma,$

$\sigma^{*}$ preserves the inner product

of $V_{\lambda}$ , we know $\sigma^{*}(f_{j})=\sum_{i=1}^{n}\sigma_{tj}f_{i}$ and the matrix $(\sigma_{if})$ is an orthogonal matrix.

Then the transform $\sigma^{*}(\tilde{g})$ of $\tilde{g}$ by an isometry $\sigma$ is calculated as follows.

$\sigma^{*}(\tilde{g})=\sum_{j=I}^{n}\sigma^{*}(df_{j})\cdot\sigma^{*}(df_{j})$

$=\sum_{j=1}^{n}d(\sigma^{*}f_{j})\cdot d(\sigma^{*}f_{j})$

$=\sum_{t.j.k=1}\sigma_{ij}^{*}\sigma_{kj}^{*}df_{t}d\int_{k}^{\sim}$

$=\sum_{l<1}^{n}df_{i}df_{f}$

$=\tilde{g}$ .
Thus $\tilde{g}$ is invariant by all isometries of $M$. Hence by the assumption of the
irreducibility of the linear isotropy group, we obtain

$\tilde{g}=c^{2}g$

for some constant $c\neq 0$ where $g$ is the metric tensor of $M$. Therefore the
mapping defined by $x(p)=(1/c)\tilde{x}(p)$ gives an isometric immersion of $M$ in $R$“

satisfying $\Delta x=\lambda x$ for $\lambda\neq 0$ . Thus from Theorem 3 we have the theorem.
THEOREM 4. A compact homogeneous Riemannian manifold with irreducible

linear isotropy group admits a minimal immersion in $a$ Euclidean sphere.
$CoROLLARY$ . An irreducible compact symmetric space admits a minima

immersion in $a$ Euclidean sphere.
Tsuda College, Tokyo.
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