Minimal immersions of Riemannian manifolds

By Tsunero TAKAHASHI*)

(Received June 14, 1966)

Introduction

An isometric immersion $M \rightarrow M'$ of a Riemannian manifold M in another manifold M' is called to be *minimal*, if each of its mean curvatures vanishes. In this paper we shall deal with minimal immersions of Riemannian manifolds in a space of constant curvature.

In § 1 we shall summarize notations and formulas concerning immersions which are all well-known, and give a criterion for a Riemannian manifold to be immersed minimally in a space of constant curvature (Theorem 1).

In § 2 we shall deal with an immersion $x: M \to R^{m+k}$ of a Riemannian m-manifold in an (m+k)-dimensional Euclidean space R^{m+k} . If the image x(M) of M by x is contained in an (m+k-1)-dimensional sphere S^{m+k-1} in R^{m+k} , we shall call that the immersion x realizes an immersion in a sphere. Since the immersion x can be considered as a vector valued function on M, we can apply Laplace-Beltrami operator Δ to x. Theorem 2 asserts that the immersion x is minimal if and only if $\Delta x = 0$, and Theorem 3 asserts that the immersion x realizes a minimal immersion in a sphere if and only if $\Delta x = \lambda x$ for some constant $\lambda \neq 0$ and the radius of the sphere is completely determined by λ . Theorem 2 has been obtained by λ . Eells and λ . Sampson [1].

In § 3 we shall give an example of a Riemannian manifold which admits an immersion x in a Euclidean space satisfying $\Delta x = \lambda x$, and prove that the compact homogeneous Riemannian manifold with irreducible linear isotropy group admits a minimal immersion in a sphere. This example is motivated by a work of T. Nagano [2]. The author is grateful to Professors T. Nagano and M. Obata for their many valuable suggestions in this research.

§ 1. Notations and formulas

Let M and M' be Riemannian manifolds of dimension m and m+k respectively and $\varphi: M \to M'$ be an isometric immersion of M in M'. In terms of local coordinates (ξ^1, \dots, ξ^m) of M and $(\eta^1, \dots, \eta^{m+k})$ of M', the immersion φ is

^{*)} This research was partially supported by the Sakko-kai Foundation.

locally represented by

$$\eta^A = \eta^A(\xi^1, \dots, \xi^m)$$
 $(A = 1, \dots, m+k)$.

If we denote $\partial_i \eta^A$ by B^A where $\partial_i = \partial/\partial \xi^i$, we have

$$(1.1) g_{ji} = B_j^B B_i^A g'_{BA}^{**}$$

where g_{ji} and g'_{AB} are the metric tensors of M and M' respectively. Let $n = (\alpha = 1, \dots, k)$ be mutually orthogonal unit normals, H_{ji} $(\alpha = 1, \dots, k)$ be the second fundamental tensor and H_{j} $(\alpha, \beta = 1, \dots, k)$ be the third fundamental tensor of the immersion. Then the following formulas are well-known [3].

$$\nabla_{j}B_{i}^{A} = \sum_{\alpha=1}^{k} H_{ji}N^{A}$$

(1.3)
$$\nabla_{j} N^{A} = -H_{j}^{i} B_{i}^{A} + \sum_{k=1}^{k} H_{j} N^{A} \qquad (\alpha = 1, \dots, k)$$

(1.4)
$$K_{kjih} = B_k^D B_j^C B_i^B B_h^A K'_{DCBA} + \sum_{\alpha=1}^k (H_{kh} H_{ji} - H_{ki} H_{jh})$$

where N^A are the components of n with respect to the coordinates (η^A) in M', K_{kjih} and K'_{DCBA} are the curvature tensors of M and M' and ∇_j is the so-called van der Waerden-Bortolotti operator of covariant differentiation. If we denote the Christoffel symbols of M and M' by $\binom{i}{kj}$ and $\binom{A}{CB}$ respectively, $\nabla_j B_i^A$ and $\nabla_j N^A$ are given by

$$\begin{split} & \nabla_{j}B_{i}^{A} = \partial_{j}B_{i}^{A} - {h \brace ji}B_{h}^{A} + {A \brack BC}' B_{j}^{C}B_{i}^{B} \\ & \nabla_{j}N_{\alpha}^{A} = \partial_{j}N_{\alpha}^{A} + {A \brack CB}' B_{j}^{C}N_{\alpha}^{B} \qquad (\alpha = 1, \dots, k) \,. \end{split}$$

 $h_{\alpha}(\alpha=1,\cdots,k)$, which are by definition $H_{ji}g^{ji}$, are called the *mean curvatures* of the immersion and the immersion is called to be *minimal* if and only if h=0 $(\alpha=1,\cdots,k)$.

If M' is a space of constant curvature c, the curvature tensor of M' has the form

$$(1.5) K'_{DCBA} = c(g'_{DA}g'_{BC} - g'_{DB}g'_{CA}),$$

and so from (1.4) and (1.5) the formula (1.4) are written by

^{**)} In the sequel, we use the summation convention for the Latin indices $h, i, j, k, \dots = 1, \dots, m$ [and $A, B, C, D, \dots = 1, \dots, m+k$. For the Greek indices their values are indicated in each equation.

(1.6)
$$K_{kjih} = c(g_{kh}g_{ji} - g_{ki}g_{jh}) + \sum_{\alpha=1}^{k} (H_{kh}H_{ji} - H_{ki}H_{jh}).$$

Tranvecting (1.6) with g^{kh} , we obtain

$$K_{ji} = c(m-1)g_{ji} - \sum_{\alpha=1}^{k} H_{jk}^{\bullet} H_{ih} g^{kh}$$

where K_{ji} is Ricci tensor of M. Thus we have

$$c(m-1)g_{ji}-K_{ji}=\sum_{\alpha=1}^k H_{jk}H_{ih}g^{kh}.$$

The right hand member of this equation is positive semi definite. Thus we have the theorem.

THEOREM 1. If a Riemannian m-manifold M admits a minimal immersion in a space of constant curvature c, the tensor c(m-1)g-K is positive semi-definite where g is metric tensor and K is Ricci tensor of M.

Now let M'' be a third Riemannian manifold of dimension m+k', and assume that there exist isometric immersions $\varphi':M-M''$ and $\varphi'':M''-M'$ such that $\varphi=\varphi''\circ\varphi'$. If we take the unit normals n' $(\alpha=1,\cdots,k')$ for the immersion φ' and n $(\beta=k'+1,\cdots,k)$ for the immersion φ'' , then denoting $n=d\varphi''(n')$ $(\alpha=1,\cdots,k')$, n $(\gamma=1,\cdots,k)$ are considered as the unit normals for the immersion φ . The following lemma is easily verified.

LEMMA. Notations being as above, let H'_{ji} ($\alpha=1,\dots,k'$) be the second fundamental tensor of the immersion φ' with respect to the unit normals n'_{α} , we have $H'_{ji} = H_{ji}$ ($\alpha=1,\dots,k'$).

§ 2. The minimal immersion in a sphere

Let M be a Riemannian m-manifold and $x: M \to R^{m+k}$ be an isometric immersion of M in a Euclidean (m+k)-space R^{m+k} . Let (ξ^1, \cdots, ξ^m) be a local coordinates in M and n $(\alpha=1, \cdots, k)$ be mutually orthogonal unit normals. Then the formulas (1.2) and (1.3) are written in the vector forms as follows.

(2.1)
$$\nabla_{j}x_{i} = \partial_{j}x_{i} - \begin{Bmatrix} h \\ ji \end{Bmatrix} x_{h} = \sum_{\alpha=1}^{k} H_{ji}n_{\alpha}$$

(2.2)
$$\nabla_{j} n = \partial_{j} n = -H_{j}^{i} x_{i} + \sum_{\beta=1}^{k} H_{j} n \qquad (\alpha = 1, \dots, k)$$

where $x_i = \partial_i x$.

By definition $\Delta x = -g^{ji} \nabla_j x_i$ and therefore from (2.1) we have

(2.3)
$$\Delta x = -\sum_{\alpha=1}^{k} hn.$$

The formula (2.3) implies that $\Delta x = 0$ if and only if h = 0 ($\alpha = 1, \dots, k$) which means that the immersion x is minimal. Thus we have the theorem.

Theorem 2. An isometric immersion $x: M \to R^{m+k}$ of a Riemannian m-manifold M in a Euclidean (m+k)-space R^{m+k} is minimal if and only if $\Delta x=0$.

From this theorem it might be natural to ask what the immersion x satisfying $\Delta x = \lambda x$ ($\lambda \neq 0$) is. The answer is, roughly speaking, that such an immersion realizes a minimal immersion in a sphere and conversely. More precisely.

Theorem 3. If an isometric immersion $x: M \to R^{m+k}$ of a Riemannian m-manifold M in a Euclidean (m+k)-space satisfies $\Delta x = \lambda x$ for some constant $\neq 0$, then λ is necessarily positive and x realizes a minimal immersion in a sphere S^{m+k+1} of a radius $\sqrt{m/\lambda}$ in R^{m+k} : Conversely if x realizes a minimal immersion in a sphere of radius a in R^{m+k} , then x satisfies $\Delta x = \lambda x$ up to a parallel displacement in R^{m+k} and $\lambda = m/a^2$.

PROOF. Assume $\Delta x = \lambda x$ ($\lambda \neq 0$). Then from (2.3) we have

$$(2.4) x = -\frac{1}{\lambda} \sum_{\alpha=1}^{k} hn.$$

Differentiating (2.4) by ξ^j and using (2.2) we obtain

$$x_{j} = \frac{1}{\lambda} \sum_{\alpha=1}^{k} h H_{j}^{i} x_{i} - \frac{1}{\lambda} \sum_{\alpha=1}^{k} (\partial_{j} h + \sum_{\beta=1}^{k} h H_{j}) n$$
.

Thus we have

$$(2.5) \qquad \frac{1}{\lambda} \sum_{\alpha=1}^{k} h H_{ji} = g_{ji}.$$

Transvecting this equation with g^{ji} , we have

$$(2.6) \qquad \frac{1}{\lambda} \sum_{\alpha=1}^{k} (h)^2 = m.$$

from which it follows that λ must be positive. From (2.4) the length |x| of the position vector x is given by $\frac{1}{\lambda} \sqrt{\sum_{k=1}^{k} (h)^2}$, hence we have

$$|x| = \sqrt{m/\lambda} = \text{const.} = a$$
.

Therefore the image x(M) of M is contained in a sphere of radius a centred at the origin of R^{m+k} which means the immersion x realizes an immersion in a sphere.

Since the vector x is normal to M (precisely x(M)) n can be chosen as (1/a)x and then n ($\alpha=1,\cdots,k-1$) are tangent to the sphere. Then the formula (2.2) gives

(2.7)
$$-H_{j}^{i}x_{i} + \sum_{\alpha=1}^{k-1} H_{j}n = \frac{1}{a}x_{j}$$

which implies

(2.8)
$$H_{ji} = -\frac{1}{a}g_{ji} \text{ and } H_{j} = 0 \quad (\alpha = 1, \dots, k-1)$$

and from which we know $h=-m/a=-\sqrt{\lambda m}$. Substituting this in (2.6) we find $\sum\limits_{\alpha=1}^{k-1}(h)^2=0$ and hence we get h=0 for $\alpha=1,\cdots,k-1$. Since from the Lemma in § 1, H_{ji} $(\alpha=1,\cdots,k-1)$ are equal to the second fundamental tensor of the immersion in S^{m+k-1} induced from x. Thus x realizes a minimal immersion in a sphere.

Conversely assume that x realizes a minimal immersion in a sphere S^{m+k-1} of radius a. By a parallel displacement in R^{m+k} , S^{m+k-1} may be assumed to be centred at the origin of R^{m+k} . Then we can take mutually orthogonal unit normals n ($\alpha=1,\cdots,k$) of the immersion such as n=(1/a)x which is normal to S^{m+k-1} . In our case the equation (2.7) and therefore (2.8) are automatically satisfied, and since H_{ji} ($\alpha=1,\cdots,k-1$) are considered as the second fundamental tensor of the induced immersion in S^{m+k-1} , we have h=0 ($\alpha=1,\cdots,k-1$) by the assumption. Then we have

$$\Delta x = -\sum_{\alpha=1}^{k} h n = -h n = -(h/a)x.$$

From (2.8), we know h = -(m/a) and therefore we obtain

$$\Delta x = (m/a^2)x.$$

This completes the proof of Theorem 3.

§ 3. Application

Let M be a compact homogeneous Riemannian manifold, and assume that the linear isotropy group is irreducible on the tangent space.

For a constant $\lambda \neq 0$ we shall denote by V_{λ} the set of all functions on M satisfying $\Delta f = \lambda f$. Since M is compact, each V_{λ} is a finite dimensional vector space over the reals. Assume dim $V \neq 0$ (such a V necessarily exists). The isometries of M act on the space of functions on M in a natural way and leave V_{λ} invariant. The group G of isometries of M which is transitive on M is compact, and therefore there exists an inner product in V_{λ} invariant by G. We fix one of them. Let f_1, \dots, f_n $(n = \dim V_{\lambda})$ be an orthonormal basis of V_{λ} with respect to the inner product. We have a mapping $\tilde{x}: M \to R^n$ of M in R^n by $x(p) = (f_1(p), \dots, f_n(p))$ for $p \in M$. We have a covariant tensor

field $g = \sum_{i=1}^{n} df_i \cdot df_i$ on M. For an isometry σ , σ^* preserves the inner product of V_{λ} , we know $\sigma^*(f_j) = \sum_{i=1}^{n} \sigma_{ij} f_i$ and the matrix (σ_{ij}) is an orthogonal matrix. Then the transform $\sigma^*(\tilde{g})$ of \tilde{g} by an isometry σ is calculated as follows.

$$\sigma^*(\tilde{g}) = \sum_{j=1}^n \sigma^*(df_j) \cdot \sigma^*(df_j)$$

$$= \sum_{j=1}^n d(\sigma^*f_j) \cdot d(\sigma^*f_j)$$

$$= \sum_{i,j,k=1}^n \sigma^*_{ij} \sigma^*_{kj} df_i df_k$$

$$= \sum_{i=1}^n df_i df_i$$

$$= \tilde{g}.$$

Thus \tilde{g} is invariant by all isometries of M. Hence by the assumption of the irreducibility of the linear isotropy group, we obtain

$$\tilde{g} = c^2 g$$

for some constant $c \neq 0$ where g is the metric tensor of M. Therefore the mapping defined by $x(p) = (1/c)\tilde{x}(p)$ gives an isometric immersion of M in R^n satisfying $\Delta x = \lambda x$ for $\lambda \neq 0$. Thus from Theorem 3 we have the theorem.

THEOREM 4. A compact homogeneous Riemannian manifold with irreducible linear isotropy group admits a minimal immersion in a Euclidean sphere.

COROLLARY. An irreducible compact symmetric space admits a minimal immersion in a Euclidean sphere.

Tsuda College, Tokyo.

and

Research Institute for Mathematical Science, Kyoto University.

Bibliography

- [1] J. Eells and J.H. Sampson, Harmonic mapping of Riemannian manifold, Amer. J. Math., 186 (1964), 109-160.
- [2] T. Nagano, On the minimum eigenvalues of the Laplacians in Riemannian manifolds, Sci. Papers Coll. Gen. Ed. Univ. Tokyo., 11 (1961) 177-182.
- [3] J. A. Schouten, Ricci-Calculus, Springer, 1956.